Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Multicomponent Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Multicomponent Geothermometers Multicomponent Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Multicomponent Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Multicomponent Geothermometers: The multicomponent geothermometry method consists of using full chemical analyses of water samples to compute the saturation indices (log(Q/K)) of reservoir minerals over a range of temperatures. The saturation indices are graphed as a function of temperature, and the clustering of log(Q/K) curves

2

Definition: Multicomponent Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Multicomponent Geothermometers Multicomponent Geothermometers Jump to: navigation, search Dictionary.png Multicomponent Geothermometers The multicomponent geothermometry method consists of using full chemical analyses of water samples to compute the saturation indices (log(Q/K)) of reservoir minerals over a range of temperatures. The saturation indices are graphed as a function of temperature, and the clustering of log(Q/K) curves near zero at any specific temperature (for a group of certain reservoir minerals) is used to infer the reservoir temperature.[1] References ↑ Berkeley Lab Earth Sciences Division Website: GeoT: A Computer Program for Multicomponent Geothermometry and Geochemical Speciation Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from

3

Cation Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Cation Geothermometers Cation Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cation Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Used to estimate reservoir temperatures. Dictionary.png Cation Geothermometers: No definition has been provided for this term. Add a Definition Introduction Some experts have stated that the factor that changes the risk assessment of a geothermal prospect the fastest is obtaining attractive chemical confirmation (geothermometry, gas analyses) that a thermal resource exists

4

Silica Geothermometers | Open Energy Information  

Open Energy Info (EERE)

Silica Geothermometers Silica Geothermometers Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Silica Geothermometers Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: Geochemical Data Analysis Parent Exploration Technique: Liquid Geothermometry Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Used to estimate reservoir temperatures. Dictionary.png Silica Geothermometers: No definition has been provided for this term. Add a Definition Introduction Some experts have stated that the factor that changes the risk assessment of a geothermal prospect the fastest is obtaining attractive chemical confirmation (geothermometry, gas analyses) that a thermal resource exists

5

A BASIC program for calculating subsurface water temperatures using chemical geothermometers—implication to geothermal reservoir estimation  

Science Conference Proceedings (OSTI)

Keywords: BASIC, Na-K-Ca geothermometer, Na/K ratio, geothermometer, silica geothermometer, subsurface temperature

Ali El-Naqa; Nasser Abu Zeid

1993-11-01T23:59:59.000Z

6

Chemical Geothermometers And Mixing Models For Geothermal Systems | Open  

Open Energy Info (EERE)

Geothermometers And Mixing Models For Geothermal Systems Geothermometers And Mixing Models For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical Geothermometers And Mixing Models For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum

7

Application Of An Artificial Neural Network Model To A Na-K Geothermometer  

Open Energy Info (EERE)

Application Of An Artificial Neural Network Model To A Na-K Geothermometer Application Of An Artificial Neural Network Model To A Na-K Geothermometer Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of An Artificial Neural Network Model To A Na-K Geothermometer Details Activities (3) Areas (2) Regions (0) Abstract: A new geothermometer model is proposed by applying data obtained from a known Na-K geothermometer to an artificial neural network. In this model, Na and K values were implemented as input signals and geothermometers as the output signal. Multi-layer perceptrons and back propagation were used as training algorithms for the artificial neural network. Reservoir temperatures of some geothermal fields in Turkey determined by this method are in accord with those determined from other methods.

8

New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...  

Open Energy Info (EERE)

Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: New...

9

Physicochemical basis of the Na-K-Ca geothermometer  

DOE Green Energy (OSTI)

Regular changes in solution composition were observed experimentally during granite reaction with dilute NaCl (+CaCl/sub 2/) solutions; these changes closely follow the empirical Na-K-Ca geothermometer relationship. Initial minerals forming the granite (quartz, plagioclase, K-feldspar, and biotite) were etched by the reactions. Alteration phases formed include calcium-zeolite at <300/sup 0/C, feldspar overgrowths at >300/sup 0/C, and minor amounts of clay and calcsilicate at all temperatures. Amphibole overgrowths were also found at 340/sup 0/C. Quartz is near saturation in all experiments, and preliminary calculations of aqueous species distributions and mineral affinities indicate that the solutions achieve super-saturation with feldspars as the temperature increase. A consistent variation attributable to pH differences was observed in the empirical geothermometer relationship for all experimental data. At 340/sup 0/C, the experimental solutions appear to have deviated slightly from the empirical Na-K-Ca relationship. Such deviations may also be found in natural systems that attain such temperatures.

Janecky, D.R.; Charles, R.W.; Bayhurst, G.K.; Benjamin, T.M.

1986-08-01T23:59:59.000Z

10

A New Improved Na-K Geothermometer By Artificial Neural Networks | Open  

Open Energy Info (EERE)

Improved Na-K Geothermometer By Artificial Neural Networks Improved Na-K Geothermometer By Artificial Neural Networks Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Improved Na-K Geothermometer By Artificial Neural Networks Details Activities (0) Areas (0) Regions (0) Abstract: A new Na/K geothermometer equation has been developed. The temperature function is:Concentrations are in mg/kg. The new improved geothermometer equation was developed by artificial neural networks. The normalized mean square error (NMSE) used in the new improved Na/K equation for temperatures ranging from 94 to 345°C is 0.179, which is lower than the corresponding NMSE 0.226, 0.598, 0.656, 0.268, 0.328 and 0.225 for the equations of Arnorsson et al. (1983; Geochim. Cosmochim. Acta 47, 567-577), Truesdell (1975; Proc. 2nd UN Symposium), Tonani (1980; Proc. Adv. Eur.

11

New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier  

Open Energy Info (EERE)

Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier Detection And Rejection Details Activities (1) Areas (1) Regions (0) Abstract: We present new improved equations for three still widely used Na/K, Na/Li and SiO2 geothermometers (obtained by statistical treatment of the data and application of outlier detection and rejection as well as theory of error propagation) and compare them with those by Fournier and others. New equations are also developed for estimating errors associated with the use of these new geothermometric equations and comparing them with the performance of the original equations. The errors in the use of the new

12

An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy  

Open Energy Info (EERE)

Empirical Na-K-Ca Geothermometer For Natural Waters Empirical Na-K-Ca Geothermometer For Natural Waters Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Empirical Na-K-Ca Geothermometer For Natural Waters Details Activities (0) Areas (0) Regions (0) Abstract: An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340°C. The data for most geothermal waters cluster near a straight line when plotted as the function vs reciprocal of absolute temperature, where Β is either or depending upon whether the water equilibrated above or below 100°C. For most waters tested, the method gives better results than the methods suggested by other workers. The ratio

13

A CO2-Silica Geothermometer for Low Temperature Geothermal Resource Assessment, with Application to Resources in the Safford Basin, Arizona  

DOE Green Energy (OSTI)

Geothermics is the study of the earth's heat energy, it's affect on subsurface temperature distribution, it's physical and chemical sources, and it's role in dynamic geologic processes. The term, geothermometry, is applied to the determination of equilibrium temperatures of natural chemical systems, including rock, mineral, and liquid phases. An assemblage of minerals or a chemical system whose phase composition is a function of temperature and pressure can be used as a geothermometer. Thus a geothermometer is useful to determine the formation temperature of rock or the last equilibrium temperature of a flowing aqueous solution such as ground water and hydrothermal fluids.

Witcher, James C.; Stone, Claudia

1983-11-01T23:59:59.000Z

14

CO/sub 2/-silica geothermometer for low temperature geothermal resource assessment, with application to resources in the Safford Basin, Arizona  

DOE Green Energy (OSTI)

This study investigates silica-water reactions in low-temperature geothermal water in areas near Safford, southeastern Arizona, and derives a pCO2 correction for conductive silica geothermometers. Use and limitations of the technique are also discussed. Data collection, interpretation approach, and basic geochemistry, as it applies to this study, are outlined. In addition, the geology, thermal regime, geohydrology, and gross geochemistry of the Safford area are reviewed. Finally, geothermal potential, as indicated by this study and previous studies is discussed.

Witcher, J.C.; Stone, C.

1983-11-01T23:59:59.000Z

15

Qrtzgeotherm: An ActiveX component for the quartz solubility geothermometer  

Science Conference Proceedings (OSTI)

An ActiveX component, QrtzGeotherm, to calculate temperature and vapor fraction in a geothermal reservoir using quartz solubility geothermometry was written in Visual Basic 6.0. Four quartz solubility equations along the liquid-vapor saturation curve: ... Keywords: ActiveX component, Computer program, QrtzGeotherm, QrtzGeothrm, Quartz geothermometry, Solubility equations, Visual Basic 6.0

Mahendra P. Verma

2008-12-01T23:59:59.000Z

16

Improved silica geothermometer for low temperature geothermal resource assessment. Monthly progress report No. 2, February-March, 1983  

DOE Green Energy (OSTI)

Progress is reported on: literature search, collection of available lithologic and driller's logs, construction of geologic cross sections, and collection of water samples. (MHR)

Not Available

1983-03-01T23:59:59.000Z

17

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

18

Spreadsheets for Geothermal Water and Gas Geochemistry | Open...  

Open Energy Info (EERE)

and plots four common ternaries, three3 "YT" gas geothermometer grids and two gas ratio geothermometer grids, mainly derived from the work of Werner Giggenbach. Typical...

19

Geothermometry At Central Nevada Seismic Zone Region (Shevenell...  

Open Energy Info (EERE)

DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...

20

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell...  

Open Energy Info (EERE)

DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power...

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Quasichemical Models of Multicomponent Nonlinear Diffusion  

E-Print Network (OSTI)

Diffusion preserves the positivity of concentrations, therefore, multicomponent diffusion should be nonlinear if there exist non-diagonal terms. The vast variety of nonlinear multicomponent diffusion equations should be ordered and special tools are needed to provide the systematic construction of the nonlinear diffusion equations for multicomponent mixtures with significant interaction between components. We develop an approach to nonlinear multicomponent diffusion based on the idea of the reaction mechanism borrowed from chemical kinetics. Chemical kinetics gave rise to very seminal tools for the modeling of processes. This is the stoichiometric algebra supplemented by the simple kinetic law. The results of this invention are now applied in many areas of science, from particle physics to sociology. In our work we extend the area of applications onto nonlinear multicomponent diffusion. We demonstrate, how the mechanism based approach to multicomponent diffusion can be included into the general thermodynamic ...

Gorban, A N; Wahab, H A

2011-01-01T23:59:59.000Z

22

Geothermal: Sponsored by OSTI -- Multicomponent Equilibrium Models...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Multicomponent Equilibrium Models for Testing Geot Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

23

Multicomponent fuel vaporization at high pressures.  

DOE Green Energy (OSTI)

We extend our multicomponent fuel model to high pressures using a Peng-Robinson equation of state, and implement the model into KIVA-3V. Phase equilibrium is achieved by equating liquid and vapor fugacities. The latent heat of vaporization and fuel enthalpies are also corrected for at high pressures. Numerical simulations of multicomponent evaporation are performed for single droplets for a diesel fuel surrogate at different pressures.

Torres, D. J. (David J.); O'Rourke, P. J. (Peter J.)

2002-01-01T23:59:59.000Z

24

Isotopic Interdiffusion Analysis and its Application in Multicomponent ...  

Science Conference Proceedings (OSTI)

Presentation Title, Isotopic Interdiffusion Analysis and its Application in Multicomponent ... Calorimetric studies of lithium ion cells and their constructing materials.

25

Modelling the Properties of Multi-Component Commercial Alloys  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

26

Electron-acoustic vortices in multicomponent magnetoplasma  

Science Conference Proceedings (OSTI)

Linear and nonlinear properties of electron-acoustic waves in a multicomponent magnetoplasma comprising of cold and beam electrons and two species of thermal unmagnetized ions are investigated here. It is found that the electron beam velocity, electron Debye length, electron Larmor radius, and concentration of the cold and beam electrons affect the linear dispersion characteristics of electron-acoustic wave. It is also found that such a multicomponent plasma admits dipolar and vortex street type structures for the normalized electrostatic potential PHIgeomagnetic tail, etc. is also pointed out.

Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad 45320 (Pakistan); Mirza, Arshad M. [Department of Physics, Theoretical Plasma Physics Group, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Nargis, Shahida [Department of Mathematics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

2010-05-15T23:59:59.000Z

27

Phase Stability of Multicomponent NAPLs Containing PAHs  

E-Print Network (OSTI)

natural or engineered process that acts to selectively extract compounds will alter NAPL composition examines the relationship between NAPL composition and liquid phase stability for mixtures of polycyclic as a subsurface environmental contaminant at sites of former manufactured gas plants (1). Multicomponent NAPLs

Peters, Catherine A.

28

Multicomponent Modified Boltzmann Equation and Thermalization  

E-Print Network (OSTI)

The existence of stationary distributions in a multicomponent Boltzmann equation using a non-additive kinetic energy composition rule for binary collisions is discussed. It is found that detailed balance is not achieved when -- in contrast to the case of a single rule -- several different composition rules are considered. The long-time behaviour of a simple momentum space model is explored numerically: saturating, heating and cooling solutions are presented.

M. Horváth; T. S. Biró

2013-09-19T23:59:59.000Z

29

Discontinuous Galerkin formulation for multi-component multiphase flow.  

E-Print Network (OSTI)

??The understanding of multiphase multi-component transport in capillary porous media plays an important role in scientific and engineering disciplines such as the petroleum and environmental… (more)

Ho, Christina

2010-01-01T23:59:59.000Z

30

I I I . Isotherm al Multicomponent Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Nonequilibrium C ontrib ution to the Rate o f R eaction Nonequilibrium C ontrib ution to the Rate o f R eaction I I I . Isotherm al Multicomponent Systems t B. S h izg a l* Department o f C hem istry, Harvard U n iv e r sity Cambridge, M assachusetts and Lorentz I n s t it u t e fo r T h e o r e tic a l P h y sics L eid en , N etherlands and M. Karplus Department o f C hem istry, Harvard U n iv e r sity Cambridge, M assachusetts ----------------------------- L E G A L N O T I C E -----------------------------

31

From Multi-Component Gas Streams Opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

Separation of CO Separation of CO 2 From Multi-Component Gas Streams Opportunity Research is active on the patent-pending technology, titled "Apparatus and Process for the Separation of Gases Using Supersonic Expansion and Oblique Shock Wave Compression." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The separation of a gaseous mixture into constituent gases has proven to be useful for a variety of industrial and commercial applications. Currently CO 2 can be separated from multi- component gas streams using compression and refrigeration techniques in order to condense the CO 2 out of a vapor phase so that it can be mechanically separated from the stream.

32

Dynamic Component Extension: a Strategy for Performance Improvement in Multicomponent Applications  

Science Conference Proceedings (OSTI)

Multicomponent application paradigms have gained prominence in many significant multidisciplinary scientific applications. In this work, we propose a software strategy called dynamic component extension for multicomponent applications to improve application ... Keywords: coupled climate models, idling, load balancing, multicomponent applications, temporal load imbalances

Sundari M. Sivagama; Sathish S. Vadhiyar; Ravi S. Nanjundiah

2009-02-01T23:59:59.000Z

33

Numerical Simulation of Multicomponent Ion Beam from Ion Sources  

E-Print Network (OSTI)

A program library for numerical simulation of a multicomponent charged particle beam from ion sources is presented. The library is aimed for simulation of high current, low energy multicomponent ion beam from ion source through beamline and realized under the Windows user interface for the IBM PC. It is used for simulation and optimization of beam dynamics and based on successive and consistent application of two methods: the momentum method of distribution function (RMS technique) and particle in cell method. The library has been used to simulate and optimize the transportation of tantalum ion beam from the laser ion source (CERN) and calcium ion beam from the ECR ion source (JINR, Dubna).

Alexandrov, V S; Kazarinov, Yu M; Shevtsov, V P; Shirkov, G D

1999-01-01T23:59:59.000Z

34

The Single Pass Multi-component Harvester  

SciTech Connect

The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2004. Title of Presentation. ASAE Paper No. 04xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

Reed Hoskinson; John R. Hess

2004-08-01T23:59:59.000Z

35

Synergism in Multicomponent Self-Propagating Molecular Assemblies  

Science Conference Proceedings (OSTI)

Multicomponent self-propagating molecular assemblies (SPMAs) have been generated from an organic chromophore, a redox-active polypyridyl complex, and PdCl{sub 2}. The structure of the multicomponent SPMA is not a linear combination of two assemblies generated with a single molecular constituent. Surface-confined assemblies formed from only the organic chromophore and PdCl{sub 2} are known to follow linear growth, whereas the combination of polypyridyl complexes and PdCl{sub 2} results in exponential growth. The present study demonstrates that an iterative deposition of both molecular building blocks with PdCl{sub 2} results in an exponentially growing assembly. The nature of the assembly mechanism is dictated by the polypyridyl complex and overrides the linear growth process of the organic component. Relatively smooth, multicomponent SPMAs have been obtained with a thickness of {approx}20 nm on silicon, glass, and indium-tin oxide (ITO) coated glass. Detailed information of the structure and of the surface-assembly chemistry were obtained using transmission optical (UV/Vis) spectroscopy, ellipsometry, atomic force microscopy (AFM), synchrotron X-ray reflectivity (XRR), and electrochemistry.

L Motiei; M Sassi; R Kaminker; G Evmenenko; P Dutta; M Iron; M van der Boom

2011-12-31T23:59:59.000Z

36

Multicomponent seismic monitoring of strain due to CO2 injection at Delhi field, Louisiana.  

E-Print Network (OSTI)

??Time-lapse, multicomponent seismic data are used in this thesis to monitor geomechanical changes within the reservoir and in the overburden layers at Delhi Field, Louisiana.… (more)

Bishop, John E.

2013-01-01T23:59:59.000Z

37

Copper-Based Multi-Component Alloys by Vacuum Distillation to ...  

Science Conference Proceedings (OSTI)

The result of experiment indicated the practicability of vacuum distillation dealing with copper base complex multi-component alloy to separating lead and silver, ...

38

Form of multicomponent Fickian diffusion coefficients matrix J. Wambui Mutoru, Abbas Firoozabadi  

E-Print Network (OSTI)

and natural processes. However, experimental determinations of multicomponent diffu- sion coefficients that composition variation in multicomponent mixtures may differ markedly from binary mixtures due to cross that in ideal gas mixtures, all molecular diffusion coefficients are non-negative. Standart et al. [10

Firoozabadi, Abbas

39

A comparison study of multi-component Lattice Boltzmann models for flow in porous media applications  

Science Conference Proceedings (OSTI)

A comparison study of three different multi-component Lattice Boltzmann models is carried out to explore their capability of describing binary immiscible fluid systems. The Shan-Chen pseudo potential model, the Oxford free energy model and the colour ... Keywords: Binary fluids, Lattice Boltzmann, Multi-component models

Jianhui Yang; Edo S. Boek

2013-03-01T23:59:59.000Z

40

Geochemical studies at four northern Nevada hot spring areas. [Kyle Hot Springs, Leach Hot Springs, Buffalo Hot Springs, and Beowave Hot Springs  

DOE Green Energy (OSTI)

Water samples from both hot and cold sources in the hydrologic areas surrounding the hot springs were collected and analyzed. Analyses of major, trace, and radio-element abundances of the water samples and of associated rock samples are presented. From this study it is possible that trace- and major-element abundances and/or ratios may be discerned which are diagnostic as chemical geothermometers, complementing those of silica and alkali elements that are presently used. Brief discussions of mixing calculations, possible new chemical geothermometers, and interelement relationships are also included.

Wollenberg, H.; Bowman, H.; Asaro, F.

1977-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position  

SciTech Connect

Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu [Tsinghua Univ., Beijing (China)

1997-10-01T23:59:59.000Z

42

Multi-component Removal in Flue Gas by Aqua Ammonia  

NLE Websites -- All DOE Office Websites (Extended Search)

component Removal in Flue Gas by Aqua Ammonia component Removal in Flue Gas by Aqua Ammonia Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,255,842 entitled "Multi-component Removal in Flue Gas by Aqua Ammonia." This patent discloses a method for the removal of potential environmental-impacting compounds from flue gas streams. The method oxidizes some or all of the acid precursors such as sulfur dioxide (SO 2 ) and nitric oxides (NO x ) into sulfur trioxide and nitrogen dioxide, respectively. Following this step, the gas stream is then treated with aqua ammonia or ammonium hydroxide to capture the compounds via chemical absorption through acid-base or neutralization reactions where a fertilizer is formed.

43

Multicomponent Transport of Contaminants Released into the Environment following the Application of Phosphogypsum.  

E-Print Network (OSTI)

??The fate of radioactive contaminants released from phosphogypsum, a by-product of the phosphate fertilizer industry, was studied using the multicomponent transport modeling program HP-1. HP-1… (more)

Ebbers, B.

2011-01-01T23:59:59.000Z

44

Shepard and Hardy Multiquadric Interpolation Methods for Multicomponent Aerosol–Cloud Parameterization  

Science Conference Proceedings (OSTI)

This paper presents a novel method based on the application of interpolation techniques to the multicomponent aerosol–cloud parameterization for global climate modeling. Quantifying the aerosol indirect effect still remains a difficult task, and ...

Alexandru Rap; Satyajit Ghosh; Michael H. Smith

2009-01-01T23:59:59.000Z

45

Soap Manufacturing TechnologyChapter 12 Manufacture of Multicolored and Multicomponent Soaps  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 12 Manufacture of Multicolored and Multicomponent Soaps Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 12 Manufacture of Mult

46

Conservative numerical simulation of multi-component transport in two-dimensional unsteady shallow water flow  

Science Conference Proceedings (OSTI)

An explicit finite volume model to simulate two-dimensional shallow water flow with multi-component transport is presented. The governing system of coupled conservation laws demands numerical techniques to avoid unrealistic values of the transported ... Keywords: ?-? model, 35L65, 65M06, 65M12, 76M12, 76M20, Coupled system, Multi-component transport, Reactive source terms, Shallow flow, Solute constraints, Turbulence, Variable domain, Well-balanced approach

J. Murillo; P. García-Navarro; J. Burguete

2009-08-01T23:59:59.000Z

47

Fladmark. Parallel simulation of multiphase/multicomponent flow models  

E-Print Network (OSTI)

Summary. The simulation of flow in porous media is a computationally demanding task. Thermodynamical equilibrium calculations and complex, heterogeneous geological structures normally gives a multiphysics/multidomain problem to solve. Thus, efficient solution methods are needed. The research simulator Athena is a 3D, multiphase, multicomponent, porous media flow simulator. A parallel version of the simulator was developed based on a non-overlapping domain decomposition strategy, where the domains are defined a-priori from e.g. geological data. Selected domains are refined with locally matching grids, giving a globally non-matching, unstructured grid. In addition to the space domain, novel algorithms for parallel processing in time based on a predictor-corrector strategy has been successfully implemented. We discuss how the domain decomposition framework can be used to include different physical and numerical models in selected sub-domains. Also we comment on how the two-level solver relates to multiphase upscaling techniques. Adding communication functionality enables the original serial version to run on each sub-domain in parallel. Motivated by the need for larger time steps, an implicit formulation of the mass transport equations has been formulated and implemented in the existing parallel framework. Further, as the Message Passing Interface (MPI) is used for communication, the simulator is highly portable. Through benchmark experiments, we test the new formulation on platforms ranging from commercial super-computers to heterogeneous networks of workstations. 1

Erlend Øian; Magne S. Espedal; I. Garrido; G. E. Fladmark

2004-01-01T23:59:59.000Z

48

Sputter deposition for multi-component thin films  

DOE Patents (OSTI)

Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

1990-01-01T23:59:59.000Z

49

Interpreting multicomponent seismic data in the Gulf of Mexico for shallow sedimentary properties: methodology and case history  

E-Print Network (OSTI)

OTC 15118 Interpreting multicomponent seismic data in the Gulf of Mexico for shallow sedimentary of multicomponent data analysis for the detection of gas hydrate prospects in the northern Gulf of Mexico. Methane and pressure conditions in the region. In many regions of North America, including the southern Gulf of Mexico

Texas at Austin, University of

50

Expanding Conventional Seismic Stratigrphy into the Multicomponent Seismic Domain  

SciTech Connect

Multicomponent seismic data are composed of three independent vector-based seismic wave modes. These wave modes are, compressional mode (P), and shear modes SV and SH. The three modes are generated using three orthogonal source-displacement vectors and then recorded using three orthogonal vector sensors. The components travel through the earth at differing velocities and directions. The velocities of SH and SV as they travel through the subsurface differ by only a few percent, but the velocities of SV and SH (Vs) are appreciably lower than the P-wave velocity (Vp). The velocity ratio Vp/Vs varies by an order of magnitude in the earth from a value of 15 to 1.5 depending on the degree of sedimentary lithification. The data used in this study were acquired by nine-component (9C) vertical seismic profile (VSP), using three orthogonal vector sources. The 9C vertical seismic profile is capable of generating P-wave mode and the fundamental S-wave mode (SH-SH and SV-SV) directly at the source station and permits the basic components of elastic wavefield (P, SH-SH and SV-SV) to be separated from one another for the purposes of imaging. Analysis and interpretations of data from the study area show that incident full-elastic seismic wavefield is capable of reflecting four different wave modes, P, SH , SV and C which can be utilized to fully understand the architecture and heterogeneities of geologic sequences. The conventional seismic stratigraphy utilizes only reflected P-wave modes. The notation SH mode is the same as SH-SH; SV mode means SV-SV and C mode which is a converted shear wave is a special SV mode and is the same as P-SV. These four wave modes image unique geologic stratigraphy and facies and at the same time reflect independent stratal surfaces because of the unique orientation of their particle-displacement vectors. As a result of the distinct orientation of individual mode's particle-displacement vector, one mode may react to a critical subsurface sequence more than the other. It was also observed that P-wave and S-wave do not always reflect from the same stratal boundaries. The utilization of full-elastic seismic wavefield needs to be maximized in oil and gas explorations in order to optimize the search for hydrocarbons.

Innocent Aluka

2008-08-31T23:59:59.000Z

51

Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous solutions  

E-Print Network (OSTI)

Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous.1063/1.1817999 I. INTRODUCTION Gas hydrate crystallization from mixtures of natural gases and water is of interest for both the prevention of hy- drate formation in natural gas production and for promotion of hydration

Firoozabadi, Abbas

52

Multicomponent reactive transport modeling at the Ratones uranium mine, Cceres (Spain)  

E-Print Network (OSTI)

management. The Ratones uranium mine was abandoned and flooded in 1974. Due to its reducing undergroundMulticomponent reactive transport modeling at the Ratones uranium mine, Cáceres (Spain) Modelación/06/05 / Accepted: 02/10/05 Abstract Flooding of abandoned mines may have a major impact in groundwater quality

Politècnica de Catalunya, Universitat

53

Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part I: Description of the Microphysical Model  

Science Conference Proceedings (OSTI)

A detailed microphysical and chemical cloud model has been developed to investigate the redistribution of atmospheric trace substances through cloud processes. A multicomponent categorization scheme is used to group cloud particles into different ...

Jen-Ping Chen; Dennis Lamb

1994-09-01T23:59:59.000Z

54

Three-dimensional model for multi-component reactive transport with variable density groundwater flow  

Science Conference Proceedings (OSTI)

PHWAT is a new model that couples a geochemical reaction model (PHREEQC-2) with a density-dependent groundwater flow and solute transport model (SEAWAT) using the split-operator approach. PHWAT was developed to simulate multi-component reactive transport ... Keywords: Cation exchange, Coastal groundwater flow and chemical transport/reaction, Density-dependent flow, MODFLOW, MT3DMS, PHREEQC-2, PHWAT, SEAWAT, Seawater intrusion, Snow-plough effect

X. Mao; H. Prommer; D. A. Barry; C. D. Langevin; B. Panteleit; L. Li

2006-05-01T23:59:59.000Z

55

Analytic Structure of the SCFT Energy Functional of Multicomponent Block Copolymers  

E-Print Network (OSTI)

This paper concerns the analytic structure of the self-consistent field theory (SCFT) energy functional of multicomponent block copolymer systems which contain more than two chemically distinct blocks. The SCFT has enjoyed considered success and wide usage in investigation of the complex phase behavior of block copolymers. It is well-known that the physical solutions of the SCFT equations are saddle points, however, the analytic structure of the SCFT energy functional has received little attention over the years. A recent work by Fredrickson and collaborators [see the monograph by Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers, (2006), pp. 203-209] has analysed the mathematical structure of the field energy functional for polymeric systems, and clarified the index-1 saddle point nature of the problem produced by the incompressibility constraint. In this paper, our goals are to draw further attention to multicomponent block copolymers utilizing the Hubbard-Stratonovich transformation used by Fredrickson and co-workers. We first show that the saddle point character of the SCFT energy functional of multicomponent block copolymer systems may be high index, not only produced by the incompressibility constraint, but also by the Flory-Huggins interaction parameters. Our analysis will be beneficial to many theoretical studies, such as the nucleation theory of ordered phases, the mesoscopic dynamics. As an application, we then utilize the discovery to develop the gradient-based iterative schemes to solve the SCFT equations, and illustrate its performance through several numerical experiments taking ABC star triblock copolymers as an example.

Kai Jiang; Weiquan Xu; Pingwen Zhang

2013-10-04T23:59:59.000Z

56

A combustion model for IC engine combustion simulations with multi-component fuels  

Science Conference Proceedings (OSTI)

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15T23:59:59.000Z

57

Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels  

E-Print Network (OSTI)

The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been used to describe the gas phase reactions. Vapor-liquid equilibrium model has been applied to describe the phase change at the droplet surface. Constant gas phase specific heats are assumed. The liquid phase is assumed to be of uniform composition and temperature. Radiative heat transfer between the droplet and surroundings is neglected. The results of evaporation of gasoline with discrete composition of hydrocarbons have been presented. The evaporation rates seem to follow the pattern of volatility differentials. The evaporation rate constant was obtained as 0.344mm2/sec which compared well with the unsteady results of Reitz et al. The total evaporation time of the droplet at an ambience of 1000K was estimated to be around 0.63 seconds. Next, the results of evaporation of representative diesel fuels have been compared with previously reported experimental data. The previous experiments showed sufficient liquid phase diffusional resistance in the droplet. Numerical results are consistent with the qualitative behavior of the experiments. The quantitative deviation during the vaporization process can be attributed to the diffusion time inside the droplet which is unaccounted for in the model. Transient evaporation results have also been presented for the representative diesel droplets. The droplet temperature profile indicates that the droplet temperature does not reach an instantaneous steady state as in the case of single-component evaporation. To perform similar combustion calculations for multicomponent fuel droplets, no simple model existed prior to this work. Accordingly, a new simplified approximate mechanism for multicomponent combustion of fuel droplets has been developed and validated against several independent data sets. The new mechanism is simple enough to be used for computational studies of multicomponent droplets. The new modified Shvab-Zeldovich mechanism for multicomponent droplet combustion has been used to model the combustion characteristics of a binary alcohol-alkane droplet and validated against experimental data. Burn rate for the binary droplet of octanol-undecane was estimated to be 1.17mm2/sec in good concurrence with the experimental value of 0.952mm2/sec obtained by Law and Law. The model has then been used to evaluate the combustion characteristics of diesel fuels assuming only gas phase reactions. Flame sheet approximation has been invoked in the formulation of the model.

Vittilapuram Subramanian, Kannan

2004-12-01T23:59:59.000Z

58

The Liquid-Gas Phase Transitions in a Multicomponent Nuclear System with Coulomb and Surface Effects  

E-Print Network (OSTI)

The liquid-gas phase transition is studied in a multi-component nuclear system using a local Skyrme interaction with Coulomb and surface effects. Some features are qualitatively the same as the results of Muller and Serot which uses relativistic mean field without Coulomb and surface effects. Surface tension brings the coexistance binodal surface to lower pressure. The Coulomb interaction makes the binodal surface smaller and cause another pair of binodal points at low pressure and large proton fraction with less protons in liquid phase and more protons in gas phase.

S. J. Lee; A. Z. Mekjian

2000-06-29T23:59:59.000Z

59

A Symmetric Free Energy Based Multi-Component Lattice Boltzmann Method  

E-Print Network (OSTI)

We present a lattice Boltzmann algorithm based on an underlying free energy that allows the simulation of the dynamics of a multicomponent system with an arbitrary number of components. The thermodynamic properties, such as the chemical potential of each component and the pressure of the overall system, are incorporated in the model. We derived a symmetrical convection diffusion equation for each component as well as the Navier Stokes equation and continuity equation for the overall system. The algorithm was verified through simulations of binary and ternary systems. The equilibrium concentrations of components of binary and ternary systems simulated with our algorithm agree well with theoretical expectations.

Qun Li; A. J. Wagner

2007-04-26T23:59:59.000Z

60

Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory  

E-Print Network (OSTI)

The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of {\\bf BD.I}-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra $\\mathfrak{g}$. Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of ${\\bf B}_r\\simeq so(2r+1,{\\mathbb C})$ type.

Vladimir S. Gerdjikov; Georgi G. Grahovski

2010-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory  

E-Print Network (OSTI)

The algebraic structure and the spectral properties of a special class of multi-component NLS equations, related to the symmetric spaces of {\\bf BD.I}-type are analyzed. The focus of the study is on the spectral theory of the relevant Lax operators for different fundamental representations of the underlying simple Lie algebra $\\mathfrak{g}$. Special attention is paid to the structure of the dressing factors in spinor representation of the orthogonal simple Lie algebras of ${\\bf B}_r\\simeq so(2r+1,{\\mathbb C})$ type.

Gerdjikov, Vladimir S; 10.3842/SIGMA.2010.044

2010-01-01T23:59:59.000Z

62

Definition: Geothermometry | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Geothermometry Jump to: navigation, search Dictionary.png Geothermometry Chemical geothermometers are used to estimate reservoir temperatures for most of the systems. The geothermometers are based on temperature- dependent, water-rock reactions which control the chemical and isotopic composition of the thermal water. This method is applicable only to hot-water systems because the common chemical constituents of thermal water (SiO2, Na, K, Ca, Mg, Cl, HCO3, and CO3) are soluble in liquid water but lack significant solubility in steam.[1] View on Wikipedia Wikipedia Definition Geothermobarometry is the science of measuring the previous pressure and temperature history of a metamorphic or intrusive igneous rocks.

63

Geothermometry At Desert Queen Area (Garchar & Arehart, 2008) | Open Energy  

Open Energy Info (EERE)

Queen Area (Garchar & Arehart, 2008) Queen Area (Garchar & Arehart, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Desert Queen Area (Garchar & Arehart, 2008) Exploration Activity Details Location Desert Queen Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperatures of the reservoir at depth are estimated to be between 92-141 degrees C and were calculated using the δ18O(SO4-H2O) geothermometer. It is unclear whether these temperatures reflect waters from the outflow zone of the Desert Peak geothermal system, or waters from a different reservoir at Desert Queen. Quartz, chalcedony, amorphous silica, Na-K-Ca, and δ18O(SO4-H2O) geothermometer calculations were performed.

64

Geothermometry At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Raft River Geothermal Area (1980) Geothermometry At Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

65

Geothermal Literature Review At Teels Marsh Area (Shevenell, Et Al., 2008)  

Open Energy Info (EERE)

Teels Marsh Area (Shevenell, Et Al., 2008) Teels Marsh Area (Shevenell, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Teels Marsh Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Teels Marsh Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes In conjunction with field checking of the borate crusts, existing databases were consulted and a cold spring was found in the literature at Teels Marsh that had a geochemical analysis. Geothermometry from this analysis predicted anomalous subsurface temperatures of 192degrees C (Mg-corrected Na-K-Ca geothermometer) and 118degrees C (quartz geothermometer). References Lisa Shevenell, Mark Coolbaugh, Chris Sladek, Rick Zehner, Chris

66

Geothermometry At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Sorey, Et Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Geothermometry Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Silica-geothermometer temperature estimates for the Casa Diablo and RDO-8 well samples ( 196-202 degrees C) are lower than the corresponding cation-geothermometer temperature estimates, indicating loss of silica with declining reservoir temperature or dilution with low-silica waters. At shallow depths in the caldera References Michael L. Sorey, Gene A. Suemnicht, Neil C. Sturchio, Gregg A. Nordquist (1991) New Evidence On The Hydrothermal System In Long Valley Caldera, California, From Wells, Fluid Sampling, Electrical Geophysics, And

67

Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions  

DOE Green Energy (OSTI)

A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

2000-01-01T23:59:59.000Z

68

An Experimental Verification, with Krypton, of the Theory of the Thermal Diffusion Column for Multicomponent Systems  

SciTech Connect

The extended form of the Jones and Furry theory, which describes the behavior of a multicomponent heavy isotopic gas in a Clusius-Dickel thermal diffusion column, is tested. Experimental and theoretical values of the thermal diffusion column transport equation coefficients Hsub{ik},Ksub{c}, and Ksub{d}, are determined for krypton, a heavy isotopic gas with six isotopes. The experiments are carried out in a column of the hotwire type, at three wire temperatures: Tsub{H}=350 degrees C, 500 degrees C and 800 degrees C. Good agreement is found between the theoretical and experimental values of the coefficients. Seven of nine of the experimentally determined values of the coefficients agree within +- 10% with the corressponding theoretical values. The remaining two experimental values agree within +- 20% with the corresponding theoretical values.

Roos, W. J.

1967-12-01T23:59:59.000Z

69

Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: I. Macroscale Field Equations  

E-Print Network (OSTI)

A systematic development of the macroscopic field equations (conservation of mass, linear and angular momentum, energy, and Maxwell’s equations) for a multiphase, multicomponent medium is presented. It is assumed that speeds involved are much slower than the speed of light and that the magnitude of the electric field significantly dominates over the magnetic field so that the electroquasistatic form of Maxwell’s equations applies. A mixture formulation is presented for each phase and then averaged to obtain the macroscopic formulation. Species electric fields are considered, however it is assumed that it is the total electric field which contributes to the electrically induced forces and energy. The relationships between species and bulk phase variables and the macroscopic and microscopic variables are given explicitly. The resulting field equations are of relevance to many practical applications including, but not limited to, swelling clays (smectites), biopolymers, biological membranes, pulsed electrophoresis, and chromatography.

Lynn Schreyer Bennethum; John H. Cushman

2001-01-01T23:59:59.000Z

70

LDRD final report: Physical simulation of nonisothermal multiphase multicomponent flow in porous media  

Science Conference Proceedings (OSTI)

This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.

Martinez, M.J.; Hopkins, P.L.; Shadid, J.N.

1997-07-01T23:59:59.000Z

71

Correlation between surface chemistry and ion energy dependence of the etch yield in multicomponent oxides etching  

Science Conference Proceedings (OSTI)

The influence of surface chemistry in plasma etching of multicomponent oxides was investigated through measurements of the ion energy dependence of the etch yield. Using pulsed-laser-deposited Ca{sub x}Ba{sub (1-x)}Nb{sub 2}O{sub 6} (CBN) and SrTiO{sub 3} thin films as examples, it was found that the etching energy threshold shifts toward values larger or smaller than the sputtering threshold depending on whether or not ion-assisted chemical etching is the dominant etching pathway and whether surface chemistry is enhancing or inhibiting desorption of the film atoms. In the case of CBN films etched in an inductively coupled Cl{sub 2} plasma, it is found that the chlorine uptake is inhibiting the etching reaction, with the desorption of nonvolatile NbCl{sub 2} and BaCl{sub 2} compounds being the rate-limiting step.

Berube, P.-M.; Poirier, J.-S.; Margot, J.; Stafford, L. [Departement de Physique, Universite de Montreal, C.P. 6128, Succ. Centre-ville, Montreal, Quebec H3C 3J7 (Canada); Ndione, P. F.; Chaker, M.; Morandotti, R. [INRS-EMT, 1650 Boulevard Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada)

2009-09-15T23:59:59.000Z

72

Field study of tracer and geochemistry behavior during hydraulic fracturing of a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

This study presents tracer and geochemistry data from several hydraulic fracturing experiments at the Fenton Hill, NM, HDR geothermal reservoir. Tracers have been injected at various times during these tests: (1) initially, before any flow communication existed between the wells; (2) shortly after a flow connection was established; and (3) after the outlet flow had increased to its steady state value. An idealized flow model consisting of a combination of main fracture flow paths and fluid leakoff into secondary permeability explains the different tracer response curves for these cases, and allows us to predict the fracture volume of the main paths. The geochemistry during these experiments supports our previously developed models postulating the existence of a high concentration indigenous ''pore fluid.'' Also, the quartz and Na-K-Ca geothermometers have been used successfully to identify the temperatures and depths at which fluid traveled while in the reservoir. The quartz geothermometer is somewhat more reliable because at these high temperatures (about 250/sup 0/C) the injected fluid can come to equilibrium with quartz in the reservoir. The Na-K-Ca geothermometer relies on obtaining a sample of the indigenous pore fluid, and thus is somewhat susceptible to problems of dilution with the injection fluid. 14 refs., 6 figs., 1 tab.

Robinson, B.A.

1986-01-01T23:59:59.000Z

73

Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah  

DOE Green Energy (OSTI)

Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

Budding, K.E.; Sommer, S.N.

1986-01-01T23:59:59.000Z

74

A multi-component partitioning model to predict organic leaching from stabilized/solidified oily wastes  

E-Print Network (OSTI)

Stabilization/Solidification (S/S) is an established remediation process in hazardous waste management. Recently this process has been applied to hazardous organic wastes with mixed results. These results have prompted further studies to examine the effectiveness of this process in containing organic contaminants. The primary goal of S/S is to contain the contaminants in a solidified form, removing them from the environment. This is accomplished by decreasing the contaminant surface area and chemically converting the waste by reducing the contaminant solubility. The most common S/S processes utilize the chemical reactions achieved in cement-based and pozzolanic mixes. The effectiveness of this process is determined by the degree to which contaminants will leach from the waste end-product. Leach models, therefore, are an effective way to predict the leaching of contaminants and to describe the immobilization and binding mechanisms that take place. The multi-component nature of oily wastes requires that a multi-component approach be taken to describe the partitioning between the aqueous and non-aqueous phases. The heterogeneous nature of these wastes precludes analysis of partitioning of all chemical species. Thus a pseudo-component model has been developed that describes the partitioning of TOC as caused by the partitioning of a small number of pseudo-components. A pseudo-component is used to represent a group of chemical species that have similar tendencies to partition between the aqueous and non-aqueous phases. A linear partitioning relationship is used to develop the partitioning model, with the values of the partitioning coefficients chosen to represent strongly sorbed, moderately sorbed, and weakly sorbed components. The partitioning characteristics of the waste were determined in a series of sequential experiments in which different amounts of water were added. After each addition, the system was allowed to equilibrate, the added water removed by centrifugation and its TOC measured. The model predicts that the measured concentrations of TOC are due to the sum of all pseudo-components in the aqueous or mobile phase.

O'Cleirigh, Declan Ronan

1997-01-01T23:59:59.000Z

75

Composition and cycle life of multicomponent AB{sub 5} hydride electrodes  

DOE Green Energy (OSTI)

Multicomponent AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel -- cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. While the effects of Ni substitution have been widely studied, relatively little effort has focused on the effect of La substitution. This paper deals with the effect on cycle life due to the increasing presence of Ce in the alloy series La{sub 1-x}Ce{sub x}Ni{sub 3.55}Co{sub .75}Mn{sub .4}Al{sub .3}. Alloys were characterized by the determination of pressure-composition relationships, molar volume of H and electrode cycle life. The effects due to lattice expansion are taken into account. It was concluded that the rate of loss of electrochemical capacity per charge/discharge cycle was significantly decreased due to the presence of Ce.

Adzic, G.D.; Johnson, J.R.; Reilly, J.J.; McBreen, J.; Mukerjee, S. [Brookhaven National Lab., Upton, NY (United States); Kumar, M.P.S.; Zhang, W.; Srinivasan, S. [Texas A and M Univ., College Station, TX (United States). Center for Electrochemical Systems and Hydrogen Research

1994-11-01T23:59:59.000Z

76

Multi-component gas transport in CANDU fuel rods during severe accidents.  

DOE Green Energy (OSTI)

The multi-component transport of steam, hydrogen and stable fission gas in the fuel-to-clad gap of defective CANDU fuel rods, during severe accident conditions, is investigated. Based on a general Stefan-Maxwell treatment this work considers how incoming steam will diffuse into a breached rod against a counter-current flow of non-condensable fission gases and out-flowing hydrogen that is produced from the internal reaction of steam with the Zircaloy cladding or urania. The ability of the oxidized clad to act as a physical barrier to either hydrogen or oxygen diffusion was further investigated in the current work with a molecular-dynamics approach, with the interactions between atoms represented by a Modified Embedded Atom Method. During the initial Zircaloy oxidation phase in the CRL experiments, the model was able to predict the reduced fission product release kinetics as well as the timing for the completion of the clad-oxidation process. In this simulation, the model (with an effective gap size of 20 {micro}m) was able to successfully predict whether singlesided or double-sided oxidation had occurred in accordance with the metallographic examination. However, in order to account for the observed release kinetics after the completion of clad oxidation, it was necessary to assume a greater atmospheric exchange due to possible cracking of the brittle oxide layer. With the assumption of cracking (by assuming a reduced path length for gas transport), the model was successfully able to reproduce the fission product release kinetics and the final fuel stoichiometry as determined from end-of-test weight gain measurements. This analysis particularly shows that local hydrogen production (from the internal fuel oxidation process) will result in a reduced local oxygen potential in the fuel-to-clad gap compared to that which occurs in the bulk coolant.

Szpunar, B; Lewis, B. J.; Arimescu, V. I.; Dickson, R. S.; Dickson, L. W.; Baskes, M. I. (Michael I.)

2001-01-01T23:59:59.000Z

77

Development of a Multicomponent Prediction Model for Acute Esophagitis in Lung Cancer Patients Receiving Chemoradiotherapy  

SciTech Connect

Purpose: To construct a model for the prediction of acute esophagitis in lung cancer patients receiving chemoradiotherapy by combining clinical data, treatment parameters, and genotyping profile. Patients and Methods: Data were available for 273 lung cancer patients treated with curative chemoradiotherapy. Clinical data included gender, age, World Health Organization performance score, nicotine use, diabetes, chronic disease, tumor type, tumor stage, lymph node stage, tumor location, and medical center. Treatment parameters included chemotherapy, surgery, radiotherapy technique, tumor dose, mean fractionation size, mean and maximal esophageal dose, and overall treatment time. A total of 332 genetic polymorphisms were considered in 112 candidate genes. The predicting model was achieved by lasso logistic regression for predictor selection, followed by classic logistic regression for unbiased estimation of the coefficients. Performance of the model was expressed as the area under the curve of the receiver operating characteristic and as the false-negative rate in the optimal point on the receiver operating characteristic curve. Results: A total of 110 patients (40%) developed acute esophagitis Grade {>=}2 (Common Terminology Criteria for Adverse Events v3.0). The final model contained chemotherapy treatment, lymph node stage, mean esophageal dose, gender, overall treatment time, radiotherapy technique, rs2302535 (EGFR), rs16930129 (ENG), rs1131877 (TRAF3), and rs2230528 (ITGB2). The area under the curve was 0.87, and the false-negative rate was 16%. Conclusion: Prediction of acute esophagitis can be improved by combining clinical, treatment, and genetic factors. A multicomponent prediction model for acute esophagitis with a sensitivity of 84% was constructed with two clinical parameters, four treatment parameters, and four genetic polymorphisms.

De Ruyck, Kim, E-mail: kim.deruyck@UGent.be [Department of Basic Medical Sciences, Ghent University, Ghent (Belgium); Sabbe, Nick [Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Ghent (Belgium); Oberije, Cary [Department of Radiation Oncology (MAASTRO Clinic), Research Institute of Growth and Development, Maastricht University Medical Center, Maastricht (Netherlands); Vandecasteele, Katrien [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Thas, Olivier [Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Ghent (Belgium); De Ruysscher, Dirk; Lambin, Phillipe [Department of Radiation Oncology (MAASTRO Clinic), Research Institute of Growth and Development, Maastricht University Medical Center, Maastricht (Netherlands); Van Meerbeeck, Jan [Department of Respiratory Medicine, Ghent University Hospital, Ghent (Belgium); De Neve, Wilfried [Department of Radiation Oncology, Ghent University Hospital, Ghent (Belgium); Thierens, Hubert [Department of Basic Medical Sciences, Ghent University, Ghent (Belgium)

2011-10-01T23:59:59.000Z

78

A sequential partly iterative approach for multicomponent reactive transport with CORE2D  

SciTech Connect

CORE{sup 2D} V4 is a finite element code for modeling partly or fully saturated water flow, heat transport and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly-iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential noniterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton-Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log-concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix. Numerical analyses performed with synthetic examples confirm that these modifications improve the efficiency and convergence of the iterative algorithm.

Samper, J.; Xu, T.; Yang, C.

2008-11-01T23:59:59.000Z

79

Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach  

Science Conference Proceedings (OSTI)

Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

2010-11-15T23:59:59.000Z

80

IDENTIFICATION AND EXPERIMENTAL DATABASE FOR BINARY AND MULTICOMPONENT MIXTURES WITH POTENTIAL FOR INCREASING OVERALL CYCLE EFFICIENCY  

SciTech Connect

This report describes an experimental investigation designed to identify binary and multicomponent mixture systems that may be for increasing the overall efficiency of a coal fired unit by extracting heat from flue gases. While ammonia-water mixtures have shown promise for increasing cycle efficiencies in a Kalina cycle, the costs and associated range of thermal conditions involved in a heat recovery system may prohibit its use in a relatively low temperature heat recovery system. This investigation considered commercially available non-azeotropic binary mixtures with a boiling range applicable to a flue gas initially at 477.6 K (400 F) and developed an experimental database of boiling heat transfer coefficients for those mixtures. In addition to their potential as working fluids for increasing cycle efficiency, cost, ease of handling, toxicity, and environmental concerns were considered in selection of the mixture systems to be examined experimentally. Based on this review, water-glycol systems were identified as good candidates. However, previous investigations of mixture boiling have focused on aqueous hydrocarbon mixtures, where water is the heaviest component. There have been few studies of water-glycol systems, and those that do exist have investigated boiling on plain surfaces only. In water-glycol systems, water is the light component, which makes these systems unique compared to those that have been previously examined. This report examines several water-glycol systems, and documents a database of experimental heat transfer coefficients for these systems. In addition, this investigation also examines the effect of an enhanced surface on pool boiling in water-glycol mixtures, by comparing boiling on a smooth surface to boiling on a Turbo IIIB. The experimental apparatus, test sections, and the experimental procedures are described. The mixture systems tested included water-propylene glycol, water-ethylene glycol, and water-diethylene glycol. All experimental data were obtained at atmospheric pressure with the test section oriented horizontally. The effect of subcooling in pool boiling of mixtures is another area that has received limited attention. Therefore, experimental data were obtained for the water-propylene glycol and water-ethylene glycol systems for subcoolings ranging from 0 to 30 C. The experimental data showed that boiling heat transfer coefficients were found to have significant degradation due to the mixture effect for each of the water-glycol systems examined. This result is consistent with previous studies which examined water-hydrocarbon mixtures with large boiling ranges. The Turbo BIII surface was found to significantly increase heat transfer in each mixture and pure component in comparison to that for the smooth surface.

Stephen M Bajorek; J. Schnelle

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Calculation of activities and solubilities of alkali metal perchlorates at high ionic strengths in multicomponent aqueous systems  

Science Conference Proceedings (OSTI)

The equations of Nyvlt, of Bromley, and of Pitzer for the representation of activity coefficients of electrolytes in multicomponent ionic systems have been used to fit solubility data for some alkali metal perchlorates and ammonium perchlorate in mixture with other electrolytes at ionic strengths varying from 0.08 mol-kg/sup -1/ to as high as 24 mol-kg/sup -1/. Only the Pitzer equations can be used reliably to fit the solubility data over the whole range of ionic strengths encountered for ternary systems but there are certain limitations and certain assumptions which have to be made concerning the Pitzer ionic interaction parameters. A method is also proposed for the calculation of the Pitzer single electrolyte parameters, ..beta../sup 0/, ..beta../sup 1/, and C/sup phi/, for the less soluble perchlorates from fitting their solubility data over a wide range of high ionic strengths.

Chan, C.; Khoo, K.H.

1988-06-01T23:59:59.000Z

82

DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION  

DOE Green Energy (OSTI)

The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

Professor Richard Eisenberg

2012-07-18T23:59:59.000Z

83

Improved Predictions of Carbon Tetrachloride Contaminant Flow and Transport: Implementation of Kinetic Volatilization and Multicomponent NAPL Behavior  

SciTech Connect

Carbon tetrachloride (CT) was discharged to waste sites that are included in the 200-PW-1 Operable Unit in Hanford 200 West Area. Fluor Hanford, Inc. is conducting a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial investigation/feasibility study (RI/FS) for the 200-PW-1 Operable Unit. The RI/FS process and remedial investigations for the 200-PW-1, 200 PW-3, and 200-PW-6 Operable Units are described in the Plutonium/Organic-Rich Process Condensate/Process Waste Groups Operable Unit RI/FS Work Plan. As part of this overall effort, Pacific Northwest National Laboratory (PNNL) was contracted to improve the STOMP simulator (White and Oostrom, 2006) by incorporating kinetic volatilization of nonaqueous phase liquids (NAPL) and multicomponent flow and transport. This work supports the U.S. Department of Energy's (DOE's) efforts to characterize the nature and distribution of CT in the 200 West Area and subsequently select an appropriate final remedy. Previous numerical simulation results with the STOMP simulator have overestimated the effect of soil vapor extraction (SVE) on subsurface CT, showing rapid removal of considerably more CT than has actually been recovered so far. These previous multiphase simulations modeled CT mass transfer between phases based on equilibrium partitioning. Equilibrium volatilization can overestimate volatilization because mass transfer limitations present in the field are not considered. Previous simulations were also conducted by modeling the NAPL as a single component, CT. In reality, however, the NAPL mixture disposed of at the Hanford site contained several non-volatile and nearly insoluble organic components, resulting in time-variant fluid properties as the CT component volatilized or dissolved over time. Simulation of CT removal from a DNAPL mixture using single-component DNAPL properties typically leads to an overestimation of CT removal. Other possible reasons for the discrepancy between observed and simulated CT mass removal during SVE are differences between the actual and simulated (1) SVE flow rates, (2) fluid-media properties, and (3) disposal history (volumes, rates, and timing). In this report, numerical implementation of kinetic volatilization and multicomponent DNAPL flow and transport into the STOMP simulator (White and Oostrom, 2006) is described. The results of several test cases are presented and explained. The addition of these two major code enhancements increases the ability of the STOMP simulator to model complex subsurface flow and transport processes involving CT at the Hanford site.

Oostrom, Martinus; Zhang, Z. F.; Freedman, Vicky L.; Tartakovsky, Guzel D.

2008-09-29T23:59:59.000Z

84

Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De  

Open Energy Info (EERE)

Region (Shevenell & De Region (Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Central_Nevada_Seismic_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=401374" Category: Exploration Activities What links here

85

Property:ThermalInfo | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:ThermalInfo Jump to: navigation, search Property Name ThermalInfo Property Type Text Subproperties This property has the following 93 subproperties: A Acoustic Logs Active Seismic Methods Active Sensors Aeromagnetic Survey Airborne Electromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Conceptual Model Controlled Source Frequency-Domain Magnetics Cross-Dipole Acoustic Log Cuttings Analysis D Data Acquisition-Manipulation Data Collection and Mapping Data Techniques Data and Modeling Techniques Density Log Direct-Current Resistivity Survey Drilling Methods E Earth Tidal Analysis Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion

86

Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De  

Open Energy Info (EERE)

Shevenell & De Shevenell & De Rocher, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown References Lisa Shevenell, Ted De Rocher (2005) Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Walker-Lane_Transitional_Zone_Region_(Shevenell_%26_De_Rocher,_2005)&oldid=399607" Category: Exploration Activities What links here Related changes

87

Exploratory energy research program of the University of Hawaii at Manoa. Progress report  

DOE Green Energy (OSTI)

Progress is reported from the University of Hawaii on: UHM rooftop solar energy laboratory; solar pond cleansing techniques; combustion properties of biomass pyrolysis products; high-temperature solar concentrator absorber; biological abatement of hydrogen sulfide during geothermal energy production; geothermal systems on submarine rift zones of the Hawaiian chain; nitrogenous products of OTEC chlorination; interaction of hydrogen and deuterium with transition metals and their alloys at high pressures; shallow magma chambers and geothermal potential of Haleakala, Maui; effects of OTEC waste water on phytoplankton; sodium-lithium geothermometer; breaking wave forces on OTEC pipes; seismic and thermal properties on basalts. (PSB)

Not Available

1984-01-01T23:59:59.000Z

88

Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada  

DOE Green Energy (OSTI)

The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

Young, H.W.; Lewis, R.E.

1980-12-01T23:59:59.000Z

89

COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers  

SciTech Connect

The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added feature is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.

Chien, T.H.; Domanus, H.M.; Sha, W.T.

1993-02-01T23:59:59.000Z

90

Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field  

SciTech Connect

Gas compositions of Cerro Prieto wells in 1977 reflected strong boiling in the reservoir around wells M-20 and M-25. This boiling zone appeared to be collapsing in 1982 when a number of wells in this area of the field were shut-in. In 1977 and 1982, gas compositions also showed boiling zones corresponding to faults H and L postulated by Halfman et al. (1982). Four gas geothermometers were applied, based on reservoir equilibria and calculated fugacities. The Fisher - Tropsch reaction predicted high temperatures and appeared to re-equilibrate slowly, whereas the H/sub 2/S reaction predicted low temperatures and appeared to re-equilibrate rapidly. Hydrogen and NH/sub 3/ reactions were intermediate. Like gas compositions, the geothermometers reflected reservoir processes, such as boiling. Surface gas compositions are related to well compositions, but contain large concentrations of N/sub 2/ originating from air dissolved in groundwater. The groundwater appears to originate in the east and flow over the production field before mixing with reservoir gases near the surface.

Nehring, N.L.; D'Amore, F.D.

1984-01-01T23:59:59.000Z

91

Dating thermal events at Cerro Prieto using fission-track annealing  

DOE Green Energy (OSTI)

The duration of heating in the Cerro Prieto reservoir was estimated by relating the fading of spontaneous fission tracks in detrital apatite to observed temperatures. The rate of fading is a function of both time and temperature. The apparent fission track age of the detrital apatites then, is a function of both their source age and their time-temperature history. Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures. The temperature in well T-366, where complete annealing first occurs, was estimated to be between 160 and 180{sup 0}C. Complete annealing at these temperatures requires 10{sup 4} and 10{sup 3} years, respectively. Well M-94 has an apparently complex thermal history. Geothermometers in this well indicate temperatures some 50 to 100{sup 0}C higher than those measured directly in the borehole. Fission tracks are partially preserved in M-94 where paleotemperatures were as high as 200{sup 0}C and are erased where geothermometers indicate temperatures of 250{sup 0}C. This implies a thermal event less than 10{sup 1} years and greater than 10{sup 0} years in duration.

Sanford, S.J.; Elders, W.A.

1981-01-01T23:59:59.000Z

92

Multiphase and Multicomponent Materials  

Science Conference Proceedings (OSTI)

The microstructure of the adhered material consisted of oxide ligaments ( nanowires, NWs) that served to attach the debris to tool steel surface as revealed by ...

93

MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO  

Science Conference Proceedings (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado'', for the Second Biennial Report covering the time period May 1, 2003 through October 31, 2003. During this period, the project achieved two significant objectives: completion of the acquisition and processing design and specifications 3D9C seismic acquisition and the 3D VSP log; and completion of the permitting process involving State, Tribal and Federal authorities. Successful completion of these two major milestones pave the way for field acquisition as soon as weather permits in the Spring of 2004. This report primarily describes the design and specifications for the VSP and 3D9C surveys.

Paul La Pointe; Claudia Rebne; Steve Dobbs

2004-03-01T23:59:59.000Z

94

On the calculation of equilibrium thermodynamic properties and the establishment of statistical-thermodynamically-consistent finite bound-state partition functions in nonideal multicomponent plasma mixtures within the chemical model  

SciTech Connect

The problem of the calculation of equilibrium thermodynamic properties and the establishment of statistical-thermodynamically consistent finite bound-state partition functions in nonideal multicomponent plasma systems is revised within the chemical picture. The present exploration accompanied by the introduction of a generalized consistent formulation, in terms of the solution of the inverse problem, clears ambiguities and gives a better understanding of the problem on top of pointing out weaknesses and inaccuracies/inconsistencies buried in widely used models in literature.

Zaghloul, Mofreh R. [Department of Physics, College of Sciences, United Arab Emirates University, Al-Ain, 177551 (United Arab Emirates)

2010-12-15T23:59:59.000Z

95

COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics  

SciTech Connect

The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added feature is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.

Chien, T.H.; Domanus, H.M.; Sha, W.T.

1993-02-01T23:59:59.000Z

96

Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado  

Science Conference Proceedings (OSTI)

The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

Joe Hachey

2007-09-30T23:59:59.000Z

97

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) |  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Yellowstone Caldera Geothermal Region (1977) Exploration Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

98

Compound and Elemental Analysis At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

99

Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) |  

Open Energy Info (EERE)

Fluid At Long Valley Caldera Geothermal Area (1977) Fluid At Long Valley Caldera Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area (1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

100

Geothermometry At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Coso Geothermal Area (1980) Geothermometry At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermometry Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Fluid temperature of feed water Notes Cation and sulfate isotope geothermometers indicate that the reservoir feeding water to the Coso Hot Spring well has a temperature of about 240 -250 C, and the reservoir feeding the CGEH well has a temperature of about 205 C. The variation in the chemical composition of water from the two wells suggests a model in which water-rock chemical equilibrium is maintained as a convecting solution cools from about 245-205 C by conductive heat loss. References Fournier, R.O.; Thompson, J.M.; Austin, C.F. (10 May 1980)

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermometry At Central Nevada Seismic Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Region Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

102

Property:StratInfo | Open Energy Information  

Open Energy Info (EERE)

StratInfo StratInfo Jump to: navigation, search Property Name StratInfo Property Type Text Subproperties This property has the following 82 subproperties: 2 2-M Probe Survey A Active Seismic Methods Airborne Electromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Chemical Logging Compound and Elemental Analysis Conceptual Model Controlled Source Frequency-Domain Magnetics Cuttings Analysis D Data Acquisition-Manipulation Data Techniques Data and Modeling Techniques Drilling Methods E Earth Tidal Analysis Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion F FLIR Flow Test Fluid Inclusion Analysis Fluid Lab Analysis Formation Testing Techniques Frequency-Domain Electromagnetic Survey G Gas Geothermometry

103

Geochemistry of the Wendel-Amedee Geothermal System-California | Open  

Open Energy Info (EERE)

Geochemistry of the Wendel-Amedee Geothermal System-California Geochemistry of the Wendel-Amedee Geothermal System-California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemistry of the Wendel-Amedee Geothermal System-California Abstract The fluid chemistry of the geothermal system that feed Amedee and Wendel Hot Springs in eastern California is complex. Two thermal fluids have been identified based on the concentrations of the conservative elements C1 and B, fluid enthalpies, and the application of chemical geothermometers. One is characterized by temperatures above 120°C and a TDS content of 1300 ppm, and will be used by GeoProducts Corporation to produce electricity. The second did lower in temperature, 75°C, and has a TDS content of 650 ppm. This fluid may be used fore direct heat application at the Susanville

104

Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Rhodes Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Rhodes Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 162°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Rhodes_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=387552"

105

Lithium In Tufas Of The Great Basin- Exploration Implications For  

Open Energy Info (EERE)

In Tufas Of The Great Basin- Exploration Implications For In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Lithium In Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Details Activities (8) Areas (4) Regions (0) Abstract: Lithium/magnesium, lithium/sodium, and to a lesser extent, potassium/magnesium ratios in calcium carbonate tufa columns provide a fingerprint for distinguishing tufa columns formed from thermal spring waters versus those formed from non-thermal spring waters. These ratios form the basis of the Mg/Li, Na/Li, and K/Mg fluid geothermometers commonly used in geothermal exploration, which are based on the fact that at elevated temperatures, due to mineral-fluid equilibria, lithium

106

Calculation of geothermal reservoir temperatures and steam fractions from gas compositions  

DOE Green Energy (OSTI)

This paper deals with the chemical equilibria and physical characteristics of the fluid in the reservoir (temperature, steam fraction with respect to total water, gas/steam ratio, redox conditions), which seem to be responsible for the observed concentrations of some reactive species found in the geothermal fluids (CO2, H2, H2S and CH4). Gas geochemistry is of particular interest in vapor-dominated fields where the fluid discharged consists of almost pure steam containing a limited number of volatile chemical species. Considering several geothermal systems, a good correlation has been obtained among the temperatures calculated from the gas geothermometers and the temperatures measured in the reservoir of evaluated by other physical or chemical methods. 24 refs., 5 figs.

D'Amore, F.; Truesdell, A.H.

1985-01-01T23:59:59.000Z

107

An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala  

DOE Green Energy (OSTI)

Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

Heiken, G.; Duffield, W. (eds.)

1990-09-01T23:59:59.000Z

108

Property:HydroInfo | Open Energy Information  

Open Energy Info (EERE)

HydroInfo HydroInfo Jump to: navigation, search Property Name HydroInfo Property Type Text Subproperties This property has the following 77 subproperties: 2 2-M Probe Survey A Acoustic Logs Active Seismic Methods Aeromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Conceptual Model Core Analysis Core Holes Cuttings Analysis D Data Acquisition-Manipulation Data Techniques Data and Modeling Techniques Drilling Methods E Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion F FLIR Formation Testing Techniques Frequency-Domain Electromagnetic Survey G Gamma Log Gas Flux Sampling Gas Geothermometry Geochemical Data Analysis G cont. Geochemical Techniques Geodetic Survey Geophysical Methods Geothermal Literature Review

109

Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Walker-Lane Transitional Zone Water Sampling At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

110

Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Water Sampling At Buffalo Valley Hot Springs Area Water Sampling At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

111

Water Sampling At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Nw Basin & Range Region (Laney, Water Sampling At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

112

Compound and Elemental Analysis At Clear Lake Area (Thompson, Et Al., 1992)  

Open Energy Info (EERE)

Et Al., 1992) Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion, we favor a model in which thermal water rises somewhere between Howard and Seigler Springs. At Howard Springs we see evidence for the most representative deep thermal water because the C1 is elevated (highest measured C1 concentrations occur at Howard Springs). Moreover, the Na-Li, Na-K and Na-K-Ca geothermometers suggest temperatures greater than 240 degrees C. References J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser, W. C.

113

Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Buffalo Valley Hot Springs Area (Laney, 2005) Buffalo Valley Hot Springs Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

114

CX-007389: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

89: Categorical Exclusion Determination 89: Categorical Exclusion Determination CX-007389: Categorical Exclusion Determination Advances in Hydrogeochemical Indicators for the Discovery of New Geothermal Resources in the Great Basin CX(s) Applied: A9, B3.6 Date: 12/21/2011 Location(s): Colorado Offices(s): Golden Field Office The Colorado School of Mines (CSM) would utilize DOE and cost share funds to develop and calibrate new hydrogeochemical indicators and geothermometers for cost effective discovery and management of geothermal resources specific to the Great Basin. Laboratory work would occur at the Department of Geology and Geological Engineering at CSM in Golden, CO. CX-007389.pdf More Documents & Publications CX-007391: Categorical Exclusion Determination CX-005689: Categorical Exclusion Determination

115

Isotopic Analysis At Buffalo Valley Hot Springs Area (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Buffalo Valley Hot Isotopic Analysis- Fluid At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

116

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Estimate deep reservoir temperature Notes The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures

117

Geothermal reservoir temperatures estimated from the oxygen isotope  

Open Energy Info (EERE)

reservoir temperatures estimated from the oxygen isotope reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Details Activities (3) Areas (3) Regions (0) Abstract: The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above

118

Compound and Elemental Analysis At Central Nevada Seismic Zone Region  

Open Energy Info (EERE)

Compound and Elemental Analysis At Central Nevada Compound and Elemental Analysis At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

119

Water Sampling At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Northern Basin & Range Region Water Sampling At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

120

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) |  

Open Energy Info (EERE)

Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Upper Hot Creek Ranch Area (Benoit & Blackwell, 2006) Exploration Activity Details Location Upper Hot Creek Ranch Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. References Dick Benoit, David Blackwell (2006) Exploration Of The Upper Hot

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

122

Geothermometry At Northern Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Northern Basin & Range Region (Laney, 2005) Geothermometry At Northern Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

123

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

124

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

125

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) Isotopic Analysis At Nw Basin & Range Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of

126

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada |  

Open Energy Info (EERE)

Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Origin And Characterization Of Geothermal Waters At Desert Queen, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: The Desert Queen geothermal system, which is in close proximity to two locations where geothermal energy is currently being harnessed, may host an additional reservoir. A _18O vs _D plot indicates that Desert Queen waters likely originate from the Humboldt River, and reflects Humboldt River water that is clearly evaporated. Temperatures of the reservoir at depth are estimated to be between 92-141°C and were calculated using the _18O(SO4-H2O) geothermometer. It is unclear whether these temperatures

127

Compound and Elemental Analysis At Buffalo Valley Hot Springs Area (Laney,  

Open Energy Info (EERE)

Compound and Elemental Analysis At Buffalo Valley Hot Compound and Elemental Analysis At Buffalo Valley Hot Springs Area (Laney, 2005) Exploration Activity Details Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

128

Property:ExplorationCostPerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationCostPerMetric ExplorationCostPerMetric Jump to: navigation, search Property Name ExplorationCostPerMetric Property Type String Description the unit ratio denominator for exploration cost Allows Values 100 feet cut;30 foot core;compound;day;element;foot;hour;mile;point;process;sample;sq. mile;station;Subject;well Subproperties This property has the following 107 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array)

129

Geothermometry At Nw Basin & Range Region (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Geothermometry At Nw Basin & Range Region (Laney, Geothermometry At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

130

Compound and Elemental Analysis At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

131

Hydrothermal Heat Discharge In The Cascade Range, Northwestern United  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Details Activities (3) Areas (1) Regions (0) Abstract: Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge

132

Interpretation of chemical analyses of waters collected from two geothermal  

Open Energy Info (EERE)

Interpretation of chemical analyses of waters collected from two geothermal Interpretation of chemical analyses of waters collected from two geothermal wells at Coso, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Interpretation of chemical analyses of waters collected from two geothermal wells at Coso, California Details Activities (1) Areas (1) Regions (0) Abstract: Wellhead and downhole water samples were collected and analyzed from a 114.3-m well at Coso Hot Springs (Coso No. 1) and a 1477-m well (CGEH No. 1) 3.2 km to the west. The same chloride concentration is present in hot waters entering both wells (about 2350 mg/kg), indicating that a hot-water-dominated geothermal system is present. The maximum measured temperatures are 142 degrees C in the Coso No. 1 well and 195 degrees C in the CGEH No. 1 well. Cation and sulfate isotope geothermometers indicate

133

Geothermometry At Walker-Lane Transitional Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

134

Isotopic Analysis At Walker-Lane Transitional Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Walker-Lane Transitional Isotopic Analysis- Fluid At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

135

Property:ExplorationTimePerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationTimePerMetric ExplorationTimePerMetric Jump to: navigation, search Property Name ExplorationTimePerMetric Property Type String Description the unit ratio denominator for exploration time Allows Values job;10 mile;10 stn;100 mile;sq. mile;foot Subproperties This property has the following 121 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Compound and Elemental Analysis Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array) Data Collection and Mapping Data Techniques

136

Isotopic Analysis At Central Nevada Seismic Zone Region (Laney, 2005) |  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being

137

Compound and Elemental Analysis At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Nw Basin & Range Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

138

Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A  

Open Energy Info (EERE)

Waters Along The Konocti Bay Fault Zone, Lake County, California- A Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Thermal Waters Along The Konocti Bay Fault Zone, Lake County, California- A Re-Evaluation Details Activities (3) Areas (1) Regions (0) Abstract: The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200°C, the spring temperatures and fluid

139

Isotopic Analysis At Northern Basin & Range Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Northern Basin & Range Isotopic Analysis- Fluid At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in

140

Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004)  

Open Energy Info (EERE)

2004) 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater data are limited to a portion of NAFR; data are more plentiful beyond the range boundaries. Geothermometry yields calculated groundwater temperatures generally ranging from 30 to 105degrees C, with a rough correlation between the SiO2-chalcedony and the Na-K-Na (Mg-corrected) geothermometers. References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Water Sampling At Central Nevada Seismic Zone Region (Laney, 2005) | Open  

Open Energy Info (EERE)

Central Nevada Seismic Zone Region Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical Sampling of Thermal and Non-thermal Waters in Nevada, Shevenell and Garside. The objective of this project is to obtain geochemical data from springs (and some wells) for which data are not publicly available, or for which the analyses are incomplete, poor, or nonexistent. With these data, geothermometers are being calculated and a preliminary assessment of the geothermal potential and ranking of the sampled areas is being conducted using the new geochemical data. Objectives changed slightly in 2004. Samples are now being collected at sites identified by other

142

Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) | Open Energy  

Open Energy Info (EERE)

Teels Marsh Area (Coolbaugh, Et Al., 2006) Teels Marsh Area (Coolbaugh, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Teels Marsh Area (Coolbaugh, Et Al., 2006) Exploration Activity Details Location Teels Marsh Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Follow up (to ASTER satellite imaging) analysis of spring and well waters yielded geothermometer reservoir estimates up to 192°C References Mark F. Coolbaugh, Chris Kraft, Chris Sladek, Richard E. Zehner, Lisa Shevenell (2006) Quaternary Borate Deposits As A Geothermal Exploration Tool In The Great Basin Retrieved from "http://en.openei.org/w/index.php?title=Water_Sampling_At_Teels_Marsh_Area_(Coolbaugh,_Et_Al.,_2006)&oldid=388168

143

Property:LithologyInfo | Open Energy Information  

Open Energy Info (EERE)

LithologyInfo LithologyInfo Jump to: navigation, search Property Name LithologyInfo Property Type Text Subproperties This property has the following 93 subproperties: 2 2-M Probe Survey A Active Seismic Methods Active Sensors Aerial Photography Aeromagnetic Survey Analytical Modeling C Caliper Log Cation Geothermometers Cement Bond Log Chemical Logging Compound and Elemental Analysis Conceptual Model Controlled Source Frequency-Domain Magnetics Cross-Dipole Acoustic Log D Data Acquisition-Manipulation Data Collection and Mapping Data Techniques Data and Modeling Techniques Drilling Methods E Electric Micro Imager Log Electromagnetic Sounding Methods Elemental Analysis with Fluid Inclusion F FLIR Fault Mapping Field Techniques Flow Test Fluid Inclusion Analysis Fluid Lab Analysis Formation Testing Techniques

144

Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Thompson, Et Al., 1992) Clear Lake Area (Thompson, Et Al., 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Clear Lake Area (Thompson, Et Al., 1992) Exploration Activity Details Location Clear Lake Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Based on the above discussion, we favor a model in which thermal water rises somewhere between Howard and Seigler Springs. At Howard Springs we see evidence for the most representative deep thermal water because the C1 is elevated (highest measured C1 concentrations occur at Howard Springs). Moreover, the Na-Li, Na-K and Na-K-Ca geothermometers suggest temperatures greater than 240 degrees C. References J. M. Thompson, R. H. Mariner, L. D. White, T. S. Presser, W. C.

145

Colorado's hydrothermal resource base: an assessment  

DOE Green Energy (OSTI)

As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

Pearl, R.H.

1981-01-01T23:59:59.000Z

146

The Geyser Bight geothermal area, Umnak Island, Alaska  

DOE Green Energy (OSTI)

The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO[sub 2] rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165 and 200 C, respectively, as estimated by geothermometry. Sulfate-water isotope geothermometers suggest a deeper reservoir with a temperature of 265 C. The thermal spring waters have relatively low concentrations of Cl (600 ppm) but are rich in B (60 ppm) and As (6 ppm). The As/Cl ratio is among the highest reported for geothermal waters. 41 refs., 12 figs., 8 tabs.

Motyka, R.J. (Alaska Div. of Geological and Geophysical Surveys, Juneau, AK (United States)); Nye, C.J. (Alaska Div. of Geological and Geophysical Surveys, Fairbanks, AK (United States) Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.); Turner, D.L. (Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.); Liss, S.A. (Alaska Div. of Geological and Geophysical Surveys, Fairbanks, AK (United States))

1993-08-01T23:59:59.000Z

147

Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development  

DOE Green Energy (OSTI)

Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

1993-02-01T23:59:59.000Z

148

Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California  

DOE Green Energy (OSTI)

Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

1993-05-01T23:59:59.000Z

149

Multicomponent Seismic Technology Assessment of  

E-Print Network (OSTI)

Geology, Austin, Texas, U.S.A. H. H. Roberts Louisiana State University, Baton Rouge, Louisiana, U.S.A. W, and R. Boswell, eds., Natural gas hydrates--Energy resource potential and associated geologic hazards

Texas at Austin, University of

150

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

151

Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico  

SciTech Connect

The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

Bureau of Economic Geology

2009-04-30T23:59:59.000Z

152

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2005-10-31T23:59:59.000Z

153

Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada  

DOE Green Energy (OSTI)

The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

Dick Benoit; David Blackwell

2006-01-01T23:59:59.000Z

154

Spinodal decomposition in multicomponent polymer blends  

Science Conference Proceedings (OSTI)

... 10091, Ref. 28. 53 In previous studies by the Exxon/Princeton group on blends of ethylene– butene copolymers, Ref. 54 it ...

2011-03-01T23:59:59.000Z

155

Ductile Crack Investigation in Multicomponent Materials  

Science Conference Proceedings (OSTI)

At this stage of the research Authors proposed two scale numerical model. ... Optimization of Thermal Cycle for Rails with Respect to the Wear Resistance.

156

Modeling TLP Bonding in Multicomponent Systems  

Science Conference Proceedings (OSTI)

... prior to bonding as well as the application of large loads during bonding. .... The profile given in equation (1) is thus appropriate for each of the solutes in the  ...

157

Reliable Thermodynamic Descriptions for Multicomponent Systems  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Microstructure Stability of Multi-Materials Systems with Adaptive Microstructures · Modeling of ...

158

The Thermodynamic Modeling of Multicomponent Phase Equilibria  

Science Conference Proceedings (OSTI)

Such identification does not imply recommendation or endorsement by the National ... In order to overcome the problem of the multidimensionality posed by a ...

159

BACA Project: geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

Not Available

1982-12-01T23:59:59.000Z

160

Chemical and isotopic data for water from thermal springs and wells of Oregon  

DOE Green Energy (OSTI)

The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah  

DOE Green Energy (OSTI)

The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

Davis, M.C.; Kolesar, P.T.

1984-12-01T23:59:59.000Z

162

Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study  

DOE Green Energy (OSTI)

Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

Sammel, E.A.; Craig, R.W.

1981-01-01T23:59:59.000Z

163

Apacheta, a new geothermal prospect in Northern Chile  

DOE Green Energy (OSTI)

The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

2002-05-24T23:59:59.000Z

164

Water information bulletin No. 30 geothermal investigations in Idaho  

DOE Green Energy (OSTI)

There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

1980-06-01T23:59:59.000Z

165

Hydrogen and oxygen isotope geochemistry of cold and warm springs from the Tuscarora, Nevada thermal area  

DOE Green Energy (OSTI)

Eighteen cold and warm spring water samples from the Tuscarora, Nevada KGRA have been analyzed for hydrogen and oxygen isotope composition and fluid chemistry. Warm springs have deltaD values (-128 to -137 permil) significantly lower than those of cold springs to the north and east of the area, but similar to the deltaD values of cold springs to the west and south (-131 to -135 permil). The recharge area for the warm springs is unlikely to be to the immediate north, which is the local topographic highland in the area. The hydrogen isotope data would permit recharge from areas to the southwest or from high elevations to the southeast (Independence Mountains), a sector consistent with electrical resistivity evidence of fluid flow. Warm springs are HCO/sub 3//sup -/-rich waters, enriched by a factor of 3 to 10 in Na, HCO{sub 3}/{sup -} and SiO{sub 2} relative to local cold springs. Average quartz (no steam loss) and Na/K/Ca geothermometer estimates suggest subsurface temperatures of 145{sup 0} and 196{sup 0}C, respectively. The warm springs exhibit poor correlations between either hydrogen or oxygen isotope composition and water temperature or chemistry. The absence of such correlations suggests that there is no single coherent pattern of cold water mixing or evaporation in the thermal spring system.

Bowman, J.R.; Cole, D.

1982-06-01T23:59:59.000Z

166

Salt effects on isotope partitioning and their geochemical implications: An overview  

DOE Green Energy (OSTI)

Essential to the use of stable isotopes as natural tracers and geothermometers is the knowledge of equilibrium isotope partitioning between different phases and species, which is usually a function of temperature only. The one exception known to date is oxygen and hydrogen isotope fractionation between liquid water and other phases (steam, gases, minerals), which changes upon the addition of salts to water, i.e., the isotope salt salt effect. Our knowledge of this effect, the difference between activity and composition (a-X) of isotopic water molecules in salt solutions, is very limited and controversial, especially at elevated temperatures. For the last several years, we have been conducting a detailed, systematic experimental study at Oak Ridge National Laboratory to determine the isotope salt effects from room temperature to elevated temperatures (currently to 500{degree}C). From this effort, a simple, coherent picture of the isotope salt effect is emerging, that differs markedly from the complex results reported in the literature. In this communication, we present an overview on the isotope salt effect, obtained chiefly from our study. Observed isotope salt effects in salt solutions are significant even at elevated temperatures. The importance and implications of the isotope salt effect for isotopic studies of brine-dominated systems are also discussed in general terms.

Horita, J.; Cole, D.R.; Fortier, S.M. [and others

1996-01-01T23:59:59.000Z

167

Thermal springs in the Salmon River basin, central Idaho  

DOE Green Energy (OSTI)

The Salmon River basin within the study area occupies an area of approximately 13,000 square miles in central Idaho. Geologic units in the basin are igneous, sedimentary, and metamorphic rocks; however, granitic rocks of the Idaho batholith are predominant. Water from thermal springs ranges in temperature from 20.5/sup 0/ to 94.0/sup 0/ Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30/sup 0/ to 184/sup 0/ Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old. Stable-isotope data indicate it is unlikely that a single hot-water reservoir supplies hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 2.7 x 10/sup 7/ calories per second.

Young, H.W.; Lewis, R.E.

1982-02-01T23:59:59.000Z

168

Hydrogen and oxygen isotope geochemistry of cold and warm springs from the Tuscarora, Nevada Thermal Area  

DOE Green Energy (OSTI)

Eighteen cold and warm spring water samples from the Tuscarora, Nevada KGRA have been analyzed for hydrogen and oxygen isotope composition and fluid chemistry. Warm springs have deltaD values (128 to -137 permil) significantly lower than those of cold springs to the north and east of the area, but similar to the deltaD values of cold springs to the west and south (-131 to -135 permil). The recharge area for the warm springs is unlikely to be to the immediate north, which is the local topographic highland in the area. The hydrogen isotope data would permit recharge from areas to the southwest or from high elevations to the southeast (Independence Mountains), a sector consistent with electrical resistivity evidence of fluid flow. Warm springs are HCO/sub 3//sup -/-rich waters, enriched by a factor of 3 to 10 in Na, HCO/sub 3//sup -/ and SiO/sub 2/ relative to local cold springs. Average quartz (no steam loss) and Na/K/Ca geothermometer estimates suggest subsurface temperatures of 145/sup 0/ and 196/sup 0/C, respectively. The warm springs exhibit poor correlations between either hydrogen or oxygen isotope composition and water temperature or chemistry. The absence of such correlations suggests that there is no single coherent pattern of cold water mixing or evaporation in the thermal spring system.

Bowman, J.R.; Cole, D.

1982-10-01T23:59:59.000Z

169

Regional geothermal exploration in north central New Mexico. Final report  

DOE Green Energy (OSTI)

A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

Icerman, L. (ed.) [ed.

1984-02-01T23:59:59.000Z

170

Reservoir simulation and geochemical study of Cerro Prieto I wells  

DOE Green Energy (OSTI)

Combined reservoir simulation and geochemical data analysis are used to investigate the effects of recharge and other reservoir processes occurring in the western part of the Cerro Prieto, Mexico, geothermal field (i.e., Cerro Prieto I area). Enthalpy-based temperatures and bottomhole temperatures are calculated based on simplified models of the system, considering different reservoir boundary conditions and zones of contrasting initial temperatures and reservoir properties. By matching the computed trends with geothermometer-based temperature and enthalpy histories of producing wells, the main processes active in the western area of Cerro Prieto are identified. This part of the geothermal system is strongly influenced by nearby groundwater aquifers; cooler waters readily recharge the reservoirs. In response to exploitation, the natural influx of cold water into the shallower alpha reservoir is mainly from the west and down Fault L, while the recharge to the deeper beta reservoir in this part of the field, seems to be only lateral, from the west and possibly south. 11 refs., 12 figs.

Lippmann, M.J. (Lawrence Berkeley Lab., CA (USA)); Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA))

1990-03-01T23:59:59.000Z

171

Modelling spreading, vaporisation and dissolution of multi-component pools.  

E-Print Network (OSTI)

??The present work describes the fundamental extension of an integral pool spreading, vaporisation and dissolution model, part of the Process Hazard Assessment Tool (Phast) software.… (more)

Fernandez, MI

2013-01-01T23:59:59.000Z

172

Elastic Properties of Multi-Component Nickel Solid Solutions  

Science Conference Proceedings (OSTI)

The integration in the Brillion zone was performed by using. Monkhorst Pack .... and 4, the calculated total energies of supercell systems are independent on the

173

Large Scale Simulations of Single and Multi-Component Flow ...  

Science Conference Proceedings (OSTI)

... research. Fontainebleau sandstone images were prepared by John Dunsmuir of Exxon Research & Engineering Co. in ...

2001-09-05T23:59:59.000Z

174

Phase Evolution Characterization of a Multi-Component Oxide ...  

Science Conference Proceedings (OSTI)

... deposited with a Self-shielded flux cored arc welding (FCAW-S) process has ... Experimental Observations and Analyses from Diffusion Studies for U-Mo Nuclear Fuel ... Phase Field Modeling of Microstructure Engineering in Spinodal- Type ...

175

Precipitation in Multi-Component Ni-Base Superalloys  

Science Conference Proceedings (OSTI)

superalloys using the phase-field method, the Gibbs free energy of the ? and ?' ... free energy curve and phase equilibrium compositions in this work showed ...

176

Multi-component removal in flue gas by aqua ammonia  

DOE Patents (OSTI)

A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

2007-08-14T23:59:59.000Z

177

Viscosity of Multicomponent Glasses as a Function of Temperature ...  

Science Conference Proceedings (OSTI)

... of Fluidized Bed Steam Reforming (FBSR) with Hanford Low Activity Wastes ... Level Waste at the Defense Waste Processing Facility through Sludge Batch 7b.

178

Multicomponent Metal-Carbon Junctions in 1-D Geometry  

Science Conference Proceedings (OSTI)

... microscopy, and cyclic voltammetry (CV) and ac electrochemical impedance spectroscopy (EIS). ... Application of Carbon Nanotubes – Energy to Bioelectronic Sensor ... Raman Studies of Hybrid Nanostructures for Solar Energy Applications.

179

Efficient Discovery of Novel Multicomponent Mixtures for Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

below 85 o C. The research will combine first-principles calculations of reaction thermodynamics and kinetics with material and catalyst synthesis, testing, and characterization....

180

Precipitation in Multi-Component Ni-Base Superalloys  

Science Conference Proceedings (OSTI)

perchloric acid and 75% acetic acid to sharp needle-shaped specimens initially, with subsequent treatment in 2% perchloric acid in butoxyethanol. Atom-probe ...

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

BACA Project: geothermal demonstration power plant. Final report  

SciTech Connect

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

1982-12-01T23:59:59.000Z

182

Session 10: The Cerro Prieto Geothermal Field, Mexico: The Experiences Gained from Its Exploration and Development  

DOE Green Energy (OSTI)

The Cerro Prieto case study demonstrated the value of a multidisciplinary effort for exploring and developing a geothermal field. There was no problem in recognizing the geothermal potential of the Cerro Prieto area because of the many obvious surface manifestations. However, the delineation of the geothermal reservoir at depth was not so straightforward. Wells drilled near the abundant surface manifestations only produced fluids of relatively low enthalpy. Later it was determined that these zones of high heat loss corresponded to discharge areas where faults and fractures allowed thermal fluids to leak to the surface, and not to the main geothermal reservoir. The early gravity and seismic refraction surveys provided important information on the general structure of the area. Unaware of the existence of a higher density zone of hydrothermally altered sediments capping the geothermal reservoir, CFE interpreted a basement horst in the western part of the field and hypothesized that the bounding faults were controlling the upward flow of thermal fluids. Attempting to penetrate the sedimentary column to reach the ''basement horst'', CFE discovered the {alpha} geothermal reservoir (in well M-5). The continuation of the geothermal aquifer (actually the {beta} reservoir) east of the original well field was later confirmed by a deep exploration well (M-53). The experience of Cerro Prieto showed the importance of chemical ratios, and geothermometers in general, in establishing the subsurface temperatures and fluid flow patterns. Fluid chemical and isotopic compositions have also been helpful to determine the origin of the fluids, fluid-production mechanisms and production induced effects on the reservoir.

Lippman, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

1983-12-01T23:59:59.000Z

183

Geology, characteristics, and resource potential of the low-temperature geothermal system near Midway, Wasatch County, Utah. Report of Investigation No. 142  

DOE Green Energy (OSTI)

To evaluate the geothermal energy potential of the hot springs system near Midway, Wasatch Co., Utah, consideration was given to heat flow, water chemistry, and structural controls. Abnormal heat flow was indicated qualitatively by snow-melt patterns and quantitatively by heat-flow measurements that were obtained from two of four temperature-gradient wells drilled in the area. These measurements indicated that the area north of the town of Midway is characterized by heat flow equal to 321.75 MW/m/sup 2/, which is over four times the value generally considered as normal heat flow. Chemical analyses of water from six selected thermal springs and wells were used in conjunction with the silica and Na-K-Ca geothermometers to estimate the reservoir temperature of the thermal system. Because the calculated temperature was more than 25/sup 0/C above the maximum observed temperature, a mixing model calculation was used to project an upper limit for the reservoir temperature. Based on these calculations, the system has a reservoir temperature ranging from 46 to 125/sup 0/C. Structural information obtained from published geologic maps of the area and from an unpublished gravity survey, enabled two models to be developed for the system. The first model, based on geologic relationships in the mountains to the north and west of Midway, assumes that the heat for the thermal system comes from a relatively young intrusive or related hydrothermal convection system in the vicinity of the Mayflower mine. Meteoric waters would be heated as they approach the heat source and then move laterally to the south through faults and fractures in the rocks. These thermal waters then rise to the surface through fractures in the crest of an anticline underneath the Midway area. The second model, based on the gravity survey, assumes an igneous intrusion directly beneath Midway as the heat source.

Kohler, J.F.

1979-06-01T23:59:59.000Z

184

Geothermal pilot study final report: creating an international geothermal energy community  

DOE Green Energy (OSTI)

The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

1978-06-01T23:59:59.000Z

185

Tough2_MP: A parallel version of TOUGH2  

E-Print Network (OSTI)

multiphase flow and multicomponent transport in porous andmultiphase, multicomponent heat and fluid flows in porous

Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten

2003-01-01T23:59:59.000Z

186

Massively parallel computing simulation of fluid flow in the unsaturated zone of Yucca Mountain, Nevada  

E-Print Network (OSTI)

flows of multiphase, multicomponents in porous and fracturedmultiphase flow and multicomponent transport in porous and

Zhang, Keni; Wu, Yu-Shu; Bodvarsson, G.S.

2001-01-01T23:59:59.000Z

187

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

Science Conference Proceedings (OSTI)

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

188

Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool  

Science Conference Proceedings (OSTI)

We present the details of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical reactive transport problems. The code can be run within the standard Microsoft EXCEL Visual Basic platform, and it does ... Keywords: Bioremediation, Geochemical transport, Groundwater models, Numerical model, Reactive transport

Jagadish Torlapati; T. Prabhakar Clement

2013-01-01T23:59:59.000Z

189

AlMnCrCuFeNi Multicomponent Alloy with Superior Hardness and ...  

Science Conference Proceedings (OSTI)

The optical and electronic microscopy analysis of the remelted alloy indicated a dendritic ... Processing and Mechanical Behavior of Unalloyed Plutonium.

190

Plugging micro-leaks in multi-component, ceramic tubesheets with material leached therefrom  

DOE Patents (OSTI)

Cracks, in ceramic wall members, on the order of 1 micron or less in width are plugged helium-tight by selectively leaching a component of the wall member with a solvent, letting the resultant leach form a liquid bridge within the crack, removing the solvent and sintering the resultant residue. This method is of particular value for remedying microcracks or channels in a cell member constituting a tubesheet in a hollow fiber type, high temperature battery cell, such as a sodium/sulfur cell, for example. 1 fig.

Bieler, B.H.; Tsang, F.Y.

1985-03-19T23:59:59.000Z

191

Vp/Vs ESTIMATION FROM MULTICOMPONENT SEISMIC DATA FOR IMPROVED CHARACTERIZATION OF A TIGHT  

E-Print Network (OSTI)

for the fluid flowing though the sand matrix a13 tortuosity for the sand flowing though the clay matrix a31 tortuosity for the clay flowing though the sand matrix B friction matrix b11 friction coefficient between the sand matrix and the fluid b13 friction coefficient between the sand and the clay matrices b33 friction

192

Multicomponent Synthetic Polymers with Viral-Mimetic Chemistry for Nucleic Acid Delivery  

E-Print Network (OSTI)

7.3 (Bruker Nano), or SPIP version 3.3.6 (Image Metrology A/S, Denmark). Fluorescence Microscopy plasmid DNA was complexed as previously described. For the fluorescence microscopy (FM) experiments, 12 to fluorescence microscopy investigation. For nuclei staining, 1 drop of DAPI standard stain solution was added

Li, Jingpeng

193

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF A PARALLEL MULTICOMPONENT GROUNDWATER TRANSPORT CODE  

E-Print Network (OSTI)

, Cray T3E at NERSC, IBM SP at ANL, and Convex Exemplar SPP­2000 at NCSA. The following table shows Center (NERSC), and the National Center for Su- percomputing Applications (NCSA). The authors thank Dr. Pat Worely of ORNL for his assistance in the T3E runs at NERSC. REFERENCES E F G H I P Q P H R S T U V

Mahinthakumar, Kumar

194

Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure  

DOE Patents (OSTI)

A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

2005-02-01T23:59:59.000Z

195

Final Report for: "Bis-pi-allylpalladium Complexes in Catalysis of Multicomponent Reactions"  

Science Conference Proceedings (OSTI)

The research project involved the development of new and functionally improved Pd(II) catalyst for a three-component reaction of boronic acids, allenes and imines to afford homoallylic amines that are useful in synthesis of biologically active heterocycles. Furthermore, insights into the reaction mechanism and the structure and reactivity of the catalytically active intermediates involved in this process were sought. As a result of this work, a new type of Pd-catalysts possessing an auxiliary ligand attached to the Pd center via a C-Pd and N-Pd bonds were identified, and found to be more active than the traditional catalysts derived from Pd(OAc)2. The new catalysts provided an access to a broader range of homoallylic amine products. Although the final unequivocal evidence regarding the structure of the Pd(II) complex involved in the nucleophilic transfer of the allyl fragment from the palladium center to the imine could not be obtained, mechanistic insights into the events that are detrimental to the activity of the originally reported Pd(OAc)2-based catalytic systems were uncovered.

Malinakova, H. C.; Shiota, Atsushi

2012-06-29T23:59:59.000Z

196

Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste  

SciTech Connect

Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N. [National Academy of Science Ukraine, Kiev (Ukraine). Institute of Coal Chemistry

2008-08-15T23:59:59.000Z

197

Numerical Simulation of Multicomponent Shock Accelerated Flows and Mixing using Localized  

E-Print Network (OSTI)

.S. Department of Energy's Office of Science, the Argonne Leadership Computing Facility (ALCF) works hand in hand at the ALCF are broadly applicable, thereby providing critical support for dramatic advances in American industry, medicine, and science. Since its founding in 2006, the ALCF has provided more than 4 billion

Kawai, Soshi

198

Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks  

SciTech Connect

These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

William C. Conner

2007-08-02T23:59:59.000Z

199

Multicomponent Radial Flow Chromatography T. Gu', G-J. Tsai2, and G. T. Tsao3  

E-Print Network (OSTI)

, catalytic reforming, and vapor phase desulfurization (Balakotaiah and Luss. 1981; Strauss and Budde, 1978

Gu, Tingyue

200

Nonlinear interaction and parametric instability of kinetic Alfven waves in multicomponent plasmas  

SciTech Connect

Nonlinear couplings among kinetic Alfven waves are investigated for a three-component plasma consisting of electrons, protons, and heavy ions. The parametric instability is investigated, and the growth rate is obtained. In the kinetic regime, the growth rate for the parallel decay instability increases with the heavy ion content, but the growth rate for the reverse decay is independent of the latter since the perpendicular wavelength is much larger than the ion gyroradius. It decreases with the heavy ion content when the perpendicular wavelength is of the order of the ion gyroradius. It is also found that in the short perpendicular wavelength limit, the growth rate is only weakly affected by the heavy ions. On the other hand, in the inertial regime, for both parallel and reverse decay cases, the growth rate decreases as the number of heavy ions becomes large.

Zhao, J. S.; Yang, L. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Lu, J. Y. [College of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044 (China); National Center for Space Weather, China Meteorology Administration, Beijing 100081 (China)

2013-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Multicomponent seismic data registration for subsurface characterization in the shallow Gulf of Mexico  

E-Print Network (OSTI)

Gulf of Mexico Sergey Fomel, Milo M. Backus, Michael V. DeAngelo, Paul E. Murray, Bob A. Hardage with application to subsurface characterization in the shallow Gulf of Mexico. In this study, we extend-S images. Application of this technique to data from the Gulf of Mexico reveals the structure of sediments

Texas at Austin, University of

202

Estimating shallow shear velocities with marine multi-component seismic data  

E-Print Network (OSTI)

of hundreds of meters, this information remains largely unexploited in oil and gas exploration o shore. We, for exploration seismologists these models would help to improve the shear wave static correction needed in oil and gas exploration e.g., Mari, 1984; Marsden, 1993. This need has grown in impor- tance as multi

Ritzwolle, Mike

203

Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment  

Science Conference Proceedings (OSTI)

Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

2011-11-01T23:59:59.000Z

204

Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field  

DOE Green Energy (OSTI)

During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

2005-10-27T23:59:59.000Z

205

Development and anlysis of fast, approximate 3D Algorithms for interpretation of multi-component induction logging data  

DOE Green Energy (OSTI)

This report addresses the effects of electrical anisotropy on the 3D inversion of single-well induction logging data when anisotropy is not considered. Of concern are possible artifacts that may lead to an incorrect interpretation of the formation about the borehole. Comparison is made of 3D isotropic inversion on a suite of model data, with and without anisotropy, consisting of an infinite layer and layer terminated at the borehole. In both cases, the layer dip (or well deviation) is varied. Inversion of the anisotropic data result in an overestimate of the layer conductivity, and the lateral extent of the layer about the borehole.

David L. Alumbaugh

2006-07-03T23:59:59.000Z

206

Phosphine-Mediated Multi-Component ?-Umpolung/Aldol/Wittig Cascade Reaction for the Synthesis of Functionalized Naphthalenes  

E-Print Network (OSTI)

84% yield) as a pale yellow oil; IR (film) ? max 3252, 2927,99% yield) as a pale yellow oil; IR (film) ? max 3277, 3031,87% yield) as a colorless oil; IR (film) ? max 3300, 3058,

Zhang, Kui

2013-01-01T23:59:59.000Z

207

Simulation of Cloud Microphysical and Chemical Processes Using a Multicomponent Framework. Part II: Microphysical Evolution of a Wintertime Orographic Cloud  

Science Conference Proceedings (OSTI)

A detailed microphysical model is used to simulate the formation of wintertime orographic clouds in a two-dimensional domain under steady-state conditions. Mass contents and number concentrations of both liquid- and ice-phase cloud particles are ...

Jen-Ping Chen; Dennis Lamb

1999-07-01T23:59:59.000Z

208

Multi-Component Copper Catalyzed Methods to Access Highly-Substituted Amine-Bearing Carbon Centers from Simple Starting Materials  

E-Print Network (OSTI)

Knochel, P. Angewandte Chemie International Edition 2002,T. ; Ishii, Y. Angewandte Chemie International Edition 2001,Larsen, C. H. Angewandte Chemie International Edition 2012,

Pierce, Conor John

2013-01-01T23:59:59.000Z

209

A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure  

DOE Patents (OSTI)

A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

Morrow, Thomas E. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

2004-03-09T23:59:59.000Z

210

Multicomponent seismic reservoir characterization of a steam-assisted gravity drainage (SAGD) heavy oil project, Athabasca oil sands, Alberta.  

E-Print Network (OSTI)

??Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a… (more)

Schiltz, Kelsey Kristine

2013-01-01T23:59:59.000Z

211

CO2 gas/oil ratio prediction in a multi-component reservoir by combined seismic and electromagnetic imaging  

E-Print Network (OSTI)

partitioning of CO 2 between oil and gas phase. In additionC 0 are the grain, oil, gas and CO 2 densities respectivelyPower Systems; Office of Oil, Gas and Shale Technologies,

Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

2002-01-01T23:59:59.000Z

212

Optimization of Cell Spaces Simulation for the Modeling of Fire Spreading  

Science Conference Proceedings (OSTI)

This paper presents a simulation performance improvementof the application of the Multicomponent Discrete TimeSystem Specification (MultiDTSS) formalism to a firespread. Multicomponent choice is explained through bothMulticomponent systems and networks ...

Alexandre Muzy; Eric Innocenti; Jean-François Santucci; David R. C. Hill

2003-03-01T23:59:59.000Z

213

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

or chemical species in a multiphase porous medium system canand radiation in a multiphase, multicomponent, porous mediummultiphase flow, multicomponent transport, and heat transfer in porous

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

214

Advanced Vadose Zone Simulations Using TOUGH  

E-Print Network (OSTI)

multiphase flow and multicomponent transport in porous andmultiphase, multicomponent fluids in permeable (fractured and porous)multiphase fluid flow, heat transfer, and deformation in fractured porous

2008-01-01T23:59:59.000Z

215

The TOUGH codes - a family of simulation tools for multiphase flow and transport processes in permeable media  

E-Print Network (OSTI)

Multiphase Tracer Transport in Heterogeneous Fractured PorousMultiphase Flow and Multicomponent Transport in Porous and

Pruess, Karsten

2003-01-01T23:59:59.000Z

216

A truncated Levenberg-Marquardt algorithm for the calibration of highly parameterized nonlinear models  

E-Print Network (OSTI)

models of multiphase flow through porous media. The newmultiphase, multicomponent flow in fractured-porous media.

Finsterle, S.

2011-01-01T23:59:59.000Z

217

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

of multiphase, multicomponent fluid mixtures in porous andmultiphase heat and mass flow in unsaturated fractured porous

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

218

A Parallel Second-Order Adaptive Mesh Algorithm for Incompressible Flow in Porous Media  

E-Print Network (OSTI)

solving multiphase, incompressible ?ows in porous media. Wemultiphase, multicomponent incompressible ?ow in hetero- geneous porous

Pau, George Shu Heng

2009-01-01T23:59:59.000Z

219

Advanced simulation capability for environmental management (ASCEM): An overview of initial results  

E-Print Network (OSTI)

Essentials of multiphase flow and transport in porous media.multiphase, multicomponent flows in heterogeneous porous

Williamson, M.

2012-01-01T23:59:59.000Z

220

Thermodynamics Software/Codes - TMS  

Science Conference Proceedings (OSTI)

FORUMS > THERMODYNAMICS SOFTWARE/CODES, Replies, Views, Originator ... Thermodynamic calculations in multicomponent systems, 0, 1887, Cathy ...

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Multicomponent seismic monitoring of the effective stimulated volume associated with hydraulic fracture stimulations in a shale reservoir, Pouce Coupe field, Alberta, Canada.  

E-Print Network (OSTI)

??The Reservoir Characterization Project in conjunction with Talisman Energy Inc., have been investigating a time-lapse data set acquired during hydraulic fracture stimulations of two horizontal… (more)

Steinhoff, Christopher

2013-01-01T23:59:59.000Z

222

WATER RESOURCES RESEARCH, VOL. 29, NO. 11, PAGES 3727-3740, NOVEMBER 1993 Modeling of Multiphase Transport of Multicomponent Organic Contaminants  

E-Print Network (OSTI)

in dispersed two-pahse flow", ANL-79-105, NUREG/CR- 1230, 1979. [14] G. B. Wallis, One-dimensional two

Patzek, Tadeusz W.

223

The Evolution of Multicomponent Systems at High Pressures: VI. The Thermodynamic Stability of the Hydrogen-Carbon System: The Genesis of Hydrocarbons and the Origin of Petroleum  

E-Print Network (OSTI)

The spontaneous genesis of hydrocarbons which comprise natural petroleum have been analyzed by chemical thermodynamic stability theory. The constraints imposed upon chemical evolution by the second law of thermodynamics are briefly reviewed; and the effective prohibition of transformation, in the regime of temperatures and pressures characteristic of the near-surface crust of the Earth, of biological molecules into hydrocarbon molecules heavier than methane is recognized. A general, first-principles equation of state has been developed by extending scaled particle theory (SPT) and by using the technique of the factored partition function of the Simplified Perturbed Hard Chain Theory (SPHCT). The chemical potentials, and the respective thermodynamic Affinity, have been calculated for typical components of the hydrogen-carbon (H-C) system over a range pressures between 1-100 kbar, and at temperatures consistent with those of the depths of the Earth at such pressures. The theoretical analyses establish that the ...

Kenney, J F; Bendeliani, N A; Alekseev, V A; Kutcherov, Vladimir G.; Bendeliani, Nikolai A.; Alekseev, Vladimir A.

2002-01-01T23:59:59.000Z

224

Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols  

E-Print Network (OSTI)

model for aqueous sea salt aerosols Sutapa Ghosal, 1 Matthewwith sea salt ice and aerosols has been implicated in theof aqueous sea salt aerosols and particles have been

Ghosal, Sutapa

2009-01-01T23:59:59.000Z

225

The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers http://www.bioportfolio.com/news/article/620380/The-Targeted-Delivery-Of-Multicomponent-Cargos-To-Cancer-Cells-By-Nanoporous-Particle.html[4/21/  

E-Print Network (OSTI)

, Markets And Compani... Complete Target Atlas In Oncology Drug Development: From Tumor T... Reports | Researchers report on the development of a new class of high-capacity drug carrier they claim combines/Oxide Hybrid Electrodes For Electrochemical Supercapacitors Nature | Instant access to this article: US$18 Buy

Brinker, C. Jeffrey

226

Several TOUGH2 Modules Developed for Site Characterization Studies of Yucca Mountain  

E-Print Network (OSTI)

three-dimensional, multiphase, porous/fractured subsurfacemultiphase, and multi-component fluid flow and heat transfer in both porousmultiphase, multi-component fluid and heat flow and chemical transport in porous/

Wu, Yu-Shu; Pruess, Karsten

1998-01-01T23:59:59.000Z

228

TOUGH: Model use, calibration and validation  

E-Print Network (OSTI)

flow of multiphase, multicomponent fluids in porous andmultiphase fluid flow, heat transfer, and deformation in fractured porous

Finsterle, S.

2013-01-01T23:59:59.000Z

229

TOUGH2 Software Qualification  

E-Print Network (OSTI)

Monograph on Multiphase Transport in Porous Media, FED, vol.of multiphase, multicomponent fluid mixtures in porous and

2010-01-01T23:59:59.000Z

230

Mechanism of Aluminum Soption on Birnessite: Influences on Chromium (ID.) Oxidation  

E-Print Network (OSTI)

; Fendorf et aI., 1992; Manceau anp Charlet, 1992), influences of complex, multicomponent matrices of soils

Sparks, Donald L.

231

Style Guide for Word Users for the NIST Special Publication ...  

Science Conference Proceedings (OSTI)

... Non-condensable (dissolved gas) transport ... Multi-component mixtures (liquids, gases, powders ... under sponsorship of the Electric Power Research ...

2011-12-27T23:59:59.000Z

232

SuperComputing | Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Institute Polymer-based Multicomponent Materials Molecular Dynamics Molecular Mechanics Course Grained Models Mathematics National Security Systems Modeling Engineering...

233

Numerical simulation of premixed turbulent methane combustion  

E-Print Network (OSTI)

multicomponent transport properties. Sandia Technical ReportSAND86-8246, Sandia National Laboratories, 1986. [29] J .

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.

2001-01-01T23:59:59.000Z

234

Design Methods in Magnesium Alloy Development  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

235

First Symposium on Computational Materials Design: CMaD I  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

236

Effective Establishment and Validation of Models and Databases for ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

237

Predictive Process Optimization for Fracture Ductility in Automotive ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

238

QuesTek Innovations' ICME Approach to Materials Design and ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

239

Molecular Dynamics Simulations of Thermoset Polymers for ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

240

Materials Genome®: CALPHAD, ESPEI, and Beyond  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimizing Alloy and Process Design Using Thermodynamic and ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

242

High-fidelity Microstructure-specific Design Tools – Some Recent ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

243

The Role of Repositories in Computational Materials Design  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

244

Technology Commercialization and Partnerships | BSA 11-18: Bio ...  

BSA 11-18: Bio-programmable Crystallization of Multi-component Functional Nanoparticle Systems. BNL Reference Number: BSA 11-18. Patent Status: ...

245

Surface Protection for Enhanced Materials Performance  

Science Conference Proceedings (OSTI)

Oxidation and Erosion Behavior of Advanced Multi-Component Nano-Composite Turbine Compressor Blade Coatings · Pack Aluminizing of Nickel: Modeling, ...

246

Publications Portal  

Science Conference Proceedings (OSTI)

... indicator film (MOIF) technique for visualization and direct ... reversal process in a symmetric NiO/Co ... the more complicated multi-component system. ...

2012-09-17T23:59:59.000Z

247

Previous Session  

Science Conference Proceedings (OSTI)

... average particle size) of single phase, multiphase, and multicomponent materials. ... 80 m2/g), and is non-agglomerated (TEM and BET pore size distribution).

248

A comparison of results obtained with two subsurface non-isothermal multiphase reactive transport simulators, FADES-CORE and TOUGHREACT  

E-Print Network (OSTI)

saturated porous media with multiphase flow. FADES-CORE hasisothermal multiphase flow with reactive transport in porousmultiphase flow with multicomponent reactive transport in porous

Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten

2001-01-01T23:59:59.000Z

249

TOUGH2 User's Guide Version 2  

E-Print Network (OSTI)

reservoir engineering, multiphase porous and fracturedLawrence on Multiphase Flow Through Porous Faust, C.R. andof multiphase, multicomponent fluid mixbres in porous and

Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

1999-01-01T23:59:59.000Z

250

User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code  

E-Print Network (OSTI)

Wettability on Multiphase Flow Through Porous Media, AIMEMultiphase Flow and Multicomponent Transport in Porous andmultiphase fluids in one, two, and three-dimensional porous

Pruess, Keni Zhang, Yushu Wu, Kasten; Earth Sciences Division

2008-01-01T23:59:59.000Z

251

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

and radiation in a multiphase, multicomponent, porous mediumin modeling multiphase flow in porous and fractured media,phase and multiphase non-Darcy flow in porous and fractured

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

252

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Pruess et al. * TOUGH: Transport Of Unsaturated Groundwater and Heat multidimensional multiphase multicomponent nonisothermal flow and transport fractured-porous media 1D, 2D,...

253

shape casting: the 2nd international symposium  

Science Conference Proceedings (OSTI)

Modelling the Influence of Multi-Component and Multi-Phase Microstructures on Pore Formation in Cast Aluminum Alloys [pp. 225-232] Peter Lee, Junsheng ...

254

Title of Talk Goes Here  

NLE Websites -- All DOE Office Websites (Extended Search)

of hydrate behavior TOUGH+: Next generation of TOUGH2 family of codes - General- purpose multiphase, multicomponent model for simulation of fluid and heat flow and transport in...

255

Efficient Schemes for Reducing Numerical Dispersion in Modeling Multiphase Transport through Porous and Fractured Media  

E-Print Network (OSTI)

within a fluid in a multiphase- porous-medium system isand radiation in a multiphase, multicomponent, porous mediumModeling Multiphase Transport through Porous and Fractured

Wu, Yu-Shu; Forsyth, Peter A.

2006-01-01T23:59:59.000Z

256

A Site-Scale Model For Fluid And Heat Flow In The Unsaturated...  

Open Energy Info (EERE)

repository. The modeling approach is based on a mathematical formulation of coupled multiphase, multicomponent fluid and heat flow through porous and fractured rock. Fracture...

257

Analytical Solution to the Riemann Problem of Three-Phase Flow in Porous Media  

E-Print Network (OSTI)

properties governing multiphase ?ow in porous media. Waterof multicomponent, multiphase displacement in porous media.e?ects We study multiphase ?ow in porous media under the

Juanes, Ruben; Patzek, Tadeusz W.

2002-01-01T23:59:59.000Z

258

Modeling of Casting, Welding, and Advanced Solidification ...  

Science Conference Proceedings (OSTI)

Multiphase-Field Model for Multicomponent Alloys Coupled to Thermodynamic .... Modeling of Porosity Formation and Feeding Flow in Steel Casting [pp.

259

An Explicit Runge-Kutta Iteration for Diffusion in the Low Mach Number Combustion Code  

E-Print Network (OSTI)

usion in the Low Mach Number Combustion Code Joseph F. Grcarthe low Mach number combustion code. Contents 1 Introductionthe low Mach number combustion code, LMC. The multicomponent

Grcar, Joseph F.

2007-01-01T23:59:59.000Z

260

A Look at Multifunctional Materials and Some of Their Properties  

Science Conference Proceedings (OSTI)

AlMnCrCuFeNi Multicomponent Alloy with Superior Hardness and Corrosion Resistance ... Processing and Mechanical Behavior of Unalloyed Plutonium.

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Processing and Mechanical Behavior of Unalloyed Plutonium  

Science Conference Proceedings (OSTI)

Abstract Scope, Unalloyed plutonium presents a wide variety of challenges to the ... AlMnCrCuFeNi Multicomponent Alloy with Superior Hardness and Corrosion ...

262

Advanced Vadose Zone Simulations Using TOUGH  

E-Print Network (OSTI)

for modeling fluid and heat flow in fractured porous media.flows of multiphase, multicomponent fluids in permeable (fractured and porous) media (

2008-01-01T23:59:59.000Z

263

TOUGH2 User's Guide Version 2  

E-Print Network (OSTI)

Modeling Fluid and Heat Flow in Fractured Porous Media, Sot.fluid and heat flows of multiphase, multicomponent fluid mixbres in porous and fractured media.

Pruess, K.; Oldenburg, C.M.; Moridis, G.J.

1999-01-01T23:59:59.000Z

264

Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.fluid and heat flows of multiphase, multicomponent fluid mixtures in porous and fractured media.

Mukhopadhyay, S.

2009-01-01T23:59:59.000Z

265

Attractive electrostatic self-assembly of ordered and disordered heterogeneous colloids  

E-Print Network (OSTI)

Ionic colloidal crystals are here defined as multicomponent ordered colloidal structures stabilized by attractive electrostatic interactions. These crystals are colloidal analogues to ionic materials including zincblende, ...

Maskaly, Garry R. (Garry Russell), 1978-

2005-01-01T23:59:59.000Z

266

F-8: Modeling of Mn-Ni-Si-Cu Precipitation in Reactor Pressure ...  

Science Conference Proceedings (OSTI)

Presentation Title, F-8: Modeling of Mn-Ni-Si-Cu Precipitation in Reactor .... Steels 316 and Comparison with the Rate Theory Model of a Multicomponent System.

267

The (n+1)-dimensional VNLS system - CECM  

E-Print Network (OSTI)

The (n+1)-dimensional VNLS system. The multi-component (n+1)-dimensional vector nonlinear Scrodinger equation is as follows: i $\\displaystyle \\bf\\phi_{t}$ ...

268

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Jeremy P., and John S. Newman. "Simulation of the Direct Mehanol Fuel Cell. I. Thermodynamic Framework for a Multicomponent Membrane." Electrochemical Society 149, no. 6...

269

Shear Response of an Al S5 Asymmetrical Tilt Grain Boundary ...  

Science Conference Proceedings (OSTI)

... grain boundaries is obviously smaller than that of the symmetrical ones. ... Phase Field Crystal Modeling of Microstructure in Multi-component Alloys.

270

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The mission of ASCEM is to develop a modular and extensible open-source, high performance computing (HPC) modeling system for multiphase,multicomponent, multiscale subsurface...

271

Advanced Simulation Capability of Environmental Management |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The mission of ASCEM is to develop a modular and extensible open-source, high performance computing (HPC) modeling system for multiphase, multicomponent, multiscale subsurface...

272

Pandat  

Science Conference Proceedings (OSTI)

Feb 7, 2007 ... Multicomponent phase diagrams on Windows platform, free version ... Runs on Microsoft Windows 98/Me/NT/2000/XP or later operating system ...

273

Rheological Properties of Feedstock Composed of Titanium Alloy ...  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model · Consolidation of Blended Titanium/Magnesium Powders by Microwave ...

274

Rolled Product Form Development and Optimization Using Blended ...  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder and ...

275

The Use of Cold Crucible Induction Melters for Effectively Producing ...  

Science Conference Proceedings (OSTI)

The Effects of Lithium Nitrate on Highly Active Liquor in the Calcination Process ... Viscosity of Multicomponent Glasses as a Function of Temperature and ...

276

Study of Heat Flux in CSP Continuous Casting Mold  

Science Conference Proceedings (OSTI)

Copper-Based Multi-Component Alloys by Vacuum Distillation to Separate Copper Enriched Lead, Silver and Other Valuable Metals Research · Cost Benefits of ...

277

Alloy and Materials Preparation II  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Copper-Based Multi-Component Alloys by Vacuum Distillation to Separate Copper Enriched Lead, Silver and Other Valuable Metals Research: ...

278

CX-002608: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12112009 Location(s): Austin, Texas Office(s):...

279

A solution-adaptive method for efficient compressible multifluid simulations, with application to the Richtmyer-Meshkov instability  

Science Conference Proceedings (OSTI)

The evolution of high-speed initially laminar multicomponent flows into a turbulent multi-material mixing entity, e.g., in the Richtmyer-Meshkov instability, poses significant challenges for high-fidelity numerical simulations. Although high-order shock- ... Keywords: Central difference schemes, Multicomponent flows, Pressure oscillations, Richtmyer-Meshkov instability, WENO

Pooya Movahed; Eric Johnsen

2013-04-01T23:59:59.000Z

280

Programming PHREEQC Calculations with C++ and Python A Comparative Study  

E-Print Network (OSTI)

. PHAST--A program for simulating ground-water flow, solute transport, and multicomponent geochemical.L., and Charlton, S.R., 2010. PHAST version 2 --A program for simulating groundwater flow, solute transport

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Results from the 1995 Stratospheric Ozone Profile Intercomparison at Mauna Loa  

E-Print Network (OSTI)

. PHAST--A program for simulating ground-water flow, solute transport, and multicomponent geochemical.L., and Charlton, S.R., 2010. PHAST version 2 --A program for simulating groundwater flow, solute transport

282

Eulerian Available Energetics in Moist Atmospheres  

Science Conference Proceedings (OSTI)

A new derivation of local available energy for a compressible, multicomponent fluid that allows for frictional, diabatic, and chemical (e.g., phase changes) processes is presented. The available energy is defined relative to an arbitrary ...

Peter R. Bannon

2005-12-01T23:59:59.000Z

283

FLOW BEHAVIOR OF GAS-CONDENSATE WELLS A DISSERTATION  

E-Print Network (OSTI)

Simulation Input File 149 xi #12;xii #12;List of Tables 2.1 Four gas-condensate systems with different. . . . . . . . . . . . . . . . . . 63 5.1 Fluid characterization for a multicomponent gas-condensate system. . 113 xiii #12;xiv #12;List

284

Aerosol Phase Transformation and Growth in the Atmosphere  

Science Conference Proceedings (OSTI)

The dynamic behavior of hygroscopic multicomponent aerosols under the influence of changing relative humidity in the atmosphere is investigated. Laboratory measurements of the deliquescence humidity as a function of temperature between 5° and 35°...

I. N. Tang; H. R. Munkelwitz

1994-07-01T23:59:59.000Z

285

Fundamentals and Characterization  

Science Conference Proceedings (OSTI)

Tue 10/29/2013, 02:00 PM, Porosity and Nanostructure · Hide details for ..... Wed 10/30/2013, 02:00 PM, Multiphase and Multicomponent Materials. Thu 10/31/ ...

286

Theoretical Studies of Non-Newtonian and Newtonian Fluid Flow through Porous Media  

E-Print Network (OSTI)

of Multicomponent, Multiphase Displacement in Porous Media,"C. M. (1981) : Multiphase Flow in Porous Media, Technip,porous media can always be considered as a special case of the multiphase

Wu, Y.S.

1990-01-01T23:59:59.000Z

287

Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves  

E-Print Network (OSTI)

We present a wave equation prestack depth migration to image crust and mantle structures using multi-component earthquake data recorded at dense seismograph arrays. Transmitted P and S waves recorded on the surface are ...

Shang, Xuefeng

288

Whole-Genome Analysis of Methyl tert-Butyl Ether-Degrading Beta-Proteobacterium Methylibium petroleiphilum PM1  

E-Print Network (OSTI)

of benzene to phenol, catechol, and 1,2,3-trihydroxybenzeneof benzene to phenol (and catechol), and toluene toa multi-component PH, catechol 2,3-dioxygenase and the meta-

2007-01-01T23:59:59.000Z

289

Design modifications in electrospinning setup for advanced applications  

Science Conference Proceedings (OSTI)

The paper deals with the modification made to the general electrospinning setup. The emphasis is given to characterize the designs based on their applicability. Four basic categories are identified, namely, patterned fibers, fiber yarns, multicomponent, ...

Rahul Sahay; Velmurugan Thavasi; Seeram Ramakrishna

2011-01-01T23:59:59.000Z

290

Development of Hydrologic Characterization Technology of Fault Zones  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media, Soc.fluid flow, multicomponent transport, and heat transfer in porous and fractured media,fluid flow, solute transport, and heat transfer occur in porous and fractured media.

Karasaki, Kenzi

2009-01-01T23:59:59.000Z

291

TOUGH2 Software Qualification  

E-Print Network (OSTI)

for modeling fluid and heat flow in fractured porous media,Modeling Fluid and Heat Flow in Fractured Porous Media, Soc.fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media

2010-01-01T23:59:59.000Z

292

User's Guide for TOUGH2-MP - A Massively Parallel Version of the TOUGH2 Code  

E-Print Network (OSTI)

Modeling Fluid and Heat Flow in Fractured Porous Media, Soc.fluid flows, heat transfer and contaminant transport in porous and fractured media.flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous and fractured media.

Pruess, Keni Zhang, Yushu Wu, Kasten; Earth Sciences Division

2008-01-01T23:59:59.000Z

293

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiphase and multicomponent phase behavior of CO 2 -oil system Diffusion and seepage theory in EOR Characteristic of CO2 moving front and CO2 sequestration in china Objectives...

294

Blind benchmark predictions of the NACOK air ingress tests using the CFD code FLUENT  

E-Print Network (OSTI)

The JAERI and NACOK experiments examine the combined effects of natural convection during an air ingress event: diffusion, onset of natural circulation, graphite oxidation and multicomponent chemical reactions. MIT has ...

Brudieu, Marie-Anne V

2007-01-01T23:59:59.000Z

295

Plasma-Spheroidization and Consolidation of Low-Cost Titanium ...  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model · Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder ...

296

Effects of Processing Parameters on Macrozone Formation in Ti-6Al ...  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model · Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder ...

297

Precipitation Behaviour in Severe Plastic Deformed Beta-type ...  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model · Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder ...

298

Beta Gamma Fine Fully Lamellar Materials: Breaking Ductility and ...  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model ... Product Forms Using Blended-Elemental Powder-Based Ti-6AL-4V Alloy ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder and ...

299

Powder Metallurgy and Additive Manufacturing of Titanium Powders  

Science Conference Proceedings (OSTI)

Composition Design of Multi-Component ?-Ti Alloys Based on a Cluster Model · Consolidation of Blended Titanium/Magnesium Powders by Microwave Processing ... Rheological Properties of Feedstock Composed of Titanium Alloy Powder ...

300

The Development of Glass Compositions for the Vitrification of Ion ...  

Science Conference Proceedings (OSTI)

This presentation explores the development of a glass system intended for the ... The Effects of Lithium Nitrate on Highly Active Liquor in the Calcination Process ... Viscosity of Multicomponent Glasses as a Function of Temperature and ...

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Analytical modelling of hydrogen transport in reactor containments  

E-Print Network (OSTI)

There are two diffusion processes, molecular and turbulent, which should be modelled in different ways. Molecular diffusion is modelled by Wilke's formula for the multi-component gas diffusion, where the diffusion constants ...

Manno, V.

1983-01-01T23:59:59.000Z

302

Mathematical modelling of diffusion-reaction, and solution algorithm for complex reaction networks in porous catalyst pellets-steam reforming of natural gas  

Science Conference Proceedings (OSTI)

Three models of different degrees of rigor are developed for diffusion and reaction in porous catalyst pellets for the industrially important multicomponents' system with a multiple reversible reaction for the steam reforming of natural gas. The more ...

M. E. Abashar; S. S. Elnashaie

1993-10-01T23:59:59.000Z

303

ROLE OF CONSTITUENT ELEMENTS IN PROPANE OXIDATION OVER MIXED METAL OXIDES.  

E-Print Network (OSTI)

??Recently discovered multi-component Mo-V-Te-Nb-O catalysts contain so-called “M1” and “M2” phases with orthorhombic and hexagonal structures, respectively, proposed to be active and selective in propane… (more)

BHANDARI, RISHABH

2005-01-01T23:59:59.000Z

304

Theoretical Foundations for Models of Moist Convection  

Science Conference Proceedings (OSTI)

The equations describing the dynamics and thermodynamics of cloudy air are derived using the theories of multicomponent fluids and multiphase flows. The formulation is completely general and allows the hydrometeors to have temperatures and ...

Peter R. Bannon

2002-06-01T23:59:59.000Z

305

Planar ceramic membrane assembly and oxidation reactor system  

DOE Patents (OSTI)

Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohm, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, deceased, Paul Nigel (Allentown, PA)

2007-10-09T23:59:59.000Z

306

Planar ceramic membrane assembly and oxidation reactor system  

DOE Patents (OSTI)

Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohrn, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, Paul Nigel (Allentown, PA)

2009-04-07T23:59:59.000Z

307

Combined catalysts for the combustion of fuel in gas turbines  

Science Conference Proceedings (OSTI)

A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

Anoshkina, Elvira V.; Laster, Walter R.

2012-11-13T23:59:59.000Z

308

The use of simulation in decision making for the Kuparuk River field development  

SciTech Connect

A multicomponent system of simulators has been used successfully for development decisions on the Kuparuk River field. This paper describes the field, the simulators chosen, and some decision examples. The system was found to be fast, flexible, and cost effective. A fast, cost-effective, and flexible system has been designed and used in making development planning decisions for a giant oilfield. Prestartup conceptual design decisions were made by using a multicomponent approach and relying heavily on a purpose-built field-development simulator. Acceptable degrees of confidence were realized by allowing technical assessments to be made between stages of simulation.

Clutterbuck, P.R.; Danee, S.E.

1983-10-01T23:59:59.000Z

309

On superconductivity of high-spin transition metal compounds  

SciTech Connect

The possibility of Cooper instability in transition metal compounds is established based of the concept of the strong interaction in the same unit cell. The multicomponent scattering amplitude of excitations is calculated. The superconductivity equations are derived for compounds of 3d transition metals. It is shown that in the pole approximation, the superconductivity equations can be reduced to the multicomponent superconductivity equations with preset BCS constants. A method is developed for calculating one-orbital constants and constants with different orbitals as functions of the total spin. The concentration ranges of superconducting ordering are obtained for one-orbital equations.

Zaitsev, R. O., E-mail: Zaitsev_rogdai@mail.ru [Moscow Institute of Physics and Technology (State University) (Russian Federation)

2011-11-15T23:59:59.000Z

310

High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods  

DOE Patents (OSTI)

Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

Goyal, Amit

2013-09-17T23:59:59.000Z

311

High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods  

DOE Patents (OSTI)

Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

Goyal, Amit (Knoxville, TN)

2011-10-11T23:59:59.000Z

312

High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods  

DOE Patents (OSTI)

Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)

2012-02-21T23:59:59.000Z

313

Method and apparatus for converting heat from geothermal fluid to electric power  

SciTech Connect

This patent describes a method for implementing a thermodynamic cycle. It comprises: expanding a gaseous working stream transforming its energy into usable form and producing a spent stream; reheating and expanding the spent stream, to transform its energy into usable form; heating a multicomponent oncoming liquid working stream by partially condensing the spent stream to preheat and partially evaporate the multicomponent oncoming liquid working stream to produce a heated liquid working stream; and evaporating the heated liquid working stream using heat produced by an external heat source, to form the gaseous working stream.

Kalina, A.I.

1991-01-08T23:59:59.000Z

314

The Soret Effect in Naturally Propagating, Premixed, Lean, Hydrogen-Air Flames  

SciTech Connect

Comparatively little attention has been given to multicomponent diffusion effects in lean hydrogen-air flames, in spite of the importance of these flames in safety and their potential importance to future energy technologies. Prior direct numerical simulations either have considered only the mixture-averaged transport model, or have been limited to stabilized flames that do not exhibit the thermo-diffusive instability. The so-called full, multicomponent transport model with cross-diffusion is found to predict hotter, significantly faster flames with much faster extinction and division of cellular structures.

Grcar, Joseph F; Grcar, Joseph F.; Bell, John B.; Day, Marcus S.

2008-06-30T23:59:59.000Z

315

Separation of polar gases from nonpolar gases  

DOE Patents (OSTI)

The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

Kulprathipanja, S.

1986-08-19T23:59:59.000Z

316

CHLORIDE, IN CALCIUM, IN pH ARSENIC, IN  

E-Print Network (OSTI)

LITER PHAST--A Program for Simulating Ground-Water Flow, Solute Transport, and Multicomponent;COVER ILLUSTRATION: Results of PHAST simulation of the evolution of water chemistry in the CentralH ARSENIC, IN MILLIGRAMS PER LITER MILLIGRAMS PER LITER MICROGRAMS PER LITER #12;PHAST--A Program

317

PHAST Version 2--A Program for Simulating Groundwater Flow, Solute Transport, and  

E-Print Network (OSTI)

PHAST Version 2--A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent;COVER ILLUSTRATION: Results of PHAST simulation of the evolution of water chemistry in the Central 25 0 50 200 #12;PHAST Version 2--A Program for Simulating Groundwater Flow, Solute Transport

318

Simulation tool for variably saturated flow with comprehensive geochemical reactions in two- and three-dimensional domains  

Science Conference Proceedings (OSTI)

We present a software tool for simulations of flow and multi-component solute transport in two- and three-dimensional domains in combination with comprehensive intra-phase and inter-phase geochemistry. The software uses IPhreeqc as a reaction engine ... Keywords: COMSOL, Geochemistry, IPhreeqc, PHREEQC, Reaction, Richards' equation, Solute transport, Unsaturated flow

L. Wissmeier; D. A. Barry

2011-02-01T23:59:59.000Z

319

ModelMuse--A Graphical User Interface for MODFLOW2005 and PHAST  

E-Print Network (OSTI)

LITER PHAST--A Program for Simulating Ground-Water Flow, Solute Transport, and Multicomponent;COVER ILLUSTRATION: Results of PHAST simulation of the evolution of water chemistry in the CentralH ARSENIC, IN MILLIGRAMS PER LITER MILLIGRAMS PER LITER MICROGRAMS PER LITER #12;PHAST--A Program

320

Composite hydrogen separation element and module  

DOE Patents (OSTI)

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

Edlund, D.J.; Newbold, D.D.; Frost, C.B.

1997-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Composite hydrogen separation element and module  

DOE Patents (OSTI)

There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

Edlund, David J. (Redmond, OR); Newbold, David D. (Bend, OR); Frost, Chester B. (Bend, OR)

1997-01-01T23:59:59.000Z

322

Technical Note: Multiobjective topology optimization for finite periodic structures  

Science Conference Proceedings (OSTI)

Many engineering structures consist of specially-fabricated identical components, thus their topology optimizations with multiobjectives are of particular importance. This paper presents a unified optimization algorithm for multifunctional 3D finite ... Keywords: Multicomponents, Multiobjective, Pareto optimum, Periodic structure, Sensitivity analysis, Topology optimization

Yuhang Chen; Shiwei Zhou; Qing Li

2010-06-01T23:59:59.000Z

323

Multiband segmentation of a spectroscopic line data cube: application to the HI data cube of the spiral galaxy NGC 4254  

Science Conference Proceedings (OSTI)

A new method for the multiband segmentation of a spectroscopic line data cube is presented. This method is intended to help astronomers to handle complex spectroscopic line data cubes where the inspection of the channel and moment maps is difficult. ... Keywords: Bayesian segmentation, Gaussian mixture model, HI 21 cm line spiral galaxy NGC 4254, hierarchical hidden Markov model, multicomponent image, spectroscopic data cube reduction

Farid Flitti; Christophe Collet; Bernd Vollmer; François Bonnarel

2005-01-01T23:59:59.000Z

324

Proceedings of the ASME 2010 Fluids Engineering Summer Meeting August 1-5, 2010, Montreal, Quebec, Canada  

E-Print Network (OSTI)

Numerical modeling of methane-steam reforming is per- formed in a mini/microchannel with heat input through with multicomponent reac- tions are solved using a parallel numerical framework. Methane- steam reforming is modeled, Quebec, Canada FEDSM-ICNMM2010-31192 NUMERICAL MODELING OF MINI/MICROCHANNEL REACTOR FOR METHANE-STEAM

Apte, Sourabh V.

325

Proceedings of the ASME/JSME 2011 8th Thermal Engineering Joint Conference March 13-17, 2011, Honolulu, Hawaii, USA  

E-Print Network (OSTI)

FOR METHANE-STEAM REFORMING Kevin Drost School of Mechanical, Industrial and Manufacturing Engineering Oregon 97331 Email: schmitjo@engr.orst.edu ABSTRACT Numerical modeling of methane-steam reforming is per with multicomponent reactions are solved using a parallel numerical framework. Methane-steam reforming is modeled

Apte, Sourabh V.

326

A Monte Carlo model for seeded atomic flows in the transition regime  

Science Conference Proceedings (OSTI)

A simple model for the numerical determination of separation effects in seeded atomic gas flows is presented. The model is based on the known possibility to provide a statistically convergent estimate of the exact solution for a linear transport equation ... Keywords: Compressible flows, Monte Carlo simulation, Multi-component flows, Numerical methods, Rarefied flows

S. Longo; P. Diomede

2009-06-01T23:59:59.000Z

327

Plug and play approach to validation of particle-based algorithms  

Science Conference Proceedings (OSTI)

We present a new approach for code validation. The approach is based on using particle-based algorithms to simulate different levels of physical complexity. We consider here heat and mass transfer in a multicomponent plasma at the kinetic and fluid level. ...

Giovanni Lapenta; Stefano Markidis

2005-05-01T23:59:59.000Z

328

A model for simulating impacts of seismic events on large power systems  

Science Conference Proceedings (OSTI)

This paper describes the capabilities and calculation logic of EPfast, a new simulation and impact analysis tool developed by Argonne National Laboratory. The tool represents an emerging set of simulation models focusing on evaluating the vulnerability ... Keywords: multi-component disruptions, power network seismic performance, seismic system vulnerability, system collapse, uncontrolled islanding

Edgar C. Portante; Brian A. Craig; Leah E. Talaber Malone; James A. Kavicky; Stephen F. Folga; Stewart Cedres

2011-04-01T23:59:59.000Z

329

Mathematical Reliability Theory: From The Beginning to . . .  

E-Print Network (OSTI)

It is argued that the mathematical theory of reliability as a separate discipline began in 1961 with the publication of Multi-component systems and their structures and their reliability by Birnbaum, Esary and Saunders. Prior to this time, mathematicians were just applying standard mathematical techniques such as queueing theory, statistics and probability to engineering reliability problems. We

Richard E. Barlow

2002-01-01T23:59:59.000Z

330

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

fluid flow, multicomponent transport, and heat transfer in porous and fractured media,fluid flow, solute transport, and heat transfer occur in porous and fractured media.fluid flow, mass transport, and heat-transfer processes through porous and fractured media.

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

331

Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830  

E-Print Network (OSTI)

Prototype Hanford Barrier ­ 15 Years of Performance Monitoring AL Ward KE Draper SO Link RE Clayton September 2009 #12;#12;PNNL-18845 200-BP-1 Prototype Hanford Barrier ­ 15 Years of Performance Monitoring AL, a 2-ha multi-component barrier was constructed over an existing waste disposal site at Hanford using

332

Using a MODFLOW grid, generated with GMS, to solve a transport problem with TOUGH2 in complex geological environments: The intertidal deposits of the Venetian Lagoon  

Science Conference Proceedings (OSTI)

The tides of the Venetian Lagoon generally vary between -0.5 and +0.7masl. Occasionally, they may reach a maximum of 1.5m (acqua alta) and a minimum of -0.8masl (acqua bassa). Intertidal areas, called ''barene,'' exist all along the coast of the Lagoon. ... Keywords: Complex geology, Contaminant transport, Groundwater flow, Multicomponent flow, TOUGH2 community

A. Borgia; L. Cattaneo; D. Marconi; C. Delcroix; E. L. Rossi; G. Clemente; C. G. Amoroso; F. Lo Re; E. Tozzato

2011-06-01T23:59:59.000Z

333

Modeling and computation of two phase geometric biomembranes using surface finite elements  

Science Conference Proceedings (OSTI)

Biomembranes consisting of multiple lipids may involve phase separation phenomena leading to coexisting domains of different lipid compositions. The modeling of such biomembranes involves an elastic or bending energy together with a line energy associated ... Keywords: Lipid bilayer, Multi-component membrane, Numerical simulation, Phase field method, Relaxation dynamics, Surface finite element method

Charles M. Elliott; Björn Stinner

2010-09-01T23:59:59.000Z

334

Lagrangian Available Energetics and Parcel Instabilities  

Science Conference Proceedings (OSTI)

A new derivation of local available energy for a compressible, multicomponent fluid whose base state need not be one of rest that allows for frictional and diabatic processes is presented. The available energy is the sum of the kinetic energy and ...

Peter R. Bannon

2004-07-01T23:59:59.000Z

335

Martin O. Saar CV, Page 1 of 17 10/1/2009 CURRICULUM VITAE  

E-Print Network (OSTI)

: sokar.geo.umn.edu/twiki/bin/view/Geofluids RESEARCH FIELD Geophysical fluid dynamics in multiphase, multi-component, and multi-scale heterogeneous systems such as fluid (groundwater, oil, contaminant, CO2, Minneapolis, MN 09/2003-12/2004 Turner Postdoctoral Fellow, Univ. of Michigan, Ann Arbor, MI TENURE TRACK

Saar, Martin O.

336

Parsimonious rule generation for a nature-inspired approach to self-assembly  

Science Conference Proceedings (OSTI)

Most construction of artificial, multicomponent structures is based upon an external entity that directs the assembly process, usually following a script/blueprint under centralized control. In contrast, recent research has focused increasingly on an ... Keywords: Coordination, parsimony, self-assembly, self-organization, stigmergy, swarm intelligence

Alexander Grushin; James A. Reggia

2010-09-01T23:59:59.000Z

337

CHUNG K. (ED) LAW Department of Mechanical and Aerospace Engineering  

E-Print Network (OSTI)

, Michigan Technological University 4. A. L. Randolph, '86 "Experimental investigation of the gasification combustion and gasification mechanisms of multicomponent and reactive materials" Research Staff, National and Mass Transfer, Vol. 27, pp. 1418-1421 (1984). 72. "Simulation of fuel droplet gasification in SI

338

A Constraint-Based Approach to Assigning System Components to Tasks  

Science Conference Proceedings (OSTI)

In multi-component systems, individual components must be assigned to the tasks that they are to perform. In many applications, there are several possible task decompositions that could be used to achieve the task, and there are limited resources ... Keywords: autonomous underwater vehicles, constrained heuristic search, constraint satisfaction, task assignment

Elise H. Turner; Roy M. Turner

1999-03-01T23:59:59.000Z

339

TOUGH+CO2: A multiphase fluid-flow simulator for CO2 geologic sequestration in saline aquifers  

Science Conference Proceedings (OSTI)

TOUGH+CO"2 is a new simulator for modeling of CO"2 geologic sequestration in saline aquifers. It is a member of TOUGH+, the successor to the TOUGH2 family of codes for multicomponent, multiphase fluid and heat flow simulation. The code accounts for heat ... Keywords: CO2 geologic sequestration, Modeling, Multiphase flow, Parallel computing, Saline aquifer, TOUGH+, TOUGH2

Keni Zhang; George Moridis; Karsten Pruess

2011-06-01T23:59:59.000Z

340

Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Multicomponent Seismic Attributes, Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico REPORT DELIVERABLE: TASK 8 (Select Rock Physics Model) Reporting Period Start Date: 1 March 2006 Reporting Period End Date: 31 August 2007 Principal Investigators: Bob A. Hardage Paul E. Murray Diana C. Sava Report Date: 17 July 2007 DOE Award DE-FC26-05NT42667 Submitting Organization: Bureau of Economic Geology The University of Texas at Austin University Station, Box X Austin, TX 78713-8924 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conditions for extreme sensitivity of protein diffusion in membranes to cell environments  

E-Print Network (OSTI)

We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated using a nonlinear stochastic Navier-Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate $H$, making it much more sensitive to cell environment, unlike the logarithmic dependence on $H$ and very small thermal correction away from the critical point.

Yaroslav Tserkovnyak; David R. Nelson

2006-08-11T23:59:59.000Z

342

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado Multicomponent seismic analysis and calibration to improve recovery from algal mounds: application to the Roadrunner/Towaoc area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado DE-FG26-02NT15451 Project Goal The project is designed to: Promote development of both discovered and undiscovered oil reserves contained within algal mounds on the Ute Mountain Ute, Southern Ute, and Navaho native-controlled lands. Promote the use of advanced technology and expand the technical capability of the Native American oil exploration corporations by direct assistance in the current project and dissemination of technology to other tribes. Develop the most cost-effective approach to using non-invasive seismic imaging to reduce the risk in exploration and development of algal mound reservoirs on surrounding Native American lands.

343

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATION FORM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

317 317 University of Texas at Austin FE DE-FE0001317 Sequestration Division 2010 Andrea McNemar 10/01/2009 - 09/30/2012 Austin, TX Improving the Monitoring, Verification, and Accounting of CO2 Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling Please see SOPO attached. This NEPA action is to cover all tasks except Task 5: Acquire Multicomponent Seismic Data. Task 5 will be addressed with a separate NEPA action once site is selec Andrea McNemar Digitally signed by Andrea McNemar DN: cn=Andrea McNemar, o=NETL, ou=DOE, email=andrea.mcnemar@netl.doe.gov, c=US Date: 2009.12.11 15:03:59 -05'00' 12 11 2009 john ganz Digitally signed by john ganz DN: cn=john ganz, o=NETL- DOE, ou=140 OPFC, email=john.ganz@netl.doe.gov, c=US

344

Three dimensional interpretations of single-well electromagnetic data for geothermal applications  

SciTech Connect

An efficient 3-D electromagnetic (EM) inversion algorithm has been developed for geothermal applications and tested successfully using a set of single-hole EM logging data. The data was collected at an oil field undergoing CO{sub 2} injection in southern California using a single-hole EM tool, Geo-BILT, developed by Electromagnetic Instruments, Inc (EMI). The tool is equipped with a multi-component source, and multi-component receivers at different separations. The inversion result provides a reasonable electrical conductivity image to a distance of 10 m from the well, and illustrates several zones with lateral conductivity variations that could not be resolved with traditional induction logging tools. The successful case study demonstrates potential applications of the tool and software for characterizing fracture systems in geothermal reservoirs.

Tseng, Hung-Wen; Lee, Ki Ha

2004-01-09T23:59:59.000Z

345

Energetics of melts from thermal diffusion studies. FY 1995 progress report  

DOE Green Energy (OSTI)

This research program characterizes mass transport by diffusion in geological fluids in response to thermal, solubility, and/or chemical gradients to obtain quantitative information on the thermodynamic and kinetic properties of multicomponent systems. Silicate liquids undergo substantial thermal diffusion (Soret) differentiation, while the response in sulfide, carbonate, and aqueous fluids to an imposed temperature gradient is varied. The experimental observations of this differentiation are used to evaluate the form and quantitative values of solution parameters, and to quantify ordinary diffusion coefficients, heats of transport, and activation energies of multicomponent liquids. The diffusion, solution, and element partition coefficients determined for these geological fluids form a data base for understanding magmatic crystallization behavior and for evaluating geothermal, ore deposit, and nuclear waste isolation potentials.

Lesher, C.E.

1996-12-31T23:59:59.000Z

346

Kinetic Method for Hydrogen-Deuterium-Tritium Mixture Distillation Simulation  

Science Conference Proceedings (OSTI)

Simulation of hydrogen distillation plants requires mathematical procedures suitable for multicomponent systems. In most of the present-day simulation methods a distillation column is assumed to be composed of theoretical stages, or plates. However, in the case of a multicomponent mixture theoretical plate does not exist.An alternative kinetic method of simulation is depicted in the work. According to this method a system of mass-transfer differential equations is solved numerically. Mass-transfer coefficients are estimated with using experimental results and empirical equations.Developed method allows calculating the steady state of a distillation column as well as its any non-steady state when initial conditions are given. The results for steady states are compared with ones obtained via Thiele-Geddes theoretical stage technique and the necessity of using kinetic method is demonstrated. Examples of a column startup period and periodic distillation simulations are shown as well.

Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, E.P. [Mendeleyev University of Chemical Technology of Russia (Russian Federation)

2005-07-15T23:59:59.000Z

347

Energetics of melts from thermal diffusion studies. FY 1996 progress report  

SciTech Connect

This research program characterizes mass transport by diffusion in geological fluids in response to thermal, solubility, and/or chemical gradients to obtain quantitative information on the thermodynamic and kinetic properties of multicomponent systems. Silicate liquids undergo substantial thermal diffusion (Soret) differentiation, while the response in sulfide, carbonate, and aqueous fluids to an imposed temperature gradient is varied. The experimental observations of this differentiation are used to evaluate the form and quantitative values of solution parameters, and to quantify ordinary diffusion coefficients, heats of transport, and activation energies of multicomponent liquids. The diffusion, solution, and element partition coefficients determined for these geological fluids form a data base for understanding magmatic crystallization behavior and for evaluating geothermal, ore deposit, and nuclear waste isolation potentials.

Lesher, C.E.

1997-12-31T23:59:59.000Z

348

System for analysis of explosives  

DOE Patents (OSTI)

A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

Haas, Jeffrey S. (San Ramon, CA)

2010-06-29T23:59:59.000Z

349

Analytical solution of the kinetic equation for a uniform plasma in a magnetic field  

SciTech Connect

The kinetic equation for a single-component uniform plasma in a magnetic field is analytically solved by the moment method. The linear system of ordinary differential equations for the moments is decomposed into subsystems of lower dimensions by a geometric method. The eigensystem of each subsystem shows that parallel moments decay monotonically, but perpendicular lth harmonic moments decay while oscillating with the l,l-2,...,-th harmonics of gyrofrequency. A generalization to a multicomponent plasma is discussed.

Ji, Jeong-Young; Held, Eric D. [Department of Physics, Utah State University, Logan, Utah 84322 (United States)

2010-07-15T23:59:59.000Z

350

Considerations for developing models of multiphase flow in deformable porous media.  

Science Conference Proceedings (OSTI)

This document summarizes research and planning for the development of a numerical simulation capability for nonisothermal multiphase, multicomponent transport in heterogeneous deformable porous materials. Particular attention is given to describing a mathematical formulation for flow in deformable media and for numerical techniques for dealing with phase transitions. A development plan is formulated to provide a computational capability motivated by current and future needs in geosystems management for energy security.

Martinez, Mario J.; Stone, Charles Michael

2008-09-01T23:59:59.000Z

351

A thermodynamic model for aqueous solutions of liquid-like density  

DOE Green Energy (OSTI)

The paper describes a model for the prediction of the thermodynamic properties of multicomponent aqueous solutions and discusses its applications. The model was initially developed for solutions near room temperature, but has been found to be applicable to aqueous systems up to 300/sup 0/C or slightly higher. A liquid-like density and relatively small compressibility are assumed. A typical application is the prediction of the equilibrium between an aqueous phase (brine) and one or more solid phases (minerals). (ACR)

Pitzer, K.S.

1987-06-01T23:59:59.000Z

352

Modeling of geothermal systems  

DOE Green Energy (OSTI)

During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1985-03-01T23:59:59.000Z

353

Semi-empirical adsorption equation for single component gas-solid equilibria  

SciTech Connect

Analysts have derived a thermodynamically consistent analytic equation for describing equilibrium adsorption data over a wide range of temperatures and pressures. Capable of describing the Type I and III isotherms as well as their combinations, the model does not restrict the nature of the isosteric heat of adsorption to simplified forms. It applies to various types of porous and nonporous sorbent-sorbate systems, making it useful for extrapolating data, computing multicomponent equilibria, and modeling adsorption processes.

Sircar, S.; Gupta, R.

1981-09-01T23:59:59.000Z

354

Phase 1 Final Technical Report - MgB2 Synthesis for High Field Performance  

DOE Green Energy (OSTI)

This revised goal has two benefits. First, it is an easier technology than our ultimate goal of a multi-component laminar flow torch. We have been counseled by those experienced in plasma torch technology that our ultimate goal will require a torch that should be feasible but has never been attempted. It may require an extended period of R&D for both the torch itself and the gas dynamics in the rea

Mohit Bhatia; Peter McIntyre

2009-11-02T23:59:59.000Z

355

Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis  

E-Print Network (OSTI)

A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

Tomas Roubicek; Giuseppe Tomassetti

2013-09-12T23:59:59.000Z

356

Multiple Steady States in Azeotropic and Reactive Distillation  

E-Print Network (OSTI)

Introduction . Motivation Overview on the Contributions MSS in Reactive Distillation Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions . The Starting Point . Consolidation . Industrial Applications . Incorporating Reactions MSS in Reactive Distillation Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions MSS in Reactive Distillation . Prediction Method . MTBE Process Conclusions Outline Multiple Steady States (MSS) Overview on the Contributions MSS in Reactive Distillation Conclusions Distillation Overview . Ideal binary / multicomponent distillation . Homogeneous azeotropic distillation -- Heavy entrainer (extractive distillation) -- Intermediate entrainer -- "Boundary scheme" (ligh

Thomas E. Güttinger

1998-01-01T23:59:59.000Z

357

GALAXY CLUSTER ENVIRONMENTS OF RADIO SOURCES  

SciTech Connect

Using the Sloan Digital Sky Survey (SDSS) and the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) catalogs, we examined the optical environments around double-lobed radio sources. Previous studies have shown that multi-component radio sources exhibiting some degree of bending between components are likely to be found in galaxy clusters. Often this radio emission is associated with a cD-type galaxy at the center of a cluster. We cross-correlated the SDSS and FIRST catalogs and measured the richness of the cluster environments surrounding both bent and straight multi-component radio sources. This led to the discovery and classification of a large number of galaxy clusters out to a redshift of z {approx} 0.5. We divided our sample into smaller subgroups based on their optical and radio properties. We find that FR I radio sources are more likely to be found in galaxy clusters than FR II sources. Further, we find that bent radio sources are more often found in galaxy clusters than non-bent radio sources. We also examined the environments around single-component radio sources and find that single-component radio sources are less likely to be associated with galaxy clusters than extended, multi-component radio sources. Bent, visually selected sources are found in clusters or rich groups {approx}78% of the time. Those without optical hosts in SDSS are likely associated with clusters at even higher redshifts, most with redshifts of z>0.7.

Wing, Joshua D.; Blanton, Elizabeth L., E-mail: jwing@bu.edu [Astronomy Department and Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States)

2011-03-15T23:59:59.000Z

358

Handbook of heat and mass transfer. Volume 2  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

359

Aerosol chemical vapor deposition of metal oxide films  

DOE Patents (OSTI)

A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate, and as having a crystalline orientation defined as predominantly C-axis oriented by x-ray diffraction is disclosed.

Ott, K.C.; Kodas, T.T.

1990-04-16T23:59:59.000Z

360

Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project  

Science Conference Proceedings (OSTI)

The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

Scott Reeves; George Koperna

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes  

SciTech Connect

This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

Agrawal, Rakesh

2013-11-21T23:59:59.000Z

362

Group-invariant soliton equations and bi-Hamiltonian geometric curve flows in Riemannian symmetric spaces  

E-Print Network (OSTI)

Universal bi-Hamiltonian hierarchies of group-invariant (multicomponent) soliton equations are derived from non-stretching geometric curve flows $\\map(t,x)$ in Riemannian symmetric spaces $M=G/H$, including compact semisimple Lie groups $M=K$ for $G=K\\times K$, $H={\\rm diag} G$. The derivation of these soliton hierarchies utilizes a moving parallel frame and connection 1-form along the curve flows, related to the Klein geometry of the Lie group $G\\supset H$ where $H$ is the local frame structure group. The soliton equations arise in explicit form from the induced flow on the frame components of the principal normal vector $N=\\covder{x}\\mapder{x}$ along each curve, and display invariance under the equivalence subgroup in $H$ that preserves the unit tangent vector $T=\\mapder{x}$ in the framing at any point $x$ on a curve. Their bi-Hamiltonian integrability structure is shown to be geometrically encoded in the Cartan structure equations for torsion and curvature of the parallel frame and its connection 1-form in the tangent space $T_\\map M$ of the curve flow. The hierarchies include group-invariant versions of sine-Gordon (SG) and modified Korteweg-de Vries (mKdV) soliton equations that are found to be universally given by curve flows describing non-stretching wave maps and mKdV analogs of non-stretching Schrodinger maps on $G/H$. These results provide a geometric interpretation and explicit bi-Hamiltonian formulation for many known multicomponent soliton equations. Moreover, all examples of group-invariant (multicomponent) soliton equations given by the present geometric framework can be constructed in an explicit fashion based on Cartan's classification of symmetric spaces.

Stephen C. Anco

2007-03-21T23:59:59.000Z

363

Final_Tech_Session_Schedule_and_Location.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Sequestration in Saline Aquifers: Evaporation, Precipitation and Compressibility Effects Mohammad Piri, Jean H. Prévost and Richard Fuller May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia Outline * Introduction * Our model - Dynaflow * One-dimensional radial flow simulations Evaporation & precipitation Effects of salinity Effects of compressibility Two dimensional simulations Hysteresis in relative permeabilities Gravity segregation Our model - Dynaflow A compositional, multiphase, multicomponent reservoir simulatror that has been developed at Princeton University which: * Benefits from a robust flash module that has been specifically developed for CO 2 /Salt/Water system which assumes - Aqueous phase may contain salt, water and CO

364

Final_Tech_Session_Schedule_and_Location.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic - Geologic - Frio Brine Field Project (1) Flow Modeling for the Frio Brine Pilot Christine Doughty, Karsten Pruess, Sally M. Benson* Earth Sciences Division Lawrence Berkeley National Laboratory May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia Outline * Purposes of modeling * Model development * Model applications * Conclusions and future directions Purposes of Modeling * Planning - to help design Frio brine pilot * Predictions - to assess state of understanding * Calibration - to improve understanding of the multi-phase, multi-component flow processes involved in geologic sequestration of CO 2 Experiment Design Issues Requirement Controlling factors Decision Pressure increase must be within regulatory limits * permeability * outer boundary conditions * CO 2 injection rate

365

Models on Distributed Memory Architectures  

NLE Websites -- All DOE Office Websites (Extended Search)

5/2004 Y.He 1 5/2004 Y.He 1 MPH: a Library for Coupling Multi-Component Models on Distributed Memory Architectures and its Applications Yun (Helen) He and Chris Ding CRD Division Lawrence Berkeley National Laboratory 10/15/2004 Y.He 2 10/15/2004 Y.He 3 Motivation n Application problems grow in scale & complexity n Effective organization of simulation software system that is maintainable, reusable, sharable, and efficient è a major issue n Community Climate System Model (CCSM) development n Software lasts much longer than a computer! 10/15/2004 Y.He 4

366

talapin-101812 - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

talapin-101812 talapin-101812 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Prof. Dmitri Talapin Department of Chemistry and James Frank Institute University of Chicago TITLE: Department of Chemistry and James Frank Institute DATE: Thursday, October 18, 2012 TIME: 11:00 am PLACE: Building 212 / A-157 HOST: Seungbum Hong ABSTRACT: Colloidal nanocrystals can combine the advantages of crystalline inorganic semiconductors with the size-tunable electronic structure and inexpensive solution-based device fabrication. Single- and multicomponent nanocrystal assemblies, also known as superlattices, provide a powerful general platform for designing two- and three-dimensional solids with tailored electronic, magnetic, and optical properties. Unlike atomic and molecular crystals where atoms, lattice geometry, and interatomic distances

367

Experimental studies of the geometric and electronic structure of chemisorption bonding. Annual Report, Jan. - Dec. 1984  

Science Conference Proceedings (OSTI)

The chemisorption of small molecules on carefully prepared alloy surfaces has been studied using angle-intergrated and angle-resolved photoelectron spectroscopy, as well as with more conventional surface techniques such as thermal desorption, low energy electron diffraction and work function change. The authors have studied the (110) face of the alloy NiAl since it is the lowest index face with equal concentration of Ni and Al atom. Simply stated the objective is to separate or correlate the electronic and geometric factors governing chemisorption on bimetallic systems as a first step towards understanding the selectivity of multi-component catalysts.

Plummer, E.W.; Gustafsson, T.

1985-03-01T23:59:59.000Z

368

Triple-material stress-strain resistivity gage  

DOE Patents (OSTI)

A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

Stout, R.B.

1987-05-19T23:59:59.000Z

369

Triple-material stress-strain resistivity gage  

DOE Patents (OSTI)

A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

Stout, R.B.

1988-05-17T23:59:59.000Z

370

Validation of IVA Computer Code for Flow Boiling Stability Analysis  

SciTech Connect

IVA is a computer code for modeling of transient multiphase, multi-component, non-equilibrium flows in arbitrary geometry including flow boiling in 3D nuclear reactors. This work presents part of the verification procedure of the code. We analyze the stability of flow boiling in natural circulation loop. Experimental results collected on the AREVA/FANP KATHY loop regarding frequencies, mass flows and decay ratio of the oscillations are used for comparison. The comparison demonstrates the capability of the code to successfully simulate such class of processes. (author)

Ivanov Kolev, Nikolay [Framatome-ANP, PO Box 3220, D-91058, Erlangen (Germany)

2006-07-01T23:59:59.000Z

371

Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate  

DOE Patents (OSTI)

A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

372

Quantum plasma effects in the classical regime  

E-Print Network (OSTI)

For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin up and spin down are regarded as different fluids. By studying the propagation of Alfv\\'{e}n wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

G. Brodin; M. Marklund; G. Manfredi

2008-02-01T23:59:59.000Z

373

An investigation of gas separation membranes for reduction of thermal treatment emissions  

Science Conference Proceedings (OSTI)

Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

Stull, D.M.; Logsdon, B.W. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Pellegrino, J.J. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-05-16T23:59:59.000Z

374

Conservation and Renewable Energy Program: Bibliography, 1988 edition  

DOE Green Energy (OSTI)

The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

Vaughan, K.H. (comp.)

1988-04-01T23:59:59.000Z

375

Preliminary evaluation of fluid chemistry in the East Mesa KGRA  

DOE Green Energy (OSTI)

One of the major problems needing consideration when bringing a geothermal field into production is the anticipation and control of mineral precipitation in both the producing formations and production equipment. Prediction of the chemical interactions between natural multicomponent thermal fluids and the minerals comprising a producing formation can be accomplished by the study of equilibrium models approximating the natural system. Models are constructed from theoretically and experimentally derived thermodynamic data for the involved minerals and aqueous species. This equilibrium modeling approach was applied to the rock-water system at the East Mesa geothermal area in the Imperial Valley of California. Results of petrographic and fluid analyses are given. (JGB)

Hoagland, J.R.

1976-10-04T23:59:59.000Z

376

A Spreadsheet Algorithm for Stagewise Solvent Extraction  

SciTech Connect

The material balance and equilibrium equations for solvent extraction processes have been combined with computer spreadsheets in a new way so that models for very complex multicomponent multistage operations can be setup and used easily. A part of the novelty is the way in which the problem is organized in the spreadsheet. In addition, to facilitate spreadsheet setup, a new calculational procedure has been developed. The resulting Spreadsheet Algorithm for Stagewise Solvent Extraction (SASSE) can be used with either IBM or Macintosh personal computers as a simple yet powerful tool for analyzing solvent extraction flowsheets.

Leonard, R.A.; Regalbuto, M.C.

1993-08-01T23:59:59.000Z

377

Combined cycle and waste heat recovery power systems based on a novel thermodynamic energy cycle utilizing low-temperature heat for power generation  

SciTech Connect

A new thermodynamic energy cycle has been developed, using a multicomponent working agent. Condensation is supplemented with absorption, following expansion in the turbine. Several combined power systems based on this cycle have been designed and cost-estimated. Efficiencies of these new systems are 1.35 to 1.5 times higher than the best Rankine Cycle system, at the same border conditions. Investment cost per unit of power output is about two-thirds of the cost of a comparable Rankine Cycle system. Results make cogeneration economically attractive at current energy prices. The first experimental installation is planned by Fayette Manufacturing Company and Detroit Diesel Allison Division of General Motors.

Kalina, A.I.

1983-01-01T23:59:59.000Z

378

Triple-material stress-strain resistivity gage  

DOE Patents (OSTI)

A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.

Stout, Ray B. (Livermore, CA)

1988-01-01T23:59:59.000Z

379

The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application Application of Low Field and Solid-State NMR Spectroscopy to Study the Liquid/Liquid Interface in Porous Space of Clay Minerals and Shales  

E-Print Network (OSTI)

In petroleum research understanding displacement, redistribution, and adsorption of oil and water plays an important role. To study complex multi-component systems such as liquid/liquid/mineral interactions in the porous space of clays and shales we applied low field (2 – 15 MHz) and high resolution (300 MHz) NMR spectroscopy. The detailed NMR analysis shows that the results from low field NMR measurements are in good correlation with the solid-state data. Consequently the process of liquid/liquid displacement can be characterised by considering the relaxation times, signal amplitudes and chemical shifts together.

Artem Borysenko; Ben Clennell; Iko Burgar; David Dewhurst; Rossen Sedev; John Ralston

2008-01-01T23:59:59.000Z

380

High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals  

DOE Patents (OSTI)

A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

Smither, Robert K. (Hinsdale, IL)

2008-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Topological Mott insulators of ultracold atomic mixtures induced by interactions in one-dimensional optical superlattices  

E-Print Network (OSTI)

We present exactly solvable examples that topological Mott insulators can emerge from topologically trivial states due to strong interactions between atoms for atomic mixtures trapped in one-dimensional optical superlattice systems. The topological Mott insulating state is characterized by nonzero Chern number and appears in the strongly interacting limit as long as the total band filling factor is an integer, which is not sensitive to the filling of each component. The topological nature of the Mott phase can be revealed by observing the density profile of the trapped system. Our results can be also generalized to the multi-component atomic systems.

Zhihao Xu; Shu Chen

2013-01-20T23:59:59.000Z

382

Thermal stability and strength of deformation microstructures in pure copper  

SciTech Connect

The plastic flow field produced by machining is utilized to access a range of deformation parameters in pure copper: strains of 1–7, strain rates of 1–1000 s?1 and temperatures as low as 77 K. The strength and stability of the severe plastic deformation microstructures including cellular, elongated, equiaxed and twinned types are characterized. Unique combinations of strengthening and stability are identified in the case of heavily twinned microstructures. These observations offer insights for improving the stability of both single-phase and multicomponent ultrafine-grained alloys.

Saldana, C.; King, Alex H.; Chandrasekar, S.

2012-05-18T23:59:59.000Z

383

Fire in the Ice, Spring 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Marine Multi-Component Marine Multi-Component Seismology ............................ 1 Discovery of Possible Gas Hydrate Features ................... 5 Monitoring Station Update ..... 8 Announcements .................. 10 * Research Cruise Completed * Advisory Committee Meeting * Hot Ice Project Reports * Norway ICGH Meeting * Simulator Publicly Released * TOUGH-Fx/HYDRATE V 2.4 * AAPG Committee to Meet Spotlight on Research ........ 12 Scott Dallimore CONTACT POINT Ray Boswell National Energy Technology Laboratory (304) 285-4541 (304) 285-4216 fax Ray.Boswell@netl.doe.gov The Fire in the Ice Newsletter is also available online at our website www.netl.doe.gov/scngo/ NaturalGas/hydrates/index.html T H E N A T I O N A L E N E R G Y T E C H N O L O G Y L A B O R A T O R Y M E T H A N E H Y D R A T E N E W S L E T T E R Vol. 5, Iss. 2 ○ ○ ○ ○ ○

384

Global molecular structure and interfaces : refining an RNA : RNA complex structure using solution x-ray scattering data.  

SciTech Connect

Determining the global architecture of multicomponent systems is a central problem in understanding biomacromolecular machines. Defining interfaces among components and the global structure of multicomponent systems is a central problem in understanding the biological interactions on a molecular level. We demonstrate that solution X-ray scattering data can be used to precisely determine intermolecular interfaces from just the subunit structures, in the complete absence of intermolecular NMR restraints using an example of a 30 kDa RNA-RNA complex. The backbone root-mean-square deviation (rmsd) between structures that are determined using the scattering data and using intermolecular distance restraints is about 0.4 {angstrom}. Further, we refined the global structure of the complex using scattering data as a global restraint. The rmsd in backbone structures that are determined with and without the scattering data refinement is about 3.2 {angstrom}, suggesting the impact of the refinement to the overall structure. Information about the 'global correctness' of solution RNA structures could not be practically obtained otherwise, due to the molecular nature of the RNA molecules, but could only be defined by the scattering data together by residual dipolar couplings. This method provides a powerful new approach for refining global structures of macromolecular complexes whose subunits are elongated.

Zuo, X.; Wang, J.; Foster, T. R.; Schwieters, C. D.; Tiede, D. M.; Butcher, S. E.; Wang, Y.-X.; Chemical Sciences and Engineering Division; NCI-Frederick; Univ. of Wisconin at Madison; NIH

2008-03-19T23:59:59.000Z

385

Integrated Systems-Based Approach for Reaching Acceptable End Points for Groundwater  

SciTech Connect

The sheer mass and nature of contaminated materials at DOE and DoD sites, makes it impractical to completely restore these sites to predisposal conditions. DOE faces long-term challenges, particularly with developing monitoring and end state approaches for clean-up that are protective of the environment, technically based and documented, sustainable, and most importantly cost effective. Integrated systems-based monitoring approaches (e.g., tools for characterization and monitoring, multi-component strategies, geophysical modeling) could provide novel approaches and a framework to (a) define risk-informed endpoints and/or conditions that constitute completion of cleanup and (b) provide the understanding for implementation of advanced scientific approaches to meet cleanup goals. Multi-component strategies which combine site conceptual models, biological, chemical, and physical remediation strategies, as well as iterative review and optimization have proven successful at several DOE sites. Novel tools such as enzyme probes and quantitative PCR for DNA and RNA, and innovative modeling approaches for complex subsurface environments, have been successful at facilitating the reduced operation or shutdown of pump and treat facilities and transition of clean-up activities into monitored natural attenuation remedies. Integrating novel tools with site conceptual models and other lines of evidence to characterize, optimize, and monitor long term remedial approaches for complex contaminant plumes are critical for transitioning active remediation into cost effective, yet technically defensible end pointstrategies.

Lee, Michelle H.; Wellman, Dawn M.; Truex, Michael J.; Sorenson, Jr., Kent S.; Wymore, Ryan; Freshley, Mark D.

2013-01-10T23:59:59.000Z

386

Low Energy Distillation Schemes  

E-Print Network (OSTI)

In this paper we look at various options available for the reduction of energy consumption in distillation systems. For binary systems, we look at how heat pumps can be used. With multi-component systems, process integration offers a means of reducing energy consumption. We look at how the better integrated distillation schemes can be quickly identified. It is found that the design of integrated schemes is quicker than that of non-integrated schemes. We then look at how the use of heat pumps, non-isobaric operation and divided wall columns may be incorporated into the synthesis of multi-component separation schemes. It will be seen that process integration provides an important means of reducing energy consumption in distillation processes. However, its conventional use requires the installation of piping (and pipes carrying vapor streams tend to be of large diameter and are consequently expensive). So, finally we examine a way in which the capital cost of such systems can be reduced: the divided wall column.

Polley, G. T.

2002-04-01T23:59:59.000Z

387

Developing models of aerosol representation to investigate composition, evolution, optical properties, and CCN spectra using measurements of size-resolved hygroscopicity  

E-Print Network (OSTI)

A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure size distributions, hygroscopicity, and volatility during the May 2003 Aerosol Intensive Operational Period at the Central Facility of the Atmospheric Radiation Measurement Southern Great Plains site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 µm to 0.600 µm were measured. These measurements, along with backtrajectory clustering, were used to infer aerosol composition and evolution. The hygroscopic growth of the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 µm. Condensation of secondary organic aerosol on nucleation mode particles may be responsible for the minimal growth observed at the smallest sizes. Growth factor distributions of the largest particles typically contained a non-hygroscopic mode believed to be composed of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed-size hygroscopic growth measurements. This model was used to examine three cases in which the sampled aerosol evolved over a period of hours or days. Additionally, size and hygroscopicity information were combined to model the aerosol as a population of multi-component particles. With this model, the aerosol hygroscopic growth factor f(RH), relating the submicron scattering at high RH to that at low RH, is predicted. The f(RH) values predicted when the hygroscopic fraction of the aerosol is assumed to be metastable agree better with measurements than do those predicted under the assumption of crystalline aerosol. Agreement decreases at RH greater than 65%. This multi-component aerosol model is used to derive cloud condensation nuclei (CCN) spectra for comparison with spectra measured directly with two Desert Research Institute (DRI) CCN spectrometers. Among the 1490 pairs of DMA/TDMA-predicted and DRI-measured CCN concentrations at various critical supersaturations from 0.02-1.05%, the sample number-weighted mean R2 value is 0.74. CCN concentrations are slightly overpredicted at both the lowest (0.02-0.04%) and highest (0.80-1.05%) supersaturations measured. Overall, this multi-component aerosol model based on size distributions and size-resolved hygroscopicity yields reasonable predictions of the humidity-dependent optical properties and CCN spectra of the aerosol.

Gasparini, Roberto

2003-05-01T23:59:59.000Z

388

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 9620 of 26,764 results. 11 - 9620 of 26,764 results. Download CX-002609: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional Carbon Dioxide Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Wichita, Kansas Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-002609-categorical-exclusion-determination Download CX-002608: Categorical Exclusion Determination Improving the Monitoring, Verification, and Accounting of Carbon Dioxide Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12/11/2009 Location(s): Austin, Texas

389

CO₂ Sequestration Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Carbon Sequestration Carbon Sequestration 2011-01-31-Sequestration1.jpg Why it Matters: Underground carbon sequestration is a technique in which one of the primary greenhouse gases, carbon dioxide (CO2), is removed from the atmosphere by injecting it into subsurface salt acquifers. This is a key potential global warming mitigation strategy. Key Challenges: A variety of geochemical processes can affect the mechanism of CO2 dissolution and the volume of CO2 that can be stored - the key result determining whether the strategy is effective or not. Simulation is the only way to study the detailed effects of geological flow, gravitational instability, rock heterogeneity, and brine salinity. These multicomponent, multiphase simulations must be carried out at high

390

Research Areas - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

391

Stanford Synchrotron Radiation Lightsource  

NLE Websites -- All DOE Office Websites (Extended Search)

Watching Ions Hop in Superionic Nanomaterials Watching Ions Hop in Superionic Nanomaterials March 2013 SSRL Science Summary by Lori Ann White, SLAC Office of Communications Figure For the first time, ultrafast x-ray scattering and spectroscopic measurements carried out at SSRL, the Advanced Light Source (ALS) and the Advanced Photon Source (APS) captured the atomic-level dynamics of a superionic nanocrystal as it transformed. Superionic materials are multi-component solids which can simultaneously display characteristics of both a solid and a liquid: Above a critical temperature associated with a structural phase transition, one atomic species in the material exhibits liquid-like ionic conductivities and dynamic disorder within the rigid crystalline structure of the other. Applications such as electrochemical storage materials and resistive

392

Direct Solar Energy Conversion by the Reduction of CO2  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Solar Energy Conversion by the Reduction of CO2 Direct Solar Energy Conversion by the Reduction of CO2 Speaker(s): Reed Jensen Date: August 25, 2005 - 12:00pm Location: Bldg. 90 Reed Jensen has successfully demonstrated the direct solar reduction of CO2 to CO and O2 using a solar concentrator dish and ceramic converter that grew out of his work at Los Alamos National Laboratory. He will discuss the thermochemical, kinetic and spectral properties of the CO2 /CO/ O2 system that enable this process and how the CO is subsequently converted to useful fuels by a range of catalytic processes. He will also discuss the technical difficulties associated with the design, construction and operation of a multi-component optical system that must operate at high temperatures. Results from a prototype system will be discussed defining the efficiencies

393

DOE Research and Development Accomplishments Database Browse  

NLE Websites -- All DOE Office Websites (Extended Search)

Database Browse Database Browse The ASTRAL Compendium in 2004; Chandonia, John-Marc; Hon, Gary; Walker, Nigel S.; Lo Conte, Loredana; Koehl, Patrice; Levitt, Michael; Brenner, Steven E.; September 15, 2003; LBNL--53820; ACC0491 322 K, 10 pp. View Document A Novel Method for Sampling Alpha-Helical Protein Backbones; Fain, Boris; Levitt, Michael; 2001; ; ACC0490 1223 K, 28 pp. View Document Chemical Research--Radiochemistry Report for Month Ending April 17, 1943; Franck, J. Division Director; 1952; CC-579; ACC0484 13567 K, 21 pp. View Document Theoretical Studies in Chemical Kinetics - Annual Report, 1970.; Karplus, Martin; October 1970; HUX--3780-33; ACC0483 544 K, 7 pp. View Document Nonequilibrium Contribution to the Rate of Reaction. III. Isothermal Multicomponent Systems; Shizgal, B.; Karplus, M.; October 1970; HUX--3780-31; ACC0482

394

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

395

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 5960 of 29,416 results. 51 - 5960 of 29,416 results. Download CX-002608: Categorical Exclusion Determination Improving the Monitoring, Verification, and Accounting of Carbon Dioxide Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12/11/2009 Location(s): Austin, Texas Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-002608-categorical-exclusion-determination Download CX-000777: Categorical Exclusion Determination Low-Cost, Highly Lambertian Reflector Composite for Improved LED (Light-Emitting Diode) Efficiency and Lifetime CX(s) Applied: B3.6 Date: 02/10/2010 Location(s): Newark, Delaware Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

396

Categorical Exclusion Determinations: Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 11, 2009 December 11, 2009 CX-002608: Categorical Exclusion Determination Improving the Monitoring, Verification, and Accounting of Carbon Dioxide Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12/11/2009 Location(s): Austin, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 10, 2009 CX-000341: Categorical Exclusion Determination Development of a National Liquid Propane (Autogas) Refueling Network, Clean School Bus/Vehicle Incentive & Green Jobs Outreach Program CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000351: Categorical Exclusion Determination

397

Subramanian Sankaranarayananan  

NLE Websites -- All DOE Office Websites (Extended Search)

The research focus is on the use of nanoscale oxides as energy materials. Select The research focus is on the use of nanoscale oxides as energy materials. Select problems of interest include: * Mechanisms of early stages of oxidation and nanoscale oxide growth on binary and ternary alloy metal substrates * Tuning oxide functional properties by athermally controlling the composition, stoichiometry and density of multi-component oxides * Ion dynamics at water-oxide interface for catalytic and energy applications * Structure-property relationships in low dimensional systems such as transition metal alloy nanomaterials * Nanoscale ion transport through oxide materials and its relevance to corrosion phenomena in electrochemical environments The main focus is on the development of computational models and simulation techniques to address the

398

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

During Numerical During Numerical Simulations of a CO 2 Sequestration Field Demonstration Project Rajesh J. Pawar Los Alamos National Laboratory rajesh@lanl.gov Why do we use simulations? * Understand past performance and predict future performance of a reservoir based on the available information * Predictions can be used to make decisions - Reservoir management - Monitoring strategies - HSE/economic risk analysis Oil reservoirs are more complex compared to other geologic reservoirs * Need to take into account at least three components (CO 2 , water, oil) that can exist in multiple phases (gas, immiscible liquids, super-critical): - Compositional simulations need more components to be taken into account * Multiple simultaneous thermodynamic interactions: - Multi-component oil & CO

399

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

400

Analysis of the solar coronal green line profiles from eclipse observations  

E-Print Network (OSTI)

Analysis of the solar coronal green line profiles reveals information regarding the physical conditions of the solar corona like temperature, density, Doppler velocity, non-thermal velocity etc. It provides insights to the unresolved problems like the coronal heating and the acceleration of the solar winds. Recent studies have reported excess blueshifts in the coronal line profiles and are interpreted as due to nanoflare heating, type II spicules and nascent solar wind flow. We have analyzed a time series of Fabry-Perot interferograms of the solar corona obtained during the total solar eclipse of 2001 June 21 from Lusaka, Zambia. The spatial behavior of the coronal green line profiles were examined and variations in intensity, linewidth, Doppler velocity and line asymmetry were obtained. Several line profiles showed asymmetry indicating the presence of multicomponents. Such line profiles were fitted with double Gaussian curves. It has been found that 42% of the line profiles were single components, 34% were b...

Prabhakar, Maya; Chandrasekhar, T

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Astrophysics Simulations from the ASC/Alliances Center for Astrophysical Thermonuclear Flashes  

DOE Data Explorer (OSTI)

The "Flash Center" works to solve the long-standing problem of thermonuclear flashes on the surfaces of compact stars such as neutron stars and white dwarfs, and in the interior of white dwarfs (i.e., Type I supernovae). The physical conditions, and many of the physical phenomena, are similar to those confronted by the Department of Energy Stockpile Stewardship program. The (fully ionized) plasmas are at very high temperatures and densities; and the physical problems of nuclear ignition, deflagration or detonation, turbulent mixing, and interface dynamics for complex multicomponent fluids are common to the weapons program. Because virtually every aspect of this problem represents a computational Grand Challenge, large-scale numerical simulations are at the heart of its resolution (Taken from Executive Summary page). More than 35 simulations and computer animations developed through research at the "Flash Center" are available here. Each .avi or .mov file also references the related research paper or presentation and provides a link.

402

Gas permeation carbon capture --- Process modeling and optimization  

SciTech Connect

A multi-staged gas permeation carbon capture process model was developed in Aspen Custom Modeler{reg_sign} (ACM) and optimized in the context of the retrofit of a 550 MW subcritical pulverized coal (PC) power plant. The gas permeation stages in the process are described by a custom multi-component, hollowfiber membrane model. Gas transport across the asymmetric membrane was modeled according to the solution-diffusion model for the selective skin layer and the assumption of negligible flux resistance by the porous support. Counter-current, one-dimensional plug flow was assumed with permeate pressure drop in the fiber lumen side due to capillary constrained flow. A modular optimization framework was used to minimize the levelized cost of electricity (LCOE) by optimizing a set of key process variables. The framework allows the external control of multiple simulation modules from different software packages from a common interface.

Morinelly, Juan; Miller, David

2011-01-01T23:59:59.000Z

403

EIA April 2008  

U.S. Energy Information Administration (EIA) Indexed Site

EIA Conference,Washington 7th-8th April 2008 EIA Conference,Washington 7th-8th April 2008 © 2008, Cambridge Energy Research Associates, Inc. No portion of this presentation may be reproduced, reused, or otherwise distributed in any form without prior written consent. Headlines * Complex multi-component system - many possible outcomes * Large volumes of data - robust methodology * Current paradigms will change in future * Total liquids capacity has not peaked * Liquids capacity will continue to grow through 2017 * No imminent peak/ no precipitous fall thereafter * CERA's is not the most optimistic view * Complexion of risks evolving - geopolitical, execution. * Eventually liquids supply will struggle to meet demand * The 'undulating plateau' will emerge - but not before 2030 2 EIA Conference,Washington 7th-8th April 2008

404

V.V. Gadzhieva, S.Yu. Kuzmin, S.N. Lebedev, I.E. Sizova, O.V. Stryakhnina  

National Nuclear Security Administration (NNSA)

SINARA code: Simulation of SINARA code: Simulation of turbulent mixing on gas interfaces V.V. Gadzhieva, S.Yu. Kuzmin, S.N. Lebedev, I.E. Sizova, O.V. Stryakhnina RFNC-VNIITF Snezhinsk 2005 2 SINARA capabilities * Multi-component single-velocity viscous flows * Elastic-plastic and strength properties of material * Turbulence * Linear heat conduction * Radiation * Neutron transport * Delayed neutrons, resonance self-shielding of cross sections and Doppler effect * Isotope burn-up 3 Material models * Ideal fluid with allowance for several components * Elasticity, plasticity, compressibility, fracture, melting, evaporation * Viscous fluid with allowance for several components * Turbulence * Geometrical model of radiation 4 Modules * Time-dependent hydrodynamics * Turbulent mixing * Time-dependent hydrodynamics with elastic-plastic and strength properties

405

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 10290 of 31,917 results. 81 - 10290 of 31,917 results. Download CX-002608: Categorical Exclusion Determination Improving the Monitoring, Verification, and Accounting of Carbon Dioxide Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12/11/2009 Location(s): Austin, Texas Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-002608-categorical-exclusion-determination Download CX-002588: Categorical Exclusion Determination A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell-Based Combined Heat and Power Systems CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Danbury, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

406

Integrating Program Component Executables  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrating Integrating Program Component Executables on Distributed Memory Architectures via MPH Chris Ding and Yun He Computational Research Division, Lawrence Berkeley National Laboratory University of California, Berkeley, CA 94720, USA chqding@lbl.gov, yhe@lbl.gov Abstract A growing trend in developing large and complex ap- plications on today's Teraflop computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the climate system model which consists of atmosphere, ocean, land-surface and sea-ice. Each component is semi- independent and has been developed at different institu- tions. We study how this multi-component multi-executable application can run effectively on distributed memory archi- tectures. We identify five effective execution modes and de- velop the MPH library to support

407

User:Andrruban | Open Energy Information  

Open Energy Info (EERE)

Andrruban Andrruban Jump to: navigation, search Maket 100en.jpg Name Andrew Ruban Location Ukraine Edits 3 TRGA - fuel activators and homogenizers - purpose. TRGA is a hydrodynamic emulsifier for emulsified water-residual blends and blended fuel. It serves for nonchemical treatment and fuel oil saving, fuel oil homogenization, watered fuel oil combustion (with water) and fuel oil combustion after the long-term storage; by-product-coking fuel homogenization and other fuel blends homogenization, emulsified fuel composition, fuel disintegration removal, combustion efficiency improvement, carbon deposit reduction and less injector clogging; and - besides all above it is purposed for: - mixing multicomponent fuels; - preparation of water fuel oil and other fuel emulsions; - addition of additives to diesel and heavy fuel oil; -

408

Mapping the Nanoscale Landscape  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping the Nanoscale Landscape Print Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with STXM-multicomponent organic electronic devices that have intrinsically nanoscale dimensions. Understanding where charge transport and recombination occur in these materials helps explain the efficient performance of polymer-based light-emitting diodes (LEDs) and will lead to a new avenue of research on organic electronic devices, supporting emerging technologies such as molecular computing and promoting increased efficiencies in existing organic technologies (organic LEDs and solar cells).

409

Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

8 LDRD PROJECTS 8 LDRD PROJECTS LDRD Project Project Title P.I. Dept/Bldg. 06-004 Detector Development for Very Long Baseline Neutrino Exp. M. Diwan PHYS/510E 06-012 Detector for High Quality Images of Electron Microscopy P. Rehak INST/535B 06-017 Transmission Photocathode Development J. Smedley INST/535B 06-021 Synthesis and Characterization of Band-Gap- Narrowed TiO2 Thin Films and Nanoparticles for Solar Energy Conversion E. Sutter CFN/480 06-030 Development of Gadolinium-Loaded Liquid- Scintillators with Long-Term Chemical Stability for a New High-Precision Measurement of the Neutrino Mixing Angle, Theta-13 R.L. Hahn CHEM/555A 06-037 Electronic Properties of Carbon Nanotubes and Novel Multicomponent Nanomaterials J.P. Hill CMPMSD/510B 06-038 Growth and Characterization of CdZnTe Crystals

410

Untitled-1  

NLE Websites -- All DOE Office Websites (Extended Search)

Synergism Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag 2 Te thin films JEFFREY J. URBAN 1 *, DMITRI V. TALAPIN 2 , ELENA V. SHEVCHENKO 2 , CHERIE R. KAGAN 1 AND CHRISTOPHER B. MURRAY 1 1 I.B.M. T. J. Watson Research Center, Nanoscale Materials and Devices Group, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA 2 The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA * e-mail: urban@post.harvard.edu Published online: 21 January 2007; doi:10.1038/nmat1826 The ordered cocrystallization of nanoparticles into binary superlattices enables close contact of nanocrystals with distinct physical properties, providing a route to 'metamaterials' design. Here we present the first electronic measurements of multicomponent nanocrystal solids composed of PbTe and Ag 2 Te, demonstrating

411

Noble Gas Geochemistry In Thermal Springs | Open Energy Information  

Open Energy Info (EERE)

Geochemistry In Thermal Springs Geochemistry In Thermal Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Noble Gas Geochemistry In Thermal Springs Details Activities (1) Areas (1) Regions (0) Abstract: The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic 4He, and 40Ar and the greater the depletion in Ne relative to 36Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other

412

Lawson Sercel speech  

NLE Websites -- All DOE Office Websites (Extended Search)

Sercel Land Acquisition Forum Sercel Land Acquisition Forum "Improved Land/Reservoir Imaging through High Density and Multi-Component Acquisition" Thursday, April 21, 2005 Houston, Texas William F. Lawson, Special Guest Speaker "R&D: Catalyst for the Next Stage of Seismic Industry Growth" Thank you very much for the kind introduction and the wonderful hospitality. I am so pleased to be able to address you today. The NETL is the only fossil energy-focused national lab, with 1,100 employees spread over four sites. Today, I intend to describe some general features of the domestic U.S. oil & gas industry and then discuss some specific DOE projects of potential interest to this group. We take our oil and gas industry pretty seriously and are proud of the

413

NETL: Methane Hydrates - DOE/NETL Projects - Application of Crunch-Flow  

NLE Websites -- All DOE Office Websites (Extended Search)

Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 Application of CrunchFlow Routines to Constrain Present and Past Carbon Fluxes at Gas-Hydrate Bearing Sites Last Reviewed 12/11/2013 DE-FE0010496 Goal The goal of this project is to apply a multi-component, multi-dimensional reactive transport simulation code to constrain modern day methane fluxes and to reconstruct past episodes of methane flux that can be correlated with environmental changes. Performers Oregon State University – Corvallis, OR Background The importance of understanding the role that gas hydrates play in the global carbon cycle and in understanding their potential as a future energy resource have long been recognized and are key components of the Methane Hydrate R&D Program. Fundamental questions remain, however, as to the residence time of gas hydrates near the seafloor and deeper within the

414

MAH-3 Code: Mixed Cells and Markers to Reconstruct Interfaces  

National Nuclear Security Administration (NNSA)

MAH-3 Code: Mixed Cells and Markers to Reconstruct Interfaces MAH-3 Code: Mixed Cells and Markers to Reconstruct Interfaces Nina N. Anuchina, Nikolay S. Es'kov, Viatcheslav A. Gordeyhuck, Oleg M. Kozyrev & Vladimir I. Volkov MAH-3 [1, 2] code simulates nonstationary 3D hydrodynamic multi-component flows with strongly distorted interfaces. Following from a priori information, the system to be simulated is presented by a set of computational domains. In each domain, an unstructured hexahedral mesh is used. 1. Anuchina N.N., Volkov V.J., Gordeychuk V.A., Es'kov N.S., Ilytina O.S., Kozurev O.M. Numerical simulation of Rayleigh-Taylor and Richtmyer-Meshkov instability using MAX-3 code. Journal of Computational and Applied Mathematics, vol. 168 (2004), pp. 11-20. 2. Volkov V.I., Gordeychuk V.A., Es'kov N.S., Kozyrev O.M. Numerical

415

NETL: Technology Transfer - Available Technologies for Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Month Posted Partnership Opportunity Patent Information 11/2013 Method and Apparatus for Production of Mixed-Metal Oxide Catalysts U.S. Patent Pending 8/2013 3D Gradient Coatings for Components in Aggressive Operating Conditions U.S. Patent Pending 8/2013 Separation of CO2 From Multi-Component Gas Streams U.S. Patent Pending 6/2013 Carbon Capture with Ionic Liquid Sorbents 8,383,026 6/2013 Method for Surge Recovery in Fuel Cell Turbine Hybrids U.S. Patent Pending 5/2013 Control of Slag Chemistry for the Reduction of Viscosity and Refractory Corrosion U.S. Patent Pending 5/2013 Method to Improve Steel Creep Strength by Alloy Design and Heat Treatment U.S. Patent Pending 5/2013 Spheroid-Encapsulated Ionic Liquids for Gas Separation U.S. Patent

416

Development of computer simulations for landfill methane recovery  

DOE Green Energy (OSTI)

Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

Massmann, J.W.; Moore, C.A.; Sykes, R.M.

1981-12-01T23:59:59.000Z

417

General Chemistry Division quarterly report, January--March 1977  

DOE Green Energy (OSTI)

Reported are: development of analytical capabilities of a submillimeter spectrometer; improved minimum detectibility of laser-induced molecular fluorescence; use of laser photoionization sources for analytical mass spectrometry; photoacoustic spectroscopy of solids; development of time-resolved spectroscopy for multicomponent mixtures; excited-state reactions of Ba/sup +/ + N/sub 2/O ..-->.. BaO +N/sub 2/; development of an ion-cyclotron-resonance spectrometer; development of glow-discharge multielement analytical systems; analysis of deposits on exploding gold bridgeware detonators; results of /sup 13/C-NMR study of toluene-2,4-diisocyanate polymers; analysis of 1,6-hexanediamine and 1,3-dipiperiodylpropane; studies of discrepancies between chromatographic and mass spectrometric data. (JRD)

Harrar, J.E. (ed.)

1977-06-24T23:59:59.000Z

418

Dose factor entry and display tool for BNCT radiotherapy  

DOE Patents (OSTI)

A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)

1999-01-01T23:59:59.000Z

419

Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure  

Science Conference Proceedings (OSTI)

This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

2009-10-27T23:59:59.000Z

420

Near-infrared reflectance analysis by Gauss-Jordan linear algebra  

SciTech Connect

Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored.

Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Application of inverse modeling to geothermal reservoir simulation  

DOE Green Energy (OSTI)

The authors have developed inverse modeling capabilities for the non-isothermal, multiphase, multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during testing and exploitation of geothermal fields.The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding simulation output can be calculated. Furthermore, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. Automatic history matching using ITOUGH2 is robust and efficient so that model parameters affecting geothermal field performance can reliably be estimated based on a variety of field measurements such as pressures, temperatures, flow rates, and enthalpies. The paper describes the methodology of inverse modeling and provides a detailed discussion of sample problems to demonstrate the application of the method to data from geothermal reservoirs.

Finsterle, S.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Bullivant, D.P.; O`Sullivan, M.J. [Univ. of Auckland (New Zealand). Dept. of Engineering Science

1997-01-01T23:59:59.000Z

422

Using toughreact to model reactive fluid flow and geochemical transport in hydrothermal systems  

DOE Green Energy (OSTI)

The interaction between hydrothermal fluids and the rocks through which they migrate alters the earlier formed primary minerals and leads to the formation of secondary minerals, resulting in changes in the physical and chemical properties of the system. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers nonisothermal multi-component chemical transport in both liquid and gas phases. A variety of subsurface thermo-physical-chemical processes is considered under a wide range of conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to problems in fundamental analysis of the hydrothermal systems and in the exploration of geothermal reservoirs including chemical evolution, mineral alteration, mineral scaling, changes of porosity and permeability, and mineral recovery from geothermal fluids.

Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

2003-07-31T23:59:59.000Z

423

Computational mechanics for geosystems management to support the energy and natural resources mission.  

Science Conference Proceedings (OSTI)

U.S. energy needs - minimizing climate change, mining and extraction technologies, safe waste disposal - require the ability to simulate, model, and predict the behavior of subsurface systems. They propose development of a coupled thermal, hydrological, mechanical, chemistry (THMC) modeling capability for massively parallel applications that can address these critical needs. The goal and expected outcome of this research is a state-of-the-art, extensible, simulation capability, based upon SIERRA Mechanics, to address multiphase, multicomponent reactive transport coupled to nonlinear geomechanics in heterogeneous (geologic) porous materials. The THMC code provides a platform for integrating research in numerical mathematics and algorithms for chemically reactive multiphase systems with computer science research in adaptive coupled solution control and framework architecture.

Stone, Charles Michael

2010-07-01T23:59:59.000Z

424

Development of inverse modeling techniques for geothermal applications  

DOE Green Energy (OSTI)

We have developed inverse modeling capabilities for the non-isothermal, multiphase, multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during testing and exploitation of geothermal fields. The TOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding simulation output can be calculated. In addition, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. One of the advantages of inverse modeling is that it overcomes the time and labor intensive tedium of trial- and error model calibration. Furthermore, the estimated parameters refer directly to the numerical model used for the subsequent predictions and optimization studies. This paper describes the methodology of inverse modeling and demonstrates an application of the method to data from a synthetic geothermal reservoir. We also illustrate its use for the optimization of fluid reinjection into a partly depleted reservoir.

Finsterle, S.; Pruess, K.

1997-03-01T23:59:59.000Z

425

Automatic History Matching of Geothermal Field Performance  

DOE Green Energy (OSTI)

We have developed inverse modeling capabilities for the multiphase multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during exploitation of geothermal fields. The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding TOUGH2 output can be calculated. Furthermore, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. This paper focuses on the solution of the inverse problem, i.e. the determination of model-related parameters by automatically calibrating a conceptual model of the geothermal system against data obtained during field operation. We first describe the modeling approach used to simulate fluid and heat flow in fractured-porous media. The inverse problem is then formulated, followed by a brief discussion of the optimization algorithm. A sample problem is given to demonstrate the application of the method to geothermal reservoir data.

Finsterle, S.; Pruess, K.

1995-01-01T23:59:59.000Z

426

TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow  

DOE Green Energy (OSTI)

TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.

Pruess, K.

1991-05-01T23:59:59.000Z

427

Automatic history matching of geothermal field performance  

DOE Green Energy (OSTI)

We have developed inverse modeling capabilities for the multiphase multicomponent numerical simulator TOUGH2 to facilitate automatic history matching, and parameter estimation based on data obtained during exploitation of Geothermal fields. The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding TOUGH2 output can be calculated. Furthermore, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. This paper focuses on the solution of the inverse; problem, i.e. the determination of model-related parameters by automatically calibrating a conceptual model of the Geothermal system against data obtained during field operation. We first describe the modeling, approach used to simulate fluid and heat flow in fractured-porous media. The inverse problem is then formulated, followed by a brief discussion of the optimization algorithm. A sample problem is given to demonstrate the application of the method to Geothermal reservoir data.

Finsterle, S.; Pruess, K>

1995-08-01T23:59:59.000Z

428

ITOUGH2 user`s guide version 2.2  

Science Conference Proceedings (OSTI)

ITOUGH2 is a program to estimate hydrogeologic model parameters for the numerical simulator TOUGH2. TOUGH2 was developed by Karsten Pruess at Lawrence Berkeley Laboratory for simulating non-isothermal flows of multicomponent, multiphase fluids in porous and fractured media. ITOUGH2 solves the inverse problem by automatic model calibration based on an indirect approach, in which some function of the difference between observed and model-predicted system response and appropriately weighted prior information about the parameters is minimized using standard optimization techniques. ITOUGH2 also provides a detailed error analysis of the estimated parameter set, and employs some procedures to study error propagation for prediction runs. This report includes a review of the inverse modeling theory, and a detailed description of the program architecture, input language, and the various user features provided by ITOUGH2. A sample problem is given to illustrate code application.

Finsterle, S.

1993-08-01T23:59:59.000Z

429

Fermi gases in one dimension: From Bethe Ansatz to experiments  

E-Print Network (OSTI)

This article reviews theoretical and experimental developments for one-dimensional Fermi gases. Specifically, the experimentally realized two-component delta-function interacting Fermi gas -- the Gaudin-Yang model -- and its generalisations to multi-component Fermi systems with larger spin symmetries. The exact results obtained for Bethe ansatz integrable models of this kind enable the study of the nature and microscopic origin of a wide range of quantum many-body phenomena driven by spin population imbalance, dynamical interactions and magnetic fields. This physics includes Bardeen-Cooper-Schrieffer-like pairing, Tomonaga-Luttinger liquids, spin-charge separation, Fulde-Ferrel-Larkin-Ovchinnikov-like pair correlations, quantum criticality and scaling, polarons and the few-body physics of the trimer state (trions). The fascinating interplay between exactly solved models and experimental developments in one dimension promises to yield further insight into the exciting and fundamental physics of interacting Fermi systems.

Xi-Wen Guan; Murray T. Batchelor; Chaohong Lee

2013-01-28T23:59:59.000Z

430

Mechanochemical Synthesis of Nonstoichiometric Fluorite Ca{sub 1-x} La{sub x} F{sub 2+x} Nanocrystals from CaF{sub 2} and LaF{sub 3} Single Crystals  

Science Conference Proceedings (OSTI)

The nonstoichiometric Ca{sub 1-x} La{sub x}F{sub 2+x} phase (x {>=} 0.1) is obtained by mechanochemical synthesis from CaF{sub 2} and LaF{sub 3} single crystals. This phase is the first representative of fluorite fluorides obtained by mechanochemical synthesis in the MF{sub m}-RF{sub n} systems (m fluoride ions in the crystal bulk. Mechanochemical synthesis of a multicomponent fluoride material with nanometer grains opens a new chapter in the chemistry of inorganic fluorides. A decrease of the sintering temperature of the powders with nanometer grains is very important for preparing dense fluoride ceramics of complicated compositions and other polycrystalline forms of fluoride materials.

Sobolev, B.P.; Sul'yanov, S.N.; Sorokin, N.I.; Zhmurova, Z.I. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskii pr. 59, Moscow, 119333 (Russian Federation); Sviridov, I.A.; Fadeeva, V.I. [Moscow State University, Moscow, 119992 (Russian Federation); Herrero, P.; Landa-Canovas, A.; Rojas, R.M. [Instituto de Ciencia de Materiales de Madrid, Madrid (Spain)

2005-05-15T23:59:59.000Z

431

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

DOE Green Energy (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

432

A fast algorithm for three-dimensional interpretations ofsingle-well electromagnetic data  

Science Conference Proceedings (OSTI)

An efficient inversion algorithm has been developed forthree-dimensional (3D) interpretations for single-hole electromagnetic(EM) logging data based on a modified extended Born approximation (MEBA)scheme. The single-hole data was collected at an oil field undergoing CO2injection in southern California using a tool, Geo-BILT, developed byElectromagnetic Instruments, Inc (EMI). The tool is equipped with amulti-component source, and an array of multi-component receivers atdifferent separations. The inversion result provides a reasonableelectrical conductivity image to a distance of 10 m from the well, andillustrates several zones with lateral conductivity variations that couldnot be resolved with traditional induction logging tools. The computercost of the inversion processes can be further reduced using a trivialmulti-grid methodology.

Tseng, Hung-Wen; Lee, Ki Ha

2004-09-17T23:59:59.000Z

433

Polymer Hybrid Photovoltaics for Inexpensive Electricity Generation: Final Technical Report, 1 September 2001--30 April 2006  

DOE Green Energy (OSTI)

The project goal is to understand the operating mechanisms underlying the performance of polymer hybrid photovoltaics to enable the development of a photovoltaic with a maximum power conversion efficiency over cost ratio that is significantly greater than current PV technologies. Plastic or polymer-based photovoltaics can have significant cost advantages over conventional technologies in that they are compatible with liquid-based plastic processing and can be assembled onto plastic under atmospheric conditions (ambient temperature and pressure) using standard printing technologies, such as reel-to-reel and screen printing. Moreover, polymer-based PVs are lightweight, flexible, and largely unbreakable, which make shipping, installation, and maintenance simpler. Furthermore, a numerical simulation program was developed (in collaboration with IBM) to fully simulate the performance of multicomponent polymer photovoltaic devices, and a manufacturing method was developed (in collaboration with Add-vision) to inexpensively manufacture larger-area devices.

Carter, S. A.

2006-07-01T23:59:59.000Z

434

Composition and function in AB{sub 5} hydride electrodes  

DOE Green Energy (OSTI)

Multicomponent AB, hydrides are attractive replacements for the cadmium electrode in nickel - cadmium batteries. This paper is concerned with the differential effects of Ni substitution by cobalt, Mn and Al upon electrode corrosion and capacity, using alloys having the generic composition of Al(NiCoMnAl){sub 5} and similar to those used for the preparation of commercial battery electrodes. The corrosion of metal hydride electrodes is determined by two factors, surface passivation due to the presence of surface oxides or hydroxides and crystal lattice expansion - contraction the charge - discharge process. Thus, in addition to determining the effects of Ni substitution we will also address the question of whether an observed change is due to a change lattice expansion or to a change in surface passivation, e.g. the formation a corrosion resistant oxide layer.

Adzic, G.D.; Johnson, J.R.; Mukerjee, S.; McBreen, J.; Reilly, J.J.

1996-12-31T23:59:59.000Z

435

Applications of coatings in coal-fired energy systems  

SciTech Connect

Corrosion and erosion of metallic structural materials at elevated temperatures in complex multicomponent gas environments that include particulates are potential problems in many fossil energy systems, especially those using coal as a feedstock. The use of appropriate corrosion-resistant coatings on metallic components offers an avenue to minimize material degradation and extend component life. The purpose of this paper is to review the current status of coating performance in environments typical of pulverized-coal-fired boilers, coal gasification, fluidized-bed combustion, and gas turbines. The paper discusses the complexity of environments in different systems and the coating requirements for acceptable performance. Examples illustrate the morphology and corrosion/erosion performance of coating/structural alloy combinations exposed in some of these systems. La addition, future research and development needs are discussed for coating applications in several coal-fired systems.

Natesan, K.

1992-03-01T23:59:59.000Z

436

Fundamentals of high pressure adsorption  

Science Conference Proceedings (OSTI)

High-pressure adsorption attracts research interests following the world's attention to alternative fuels, and it exerts essential effect on the study of hydrogen/methane storage and the development of novel materials addressing to the storage. However, theoretical puzzles in high-pressure adsorption hindered the progress of application studies. Therefore, the present paper addresses the major theoretical problems that challenged researchers: i.e., how to model the isotherms with maximum observed in high-pressure adsorption; what is the adsorption mechanism at high pressures; how do we determine the quantity of absolute adsorption based on experimental data. Ideology and methods to tackle these problems are elucidated, which lead to new insights into the nature of high-pressure adsorption and progress in application studies, for example, in modeling multicomponent adsorption, hydrogen storage, natural gas storage, and coalbed methane enrichment, was achieved.

Zhou, Y.P.; Zhou, L. [Tianjin University, Tianjin (China). High Pressure Adsorption Laboratory

2009-12-15T23:59:59.000Z

437

Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.  

SciTech Connect

This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

2011-10-01T23:59:59.000Z

438

An Energy Savings Model for the Heat Treatment of Castings  

SciTech Connect

An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

Y. Rong; R. Sisson; J. Morral; H. Brody

2006-12-31T23:59:59.000Z

439

NUMERICAL VERIFICATION OF EQUILIBRIUM CHEMISTRY  

SciTech Connect

A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

Piro, Markus [Royal Military College of Canada; Lewis, Brent [Royal Military College of Canada; Thompson, Dr. William T. [Royal Military College of Canada; Simunovic, Srdjan [ORNL; Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

440

Domain Growth, Budding, and Fission in Phase Separating Self-Assembled Fluid Bilayers  

E-Print Network (OSTI)

A systematic investigation of the phase separation dynamics in self-assembled multi-component bilayer fluid vesicles and open membranes is presented. We use large-scale dissipative particle dynamics to explicitly account for solvent, thereby allowing for numerical investigation of the effects of hydrodynamics and area-to-volume constraints. In the case of asymmetric lipid composition, we observed regimes corresponding to coalescence of flat patches, budding, vesiculation and coalescence of caps. The area-to-volume constraint and hydrodynamics have a strong influence on these regimes and the crossovers between them. In the case of symmetric mixtures, irrespective of the area-to-volume ratio, we observed a growth regime with an exponent of 1/2. The same exponent is also found in the case of open membranes with symmetric composition.

Mohamed Laradji; P. B. Sunil Kumar

2006-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gaseous insulators for high voltage electrical equipment  

DOE Patents (OSTI)

Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

1981-01-01T23:59:59.000Z

442

Gaseous insulators for high voltage electrical equipment  

DOE Patents (OSTI)

Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

1979-01-01T23:59:59.000Z

443

Computing with soliton trains in Bose-Einstein condensates  

E-Print Network (OSTI)

Computing devices can be implemented based on controlled generation of soliton trains in single and multicomponent Bose-Einstein condensates (BEC). Our concepts utilize the phenomenon that the frequency of soliton trains in BEC can be governed by changing interactions within the atom cloud [1]. We use this property to store numbers in terms of those frequencies for a short time until observation. The properties of soliton trains can be changed in an intended way by other components of BEC occupying comparable states or via phase engineering. We elucidate in which sense such an additional degree of freedom can be regarded as a tool for controlled manipulation of data. Finally the outcome of any manipulation made is read out by observing the signature within the density profile.

Florian Pinsker

2013-05-17T23:59:59.000Z

444

The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions  

Science Conference Proceedings (OSTI)

The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

Shaw, A. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India); Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Goswami, K. S. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India)

2012-10-15T23:59:59.000Z

445

Apparatus and method for pulsed laser deposition of materials on wires and pipes  

DOE Patents (OSTI)

Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

Fernandez, Felix E. (Mayaguez, PR)

2003-01-01T23:59:59.000Z

446

Method of forming biaxially textured alloy substrates and devices thereon  

DOE Patents (OSTI)

Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

Goyal, Amit (Knoxville, TN); Specht, Eliot D. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN)

1999-01-01T23:59:59.000Z

447

Method of forming biaxially textured alloy substrates and devices thereon  

DOE Patents (OSTI)

Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

Goyal, Amit (300 Walker Springs Rd., #19E, Knoxville, TN 37923); Specht, Eliot D. (10639 Rivermist La., Knoxville, TN 37922); Kroeger, Donald M. (716 Villa Crest Dr., Knoxville, TN 37923); Paranthaman, Mariappan (1117 Oak Haven Rd., Knoxville, TN 37923)

2000-01-01T23:59:59.000Z

448

Dictionary for Sparse Representation of Chirp Echo in Broadband Radar  

E-Print Network (OSTI)

A new dictionary for sparse representation of chirp echo in broadband radar is put forward in this paper. Different with chirplet decomposition which decomposes echo in time-frequency plane, the dictionary transforms the sparsity of target observed by radar in distance range to the sparsity in frequency domain by stretch processing and the sparse representation of echo is realized. Using strict deduction with mathematics, the sparsity of echo in dictionary is proved and the dictionary is orthogonal. In the application property, the construction of dictionary is simple, the parameters that are needed for dictionary can be obtained conveniently and the dictionary is convenient to use. Furthermore, the object of application can be expanded to the echo of multi-component chirps with single freedom degree.

Gao, Lei

2010-01-01T23:59:59.000Z

449

The Accurate Computer Simulation of Phase Equilibrium for Complex Fluid Mixtures. Application to Binaries Involving isobutene, methanol, MTBE, and n-butane  

E-Print Network (OSTI)

We have developed a new method, called the Reaction Gibbs Ensemble Monte Carlo (RGEMC) method for the computer simulation of the phase equilibria for multicomponent mixtures, given an intermolecular potential model for the constituent molecular species. The approach treats the phase equilibrium conditions as a special type of chemical reaction, and incorporates knowledge of the pure-substance vapor pressure data into the simulations. Unlike macroscopic thermodynamic-based approaches like the Wilson and the UNIFAC approximations, no experimental information concerning the mixtures is required. In addition to the PTxy phase equilibrium data, the volumetric properties of the mixture are calculated. We developed intermolecular potential models based on the OPLS potential models of Jorgensen, and used the RGEMC method to predict phase equilibrium data for the binary systems isobutene+MTBE and the binaries formed by methanol with isobutene, MTBE, and n-butane. The predictions are excellent, ...

Martin Lísal; William R. Smith; Ivo Nezbeda

1999-01-01T23:59:59.000Z

450

Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation  

E-Print Network (OSTI)

The D-dimensional cosmological model on the manifold $M = R \\times M_{1} \\times M_{2}$ describing the evolution of 2 Einsteinian factor spaces, $M_1$ and $M_2$, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces $M_1,M_2$ and the 2-component perfect fluid source.

V. R. Gavrilov; V. N. Melnikov

1998-01-13T23:59:59.000Z

451

Generation of energy  

SciTech Connect

A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

Kalina, A. I.

1984-12-25T23:59:59.000Z

452

Curvature dependence of the interfacial heat and mass transfer coefficients  

E-Print Network (OSTI)

Nucleation is often accompanied by heat transfer between the surroundings and a nucleus of a new phase. The interface between two phases gives an additional resistance to this transfer. For small nuclei the interfacial curvature is high, which affects not only equilibrium quantities such as surface tension, but also the transport properties. In particular, high curvature affects the interfacial resistance to heat and mass transfer. We develop a framework for determining the curvature dependence of the interfacial heat and mass transfer resistances. We determine the interfacial resistances as a function of a curvature. The analysis is performed for a bubble of a one-component fluid and may be extended to various nuclei of multicomponent systems. The curvature dependence of the interfacial resistances is important in modeling transport processes in multiphase systems.

K. S. Glavatskiy; D. Bedeaux

2013-10-11T23:59:59.000Z

453

Progress in the development of Ovonic nickel-metal hydride batteries  

SciTech Connect

Proprietary, multicomponent hydrogen storage alloys using the principles of atomic engineering form the heart of Ovonic Nickel-Metal Hydride (Ni/MH) battery technology. This battery system, in development for 10 years, has been licensed to several manufacturers both for consumer cells and electric vehicle batteries. These cells have achieved a specific energy of over 80 Wh/kg, a peak power in excess of 200 W/kg, and over 1000 cycles at 100% depth of discharge. They also have an intrinsic ability to withstand overcharge and overdischarge abuse. Ovonic Ni/MH batteries are environmentally friendly and can be recycled. Performance data will be presented showing the successful scale-up of this technology for electric vehicle applications.

Venkatesan, S.; Corrigan, D.A.; Gifford, P.R.; Fetcenko, M.A.; Dhar, S.K.; Ovshinsky, S.R. (Ovonic Battery Co., Troy, MI (United States))

1993-05-01T23:59:59.000Z

454

Corium Physical Properties for Severe Accident R and D  

SciTech Connect

Corium is a mixture formed - in the hypothetical case of a severe accident - of molten core and products from the decomposition of the internal structures, the vessel and the concrete. Before any calculation, any modelling, any experimental interpretation can be made, it is necessary to estimate the corium physical properties. Corium being a multicomponent mixture, special attention has been given at CEA to the mixing laws for multi-phase, multi-constituent mixtures. Compared to the previous database, considerable progress in characterizing of corium constituents physical properties has been achieved. The thermo-physical data of corium constituents for pure components and mixtures and the different physical laws that are recommended by experts are now implemented in the CORPRO (Corium Properties) database. (authors)

Journeau, C.; Piluso, P.; Frolov, K.N. [CEA Cadarache, Severe Accident Mastering Laboratory (DEN/DTN/STRI/LMA), 13108 St Paul lez Durance (France)

2004-07-01T23:59:59.000Z

455

THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES  

DOE Green Energy (OSTI)

It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

2008-11-25T23:59:59.000Z

456

AMR for low Mach number reacting flow  

Science Conference Proceedings (OSTI)

We present a summary of recent progress on the development and application of adaptive mesh refinement algorithms for low Mach number reacting flows. Our approach uses a form of the low Mach number equations based on a general equation of state that discretely conserves both mass and energy. The discretization methodology is based on a robust projection formulation that accommodates large density contrasts. The algorithm supports modeling of multicomponent systems and incorporates an operator-split treatment of stiff reaction terms. The basic computational approach is embedded in an adaptive projection framework that uses structured hierarchical grids with subcycling in time that preserves the discrete conservation properties of the underlying single-grid algorithm. We present numerical examples illustrating the application of the methodology to turbulent premixed combustion and nuclear flames in type Ia supernovae.

Bell, John B.

2004-01-16T23:59:59.000Z

457

Physical sputtering of metallic systems by charged-particle impact  

SciTech Connect

The present paper provides a brief overview of our current understanding of physical sputtering by charged-particle impact, with the emphasis on sputtering of metals and alloys under bombardment with particles that produce knock-on collisions. Fundamental aspects of ion-solid interactions, and recent developments in the study of sputtering of elemental targets and preferential sputtering in multicomponent materials are reviewed. We concentrate only on a few specific topics of sputter emission, including the various properties of the sputtered flux and depth of origin, and on connections between sputtering and other radiation-induced and -enhanced phenomena that modify the near-surface composition of the target. The synergistic effects of these diverse processes in changing the composition of the integrated sputtered-atom flux is described in simple physical terms, using selected examples of recent important progress. 325 refs., 27 figs.

Lam, N.Q.

1989-12-01T23:59:59.000Z

458

Generation of energy  

DOE Patents (OSTI)

A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

Kalina, Alexander I. (12214 Clear Fork, Houston, TX 77077)

1984-01-01T23:59:59.000Z

459

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

460

Nano-crystalline powders and suspensions generated using a flow-through hydrothermal process, Part 1: Characterization  

SciTech Connect

A wide range of ultra-fine, nano-crystalline powders and suspensions have been produced using Rapid Thermal Decomposition of precursors in Solution (RTDS). These materials include single and multi-component iron-, 11 zirconium-, titanium-, nickel-, and chromium-oxide/oxyhydroxide powders. RTDS is a flow-through hydrothermal process capable of producing nano-crystalline particulate material at rates of up to 100 grams of solid per hour. We present the results of characterization efforts on RTDS iron oxyhydroxide and zirconium oxide systems. As-collected RTDS suspensions were characterized using optical light scattering. Separated RTDS powders were evaluated using X-ray diffraction, electron microscopy, gas adsorption analysis, thermal gravimetric analysis, and chemical analysis.

Darab, J.G.; Buehler, M.F.; Linehan, J.C.; Matson, D.W.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition  

Science Conference Proceedings (OSTI)

The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

Vaughan, K.H.

1993-06-01T23:59:59.000Z

462

Solubilities of gases in simulated Tank 241-SY-101 wastes  

DOE Green Energy (OSTI)

Oxygen, nitrogen, hydrogen, methane, and nitrous oxide solubilities were evaluated as a function of temperature in SYl-SIM-93B, a homogeneous simulated waste mixture containing sodium hydroxide, sodium nitrite, sodium nitrate, sodium aluminate, and sodium carbonate, the principal inorganic constituents of the wastes in Tank 241-SY-101. Ammonia solubility data for this simulated waste was obtained as a function of temperature in an earlier study. The choice of a homogeneous waste mixture in this study has the advantage of eliminating complications associated with a changing electrolyte concentration as a function of temperature that would be encountered with a slurry simulant. Dissolution is one of the means by which gases may be retained in Hanford Site wastes. While models are available to estimate gas solubilities in electrolyte solutions, few data are in existence that pertain to highly concentrated, multicomponent electrolytes such as those stored in Hanford Site waste tanks.

Norton, J.D.; Pederson, L.R.

1995-09-01T23:59:59.000Z

463

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, July 1 - September 30, 1996  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. Field demonstrations are in progress to collect data for evaluation of horizontal completions in both the Red River and Ratcliffe. A vertical well in the Red River will test attribute analysis of 3D seismic data for prediction of porosity development. Additional seismic acquisitions and interpretation are in progress for both the Ratcliffe and Red River. A water-injectivity test in a new horizontal completion in the Red Rive B zone at Buffalo Field is scheduled for next quarter.

Carrell, L.A.

1996-12-31T23:59:59.000Z

464

Improved Recovery Demonstration for Williston Basin Carbonates.  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3-D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimate of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1997-12-31T23:59:59.000Z

465

Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

Carrell, L.A.; Sippel, M.A.

1996-09-01T23:59:59.000Z

466

Improved recovery demonstration for Williston Basin carbonates. Quarterly technical progress report, October--December 1996  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional (3D) and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with short-lateral and horizontal drilling technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

Sippel, M.A.; Carrell, L.A.

1997-04-01T23:59:59.000Z

467

Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

1995-09-01T23:59:59.000Z

468

Improved recovery demonstration for Williston Basin carbonates. Quarterly report, January 1, 1996--March 31, 1996  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in- place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional and multi-component seismic area is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended- reach jetting lance and other ultra-short radius lateral technologies. Improved completion efficiency, additional wells at closer spacings better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes. Technical progress is described for field demonstrations at the Ratcliffe and Buffalo fields and geophysical evaluations at Ratcliffe and Red River.

1996-07-01T23:59:59.000Z

469

Improved recovery demonstration for Williston basin carbonates. Quarterly technical progress report, October 1, 1995--December 31, 1995  

SciTech Connect

The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing 3-dimensional and multi-component seismic area is being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil-in-place will result in additional oil production by primary and enhanced recovery processes.

1996-02-01T23:59:59.000Z

470

Mixed conducting membranes for syngas production  

DOE Patents (OSTI)

This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

2002-01-01T23:59:59.000Z

471

Recent activities in the Aerosol Generation and Transport Program  

SciTech Connect

General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and the mixed U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam.

Adams, R.E.

1984-01-01T23:59:59.000Z

472

ANALYSIS OF CORONAL GREEN LINE PROFILES: EVIDENCE OF EXCESS BLUESHIFTS  

SciTech Connect

Coronal green line (Fe XIV 5303 A) profiles were obtained from Fabry-Perot interferometric observations of the solar corona during the total solar eclipse of 2001 June 21 from Lusaka, Zambia. The instrumental width is about 0.2 A and the spectral resolution is about 26,000. About 300 line profiles were obtained within a radial range of 1.0-1.5 R{sub sun} and a position angle coverage of about 240{sup 0}. The line profiles were fitted with single Gaussians, and their intensities, Doppler velocities, and line widths were obtained. Also obtained were the centroids of the line profiles, which give a measure of line asymmetry. The histograms of Doppler velocity show excess blueshifts, while the centroids reveal a predominant blue wing in the line profiles. It was found that the centroids and the Doppler velocities are highly correlated. This points to the presence of multiple components in the line profiles, with an excess of blueshifted components. We then obtained the (Blue-Red) wing intensities, which clearly reveal the secondary components, the majority of which are blueshifted. This confirms that the coronal green line profiles often contain multicomponents with excess blueshifts, which also depend on the solar activity. The magnitude of the Doppler velocity of the secondary components is in the range of 20-40 km s{sup -1} and shows an increase toward the poles. Possible explanations of the multicomponents are the type II spicules that were recently found to be important to coronal heating or the nascent solar wind flow, but the cause of the blue asymmetry in the coronal lines above the limb remains unclear.

Raju, K. P. [Indian Institute of Astrophysics, Bangalore (India); Chandrasekhar, T.; Ashok, N. M., E-mail: kpr@iiap.res.in, E-mail: chandra@prl.res.in, E-mail: ashok@prl.res.in [Physical Research Laboratory, Ahmedabad (India)

2011-08-01T23:59:59.000Z

473

HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS  

Science Conference Proceedings (OSTI)

Gas injection in oil reservoirs offers huge potential for improved oil recovery. However, successful design of a gas injection process requires a detailed understanding of a variety of different significant processes, including the phase behavior of multicomponent mixtures and the approach to multi-contact miscibility in the reservoir, the flow of oil, water and gas underground, and the interaction of phase behavior reservoir heterogeneity and gravity on overall performance at the field scale. This project attempts to tackle all these issues using a combination of theoretical, numerical and laboratory studies of gas injection. The aim of this work is to develop a set of ultra-fast compositional simulation tools that can be used to make field-scale predictions of the performance of gas injection processes. To achieve the necessary accuracy, these tools must satisfy the fundamental physics and chemistry of the displacement from the pore to the reservoir scales. Thus this project focuses on four main research areas: (1) determination of the most appropriate methods of mapping multicomponent solutions to streamlines and streamtubes in 3D; (2) development of techniques for automatic generation of analytical solutions for one-dimensional flow along a streamline; (3) experimental investigations to improve the representation of physical mechanisms that govern displacement efficiency along a streamline; and (4) Theoretical and experimental investigations to establish the limitations of the streamline/streamtube approach. In this report they briefly review the status of the research effort in each area. They then give a more in depth discussion of the development of a CT scanning technique which can measure compositions in a two-phase, three-component system in-situ.

Thomas A. Hewett; Franklin M. Orr Jr.

2000-12-31T23:59:59.000Z

474

Theoretical and experimental determination of matrix diffusion and related solute transport properties of fractured tuffs from the Nevada Test Site  

SciTech Connect

Theoretical and experimental studies of the chemical and physical factors which affect molecular diffusion of dissolved substances from fractures into a tuffaceous rock matrix have been made on rocks from G-Tunnel and Yucca Mountain at the Nevada Test Site (NTS). A variety of groundwater tracers, which may be useful in field tests at the NTS, have also been developed and tested. Although a number of physical/chemical processes may cause nonconvective transport of dissolved species from fractures into the tuff matrix, molecular diffusion seems to be the most important process. Molecular diffusion in these rocks is controlled by the composition of the groundwater through multicomponent effects and several rock properties. The porosities of the samples studied ranged from about 0.1 to 0.4. The constrictivity-tortuosity parameter ranged from 0.1 and 0.3 and effective matrix-diffusion coefficients were measured to be between 2 to 17. x 10{sup -7} c,{sup 2}/s for sodium halides and sodium pentafluorobenzoate. Total porosity was found to be the principle factor accounting for the variation in effective diffusion coefficients. The constrictivity-tortuosity factor was found to have a fair correlation (r = 0.75) with the median pore diameters measured by mercury intrusion. Measurements of bulk-rock electrical impedance changes with frequency indicate that the constrictivity factor has a maximum value of 0.8 to 1, but may be smaller. If the larger values are correct, then the diffusion paths in tuff are more tortuous than in granular media. Computation of the full diffusion-coefficient matrix for various tracers in J-13 well water from the NTS indicates coupling of the diffusion fluxes of all ionic species. These effects are being incorporated into a numerical model of multicomponent-matrix diffusion.

Walter, G.R.

1982-10-01T23:59:59.000Z

475

An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation  

Science Conference Proceedings (OSTI)

The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

2012-02-01T23:59:59.000Z

476

Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration  

SciTech Connect

A method is described of generating usable energy comprising the steps of: vaporizing, at an upper intermediate pressure, only part of an initial multi-component working fluid stream having lower and higher temperature boiling components to form a first vapor fraction, the first vapor fraction being enriched with the lower boiling temperature component; mixing the first vapor fraction with a part of the initial working fluid stream and absorbing it therein to produce a rich solution enriched relatively to the initial working fluid stream with respect to the lower temperature boiling component, and using a remaining part of the initial working fluid stream as a lean solution which is impoverished relatively to the rich solution with respect to the lower temperature boiling component; increasing the pressure of the rich solution to a charged high pressure level and evaporating the rich solution to produce a charged gaseous main working fluid; expanding the charged gaseous main working fluid to a spent low pressure level to transform its energy into usable form; cooling and condensing the spent main working fluid by absorbing it in a lean solution at the spent low pressure level to form a distillation fluid; increasing the pressure of the condensed fluid to a lower intermediate pressure; forming from a part of the lean solution a second vapor fraction enriched with the lower boiling temperature component with respect to the condensed fluid; mixing the second vapor fraction with the distillation fluid to form a mixture; and increasing the pressure of the mixture to upper intermediate pressure to form the initial multicomponent working fluid stream.

Kalina, A.I.

1986-05-06T23:59:59.000Z

477

inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model  

Science Conference Proceedings (OSTI)

Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

Ridley, Mora K. [Texas Tech University, Lubbock; Hiemstra, T [Oak Ridge National Laboratory (ORNL); Van Riemsdijk, Willem H. [Wageningen University and Research Centre, The Netherlands; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL

2009-01-01T23:59:59.000Z

478

Fluid-rock interaction: A reactive transport approach  

SciTech Connect

Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the f

Steefel, C.; Maher, K.

2009-04-01T23:59:59.000Z

479

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

NLE Websites -- All DOE Office Websites (Extended Search)

Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Multivariate Modeling of 3D9C Data for Constructing a Static Reservoir Model of Algal Mounds in the Paradox Basin, CO Authors: Paul La Pointe, FracMan Technology Group, Golder Associates Inc., Redmond, WA; Robert D. Benson, Colorado School of Mines, Golden, CO; and Claudia Rebne, Legacy Energy, Denver, CO. Venue: American Association of Petroleum Geologists/Rocky Mountain Section Annual Meeting in Snowbird, UT, October 7-9, 2007. Abstract: A 3D9C survey was carried out over a 6 square mile portion of the Roadrunner and Towaoc fields on the Ute Mountain Ute reservation in southwestern Colorado. This survey was jointly funded by DOE and the Southern Ute tribe’s Red Willow Corporation to promote development of Ismay algal mound plays in the Paradox Basin within Ute Mountain Tribal lands and elsewhere in the Paradox Basin. Multicomponent data were utilized to better delineate the external mound geometry as well as to estimate internal mound reservoir parameters such as matrix permeability, saturation, and porosity. Simple cross-plotting of various multicomponent attributes against reservoir properties did not provide the desired predictive accuracy, in part due to sub-optimal frequency content in components derived from the shear wave data. However, a multivariate statistical analysis greatly improved the predictive accuracy. These multivariate regressions were then used to prescribe reservoir properties for a static reservoir model, which in turn formed the basis for a dynamic reservoir simulation model of the project area to assess the usefulness of the multivariate relations developed. This poster presentation will illustrate the workflow used to carry out the multivariate modeling, key maps of the reservoir properties that were derived, the static model, and results from the dynamic simulation used to assess the usefulness of the approach. Results from wells drilled based on the seismic data also will be presented.

480

SHEAR WAVE SEISMIC STUDY COMPARING 9C3D SV AND SH IMAGES WITH 3C3D C-WAVE IMAGES  

Science Conference Proceedings (OSTI)

The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than do the other modes. A conclusion of the study is that 9-C seismic data contain more rock and fluid information and more sequence and facies information than do 3-C seismic data; 9-C data should therefore be acquired in multicomponent seismic programs whenever possible.

John Beecherl; Bob A. Hardage

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermometers multicomponent geothermometers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

482

Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting  

SciTech Connect

The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pa