National Library of Energy BETA

Sample records for geothermometers multicomponent geothermometers

  1. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. Multicomponent Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformationOliver, Pennsylvania:(CTI PFAN) |

  3. Chemical Geothermometers And Mixing Models For Geothermal Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergy Information Geothermometers And

  4. Derivation and calibration of semi-empirical gas geothermometers for Mahanagdong Geothermal Project, Philippines

    SciTech Connect (OSTI)

    Sanchez, D.R.

    1996-12-31

    The dissolved CO{sub 2}, H{sub 2}S, and H{sub 2} gases in Mahanagdong aquifer fluids are controlled by specific gas-mineral equilibria. At temperature range of 250 to 310 {degrees}C, CO{sub 2} is buffered by clinozoisite + K-feldspar + calcite + muscovite (illite) + quartz mineral assemblage. For H{sub 2}S and H{sub 2} dissolved gases, they are more likely buffered by pyrrhotite + pyrite + magnetite mineral assemblage at similar temperature range. Calibration of five Mahanagdong (MG) gas geothermometers is presented, three of which used CO{sub 2}, H{sub 2}S, and H{sub 2} concentration in steam. The remaining two use CO{sub 2}/H{sub 2} and H{sub 2}S/H{sub 2} ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were computed in steam after adiabatic boiling to atmospheric condition (100 {degrees}C), to obtain gas geothermometry functions. These functions could also be used in evaluating fraction of steam condensation and temperature of phase separation. A demonstration given the Mahanagdong fumarole data, indicates that there is generally a fair relation between computed temperatures using Mahanagdong gas geothermometers and the actual field trend`s temperatures.

  5. Silica Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation,ShowSikes Act Jump to:Silcio

  6. Cation Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformationDM5498 JumpOpen

  7. Evaluation Of Chemical Geothermometers For Calculating Reservoir

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,Power CorpEnergyEunice, Louisiana:Power

  8. Category:Silica Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID Roadmap ContactRock Density JumpSAR

  9. Cation Geothermometers At Lightning Dock Geothermal Area (Witcher, 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPID RoadmapInformationDM5498 JumpOpen Energy

  10. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...

    Open Energy Info (EERE)

    with the performance of the original equations. The errors in the use of the new NaK equation for temperatures ranging from 80 to 350C vary from about 19 to 34%, which is lower...

  11. A New Improved Na-K Geothermometer By Artificial Neural Networks | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergyEvaluation |Island,Approach

  12. Application Of An Artificial Neural Network Model To A Na-K Geothermometer

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to:Angola onAperionCommission |DispersionOf Travale,||

  13. An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,

  14. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,National MarineUSAIDCanaan,InformationTexas:

  15. Multicomponent Equilibrium Models for Testing Geothermometry Approaches

    SciTech Connect (OSTI)

    Cooper, D. Craig; Carl D. Palmer; Robert W. Smith; Travis L. McLing

    2013-02-01

    Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.

  16. Exploring the reactivity of bacterial multicomponent monooxygenases

    E-Print Network [OSTI]

    Tinberg, Christine Elaine

    2010-01-01

    Chapter 1. Introduction: The Reactivity of Bacterial Multicomponent Monooxygenases Bacterial multicomponent monooxygenases constitute a remarkable family of enzymes that oxidize small, inert hydrocarbon substrates using ...

  17. Engineering MulticomponentNanocatalystsfor Oxygen Reduction ...

    Office of Scientific and Technical Information (OSTI)

    Engineering MulticomponentNanocatalystsfor Oxygen Reduction Citation Details In-Document Search Title: Engineering MulticomponentNanocatalystsfor Oxygen Reduction Authors: Guo,...

  18. Adhesion of multicomponent vesicle membranes Yanxiang Zhao*

    E-Print Network [OSTI]

    Du, Qiang

    Adhesion of multicomponent vesicle membranes Yanxiang Zhao* Department of Mathematics, Pennsylvania 2010 In this work, we study the adhesion of multicomponent vesicle membrane to both flat and curved substrates, based on the conventional Helfrich bending energy for multicomponent vesicles and adhesion

  19. Evaporation of multicomponent drop arrays

    SciTech Connect (OSTI)

    Annamalai, K.; Ryan, W.; Chandra, S. (Texas A M Univ., College Station, TX (United States))

    1993-08-01

    The present paper deals with the evaporation of multicomponent fuel droplets in an array using the recently developed point source method (PSM). First, the quasisteady (QS) evaporation of an isolated, multicomponent droplet is briefly analyzed. The resultant governing equations, along with Raoult's law and the Cox-Antoine relation, constitute the set of equations needed to arrive at the solutions for: (1) the droplet surface temperature, (2) the evaporation rate of each species, and (3) the vapor mass fraction of each species at the droplet surface. The PSM, which treats the droplet as a point mass source and heat sink, is then adopted to obtain an analytic expression for the evaporation rate of a multicomponent droplet in an array of liquid droplets. Defining the correction factor ([eta]) as a ratio of the evaporation of a drop in an array to the evaporation rate of a similar isolated multicomponent drop, an expression for the correction factor is obtained. The results of the point source method (PSM) are then compared with those obtained elsewhere for a three-drop array that uses the method of images (MOI). Excellent agreement is obtained. The treatment is then extended to a binary drop array to study the effect of interdrop spacing on vaporization. 20 refs., 11 figs., 4 tabs.

  20. Multicomponent Seismic Technology Assessment of

    E-Print Network [OSTI]

    Texas at Austin, University of

    Multicomponent Seismic Technology Assessment of Fluid-gas Expulsion Geology and Gas-hydrate Systems-component ocean-bottom-cable (4-C OBC) seismic data acquired in deep water across the Gulf of Mexico were used technology or with conventional towed-cable seismic technology. This increased resolution allows the P

  1. Multi-component assembly casting

    DOE Patents [OSTI]

    James, Allister W.

    2015-10-13

    Multi-component vane segment and method for forming the same. Assembly includes: positioning a pre-formed airfoil component (12) and a preformed shroud heat resistant material (18) in a mold, wherein the airfoil component (12) and the shroud heat resistant material (18) each comprises an interlocking feature (24); preheating the mold; introducing molten structural material (46) into the mold; and solidifying the molten structural material such that it interlocks the pre-formed airfoil component (12) with respect to the preformed shroud heat resistant material (18) and is effective to provide structural support for the shroud heat resistant material (18). Surfaces between the airfoil component (12) and the structural material (46), between the airfoil component (12) and the shroud heat resistant material (18), and between the shroud heat resistant material (18) and the structural material (46) are free of metallurgical bonds.

  2. Laser ultrasonic multi-component imaging

    DOE Patents [OSTI]

    Williams, Thomas K. (Federal Way, WA); Telschow, Kenneth (Des Moines, WA)

    2011-01-25

    Techniques for ultrasonic determination of the interfacial relationship of multi-component systems are discussed. In implementations, a laser energy source may be used to excite a multi-component system including a first component and a second component at least in partial contact with the first component. Vibrations resulting from the excitation may be detected for correlation with a resonance pattern indicating if discontinuity exists at the interface of the first and second components.

  3. New Design Methods and Algorithms for Multi-component Distillation...

    Broader source: Energy.gov (indexed) [DOE]

    multicomponent.pdf More Documents & Publications CX-100137 Categorical Exclusion Determination ITP Chemicals: Hybripd SeparationsDistillation Technology. Research Opportunities...

  4. Thermodynamics and Mass Transport in Multicomponent,

    E-Print Network [OSTI]

    Manga, Michael

    Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest, cryogenic systems, thermodynamics, fluid dynamics, clathrates, Mars, Enceladus, sound speed Abstract Heat of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties

  5. THERMODYNAMICS Molecular Simulation of Multicomponent Reaction

    E-Print Network [OSTI]

    Lisal, Martin

    THERMODYNAMICS Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System Martin Lisal´ E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals N1G 2W1, Canada Ivo Nezbeda E. Hala Laboratory of Thermodynamics, Institute of Chemical Process

  6. Multicomponent interfacial transport as described by

    E-Print Network [OSTI]

    Kjelstrup, Signe

    at the surface Distillation column Fuel cells Biological membranes Spinodal decomposition #12;5 Multicomponent R1q 100 % Rq2-R2q R2 q 100% R12-R21 R21 100 % Measure of the error: =210-4 -- optimal perturbation

  7. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA

    SciTech Connect (OSTI)

    Simmons, Stuart F; Spycher, Nicolas; Sonnenthal, Eric; Dobson, Patrick

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  8. Multicomponent Gas Diffusion in Porous Electrodes

    E-Print Network [OSTI]

    Fu, Yeqing; Dutta, Abhijit; Mohanram, Aravind; Pietras, John D; Bazant, Martin Z

    2014-01-01

    Multicomponent gas transport is investigated with unprecedented precision by AC impedance analysis of porous YSZ anode-supported solid oxide fuel cells. A fuel gas mixture of H2-H2O-N2 is fed to the anode, and impedance data are measured across the range of hydrogen partial pressure (10-100%) for open circuit conditions at three temperatures (800C, 850C and 900C) and for 300mA applied current at 800C. For the first time, analytical formulae for the diffusion resistance (Rb) of three standard models of multicomponent gas transport (Fick, Stefan-Maxwell, and Dusty Gas) are derived and tested against the impedance data. The tortuosity is the only fitting parameter since all the diffusion coefficients are known. Only the Dusty Gas model leads to a remarkable data collapse for over twenty experimental conditions, using a constant tortuosity consistent with permeability measurements and the Bruggeman relation. These results establish the accuracy of the Dusty Gas model for multicomponent gas diffusion in porous med...

  9. Interfaces and multicomponent fluids Junseok Kim and John Lowengrub

    E-Print Network [OSTI]

    Frey, Pascal

    Interfaces and multicomponent fluids Junseok Kim and John Lowengrub Department of Mathematics to characterize moving interfaces. The two main ap- proaches to simulating multiphase and multicomponent flows are interface tracking and interface capturing. In interface tracking methods (examples in- clude boundary

  10. A multicomponent smoking cessation program for couples 

    E-Print Network [OSTI]

    Nottingham, Carolyn Robin

    1987-01-01

    with rather "hard-core" smokers. The p('og('am included twenty-two men between the ages of 42 and 61. The subjects were at high risk for coronary heart disease, had smoked for about 33 years, and consumed approximately 33 cigarettes per day. The main... the number of cigarettes smoked. As was demonstrated in the study conducted by Powell and Arnold ( 1982), multicomponent programs can result in high percentages of abstinence rates for even rather "hard-core' smokers. The author was guided...

  11. Fusion reactions in multicomponent dense matter

    E-Print Network [OSTI]

    D. G. Yakovlev; L. R. Gasques; M. Beard; M. Wiescher; A. V. Afanasjev

    2006-08-23

    We analyze thermonuclear and pycnonuclear fusion reactions in dense matter containing atomic nuclei of different types. We extend a phenomenological expression for the reaction rate, proposed recently by Gasques et al. (2005) for the one-component plasma of nuclei, to the multi-component plasma. The expression contains several fit parameters which we adjust to reproduce the best microscopic calculations available in the literature. Furthermore, we show that pycnonuclear burning is drastically affected by an (unknown) structure of the multi-component matter (a regular lattice, a uniform mix, etc.). We apply the results to study nuclear burning in a carbon_12-oxygen_16 mixture. In this context we present new calculations of the astrophysical S-factors for carbon-oxygen and oxygen-oxygen fusion reactions. We show that the presence of a CO lattice can strongly suppress carbon ignition in white dwarf cores and neutron star crusts at densities > 3e9 g cm^{-3} and temperatures T<1e8 K.

  12. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    SciTech Connect (OSTI)

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko; McLing, Travis; Neupane, Ghanashyam; Palmer, Carl; Reed, David; Thompson, Vicki

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  13. 4-space formulation of field equations for multicomponent eigenfunctions

    SciTech Connect (OSTI)

    Fanchi, J.R.

    1981-04-01

    Beginning with the assumptions employed in the development of the 4-space formulation (FSF) for spinless particles, a formalism for multicomponent eigenfunctions is constructed. The primary result is a general expression for the field equations of multicomponent eigenfunctions. The ''Relativistic Dynamics'' of Horwitz, Piron, and Reuse for spin-0 and spin- 1/2 particles is shown to be consistent with the FSF. Expectation values are defined and briefly discussed in the appendix.

  14. Mineral Selection for Multicomponent Equilibrium Geothermometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01

    Multicomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated. These minerals phases are most often alteration products rather than primary minerals. We have reviewed the literature on geothermal systems representing most major geologic environments typically associated with geothermal activity and identified potential alteration products in various environments. We have included this information in RTEst, a code we have developed to estimate reservoir conditions (temperature, CO2 fugacity) from the geochemistry of near-surface geothermal waters. The information has been included in RTEst through the addition of filters that decrease the potential numbermore »of minerals from all possibilities based on the basis species to those that are more relevant to the particular conditions in which the user is interested. The three groups of filters include host rock type (tholeiitic, calc-alkaline, silicic, siliciclastic, carbonate), water type (acidic, neutral), and the temperature range over which the alteration minerals were formed (low, medium, high). The user-chosen mineral assemblage is checked to make sure that it does not violate the Gibbs phase rule. The user can select one of three mineral saturation weighting schemes that decrease the chance the optimization from being skewed by reaction stoichiometry or analytical uncertainty.« less

  15. Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials

    E-Print Network [OSTI]

    . An important and complicating property of such systems is surface tension (or surface energy in the materials of Mathematical Sciences, New York University, New York, NY 10012. 1 #12;governing the bulk fluid or materialBoundary Integral Methods for Multicomponent Fluids and Multiphase Materials T.Y. Hou J

  16. Fluid transport properties by equilibrium molecular dynamics. II. Multicomponent systems

    E-Print Network [OSTI]

    Dysthe, Dag Kristian

    Fluid transport properties by equilibrium molecular dynamics. II. Multicomponent systems D. K than 25 years molecular dynamics has been used to study fluid transport properties. Such MD studies and multicenter molecular models.8­16 d The study of transport properties of certain fluids and classes of fluids

  17. AIAA 94-2054 The Structure of Multicomponent

    E-Print Network [OSTI]

    Riabov, Vladimir V.

    AGI) Zhukovsky, Moscow region, Russia 6th AIAAIASME Joint Thermophysics and Heat Transfer Conference June 20, Moscow region, Russia This article presents a numerical study to investigate the main regularities of multicomponent gas mixture and the constants of chemical reaction rates. The main characteristics

  18. MODELLING AND SIMULATIONS OF MULTI-COMPONENT LIPID MEMBRANES AND

    E-Print Network [OSTI]

    WANG AND QIANG DU Abstract. In this paper, phase field models are developed for multi-component vesicle to simulate the deformation of membranes under the elastic bending energy and the line tension energy been theoretically modeled by minimizing an energy with contributions of the bending resistance

  19. FUNCTIONAL ESTIMATION FOR A MULTICOMPONENT AGE REPLACEMENT MODEL

    E-Print Network [OSTI]

    Vázquez-Abad, Felisa J.

    @iro.umontreal.ca SYNOPTIC ABSTRACT We consider a multicomponent system with identical components subject to failures­ generative simulation, maintenance models, age replacement policies. #12; L'ECUYER, MARTIN, AND V ' AZQUEZ­ABAD 1. INTRODUCTION We consider a system with M identical components subject to failures. Each time

  20. Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity,

    E-Print Network [OSTI]

    Cambridge, University of

    Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity for the overall transformation kinetics of niobium carbide precipitation in austenite that takes into account the precipitation and coarsening reactions to be treated in a single model. The model is compared with published

  1. Method for producing nanocrystalline multicomponent and multiphase materials

    DOE Patents [OSTI]

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  2. Method for producing nanocrystalline multicomponent and multiphase materials

    DOE Patents [OSTI]

    Eastman, Jeffrey A. (Woodridge, IL); Rittner, Mindy N. (Des Plaines, IL); Youngdahl, Carl J. (Westmont, IL); Weertman, Julia R. (Evanston, IL)

    1998-01-01

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  3. Ion Partitioning at the liquid/vapor interface of a multi-component...

    Office of Scientific and Technical Information (OSTI)

    vapor interface of a multi-component alkali halidesolution: A model for aqueous sea salt aerosols Citation Details In-Document Search Title: Ion Partitioning at the liquid...

  4. An experimental investigation into the effects of fluid composition on certain geothermometry methods 

    E-Print Network [OSTI]

    Pope, Leslie Anne

    1985-01-01

    to the surface and the rock type through which it flows, 4) the geothermal gradient, 6) the flow rate to the surface, 6) steam loss, 7) mixing with other thermal waters, and 8 ) dilution by non-thermal waters . In the geothermometry methods discussed... to be called the quartz geothermometer. The equation for the quartz geothermometer is based on the dissolution reaction of pure quartz as shown by the following reaction: 2 (qtz) 2 (aq) For pure quartz, the activity is equal to one, and the equilibrium...

  5. Case Studies of Multicomponent Seismic Data for Fracture Characterization: Austin Chalk

    E-Print Network [OSTI]

    Edinburgh, University of

    wave data from Pearsall and Giddings fields and three zero-offset vertical seismic profiles (VSPs) fromChapter 14 Case Studies of Multicomponent Seismic Data for Fracture Characterization: Austin Chalk. Michael C. Mueller Amoco EPTG Houston, Texas, U.S.A. Abstract Shear wave studies of multicomponent seismic

  6. Multicomponent seismic data registration for subsurface characterization in the shallow Gulf of Mexico

    E-Print Network [OSTI]

    Texas at Austin, University of

    OTC 15117 Multicomponent seismic data registration for subsurface characterization in the shallow acknowledgment of where and by whom the paper was presented. Abstract Using multicomponent ocean-bottom seismic images. The algorithm improves the matching of the two seismic volumes obtained by previous manual

  7. Multicomponent seismic data have unique value for studying near-seafloor geology in deepwater environments.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Multicomponent seismic data have unique value for studying near-seafloor geology in deepwater multicomponent seismic data acquired in deepwater with seafloor sensors show near- seafloor geology wavefields can be separated.Adirect measurement of the downgoing seismic wavelet is thus available

  8. The multicomponent 2D Toda hierarchy: dispersionless limit

    E-Print Network [OSTI]

    Manuel Manas; Luis Martinez Alonso

    2009-04-21

    The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov--Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Whitham hierarchy emerge in the dispersionless limit. Moreover, the additional symmetries and string equations for the dispersive Whitham hierarchy are studied in this limit.

  9. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect (OSTI)

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu

    1997-10-01

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  10. Structural investigations of hydroxylase proteins and complexes in bacterial multicomponent monooxygenase systems

    E-Print Network [OSTI]

    McCormick, Michael S. (Michael Scott)

    2008-01-01

    Bacterial multicomponent monooxgenases (BMMs) such as toluene/o-xylene monooxygenase (ToMO), phenol hydroxylase (PH), and soluble methane monooxygenase (sMMO) catalyze hydrocarbon oxidation reactions at a carboxylatebridged ...

  11. A multi-component partitioning model to predict organic leaching from stabilized/solidified oily wastes 

    E-Print Network [OSTI]

    O'Cleirigh, Declan Ronan

    1997-01-01

    multi-component approach be taken to describe the partitioning between the aqueous and non-aqueous phases. The heterogeneous nature of these wastes precludes analysis of partitioning of all chemical species. Thus a pseudo-component model has been...

  12. Testing a Multicomponent Model of Reading Comprehension for Seventh- and Eighth-Grade Students 

    E-Print Network [OSTI]

    Smith, Stacey Rafferty

    2013-04-27

    Reading is a complex construct with multiple components that have been theorized and empirically tested. Two multicomponent reading comprehension models were tested in this study to extend understanding of the relation of ...

  13. Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels 

    E-Print Network [OSTI]

    Vittilapuram Subramanian, Kannan

    2006-04-12

    The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been used to describe the gas...

  14. Analytical Solutions for Multicomponent, Two-Phase Flow in Porous Media with Double Contact Discontinuities

    E-Print Network [OSTI]

    Orr, F. M. Jr

    This paper presents the first instance of a double contact discontinuity in analytical solutions for multicomponent, two-phase flow in porous media. We use a three-component system with constant equilibrium ratios and fixed ...

  15. Effects of formulation conditions on micellar interactions and solution rheology in multi-component micellar systems

    E-Print Network [OSTI]

    Nachbar, Leslie Sarah

    2011-01-01

    Surfactants are crucial to the personal care industry due to their unique surface activity, cleansing, and self assembly properties. Typically, multi-component systems are used in order to maximize mildness, hard water ...

  16. The solubility of natural quartz sand at 100?C, and 150?C, 345 bars: an experimental investigation in a flow-through hydrothermal system 

    E-Print Network [OSTI]

    Burns, Gregory Lee

    1989-01-01

    geothermometers and mixing for geothermal systems. Geothermi cs 5, 41-50. Foumier R. O. and Potter R. W. II (1982) An equation correlating the solubility of quartz in water from 25' to 900' C at pressures up to 10, 000 bars, Geochim. Cosrnochim. Acta 46, 1969...

  17. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Auciello, O.

    1990-05-08

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams. 10 figs.

  18. Sputter deposition for multi-component thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Plainfield, IL); Auciello, Orlando (Cary, NC)

    1990-01-01

    Ion beam sputter-induced deposition using a single ion beam and a multicomponent target is capable of reproducibly producing thin films of arbitrary composition, including those which are close to stoichiometry. Using a quartz crystal deposition monitor and a computer controlled, well-focused ion beam, this sputter-deposition approach is capable of producing metal oxide superconductors and semiconductors of the superlattice type such as GaAs-AlGaAs as well as layered metal/oxide/semiconductor/superconductor structures. By programming the dwell time for each target according to the known sputtering yield and desired layer thickness for each material, it is possible to deposit composite films from a well-controlled sub-monolayer up to thicknesses determined only by the available deposition time. In one embodiment, an ion beam is sequentially directed via a set of X-Y electrostatic deflection plates onto three or more different element or compound targets which are constituents of the desired film. In another embodiment, the ion beam is directed through an aperture in the deposition plate and is displaced under computer control to provide a high degree of control over the deposited layer. In yet another embodiment, a single fixed ion beam is directed onto a plurality of sputter targets in a sequential manner where the targets are each moved in alignment with the beam under computer control in forming a multilayer thin film. This controlled sputter-deposition approach may also be used with laser and electron beams.

  19. Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields, provide inde-

    E-Print Network [OSTI]

    Texas at Austin, University of

    Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic objectives were to evaluate seismic attributes, such as VP/VS velocity ratios and Poisson's ratio derived

  20. Noise and Low-Level Dynamics Can Coordinate Multicomponent Bet Hedging Mechanisms

    E-Print Network [OSTI]

    Dunlop, Mary

    Article Noise and Low-Level Dynamics Can Coordinate Multicomponent Bet Hedging Mechanisms Javier dynamics, and noisy expression. We found that pulsatile dynamics and noise are sufficient to coordinate to coordinate expression of resistance mechanisms. We also demon- strated that noise can play a similar

  1. Regression of Multicomponent Sticking Probabilities Using a Genetic Algorithm Ian J. Laurenzi*

    E-Print Network [OSTI]

    Regression of Multicomponent Sticking Probabilities Using a Genetic Algorithm Ian J. LaurenziVania, Philadelphia, PennsylVania 19104 A genetic algorithm (GA) was developed for the purpose of regressing processes were then simulated under physiological conditions via Monte Carlo. The GA successfully regressed

  2. Flux of upward high-energy muons at the multi-component primary energy spectrum

    E-Print Network [OSTI]

    S. V. Ter-Antonyan; P. L. Biermann

    2001-06-07

    The atmospheric neutrino-induced upward muon flux are calculated by using the multi-component primary energy spectrum, CORSIKA EAS simulation code for the reproduction of the atmospheric neutrino spectra and improved parton model for charged-current cross sections. The results are obtained at 0.1-1000 TeV muon energy range and 0-89 degrees zenith angular range.

  3. Multicomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model and molecular dynamics simulations

    E-Print Network [OSTI]

    Adler, Joan

    online 27 January 2011) The transport of gas mixtures through molecular-sieve membranes such as narrow The transport of gas mixtures through molecular-sieve membranes and catalysts has been a subject of intensive inMulticomponent ballistic transport in narrow single wall carbon nanotubes: Analytic model

  4. Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions

    E-Print Network [OSTI]

    Kim, Sangho

    Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions 94305, U.S.A The aero-thermal computation of the flow path of an entire gas turbine engine can used in the analysis of single components of the gas turbine engines as an aid in the design process

  5. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    E-Print Network [OSTI]

    Clement, Prabhakar

    Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool Jagadish Torlapati 1 , T. Prabhakar Clement n Department of Civil Engineering, Auburn University, Auburn transport Bioremediation Geochemical transport Numerical model a b s t r a c t We present the details

  6. Multicomponent Transport of Sulfate in a Goethite-Silica Sand System

    E-Print Network [OSTI]

    Sparks, Donald L.

    Multicomponent Transport of Sulfate in a Goethite-Silica Sand System at Variable pH and Ionic sand column. The agreement between the experiments and the predictions is very good, especially of a goethite-coated silica sand column, which is similar to systems used in our earlier work (1, 2

  7. Computational aspects of the gravitational instability problem for a multicomponent cosmological medium

    E-Print Network [OSTI]

    H. J. Haubold; A. M. Mathai

    1994-02-08

    The paper presents results for deriving closed-form analytic solutions of the non-relativistic linear perturbation equations, which govern the evolution of inhomogeneities in a homogeneous spatially flat multicomponent cosmological model. Mathematical methods to derive computable forms of the perturbations are outlined.

  8. Multicomponent reactive transport modeling at the Ratones uranium mine, Cceres (Spain)

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Multicomponent reactive transport modeling at the Ratones uranium mine, Cáceres (Spain) Modelación management. The Ratones uranium mine was abandoned and flooded in 1974. Due to its reducing underground water, uranium, reactive transport, granite hydrochemistry, Ratones mine. Resumen La inundación de minas

  9. RayKirchhoff multicomponent borehole seismic modelling in 3D heterogeneous, anisotropic media

    E-Print Network [OSTI]

    Edinburgh, University of

    of symmetry. This algorithm can be applied to vertical seismic profile (VSP) geometries and works well when; Anisotropy; Dipping reflectors; Converted waves 1. Introduction Using vertical seismic profiles (VSPsRay­Kirchhoff multicomponent borehole seismic modelling in 3D heterogeneous, anisotropic media $ A

  10. Ionic colloidal crystals: Ordered, multicomponent structures via controlled heterocoagulation Garry R. Maskaly,1,2

    E-Print Network [OSTI]

    García, R. Edwin

    Ionic colloidal crystals: Ordered, multicomponent structures via controlled heterocoagulation Garry, the "ionic colloidal crystal" ICC , which is stabilized by attractive electrostatic interactions analogous rearrange. In this work, we investigate the possibility of a new type of two-component colloidal crystal

  11. The multicomponent 2D Toda hierarchy: Discrete flows and string equations

    E-Print Network [OSTI]

    Manuel Manas; Luis Martinez Alonso; Carlos Alvarez Fernandez

    2009-01-21

    The multicomponent 2D Toda hierarchy is analyzed through a factorization problem associated to an infinite-dimensional group. A new set of discrete flows is considered and the corresponding Lax and Zakharov--Shabat equations are characterized. Reductions of block Toeplitz and Hankel bi-infinite matrix types are proposed and studied. Orlov--Schulman operators, string equations and additional symmetries (discrete and continuous) are considered. The continuous-discrete Lax equations are shown to be equivalent to a factorization problem as well as to a set of string equations. A congruence method to derive site independent equations is presented and used to derive equations in the discrete multicomponent KP sector (and also for its modification) of the theory as well as dispersive Whitham equations.

  12. Vapor Transport of a Volatile Solvent for a Multicomponent Aerosol Droplet

    E-Print Network [OSTI]

    Feng, James Q

    2015-01-01

    This work presents analytical formulas derived for evaluating vapor transport of a volatile solvent for an isolated multicomponent droplet in a quiescent environment, based on quasi-steady-state approximation. Among multiple solvent components, only one component is considered to be much more volatile than the rest such that other components are assumed to be nonvolatile remaining unchanged in the droplet during the process of (single-component) volatile solvent evaporation or condensation. For evaporating droplet, the droplet size often initially decreases following the familiar "d^2 law" at an accelerated rate. But toward the end, the rate of droplet size change diminishes due to the presence of nonvolatile cosolvent. Such an acceleration-deceleration reversal behavior is unique for evaporating multicomponent droplet, while the droplet of pure solvent has an accelerated rate of size change all the way through the end. This reversal behavior is also reflected in the droplet surface temperature evolution as "...

  13. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect (OSTI)

    Porytsky, P. [Institute for Nuclear Research, 03680 Kyiv (Ukraine); Krivtsun, I.; Demchenko, V. [Paton Welding Institute, 03680 Kyiv (Ukraine); Reisgen, U.; Mokrov, O.; Zabirov, A. [RWTH Aachen University, ISF-Welding and Joining Institute, 52062 Aachen (Germany); Gorchakov, S.; Timofeev, A.; Uhrlandt, D. [Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald (Germany)

    2013-02-15

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  14. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    SciTech Connect (OSTI)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, such as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.

  15. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  16. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore »as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less

  17. Vapor Transport of a Volatile Solvent for a Multicomponent Aerosol Droplet

    E-Print Network [OSTI]

    James Q. Feng

    2015-07-19

    This work presents analytical formulas derived for evaluating vapor transport of a volatile solvent for an isolated multicomponent droplet in a quiescent environment, based on quasi-steady-state approximation. Among multiple solvent components, only one component is considered to be much more volatile than the rest such that other components are assumed to be nonvolatile remaining unchanged in the droplet during the process of (single-component) volatile solvent evaporation or condensation. For evaporating droplet, the droplet size often initially decreases following the familiar "d^2 law" at an accelerated rate. But toward the end, the rate of droplet size change diminishes due to the presence of nonvolatile cosolvent. Such an acceleration-deceleration reversal behavior is unique for evaporating multicomponent droplet, while the droplet of pure solvent has an accelerated rate of size change all the way through the end. This reversal behavior is also reflected in the droplet surface temperature evolution as "S-shaped" curves. However, a closer mathematical examination of conditions for acceleration-deceleration reversal indicates that the acceleration phase may disappear when the amount of nonvolatile cosolvent is relatively small and ambient vapor pressure is relatively high. Because the net effect of adding nonvolatile cosolvent is to reduce the mole fraction of the volatile solvent such that the saturation vapor pressure is lowered, vapor condensation onto the multicomponent droplet is predicted to occur when the ambient vapor pressure is subsaturated with respect to that for the pure volatile solvent. In this case, the droplet will grow asymptotically toward a finite size. But when the ambient vapor pressure becomes supersaturated with respect to that for the pure volatile solvent, the condensation growth of droplet can continue indefinitely without bound.

  18. Predicting self-assembled patterns on spheres with multi-component coatings

    E-Print Network [OSTI]

    Erik Edlund; Oskar Lindgren; Martin Nilsson Jacobi

    2013-10-14

    Interactions between the components in many-body systems can give rise to spontaneous formation of complex structures. Usually very little is known about the connection between the interactions and the resulting structure. Here we present a theory for self-assembling pattern formation in multi-component systems, formulated as an analytic technique that predicts morphologies directly from the interactions in an effective model. As a demonstration we apply the method to a model of alkanethiols on spherical gold particles, successfully predicting its morphologies and transitions as a function of the interaction parameters. This system is interesting because it has been suggested to provide an effective route to produce patchy colloids.

  19. A non-equilibrium model for fixed-bed multi-component adiabatic adsorption 

    E-Print Network [OSTI]

    Harwell, Jeffrey Harry

    1979-01-01

    , 1970, 1972b). The objectives ares 1, To develop a non-equilibrium model for multicomponent adiabatic adsorption and show the dynamic behavior of the dependent' variables Cia qi ~ Tg and Ts, 2. Examine the validity of the assumption of local... mass of. solid, respec- tively, Qi is the saturation value of qi for component i, It depends on the surface ares occupied by one molecule of i and:W -hence independent of temperature. Ki is the zeciprocai of Ci when half the suz'face is oc- cupied...

  20. A Symmetric Free Energy Based Multi-Component Lattice Boltzmann Method

    E-Print Network [OSTI]

    Qun Li; A. J. Wagner

    2007-04-26

    We present a lattice Boltzmann algorithm based on an underlying free energy that allows the simulation of the dynamics of a multicomponent system with an arbitrary number of components. The thermodynamic properties, such as the chemical potential of each component and the pressure of the overall system, are incorporated in the model. We derived a symmetrical convection diffusion equation for each component as well as the Navier Stokes equation and continuity equation for the overall system. The algorithm was verified through simulations of binary and ternary systems. The equilibrium concentrations of components of binary and ternary systems simulated with our algorithm agree well with theoretical expectations.

  1. Thermal extraction analysis of five Los Azufres production wells

    SciTech Connect (OSTI)

    Kruger, Paul; Quijano, Luis

    1995-01-26

    Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

  2. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  3. Effects of temporally varying liquid-phase mass diffusivity in multicomponent droplet gasification

    SciTech Connect (OSTI)

    Zhang, Huiqiang [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Department of Engineering Mechanics, Tsinghua University, Beijing, 100084 (China); Law, Chung K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2008-06-15

    The relative roles of liquid-phase diffusional resistance and volatility differential in multicomponent droplet gasification are revisited, recognizing that liquid-phase mass diffusivities can be substantially increased as the droplet is progressively heated upon initiation of gasification, leading to a corresponding substantial weakening of the diffusional resistance. Calculations performed using realistic and temperature-dependent thermal and mass diffusivities indeed substantiate this influence. In particular, the calculated results agree with the literature experimental data, indicating that the gasification mechanism of multicomponent fuels is intermediate between diffusion and distillation limits. Investigation was also performed on gasification at elevated pressures, recognizing that the liquid boiling point and hence the attainable droplet temperature would increase with increasing pressure, causing further weakening of the liquid-phase diffusional resistance. This possibility was again verified through calculated results, suggesting further departure from diffusion limit toward distillation limit behavior for gasification at high pressures. The study also found that diffusional resistance is stronger for the lighter, gasoline-like fuels as compared to the heavier, diesel-like fuels because the former have overall lower boiling points, lower attainable droplet temperatures, and hence lower mass diffusivities in spite of their lower molecular weights. (author)

  4. Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    methods Mathematical modelling CO2 storage Enhanced oil recovery Groundwater contamination Multi-phase multi-component flow processes are fundamental to engineering applications in hydrocarbon and geothermal The transport of dissolved chemical components (e.g., CO2, NaCl, CH4) in different fluid phases (e.g., water

  5. Interpreting multicomponent seismic data in the Gulf of Mexico for shallow sedimentary properties: methodology and case history

    E-Print Network [OSTI]

    Texas at Austin, University of

    OTC 15118 Interpreting multicomponent seismic data in the Gulf of Mexico for shallow sedimentary a methodology for manually establishing tie points of depth-equivalent surfaces in P-P and P-S seismic data volumes derived from a 4-C ocean bottom seismic survey using seismic attribute volumes viewed in time

  6. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    SciTech Connect (OSTI)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  7. Geophys. J. Int. (1995) 121, 301-315 Multicomponent near-surface correction for land VSP data

    E-Print Network [OSTI]

    Edinburgh, University of

    1995-01-01

    , vertical seismic profile. 1 I N T R O D U C T I O N Combined seismic analysis of compressional- and shear seismic profile (VSP). Near-surface correction, using a simple matrix operator designed from 1994 March 31 SUMMARY Multicomponent seismic data collected using directional sources are degraded

  8. Intrinsic fluctuations of dust grain charge in multi-component plasmas

    SciTech Connect (OSTI)

    Shotorban, B.

    2014-03-15

    A master equation is formulated to model the states of the grain charge in a general multi-component plasma, where there are electrons and various kinds of positive or negative ions that are singly or multiply charged. A Fokker-Planck equation is developed from the master equation through the system-size expansion method. The Fokker-Planck equation has a Gaussian solution with a mean and variance governed by two initial-value differential equations involving the rates of the attachment of ions and electrons to the dust grain. Also, a Langevin equation and a discrete stochastic method are developed to model the time variation of the grain charge. Grain charging in a plasma containing electrons, protons, and alpha particles with Maxwellian distributions is considered as an example problem. The Gaussian solution is in very good agreement with the master equation solution numerically obtained for this problem.

  9. Chromium Phase Behavior in a Multi-Component Borosilicate Glass Melt

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Wilson, B. K.; Plaisted, Trevor J.; Heald, Steve M.

    2006-07-31

    This paper reports the phase behavior of a multicomponent borosilicate glass melt with 0?3 mass% Cr2O3 at 800?1500°C in equilibrium with air. Both upper and lower liquidus temperatures were observed. When the temperature was between the upper and lower liquidus temperatures, eskolaite (Cr2O3) formed in melts with >2 mass% Cr2O3. Below the lower liquidus temperature, a dispersed chromate phase appeared in the melt that eventually became macroscopically segregated. The chemical durability of the glasses was virtually unaffected by chromium concentration. The particular glass studied was prototypic for the vitrification of high-Cr high-level radioactive wastes stored in underground tanks at the Hanford site. The results suggest a significant potential cost benefit for Hanford tank waste cleanup.

  10. Non-Isothermal, Multi-phase, Multi-component Flows through Deformable Methane Hydrate Reservoirs

    E-Print Network [OSTI]

    Gupta, Shubhangi; Wohlmuth, Barbara

    2015-01-01

    We present a hydro-geomechanical model for subsurface methane hydrate systems. Our model considers kinetic hydrate phase change and non-isothermal, multi-phase, multi-component flow in elastically deforming soils. The model accounts for the effects of hydrate phase change and pore pressure changes on the mechanical properties of the soil, and also for the effect of soil deformation on the fluid-solid interaction properties relevant to reaction and transport processes (e.g., permeability, capillary pressure, reaction surface area). We discuss a 'cause-effect' based decoupling strategy for the model and present our numerical discretization and solution scheme. We then identify the important model components and couplings which are most vital for a hydro-geomechanical hydrate simulator, namely, 1) dissociation kinetics, 2) hydrate phase change coupled with non-isothermal two phase two component flow, 3) two phase flow coupled with linear elasticity (poroelasticity coupling), and finally 4) hydrate phase change c...

  11. Mass separation of a multicomponent plasma flow in a curvilinear magnetic field

    SciTech Connect (OSTI)

    Papernyi, V. L.; Krasov, V. I.

    2011-11-15

    The motion of a metal plasma flow of a vacuum-arc discharge in a transportation plasma-optical system with a curvilinear magnetic field is studied experimentally and numerically. The flow position at the output of the system is shown to depend on the cathode material, which determines the mass-to-charge ratio of plasma ions. As a result, the flow with a greater ion mass-to-charge ratio moves along a trajectory with a larger radius. A similar effect is observed in the case of a multicomponent plasma flow generated by a composite cathode. The results of two-fluid MHD simulations of a plasma flow propagating in a curvilinear magnetic field agree qualitatively with the experimental data.

  12. Effects of multi-component diffusion and heat release on laminar diffusion flame liftoff

    SciTech Connect (OSTI)

    Li, Zhiliang; Chen, Ruey-Hung [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Phuoc, Tran X. [National Energy Technology Laboratory, Department of Energy, P.O. Box 10940, MS 84-340, Pittsburgh, PA 15261 (United States)

    2010-08-15

    Numerical simulations were conducted of the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C{sub 3}H{sub 8} and CH{sub 4} fuels. Both non-reacting and reacting jets were investigated, including multi-component diffusivities and heat release effects (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for liftoff previously arrived at in similarity solutions. The cold-flow simulation for He-diluted CH{sub 4} fuel does not predict flame liftoff; however, adding heat release reaction lead to the prediction of liftoff, which is consistent with experimental observations. Including reaction was also found to improve liftoff height prediction for C{sub 3}H{sub 8} flames, with the flame base location differing from that in the similarity solution - the intersection of the stoichiometric and iso-velocity (equal to 1-D flame speed) is not necessary for flame stabilization (and thus liftoff). Possible mechanisms other than that proposed for similarity solution may better help to explain the stabilization and liftoff phenomena. (author)

  13. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more »In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  14. Geochemistry Sampling for Traditional and Multicomponent Equilibrium Geothermometry in Southeast Idaho

    SciTech Connect (OSTI)

    Cannon, Cody; Wood, Thomas; Neupane, Ghanashyam; McLing, Travis; Mattson, Earl; Dobson, Patrick; Conrad, Mark

    2014-10-01

    The Eastern Snake River Plain (ESRP) is an area of high regional heat flux due the movement of the North American Plate over the Yellowstone Hotspot beginning ca.16 Ma. Temperature gradients between 45-60 °C/km (up to double the global average) have been calculated from deep wells that penetrate the upper aquifer system (Blackwell 1989). Despite the high geothermal potential, thermal signatures from hot springs and wells are effectively masked by the rapid flow of cold groundwater through the highly permeable basalts of the Eastern Snake River Plain aquifer (ESRPA) (up to 500+ m thick). This preliminary study is part of an effort to more accurately predict temperatures of the ESRP deep thermal reservoir while accounting for the effects of the prolific cold water aquifer system above. This study combines the use of traditional geothermometry, mixing models, and a multicomponent equilibrium geothermometry (MEG) tool to investigate the geothermal potential of the ESRP. In March, 2014, a collaborative team including members of the University of Idaho, the Idaho National Laboratory, and the Lawrence Berkeley National Laboratory collected 14 thermal water samples from and adjacent to the Eastern Snake River Plain. The preliminary results of chemical analyses and geothermometry applied to these samples are presented herein.

  15. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

    2010-11-15

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  16. Mechano-chemical spinodal decomposition: A phenomenological theory of phase transformations in multi-component, crystalline solids

    E-Print Network [OSTI]

    Rudraraju, Shiva; Garikipati, Krishna

    2015-01-01

    We present a new phenomenological treatment of phase transformations in multi-component crystalline solids driven by free energy density functions that are non-convex in mechanical and chemical variables. We identify the mechano-chemical spinodal as the region in strain-composition space where the free energy density function is non-convex. Our treatment describes diffusional phase transformations that are accompanied by symmetry breaking structural changes of the crystal unit cell due to mechanical instabilities in the mechano-chemical spinodal. This approach is relevant to phase transformations wherein the structural order parameters can be expressed as linear combinations of strains relative to a high-symmetry reference crystal. Because the local strains in an inhomogeneous, transforming microstructure can be finite, the elasticity problem must account for geometric nonlinearity. Furthermore, for physical consistency and mathematical well-posedness, we regularize the free energy density functions by interf...

  17. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos National

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergy Information Geothermometers

  18. Chemical Logging At North Brawley Geothermal Area (Department, 1979) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergy Information GeothermometersEnergy

  19. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    SciTech Connect (OSTI)

    Joe Hachey

    2007-09-30

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

  20. Effect of hydrothermal condition on the formation of multi-component oxides of Ni-based metallic glass under high temperature water near the critical point

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kim, J. S.; Kim, S. Y.; Kim, D. H.; Ott, R. T.; Kim, H. G.; Lee, M. H.

    2015-07-01

    The specific feature of multi-component oxides synthesized by hydrothermal process under high temperature (633 K) and highly pressurized water (18.9 MPa) near critical point. Effects of hydrothermal processing duration times 24 hours and 72 hours, respectively, on the oxide formation of the Ni59Zr20Ti16Si2Sn3 metallic glass synthesized by powder metallurgy process were characterized by X-ray diffractometer, differential scanning calorimeter along with the particle size, morphology and crystalline phase of the oxides. The crystallization of the needle-shape NiTiO3, ZrTiO4 and ZrSnO4 ternary oxide phases observed on the surface of metallic glass at below glass transition temperature and the morphology of oxide phasesmore »changed to plate-shape around 2 ?m in diameter by the increase processing time. This hydrothermal processing in subcritical water provides accelerated dense metal oxide crystals due to the reaction medium being at higher pressure than conventional oxidation processing.« less

  1. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect (OSTI)

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  2. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    SciTech Connect (OSTI)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

  3. A Chandra Study of the Multi-Component X-ray Emission from the X-shaped Radio Galaxy 3C 403

    E-Print Network [OSTI]

    R. P. Kraft; M. J. Hardcastle; D. M. Worrall; S. S. Murray

    2005-01-03

    We present results from a 49.4 ks Chandra/ACIS-S observation of the nearby ($z$=0.059) X-shaped FRII radio galaxy 3C~403. This is the first Chandra observation of an X-shaped radio galaxy, and one of the goals of this pioneering study is to determine the relationship between the X-ray emitting gas and the X-shaped radio morphology. The X-ray isophotes of the hot gas within $\\sim3.5''$ of the central galaxy are highly elliptical (eccentricity$\\sim$0.57) and co-aligned with the elliptical optical isophotes. This supports the hypothesis that X-shaped radio sources are created by propagation of jets through asymmetric density distributions. Within large uncertainties, there is no evidence that the lobes or wings are overpressurized relative to the ISM. We have detected X-ray emission from several of the radio knots to the E of the active nucleus, and diffuse emission from the radio lobe to the W. The X-ray emission from the eastern knots cannot be explained by an inverse Compton model unless they are far from equipartition. Using archival HST data, optical emission is detected from two knots, and the radio/optical/X-ray spectra are well fitted by simple synchrotron models. This is one of the strongest examples to date of X-ray synchrotron emission from multiple knots in the jet of an FR II radio galaxy. X-ray emission is also detected from the radio wings at a flux consistent with inverse Compton scattering of CMB photons from relativistic electrons if the wings are near equipartition. The nuclear spectrum is well described by a multi-component model that includes a heavily absorbed power law and a bright, broadened Fe line. A second, less absorbed, power-law component, likely to represent unresolved emission from a pc-scale jet, is also required.

  4. Boundary Creek thermal areas of Yellowstone National Park: II, thermal water analyses

    SciTech Connect (OSTI)

    Thompson, J.M. (Geological Survey, Menlo Park, CA); Hutchinson, R.A.

    1980-09-01

    Water samples from 28 thermal springs, 2 non-thermal springs, and 2 creeks from the Boundary Creek Thermal Areas (BCTA) in the southwestern corner of Yellowstone National Park were analyzed to help establish a chemical water-quality base line prior to possible geothermal exploitation of the Island Park Geothermal Area (IPGA). The springs, situated at the southwestern end of the Madison Plateau, are the Yellowstone Park thermal waters nearest to the IPGA and might respond to geothermal exploitation in the IPGA. Water temperatures ranging from 50/sup 0/ to 90/sup 0/C and low Cl concentrations (< 110 mgL/sup -1/) characterize spring waters in the BCTA. They are chemically distinct from the major geysers and hot springs in Yellowstone Park. The Na-K-Ca and silica geothermometers are in general agreement, usually within 10/sup 0/C, and indicate reservoir temperatures of 150 to 170/sup 0/C.

  5. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    SciTech Connect (OSTI)

    Heiken, G.; Duffield, W. (eds.)

    1990-09-01

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  6. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    SciTech Connect (OSTI)

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  7. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    SciTech Connect (OSTI)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-07-10

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

  8. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect (OSTI)

    Bureau of Economic Geology

    2009-04-30

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

  9. Phase Stability of Multicomponent NAPLs Containing PAHs

    E-Print Network [OSTI]

    Peters, Catherine A.

    of a contaminant is dependent on its phase state. For solid phase contaminants in contact with water, the maximum aromatic hydrocarbons (PAHs), most of which are solids in pure form at ambient temperatures. Because any of contaminants such as coal tars. NAPL/aqueous phase equilibrium studies were conducted to demonstrate

  10. Multi-Component Harvesting of Wheat Straw

    SciTech Connect (OSTI)

    None

    2006-06-01

    The objective of this project is to develop commercially-viable technologies that will potentially overcome these barriers and enable the use of wheat residues as an inexpensive feedstock resource.

  11. Mineral Selection for Multicomponent Equilibrium Geothermometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01

    Muliticomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated.

  12. Multi-component hydrogen storage material

    DOE Patents [OSTI]

    Faheem, Syed A. (Huntley, IL); Lewis, Gregory J. (Santa Cruz, CA); Sachtler, J.W. Adriaan (Des Plaines, IL); Low, John J. (Schaumburg, IL); Lesch, David A. (Hoffman Estates, IL); Dosek, Paul M. (Joliet, IL); Wolverton, Christopher M. (Evanston, IL); Siegel, Donald J. (Ann Arbor, MI); Sudik, Andrea C. (Canton, MI); Yang, Jun (Canton, MI)

    2010-09-07

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0

  13. Multicomponent Protein Cage Architectures for Photocatalysis

    SciTech Connect (OSTI)

    Douglas, Trevor

    2014-11-21

    The central focus of the work performed under this award has been to develop the bacteriophage P22 viral capsid as a vehicle for the encapsulation of catalyticaly active cargo materials and study their utility towards economic energy harvesting systems. We have demonstrated that the capsid of the bacteriophage P22 can be used to genetically program the assembly and encapsulation of a range of inorganic nanoparticles and protein cargoes. The P22 capsid uses a scaffold protein (SP) to direct the assembly of its coat protein (CP) into icosahedral capsids. By creating a genetic fusion of a desired cargo enzyme or a small peptide that can act as a nucleation site for subsequent NP growth, we have demonstrated the co-assembly of these SP-fusions and CP into stable “nano-reactors”. The cargo is sequestered inside the engineered capsid and can either be used directly as a nanocatalyst or for the nucleation and growth of inorganic or organic nanoparticles or polymers. The synthetic cargos (NP or polymers) were shown to have photocatalytic activity. The time dependent photophysics of a select few of these systems were studied to determine the underlying mechanisms and efficiency of light harversting. Enzyme cargos encapsulated within the P22 were thermally activated catalysts and their kinetic behavior was characterized. During the course of this work we have demonstrated that the method is a robust means to harness biology for materials applications and have initiated work into assembling the P22 nanoreactors into hierarchically ordered materials. The successful implementation of the work performed under this DOE grant provides us with a great deal of knowledge and a library of components to go forward towards the development of bioinspired catalytic materials for energy harvesting.

  14. Advancements in isocyanide based multicomponent reactions

    E-Print Network [OSTI]

    Isaacson, Jerry Calhoun

    2009-01-01

    amine under hydrogen atmosphere using palladium/charcoalpalladium charcoal under acidic conditions and, contrary to previous reports, which had used very high pressure, only a single atmosphere of hydrogen

  15. Engineering MulticomponentNanocatalystsfor Oxygen Reduction (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent) | SciTech Connect Engineered(Patent)

  16. Engineering MulticomponentNanocatalystsfor Oxygen Reduction (Conference) |

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article) | SciTech(Journal(Patent) | SciTech Connect

  17. I I I . Isotherm al Multicomponent Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHighHussein KhalilResearch &ENERGY I NFRASTRUCTURE -

  18. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  19. I/S and C/S mixed layers, some indicators of recent physical-chemical changes in active geothermal systems: The case study of Chipilapa (El Salvador)

    SciTech Connect (OSTI)

    Beaufort, D.; Papapanagiotou, P.; patrier, P.; Fouillac, A.M.; Traineau, H.

    1996-01-24

    I/S and C/S mixed layers from the geothermal field of Chipilapa (El Salvador) have been studied in details in order to reevaluate their potential use as indicator of the thermodynamic conditions in which they were formed. It is funded that overprinting of clay bearing alteration stages is common. For a given alteration stage, the spatial variation of I/S and C/S mixed layer ininerals is controlled by kinetics of mixed layer transformation and not only by temperature. Clay geo-thermometers cannot give reliable results because the present crystal-chemical states of the I/S and C/S mixed layers is not their initial state, it was aquired during the overall hydrothermal history which post dated the nucleation of smectitic clay material at high temperature. Occurrences of smectites or smectite-rich mixed layers at high temperature in reservoirs is a promising guide for reconstruct the zones in which boiling or mixing of non isotherinal fluids occurred very recently or still presently.

  20. Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah

    SciTech Connect (OSTI)

    Davis, M.C.; Kolesar, P.T.

    1984-12-01

    The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

  1. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  2. Regional geothermal exploration in north central New Mexico. Final report

    SciTech Connect (OSTI)

    Icerman, L. (ed.) [ed.

    1984-02-01

    A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

  3. Favorable Geochemistry from Springs and Wells in COlorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  4. Multicomponent, multiphase flow in porous media with temperature variation

    SciTech Connect (OSTI)

    Wingard, J.S.; Orr, F.M. Jr.

    1990-10-01

    Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.

  5. Hydrodynamic models for multicomponent plasmas with collisional-radiative kinetics

    E-Print Network [OSTI]

    Le, Hai

    2014-01-01

    field-reversed configuration (FRC) plasma [42], and internalfield-reversed configuration (FRC) plasma formation [42] and

  6. New Design Methods and Algorithms for Multi-component Distillation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    isomerization, reforming, and the processing of crude oil, liquefied petroleum gas (LPG), and natural gas liquids (NGL). Project Description The main goal of this research...

  7. Hydrodynamic models for multicomponent plasmas with collisional-radiative kinetics

    E-Print Network [OSTI]

    Le, Hai

    2014-01-01

    distribution function (ASDF) plotted at different locations112 4.16 The ASDF plotted at different locations of startingthermal energy xxiii Acronyms ASDF atomic state distribution

  8. Atomic Transport in Dense, Multi-Component Metallic Liquids

    E-Print Network [OSTI]

    A. Meyer

    2002-06-27

    Pd43Ni10Cu27P0 has been investigated in its equilibrium liquid state with incoherent, inelastic neutron scattering. As compared to simple liquids, liquid PdNiCuP is characterized by a dense packing with a packing fraction above 0.5. The intermediate scattering function exhibits a fast relaxation process that precedes structural relaxation. Structural relaxation obeys a time-temperature superposition that extends over a temperature range of 540K. The mode-coupling theory of the liquid to glass transition (MCT) gives a consistent description of the dynamics which governs the mass transport in liquid PdNiCuP alloys. MCT scaling laws extrapolate to a critical temperature Tc at about 20% below the liquidus temperature. Diffusivities derived from the mean relaxation times compare well with Co diffusivities from recent tracer diffusion measurements and diffsuivities calculated from viscosity via the Stokes-Einstein relation. In contrast to simple metallic liquids, the atomic transport in dense, liquid PdNiCuP is characterized by a drastical slowing down of dynamics on cooling, a q^{-2} dependence of the mean relaxation times at intermediate q and a vanishing isotope effect as a result of a highly collective transport mechanism. At temperatures as high as 2Tc diffusion in liquid PdNiCuP is as fast as in simple liquids at the melting point. However, the difference in the underlying atomic transport mechanism indicates that the diffusion mechanism in liquids is not controlled by the value of the diffusivity but rather by that of the packing fraction.

  9. New Design Methods and Algorithms for Energy Efficient Multicomponent...

    Broader source: Energy.gov (indexed) [DOE]

    etc. Petrochemicals, e.g. NGL, LNG, Crude Petroleum Biochemical processes, e.g. pyrolysis, fermentation, etc. Process designers in above industries are prime users New...

  10. Controlling and Imaging Multi-Component Dispersed-Phase Nanoemulsions

    E-Print Network [OSTI]

    Fryd, Michael Matthew

    2012-01-01

    H. Small Angle Neutron Scattering Studies of the Structureexperiences such as the neutron scattering summer school inSAXS), small angle neutron scattering (SANS), refractometry,

  11. Towards breaking temperature equilibrium in multi-component Eulerian schemes

    SciTech Connect (OSTI)

    Grove, John W [Los Alamos National Laboratory; Masser, Thomas [Los Alamos National Laboratory

    2009-01-01

    We investigate the effects ofthermal equilibrium on hydrodynamic flows and describe models for breaking the assumption ofa single temperature for a mixture of components in a cell. A computational study comparing pressure-temperature equilibrium simulations of two dimensional implosions with explicit front tracking is described as well as implementation and J-D calculations for non-equilibrium temperature methods.

  12. Geothermal Reservoir Temperatures in Southeastern Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Neupane, Ghanashyam; Mattson, Earl D.; McLing, Travis L.; Palmer, Carl D.; Smith, Robert W.; Wood, Thomas R.; Podgorney, Robert K.

    2015-03-01

    Southeastern Idaho exhibits numerous warm springs, warm water from shallow wells, and hot water within oil and gas test wells that indicate a potential for geothermal development in the area. Although the area exhibits several thermal expressions, the measured geothermal gradients vary substantially (19 – 61 ºC/km) within this area, potentially suggesting a redistribution of heat in the overlying ground water from deeper geothermal reservoirs. We have estimated reservoir temperatures from measured water compositions using an inverse modeling technique (Reservoir Temperature Estimator, RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. Compositions of a selected group of thermal waters representing southeastern Idaho hot/warm springs and wells were used for the development of temperature estimates. The temperature estimates in the the region varied from moderately warm (59 ºC) to over 175 ºC. Specifically, hot springs near Preston, Idaho resulted in the highest temperature estimates in the region.

  13. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

    2007-08-14

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  14. Multi-component Nanoparticle Based Lubricant Additive to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for lubricatns that will minimize sulfur and phosporous content in engine oil, and lower ash forming elements deer08adhvaryu.pdf More Documents & Publications Examining Effects of...

  15. Controlling morphology of multi-component block copolymer based materials

    E-Print Network [OSTI]

    Mickiewicz, Rafal Adam, 1974-

    2009-01-01

    The ability of block copolymers to self-assemble into ordered microstructures has attracted much interest both from a pure scientific perspective and for their potential in numerous industrial applications. The microphase ...

  16. Quantitative Imaging of Multi-component Turbulent Jets

    E-Print Network [OSTI]

    Victoria, University of

    to emulate releases in which leak geometry is circular. Effects of buoyancy, crossflow and adjacent surfaces................................................................................................3 1.2.2 Crossflow

  17. Dynamical friction in multi-component evolving globular clusters

    SciTech Connect (OSTI)

    Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.

    2014-11-10

    We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t {sub DF}) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t {sub DF} are expected to be dependent on radius. We find that in spite of the presence of different masses, t {sub DF} is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t {sub DF} is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t {sub DF} within the half-mass radius.

  18. MULTICOMPONENT CHIRP DEMODULATION USING DISCRETE FRACTIONAL FOURIER ANALYSIS

    E-Print Network [OSTI]

    Santhanam, Balu

    in biomedical signal processing, radar problems, and in the modeling of biological waveforms such as bat signals in several ap- plications such as: (a) biomedical problems where the sec- ond heart beat sound and whale echolocation signals. The problem of demodulating these signals is straight-forward when

  19. New Design Methods and Algorithms for Multi-component Distillation

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergy NEWSAgainst Natural

  20. Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors 

    E-Print Network [OSTI]

    Othman, Enas Azhar

    2014-04-07

    -component gas mixtures whose compositions are typical of Qatari natural gases with initiatives aimed at helping producers minimize costs, optimize operations, and prevent interruption of gas flow in offshore drilling and production. In addition, it presents...

  1. Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste

    SciTech Connect (OSTI)

    Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N.

    2008-08-15

    Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

  2. Multi-component modeling of quasielastic neutron scattering from phospholipid membranes

    SciTech Connect (OSTI)

    Wanderlingh, U. D’Angelo, G.; Branca, C.; Trimarchi, A.; Rifici, S.; Finocchiaro, D.; Conti Nibali, V.; Crupi, C.; Ollivier, J.; Middendorf, H. D.

    2014-05-07

    We investigated molecular motions in the 0.3–350 ps time range of D{sub 2}O-hydrated bilayers of 1-palmitoyl-oleoyl-sn-glycero-phosphocholine and 1,2-dimyristoyl-sn-glycero-phosphocholine in the liquid phase by quasielastic neutron scattering. Model analysis of sets of spectra covering scale lengths from 4.8 to 30 Å revealed the presence of three types of motion taking place on well-separated time scales: (i) slow diffusion of the whole phospholipid molecules in a confined cylindrical region; (ii) conformational motion of the phospholipid chains; and (iii) fast uniaxial rotation of the hydrogen atoms around their carbon atoms. Based on theoretical models for the hydrogen dynamics in phospholipids, the spatial extent of these motions was analysed in detail and the results were compared with existing literature data. The complex dynamics of protons was described in terms of elemental dynamical processes involving different parts of the phospholipid chain on whose motions the hydrogen atoms ride.

  3. Rational design of self-assembly pathways for complex multicomponent structures

    E-Print Network [OSTI]

    Jacobs, William M.; Reinhardt, Aleks; Frenkel, Daan

    2015-05-04

    be supersaturated 332 0 300 305 310 315 320 325 330 ?30 ?20 ?10 0 10 20 yield ? F /k B T T /K 50 100 annealing nucl. no assembly Incidental interactions Designed interactions cba d e ?60 ?50 ?40 ?30 ?20 ?10 0 10 20 0 10 20 30 40 50 60 70 80 F (V )/ k B T V ?F ‡ ?FGV... 0 20 40 0 10 20 30 40 [F (V )? F (1 )]/ k B T V free monomers q c = 4 q c = 6 q c = 12 qc = 4 qc = 6 qc = 12 0 5 10 316 318 320 ? F ‡ / k B T T /K 54 56 60 71 82 86 7548 45 38 32 V (G) cba FIG. 2. Dependence of the nucleation barrier...

  4. Precipitate coarsening in multicomponent systems P.E.J. Rivera-Diiaz-del-Castillo *

    E-Print Network [OSTI]

    Cambridge, University of

    volumes of components 1 and 2, respectively. Dca i ¼ cab i ðRÞ À cab i and Dcb i ¼ cba i ðRÞ À cba iRÞ and cba i ðRÞ, respectively) and in its absence (cab i , cba i ) for i ¼ 1; 2. The terms ðolb 1=oc1ÞT;P;c2

  5. Synthesis and structural studies of multi-component strontium zinc silicate glass-ceramics

    SciTech Connect (OSTI)

    Tiwari, Babita; Pandey, M.; Kothiyal, G. P.; Gadkari, S. C.

    2013-02-05

    Glass having composition 40SrO-10ZnO-40SiO{sub 2}-2B{sub 2}O{sub 3}-2Al{sub 2}O{sub 3}-2TiO{sub 2}-2Cr{sub 2}O{sub 3}-2Y{sub 2}O{sub 3}, (mol %) was prepared by melt-quench technique and converted into glass-ceramics by subjecting it to varying heat treatments. Thermal properties were measured by thermo-mechanical analyzer and differential thermal analyzer. The XRD revealed that initially Sr{sub 2}ZnSi{sub 2}O{sub 7} phase at lower temperature and later SrSiO{sub 3}/Sr{sub 3}Si{sub 3}O{sub 9} phase crystallized. The structural elucidation by Raman spectroscopy shows the presence of mainly Q{sup 1} structural units along with Q{sup 2} and Q{sup 0} units in the base glass. Raman spectra revealed that during crystallization initially crystalline phase having Q{sup 1} structural units (corresponding to Sr{sub 2}ZnSi{sub 2}O{sub 7} phase) are formed and later crystalline phase having Q{sup 2} structural units with 3 member ring type structure crystallizes. Thus, Raman spectroscopy and XRD together confirm that in early stage of crystallization, Sr{sub 2}ZnSi{sub 2}O{sub 7} phase and later Sr{sub 3}Si{sub 3}O{sub 9} phase formed in the glass-ceramics.

  6. Structural studies of bacterial multicomponent monooxygenases : insights into substrate specificity, diiron center tuning and component interactions

    E-Print Network [OSTI]

    Sazinsky, Matthew H. (Matthew Howard), 1976-

    2004-01-01

    (cont.) ?-subunit cavities. The presence of 6-bromohexan-l-ol induces one of the active site helices to adopt a [pi] conformation. Together, these findings suggest modes by which molecules may move through the MMOH cavities ...

  7. Coupling Multi-Component Models with MPH on Distributed Memory Computer Architectures

    E-Print Network [OSTI]

    He, Yun; Ding, Chris

    2005-01-01

    Among these, NASA’s Earth System Models Framework (ESMF) [to facilitate coupling earth system model components and to

  8. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

    E-Print Network [OSTI]

    Biesheuvel, P. M.

    We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary ...

  9. Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

    2005-02-01

    A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  10. Indirect measurement of diluents in a multi-component natural gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Owen, Thomas E.

    2006-03-07

    A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.

  11. System and method to determine thermophysical properties of a multi-component gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2003-08-05

    A system and method to characterize natural gas hydrocarbons using a single inferential property, such as standard sound speed, when the concentrations of the diluent gases (e.g., carbon dioxide and nitrogen) are known. The system to determine a thermophysical property of a gas having a first plurality of components comprises a sound velocity measurement device, a concentration measurement device, and a processor to determine a thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the concentration measurements, wherein the number of concentration measurements is less than the number of components in the gas. The method includes the steps of determining the speed of sound in the gas, determining a plurality of gas component concentrations in the gas, and determining the thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the plurality of concentrations.

  12. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  13. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOE Patents [OSTI]

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  14. Rock physics and geophysics for unconventional resource, multi-component seismic, quantitative interpretation

    E-Print Network [OSTI]

    Glinsky, Michael E; Sassen, Doug; Rael, Howard; Chen, Jinsong

    2013-01-01

    An extension of a previously developed, rock physics, model is made that quantifies the relationship between the ductile fraction of a brittle/ductile binary mixture and the isotropic seismic reflection response. Making a weak scattering (Born) approximation and plane wave (eikonal) approximation, with a subsequent ordering according to the smallness of the angle of incidence, a linear singular value decomposition analysis is done to understand the stack weightings, number of stacks, and the type of stacks that will optimally estimate the two fundamental rock physics parameters. It is concluded that the full PP stack and the "full" PS stack are the two optimal stacks needed to estimate the two rock physics parameters. They dominate over both the second order AVO "gradient" stack and the higher order (4th order) PP stack.

  15. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  16. Performances of Multi-Level and Multi-Component Compressed Bitmap Indices

    E-Print Network [OSTI]

    Wu, Kesheng; Stockinger, Kurt; Shoshani, Arie

    2007-01-01

    Query processing cost Given above index sizes, we can nowfor the index sizes and query processing costs. LBNL-60891processing cost using a projection index, which is exactly

  17. Nonrelativistic Banks-Casher relation and random matrix theory for multi-component fermionic superfuids

    E-Print Network [OSTI]

    Takuya Kanazawa; Arata Yamamoto

    2015-11-04

    We apply QCD-inspired techniques to study nonrelativistic N-component degenerate fermions with attractive interactions. By analyzing the singular-value spectrum of the fermion matrix in the Lagrangian, we derive several exact relations that characterize the spontaneous symmetry breaking U(1)xSU(N)$\\to$Sp(N) through bifermion condensates. These are nonrelativistic analogues of the Banks-Casher relation and the Smilga-Stern relation in QCD. Non-local order parameters are also introduced and their spectral representations are derived, from which a nontrivial constraint on the phase diagram is obtained. The effective theory of soft collective excitations is derived and its equivalence to random matrix theory is demonstrated in the epsilon-regime. We numerically confirm the above analytical predictions in Monte Carlo simulations.

  18. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01

    BVE 98 inferred data BVE 100 Base model D 0ref model D 0refdata BVE99 inferred data BVE100 base model dispersivity =

  19. THE JOURNAL OF CHEMICAL PHYSICS 134, 044908 (2011) Multicomponent ballistic transport in narrow single wall carbon

    E-Print Network [OSTI]

    Adler, Joan

    2011-01-01

    online 27 January 2011) The transport of gas mixtures through molecular-sieve membranes such as narrow The transport of gas mixtures through molecular-sieve membranes and catalysts has been a subject of intensive in single wall carbon nanotubes: Analytic model and molecular dynamics simulations T. Mutat,1 J. Adler,1,a

  20. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    SciTech Connect (OSTI)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-06-10

    This paper presents a method for combining seismic and electromagnetic measurements to predict changes in water saturation, pressure, and CO{sub 2} gas/oil ratio in a reservoir undergoing CO{sub 2} flood. Crosswell seismic and electromagnetic data sets taken before and during CO{sub 2} flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity, and electrical conductivity during a CO{sub 2} injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity, and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed differences in compressional velocity and density. A separate minimization, using Archie's law, provides parameters for modeling the relations between water saturation, porosity, and the electrical conductivity. The rock-properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. Electrical conductivity changes are directly mapped to changes in water saturation; estimated changes in water saturation are used along with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO{sub 2} relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. This velocity change is then interpreted in terms of increases in the CO{sub 2}/oil ratio. Resulting images of the CO{sub 2}/oil ratio show CO{sub 2}-rich zones that are well correlated to the location of injection perforations, with the size of these zones also correlating to the amount of injected CO{sub 2}. The images produced by this process are better correlated to the location and amount of injected CO{sub 2} than are any of the individual images of change in geophysical parameters.

  1. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations

    SciTech Connect (OSTI)

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy [Département de Chimie, Université Laval, Québec, Québec G1K 7P4 (Canada)] [Département de Chimie, Université Laval, Québec, Québec G1K 7P4 (Canada)

    2013-12-28

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.

  2. Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems

    E-Print Network [OSTI]

    Bazant, Martin Z.

    of Chemical Engineering and Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts (R-22) in structure I; and ethane (C2H6), cyclopropane (C3H6), propane (C3H8), isobutane (C4H10-sI-sII-Lhc-V) points have been predicted for the ethane-propane-water (277.3 K, 12.28 bar, and xeth,waterfree ) 0

  3. GRB 081029: A GAMMA-RAY BURST WITH A MULTI-COMPONENT AFTERGLOW

    SciTech Connect (OSTI)

    Holland, Stephen T.; Sakamoto, Takanori; De Pasquale, Massimiliano; Schady, Patricia; Mao, Jirong; Covino, Stefano; Jin, Zhi-Ping; D'Avanzo, Paolo; Chincarini, Guido; Fan, Yi-Zhong; Antonelli, Angelo; D'Elia, Valerio; Fiore, Fabrizio; Pandey, Shashi Bhushan; Cobb, Bethany E.

    2012-01-20

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3 m telescopes to construct a detailed data set extending from 86 s to {approx}100000 s after the BAT trigger. Our data cover a wide energy range from 10 keV to 0.77 eV (1.24 A-16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray-burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray-burst jets are complex and will require detailed modeling to fully understand them.

  4. Analysis of Multi-Component Seismic Data in the Shallow Water Environment of the Arabian Gulf 

    E-Print Network [OSTI]

    Zhang, Zhao

    2015-05-13

    and determining radial and transverse components. Third, we introduce the new 4C ocean bottom cable (OBC) processing strategy using both compressional and shear waves to recover the image of the subsurface from noisy seismic data. Comparing the time slices...

  5. Sensitivity of compaction-induced multicomponent seismic time shifts to variations in reservoir properties

    E-Print Network [OSTI]

    Tsvankin, Ilya

    , 2005; Dusseault et al., 2007; Scott, 2007). Identifying those stress patterns helps to guide drilling. Conventional methodologies employ poststack data and compac- tion-induced vertical stress/strain to estimate

  6. Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell

    E-Print Network [OSTI]

    commercially available solar cell panels are made of monocrystalline silicon doped with toxic heavy metals Solar Cell Hanning Chen, Martin G. Blaber, Stacey D. Standridge, Erica J. DeMarco, Joseph T. Hupp, Mark A. Ratner, and George C. Schatz* Argonne-Northwestern Solar Energy Research Center Department

  7. Minimum Energy Consumption in Multicomponent Distillation. 1. Vmin Diagram for a Two-Product Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of Science and Technology, N-7491 Trondheim, Norway The Vmin diagram is introduced to effectively visualize derivation of the Vmin diagram was based on computing pinch zone compositions for columns with an infinite 215 and 316 of this series. The behavior of composition profiles and pinch zones in a column and how

  8. Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of Science and Technology, N-7491 Trondheim, Norway We show that the minimum energy requirement algebraic procedure, via expressions for pinch zone compositions at the connection points as functions

  9. Integrated Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Distillation Ivar J. Halvorsen1 and Sigurd Skogestad Norwegian University of Science and Technology, Department Also at SINTEF Electronics and Cybernetics, 7465 Trondheim, Norway Prepared for presentation at the Topical conference on Separations Technology, Session 23 - Distillation Modeling and Processes II. 2001

  10. Rational design of self-assembly pathways for complex multicomponent structures

    E-Print Network [OSTI]

    William M. Jacobs; Aleks Reinhardt; Daan Frenkel

    2015-02-04

    The field of complex self-assembly is moving toward the design of multi-particle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such `addressable complexity,' we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in non-classical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate three-dimensional structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.

  11. Pressure and fluid saturation prediction in a multicomponent reservoir, using combined seismic and electromagnetic imaging

    E-Print Network [OSTI]

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-01-01

    change in reservoir pressure, water saturation, and CO 2 /? ? ) in reservoir pressure, fluid saturations, and theand water saturation within a reservoir without significant

  12. Chemical Sensing and Sensor-based Metrology Using Mass Spectrometry in Multi-Component

    E-Print Network [OSTI]

    Rubloff, Gary W.

    6 BP Reactor exhaust Turbo pump 50 l/s QMS Ion gauge to drag stage 60µ orifice 30µ orifice300µ at low flow rates: · Industry standard ­ NOVELLUS, AMAT blanket W CVD ­ Blanket process at pressure

  13. Timing of Pathogen Adaptation to a Multicomponent Romain Bourget1,2,3,4

    E-Print Network [OSTI]

    Chaumont, Loïc

    , United States of America Received November 16, 2012; Accepted July 10, 2013; Published August 21, 2013. Based on a multi-type Markov birth and death process, the model can be used to provide a basic level. In particular, we identify the growth and migration rates that allow pathogens to adapt

  14. Multi-component Nanoparticle Based Lubricant Additive to Improve Efficiency and Durability in Engines

    Broader source: Energy.gov [DOE]

    Development of active nanoparticle additive for lubricatns that will minimize sulfur and phosporous content in engine oil, and lower ash forming elements

  15. Particle dissolution and cross-diffusion in multi-component alloys F.J. Vermolen a,

    E-Print Network [OSTI]

    Vuik, Kees

    of the as-cast micro- structure by annealing at such a high temperature that unwanted precipitates are fully. Such a homogenization treatment, to name just a few examples, is applied in hot-rolling of Al killed construction steels, HSLA steels, all engineer- ing steels, as well as aluminium extrusion alloys. Although precipitate

  16. Final report : multicomponent forensic signature development : interactions with common textiles; mustard precursors and simulants.

    SciTech Connect (OSTI)

    Van Benthem, Mark Hilary; Mowry, Curtis Dale; Kotula, Paul Gabriel; Borek, Theodore Thaddeus, III

    2010-02-01

    2-Chloroethyl phenyl sulfide (CEPS), a surrogate compound of the chemical warfare agent sulfur mustard, was examined using thermal desorption coupled gas chromatography-mass spectrometry (TD/GC-MS) and multivariate analysis. This work describes a novel method of producing multiway data using a stepped thermal desorption. Various multivariate analysis schemes were employed to analyze the data. These methods may be able to discern different sources of CEPS. In addition, CEPS was applied to cotton, nylon, polyester, and silk swatches. These swatches were placed in controlled humidity chambers maintained at 23%, 56%, and 85% relative humidity. At regular intervals, samples were removed from each test swatch, and the samples analyzed using TD/GC-MS. The results were compared across fabric substrate and humidity.

  17. Study of multi-component fuel premixed combustion using direct numerical simulation

    E-Print Network [OSTI]

    Nikolaou, Zacharias M.

    2014-04-29

    on a daily basis during the course of this research. I would also like to acknowledge the funding through the Low Car- bon Energy University Alliance Programme supported by Tsinghua University, China, and also the educational grant through the A...

  18. Analysis of seismic anisotropy in 3D multi-component seismic data 

    E-Print Network [OSTI]

    Qian, Zhongping

    2010-01-01

    The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...

  19. An analysis of the regenerative expansion cycle in multi-component hydrocarbon separation systems 

    E-Print Network [OSTI]

    Horton, John Leroy

    1966-01-01

    ?&C - C ) C Py Px Py Cp -C y Px Cp Cp UA = 1n 2 C py &Tx Cp + 2 Px Py 66 Q ~ UA +Tx C px UA UA = Cp C 1n Qt2 px py C C ~dl 1 px (QTx) (Cp ) (Cp C ) px py px C C +t Py Px 1n dt 1n d t25 &Tx C X &tm dTx 1 Cp 67 Three Stream Cycle Heat...

  20. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ionAAEngine Applications |

  1. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImportsEnergy NEWSAgainst Natural GasRakesh

  2. Ion Partitioning at the liquid/vapor interface of a multi-component alkali

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(Journal Article)Connect Ion

  3. Ion Partitioning at the liquid/vapor interface of a multi-component alkali

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(Journal Article)Connect Ionhalidesolution: A

  4. Quantitative planar laser-induced fluorescence imaging of multi-component

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeedingConnect Pulse energy measurement(Conference) | SciTechfuel/air

  5. Method for FractMethod for Fracture Detection Using Multicomponent Seismic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFromGasInnovationMethod for

  6. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thalman, R.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-01-01

    Multiphase OH and O? oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O? can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore »O? is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH/O? exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O? exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  7. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  8. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

    2008-02-12

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  9. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; Mayer, Bernhard

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modifiedmore »to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  10. Effects of Geometrical, Environmental, and Petrophysical Parameters on Multi-Component Induction Measurements Acquired in High-Angle Wells1

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of macroscopic electrical anisotropy, such as that resulting from thinly laminated sand-shale and sand, Veracruz, Mexico, June 4-7, 2006, Paper PPP. 2 The University of Texas at Austin, Department of Petroleum

  11. Multi-component Zirconia-Titania Mixed Oxides: Catalytic Materials with Unprecedented Performance in the Selective Catalytic Reduction of NOx

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the Selective Catalytic Reduction of NOx with NH3 after harsh hydrothermal ageing. Nathalie MARCOTTE1#, Bernard catalytic reduction. 1. Introduction. The abatement of nitrogen oxides (NOx) and particulate matter (PM% H2O, ~ 1050 K) is a prerequisite for deNOx catalysts of tomorrow in Diesel exhaust gas treatment

  12. Multi-Component Copper Catalyzed Methods to Access Highly-Substituted Amine-Bearing Carbon Centers from Simple Starting Materials

    E-Print Network [OSTI]

    Pierce, Conor John

    2013-01-01

    synthesis with an eco- friendly framework. V. Literatureachieve the primary goal of an eco-friendly KA 2 reaction ofnot for the goal of an eco-friendly solvent free synthesis,

  13. Apparatus and method for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-11

    A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.

  14. Final Technical Report DE-FG02-99ER14933 Inversion of multicomponent seismic data and rock physics interpretation

    SciTech Connect (OSTI)

    Mavko, G.

    2006-03-15

    An important accomplishment was to understand the seismic velocity anisotropy resulting from the combined roles of depositional stratification and stress in unconsolidated sands. The report presents an experimental study of velocity anisotropy in unconsolidated sands at measured compressive stresses up to 40 bars, which correspond to the first hundred meters of the subsurface. Two types of velocity anisotropy are considered, that due to intrinsic textural anisotropy, and that due to stress anisotropy. We found that sand samples display a bi-linear dependence of velocity anisotropy with stress anisotropy. There exists a transition stress beyond which the stress-induced anisotropy outweighs the intrinsic anisotropy for three different sands.

  15. Multi-Component Copper Catalyzed Methods to Access Highly-Substituted Amine-Bearing Carbon Centers from Simple Starting Materials

    E-Print Network [OSTI]

    Pierce, Conor John

    2013-01-01

    enamine attack 1-amino-1,3-butadienes are difficult toprovides a 1-amino-1,3-butadiene in one step from simple

  16. A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOE Patents [OSTI]

    Morrow, Thomas E. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

    2004-03-09

    A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  17. Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES

    E-Print Network [OSTI]

    Ertel, S; Augereau, J -C; Krivov, A V; Loehne, T; Eiroa, C; Mora, A; del Burgo, C; Montesinos, B; Bryden, G; Danchi, W; Kirchschlager, F; Liseau, R; Maldonado, J; Pilbratt, G L; Schueppler, Ch; Thebault, Ph; White, G J; Wolf, S

    2013-01-01

    [abridged] Aims. Our Herschel Open Time Key Programme DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 um, 100 um, and 160 um simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, t...

  18. Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X?ray Analysis via Machine Learning

    E-Print Network [OSTI]

    Rossouw, David; Burdet, Pierre; de la Pen?a, Francisco; Ducati, Caterina; Knappett, Benjamin R.; Wheatley, Andrew E. H.; Midgley, Paul A.

    2015-03-11

    was obtained by collecting X-rays emitted from the local volume probed by the electron beam. The resulting EDX spectrum image was a three-dimensional data set whose (x, y) axes correspond to the position of the probe and whose z axis corresponds to the energy... of the detected X-ray. Spectrum images were acquired with a probe current of approximately 0.7 nA, an acceleration voltage of 200 kV, a spatial sampling of between 0.5 and 1 nm/pixel and 50? 100 ms/pixel dwell times. TIA software was used for acquisition and Hyper...

  19. CO2 gas/oil ratio prediction in a multi-component reservoir bycombined seismic and electromagnetic imaging

    SciTech Connect (OSTI)

    Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

    2002-08-28

    Crosswell seismic and electromagnetic data sets taken before and during CO2 flooding of an oil reservoir are inverted to produce crosswell images of the change in compressional velocity, shear velocity and electrical conductivity during a CO2 injection pilot study. A rock properties model is developed using measured log porosity, fluid saturations, pressure, temperature, bulk density, sonic velocity and electrical conductivity. The parameters of the rock properties model are found by an L1-norm simplex minimization of predicted and observed compressional velocity and density. A separate minimization using Archie's law provides parameters for modeling the relations between water saturation, porosity and the electrical conductivity. The rock properties model is used to generate relationships between changes in geophysical parameters and changes in reservoir parameters. The electrical conductivity changes are directly mapped to changes in water saturation. The estimated changes in water saturation are used with the observed changes in shear wave velocity to predict changes in reservoir pressure. The estimation of the spatial extent and amount of CO2 relies on first removing the effects of the water saturation and pressure changes from the observed compressional velocity changes, producing a residual compressional velocity change. The residual compressional velocity change is then interpreted in terms of increases in the CO2 /oil ratio. Resulting images of CO2/oil ratio show CO2 rich zones that are well correlated with the location of injection perforations with the size of these zones also correlating to the amount of injected CO2. The images produced by this process are better correlated to the location and amount of injected CO2 than are any of the individual images of change in geophysical parameters.

  20. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies

    SciTech Connect (OSTI)

    Weizman, Lior; Sira, Liat Ben; Joskowicz, Leo; Rubin, Daniel L.; Yeom, Kristen W.; Constantini, Shlomi; Shofty, Ben; Bashat, Dafna Ben

    2014-05-15

    Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior.

  1. Phase-resolved nanosecond spectrofluorometry: theory, instrumentation, and new applications of multicomponent analysis by subnanosecond fluorescence lifetimes

    SciTech Connect (OSTI)

    Mattheis, J.R.; Mitchell, G.W.; Spencer, R.D.

    1982-03-01

    We describe a new method, phase-resolved subnanosecond spectroscopy (PRS), for the spectral differentiation of fluorophores in a mixture. The technique required adding a phase-variable rectifying detector to the SLM 4800S phasespectrofluorometer. The theory of PRS is based on the sinusoidal fluorescence emission of a population of molecules in response to sinusodially modulated exicitation light. The total a-c fluorescence signal is passed through the phase-variable detector which nulls the emission signal of any component in quadrature with the reference angle. The emission characteristics of the remaining component, or components, are more readily and accurately revealed. We investigated the sensitivity and selectivity of PRS. The sensitivity of PRS was demonstrated by nulling the contribution of the Raman scatter band of a nanomolar solution of quinine bisulfate to the real-time emission spectrum resolved at 8-nm bandpass. We demonstrated the selectivity of PRS by resolving the emission spectrum of anthracene and perylene from a 1 : 1 mixture with a lifetime differential of only 600 ps. The emission spectra of 2.2-phenylene bis-(5-phenyloxazole) and dimethyl 2.2-phenylene bis-(5-phenyloxazole) were also resolved from a 1 : 1 mixture in ethanol. The lifetime differential here was only 200 ps.

  2. Adhesion-induced lateral phase separation of multi-component membranes: the effect of repellers and confinement

    E-Print Network [OSTI]

    Mesfin Asfaw; Hsuan-Yi Chen

    2008-11-23

    We present a theoretical study for adhesion-induced lateral phase separation for a membrane with short stickers, long stickers and repellers confined between two hard walls. The effects of confinement and repellers on lateral phase separation are investigated. We find that the critical potential depth of the stickers for lateral phase separation increases as the distance between the hard walls decreases. This suggests confinement-induced or force-induced mixing of stickers. We also find that stiff repellers tend to enhance, while soft repellers tend to suppress adhesion-induced lateral phase separation.

  3. Multi-Component Copper Catalyzed Methods to Access Highly-Substituted Amine-Bearing Carbon Centers from Simple Starting Materials

    E-Print Network [OSTI]

    Pierce, Conor John

    2013-01-01

    instrument using direct injection of samples in acetonitrileinstrument using direct injection of samples in acetonitrileinstrument using direct injection of samples in acetonitrile

  4. Henn-Lecordier -AVS 99 -MS -WeM10 1 Reaction Sensing in Multicomponent CVD Processes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    for Systems Research and Department of Materials and Nuclear Engineering University of Maryland, College Park Rotary pump Transducer 100 Torr Baratron Metering valve Pressure control valve WF6 H2 B.P. 4" wafer ­ low pressure sampling requires compression · Turbo / rotary pump ­ high compression ratio (viscous

  5. Audio-magnetotellurics (AMT) for steeply-dipping mineral targets: importance of multi-component measurements at each site

    E-Print Network [OSTI]

    Jones, Alan G.

    Inc., 927 Raftsman Lane, Ottawa, Ontario, K1C 2V3, Canada (gmcneice@geosystem.net) Summary Steeply. The anomalous responses due to such targets are greater in the magnetic fields than in the electric fields of interconnected sulfides. On the Canadian Shield, at depths below about 500 m the advantages of controlled- source

  6. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore »OH and O3 is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient number of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and is not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide range of solubilities.« less

  7. Journal of The Electrochemical Society, 162 (6) F613-F621 (2015) F613 Multicomponent Gas Diffusion in Porous Electrodes

    E-Print Network [OSTI]

    Bazant, Martin Z.

    2015-01-01

    ­16, 2013. The Solid Oxide Fuel Cell (SOFC) is currently the highest- temperature fuel cell in development of high-pressure steam that can be used in many applications. Combining a high- temperature SOFC different types have been explored in the development of SOFC, the electrolyte supported cell

  8. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    SciTech Connect (OSTI)

    Zhang, Shuo [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zheng, Liange [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mayer, Bernhard [Univ. of Calgary (Canada). Dept. of Geosciences

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO2 sequestration sites to track the migration of the CO2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport module of TOUGHREACT was modified to include separate isotopic species of CO2 gas and dissolved inorganic carbon (CO2, CO32-, HCO3-,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.

  9. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore »O3 is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  10. Acquisition of Crosswell Seismic Monitoring Data

    E-Print Network [OSTI]

    Daley, T.M.

    2010-01-01

    fluid saturation prediction in a multicomponent reservoirmonitoring) and reservoir exploitation (via fluid saturation

  11. Systematic discovery of multicomponent therapeutics Alexis A. Borisy, Peter J. Elliott, Nicole W. Hurst, Margaret S. Lee, Joseph Lehar, E. Roydon Price, George Serbedzija,

    E-Print Network [OSTI]

    Stockwell, Brent R.

    , and of selective cyclooxygenase-2 (COX-2) inhibitors Vioxx (rofecoxib) and Celebrex (celecoxib) are evidence

  12. WATER RESOURCES RESEARCH, VOL. 29, NO. 11, PAGES 3727-3740, NOVEMBER 1993 Modeling of Multiphase Transport of Multicomponent Organic Contaminants

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    WATER RESOURCES RESEARCH, VOL. 29, NO. 11, PAGES 3727-3740, NOVEMBER 1993 Modeling of Multiphase. Although these organic liquids are designatedas "nonaque- ous," i.e., immiscible with water, their solubilities in water are, in fact, sufficientto render large quantities of ground- water unfit for human use

  13. A Multi-Component Measurement of the Cosmic Ray Composition Between 10^{17} eV and 10^{18} eV

    E-Print Network [OSTI]

    T. Abu-Zayyad; K. Belov; D. J. Bird; J. Boyer; Z. Cao; M. Catanese; G. F. Chen; R. W. Clay; C. E. Covault; J. W. Cronin; H. Y. Dai; B. R. Dawson; J. W. Elbert; B. E. Fick; L. F. Fortson; J. W. Fowler; K. G. Gibbs; M. A. K. Glasmacher; K. D. Green; Y. Ho; A. Huang; C. C. Jui; M. J. Kidd; D. B. Kieda; B. C. Knapp; S. Ko; C. G. Larsen; W. Lee; E. C. Loh; E. J. Mannel; J. Matthews; J. N. Matthews; B. J. Newport; D. F. Nitz; R. A. Ong; K. M. Simpson; J. D. Smith; D. Sinclair; P. Sokolsky; P. Sommers; C. Song; J. K. K. Tang; S. B. Thomas; J. C. van der Velde; L. R. Wiencke; C. R. Wilkinson; S. Yoshida; X. Z. Zhang

    1999-11-09

    The average mass composition of cosmic rays with primary energies between $10^{17}$eV and $10^{18}$eV has been studied using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum, $X_{max}$, and in the change in the muon density at a fixed core location, $\\rho_\\mu(600m)$, as a function of energy. The composition has also been evaluated in terms of the combination of $X_{max}$ and $\\rho_\\mu(600m)$. The results show that the composition is changing from a heavy to lighter mix as the energy increases.

  14. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols

    E-Print Network [OSTI]

    Ghosal, Sutapa

    2009-01-01

    A model for aqueous sea salt aerosols Sutapa Ghosal, 1species associated with sea salt ice and aerosols has beena minor component in sea salt, which has a Br – /Cl – molar

  15. Multiple Roles of Component Proteins in Bacterial Multicomponent Monooxygenases: Phenol Hydroxylase and Toluene/o-Xylene Monooxygenase from Pseudomonas sp. OX1

    E-Print Network [OSTI]

    Tinberg, Christine E.

    Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged ...

  16. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    SciTech Connect (OSTI)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-[var epsilon] model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  17. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-10-12

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  18. SIGNAL TO NOISE IMPROVEMENTS IN ON-ROAD NO, SO2, AND NH3 MEASUREMENTS USING A MULTI-COMPONENT CLASSICAL LEAST SQUARES

    E-Print Network [OSTI]

    Denver, University of

    .M.; Teffera, S.; Zeldin, M.D. J. Air. Waste Manage., 50, 2034-2044, 2000. 3 Burgard, D.A.; Dalton, T for quantifying each species. Piece Fit Approach Beer Lambert Law and the K-Matrix Approach Beer's law refers absorptivity. For a constant pathlength Beer's law can be rewritten by combining the absorptivity constant

  19. From research to practice: the effect of multi-component vocabulary instruction on fourth grade students' social studies vocabulary and comprehension performance 

    E-Print Network [OSTI]

    Graham, Lori Dear

    2009-05-15

    Critical Determinant in Comprehension .............. 4 Limited Research on Vocabulary and the Dimensions of Vocabulary Knowledge .................................................................. 6 Specific Difficulty in Content Area Text... ............................................................... 13 Research Questions ........................................................................ 14 Limitations of the Study ................................................................. 14 II REVIEW OF THE LITERATURE...

  20. Bulletin of the Seismological Society of America, Vol. 96, No. 1, pp. 215227, February 2006, doi: 10.1785/0120050060 Correlation of Response Spectral Values for Multicomponent

    E-Print Network [OSTI]

    Baker, Jack W.

    by Jack W. Baker and C. Allin Cornell Abstract Ground-motion prediction (attenuation) models predict the probability distributions of spectral acceleration values for a specified earthquake event. These models a ground- motion prediction, they are in principle dependent on the ground-motion prediction model used

  1. Estimating permeability from quasi-static deformation: Temporal variations and arrival time inversion

    E-Print Network [OSTI]

    Vasco, D.W.

    2008-01-01

    uid saturation prediction in a multicomponent reservoir,saturation change. Furthermore, at the pressures within the Krechba reservoir

  2. Environmental Toxicology and Chemistry, Vol. 18, No. 3, pp. 426429, 1999 Printed in the USA

    E-Print Network [OSTI]

    Peters, Catherine A.

    --Nonaqueous phase liquid Polycyclic aromatic hydrocarbons Coal tar UNIFAC Multicomponent INTRODUCTION Many in the USA 0730-7268/99 $9.00 .00 UNIFAC MODELING OF MULTICOMPONENT NONAQUEOUS PHASE LIQUIDS CONTAINING-2125, USA (Received 12 March 1998; Accepted 17 June 1998) Abstract--Multicomponent nonaqueous phase liquid

  3. Synthesis and Evaluation of Novel Iminosugars as Potential Male Contraceptive Agents; and the Chemistry of 2,3-Dihydropyridin-4-(1H)-ones and Related Enaminones in Multicomponent Reactions

    E-Print Network [OSTI]

    Gu, Xingxian

    2010-04-26

    The iminosugar N-butyl-1-deoxynojirimycin (nB-DNJ) has reversible, nonhormonal contraceptive effects on C57B/L6 mice at micromolar concentrations. In order to increase the potency and bioavailability of this lead compound, ...

  4. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 2, User`s guide

    SciTech Connect (OSTI)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-{var_epsilon} model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  5. VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998 Bobylev-Krook-Wu Modes for Multicomponent Gas Mixtures

    E-Print Network [OSTI]

    Meleshko, Sergey V.

    threshold pro- cesses such as chemical reactions, thermonuclear fusion, etc. [2]. From this point of view

  6. Mechanistic Studies of Water Electrolysis and Hydrogen Electro-Oxidation on High Temperature Ceria-Based Solid Oxide

    E-Print Network [OSTI]

    Li, Weixue

    of electrochemical devices, such as batteries, fuel cells, electrolyzers, and supercapacitors.1,2 However conversion devices with multicomponent materials (e.g., solid oxide fuel cells, electrolyzers

  7. An Explicit Runge-Kutta Iteration for Diffusion in the Low Mach Number Combustion Code

    E-Print Network [OSTI]

    Grcar, Joseph F.

    2007-01-01

    usion in the Low Mach Number Combustion Code Joseph F. Grcarthe low Mach number combustion code. Contents 1 Introductionthe low Mach number combustion code, LMC. The multicomponent

  8. A Site-Scale Model For Fluid And Heat Flow In The Unsaturated...

    Open Energy Info (EERE)

    multicomponent fluid and heat flow through porous and fractured rock. Fracture and matrix flow is treated using both dual-permeability and effective-continuum modeling...

  9. FREE ELECTRON LASERS

    E-Print Network [OSTI]

    Colson, W.B.

    2008-01-01

    Vinokurov and Shrinsky is the klystron FEL (sometimes calleda transverse optical klystron FEL, or TOK) where themore they devised an optical klystron so the multicomponent

  10. Reservoir monitoring and characterization using satellite geodetic data: Interferometric Synthetic Aperture Radar observations from the Krechba field, Algeria

    E-Print Network [OSTI]

    Vasco, D.W.

    2008-01-01

    uid saturation prediction in a multicomponent reservoir,Reservoir monitoring and characterization using geodetic data Landro, M. , 2001, Discrimination between pressure and ?uid saturation

  11. A Feasibility Study of Non-Seismic Geophysical Methods for Monitoring Geologic CO2 Sequestration

    E-Print Network [OSTI]

    Gasperikova, Erika; Hoversten, G. Michael

    2006-01-01

    to water saturation in a reservoir can be exploited byfluid saturation prediction in a multicomponent reservoirthe CO 2 saturation changes in the reservoir. This problem

  12. Time-lapse crosswell seismic and VSP monitoring of injected CO2 in a brine aquifer

    E-Print Network [OSTI]

    Daley, Thomas M.; Myer, Larry R.; Peterson, J.E.; Majer, E.L.; Hoversten, G.M.

    2006-01-01

    monitoring with the RST Reservoir Saturation Tool. Oilfieldare Schlumberger's reservoir saturation tool (RST) (Adolph,Fluid Saturation Prediction in a Multicomponent Reservoir,

  13. Transport of Injected Isobutane by Thermal Groundwater in Long...

    Open Energy Info (EERE)

    uses of isotopes have led to novel interpretations of the evolution of fluid and rock chemistry over time. New modelling techniques have allowed elucidation of multi-component...

  14. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential...

  15. Quantitative planar laser-induced fluorescence imaging of multi...

    Office of Scientific and Technical Information (OSTI)

    Article: Quantitative planar laser-induced fluorescence imaging of multi-component fuelair mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust...

  16. GEOPHYSICS, VOL. 67, NO. 5 (SEPTEMBER-OCTOBER 2002); P. 15641574, 12 FIGS., 2 TABLES. 10.1190/1.1512802

    E-Print Network [OSTI]

    Tsvankin, Ilya

    A number of case studies involving multicomponent land and offshore data demonstrated that mode (P.1190/1.1512802 Multicomponent stacking-velocity tomography for transversely isotropic media Vladimir Grechka, Andres Pech of seismic data for anisotropic media. Here, the velocity-analysis problem is examined for the most common

  17. Method of joining ITM materials using a partially or fully-transient liquid phase

    DOE Patents [OSTI]

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-03-14

    A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.

  18. Design and Synthesis of a Novel Triptycene-Based Ligand for Modeling Carboxylate-Bridged Diiron Enzyme Active Sites

    E-Print Network [OSTI]

    Li, Yang

    A novel triptycene-based ligand with a preorganized framework was designed to model carboxylate-bridged diiron active sites in bacterial multicomponent monooxygenase (BMM) hydroxylase enzymes. The synthesis of the ...

  19. Characterization of dipping fractures in transversely isotropic background

    E-Print Network [OSTI]

    Tsvankin, Ilya

    Characterization of dipping fractures in transversely isotropic background Vladimir Grechka incidence becomes dependent on fracture infill (saturation). A complete medium-characterization procedure for the vertical and NMO velocities. Keywords.--fracture characterization, azimuthal anisotropy, multicomponent

  20. Geoarchaeological investigations at the McNeill-Gonzales site (41VT141), Victoria County, Texas 

    E-Print Network [OSTI]

    Aiuvalasit, Michael John

    2009-06-02

    The McNeill-Gonzales site is a stratified multi-component prehistoric site in Victoria County, Texas. The site is located in approximately 2 meters of fine sand that mantle a fluvial terrace of the Guadalupe River. ...

  1. Analytical modelling of hydrogen transport in reactor containments

    E-Print Network [OSTI]

    Manno, V.

    1983-01-01

    There are two diffusion processes, molecular and turbulent, which should be modelled in different ways. Molecular diffusion is modelled by Wilke's formula for the multi-component gas diffusion, where the diffusion constants ...

  2. Beyond receiver functions: Passive source reverse time migration and inverse scattering of converted waves

    E-Print Network [OSTI]

    Shang, Xuefeng

    We present a wave equation prestack depth migration to image crust and mantle structures using multi-component earthquake data recorded at dense seismograph arrays. Transmitted P and S waves recorded on the surface are ...

  3. Frataxin (FXN) Based Regulation of the Iron-Sulfur Cluster Assembly Complex 

    E-Print Network [OSTI]

    Rabb, Jennifer

    2012-07-16

    Iron-sulfur clusters are protein cofactors that are critical for all life forms. Elaborate multi-component systems have evolved for the biosynthesis of these cofactors to protect organisms from the toxic effects of free ...

  4. Phase Behavior of Alkanes in Shale Nanopores 

    E-Print Network [OSTI]

    Rahmani Didar, Behnaz

    2015-05-01

    and sorption densities in few PVT conditions. Many outstanding questions exist such as the concept of fluid pressure in confinement, multi-component fluid sorption and phase behavior/transition in confinement and the effect of pore type, geometry...

  5. Lattice Boltzmann equation simulations of turbulence, mixing, and combustion 

    E-Print Network [OSTI]

    Yu, Huidan

    2006-04-12

    We explore the capability of lattice Boltzmann equation (LBE) method for complex fluid flows involving turbulence, mixing, and reaction. In the first study, LBE schemes for binary scalar mixing and multi-component reacting flow with reactions...

  6. A method for tradespace exploration of systems of systems

    E-Print Network [OSTI]

    Chattopadhyay, Debarati

    2009-01-01

    Systems of Systems (SoS) are a current focus of many organizations interested in integrating assets and utilizing new technology to create multi-component systems that deliver value over time. The dynamic composition of ...

  7. Applications of the thermodynamics of elastic, crystalline materials 

    E-Print Network [OSTI]

    Si, Xiuhua

    2006-10-30

    The thermodynamic behaviors of multicomponent, elastic, crystalline solids under stress and electro-magnetic fields are developed, including the extension of Euler�s equation, Gibbs equation, Gibbs-Duhem equation, the conditions to be expected...

  8. Blind benchmark predictions of the NACOK air ingress tests using the CFD code FLUENT

    E-Print Network [OSTI]

    Brudieu, Marie-Anne V

    2007-01-01

    The JAERI and NACOK experiments examine the combined effects of natural convection during an air ingress event: diffusion, onset of natural circulation, graphite oxidation and multicomponent chemical reactions. MIT has ...

  9. Reconstructing the past: architectural analysis of communal structures at the NAN Ranch ruin (LA2465), Grant County, New Mexico 

    E-Print Network [OSTI]

    Burden, Damon Andrew

    2001-01-01

    Eleven seasons of field work at the NAN Ranch ruin (LA 2465), a multicomponent Mimbres site in Grant County, New Mexico, have allowed researchers to reconstruct a detailed sequence of architectural development stretching ...

  10. Digestion Experiments with Texas Hays and Fodders. 

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1912-01-01

    to withstand implantation and peak physiological stresses, we designed and characterized a multi-component scaffold comprised of polyurethane electrospun mesh layers bonded together by a fibrin hydrogel matrix. We have demonstrated this composite construct...

  11. Dioxygen activation and substrate hydroxylation by the hydroxylase component of toluene/O-xylene monooxygenase from pseudomonas sporium OX1

    E-Print Network [OSTI]

    Murray, Leslie Justin

    2007-01-01

    Non-heme carboxylate-bridged diiron centers in the hydroxylase components of the bacterial multicomponent monooxygenases activate dioxygen at structurally homologous active sites. Catalysis requires the management of four ...

  12. Designing for Heterogeneity and Unreliability: Examples from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of my talk. In the second part I will give a broad overview of my earlier work with software engineering of FLASH, a multi-component & multi-physics community code....

  13. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces 

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  14. Diiron Oxidation State Control of Substrate Access to the Active Site of Soluble Methane Monooxygenase Mediated by the Regulatory Component

    E-Print Network [OSTI]

    Wang, Weixue

    The regulatory component (MMOB) of soluble methane monooxygenase (sMMO) has a unique N-terminal tail not found in regulatory proteins of other bacterial multicomponent monooxygenases. This N-terminal tail is indispensable ...

  15. GEOPHYSICS, VOL. 68, NO. 4 (JULY-AUGUST 2003); P. 13991407, 4 FIGS., 3 TABLES. 10.1190/1.1598133

    E-Print Network [OSTI]

    Tsvankin, Ilya

    obtained, for example, from multiazimuth, multicomponent surface seismic and vertical seismic profiling coefficients. Addition- ally, walkaway vertical seismic profiling (VSP) data can.1190/1.1598133 Feasibility of seismic characterization of multiple fracture sets Vladimir Grechka and Ilya Tsvankin ABSTRACT

  16. Combining Feedback Absorption Spectroscopy, Amplified Resonance and Low Pressure Sampling for the Measurement of Nitrogen-Containing Compounds in Automotive Emissions

    Broader source: Energy.gov [DOE]

    Discusses a novel combination of multi-component scanning direct absorption spectroscopy, resonant cavity and low-pressure sampling to systematically improve the performance of a specific gas analyzer.

  17. Method of forming a joint

    DOE Patents [OSTI]

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  18. Planar ceramic membrane assembly and oxidation reactor system

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohrn, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, Paul Nigel (Allentown, PA)

    2009-04-07

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  19. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  20. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  1. Combined catalysts for the combustion of fuel in gas turbines

    DOE Patents [OSTI]

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  2. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  3. High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN)

    2011-10-11

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  4. High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods

    DOE Patents [OSTI]

    Goyal, Amit

    2013-09-17

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  5. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  6. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  7. On the geometrical thermodynamics of chemical reactions

    E-Print Network [OSTI]

    Manuel Santoro; Albert S. Benight

    2005-07-08

    The formal structure of geometrical thermodynamics is reviewed with particular emphasis on the geometry of equilibria submanifolds. On these submanifolds thermodynamic metrics are defined as the Hessian of thermodynamic potentials. Links between geometry and thermodynamics are explored for single and multiple component, closed and open systems. For multi-component closed and open systems the Gibbs free energy is employed as the thermodynamic potential to investigate the connection between geometry and thermodynamics. The Gibbs free energy is chosen for the analysis of multicomponent systems and, in particular, chemical reactions.

  8. Journal of Combinatorial Optimization, 10, 261282, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

    E-Print Network [OSTI]

    Yanikoglu, Berrin

    , Inc. Manufactured in The Netherlands. Testing Systems of Identical Components TONGUC¸ ¨UNL ¨UYURT, 34956, Istanbul, Turkey Received January 18, 2005; Revised June 1, 2005; Accepted June 17, 2005 Abstract. We consider the problem of testing sequentially the components of a multi-component reliability

  9. Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield

    E-Print Network [OSTI]

    Umstadter, Donald

    Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser 1999 The electron beam generated in a self-modulated laser-wakefield accelerator is characterized, was measured for 2 MeV electrons. The electron beam was observed to have a multicomponent beam profile

  10. Air Ingress Benchmarking with Computational Fluid Dynamics Analysis

    E-Print Network [OSTI]

    1 Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Tieliang Zhai Professor by the US Nuclear Regulatory Commission #12;2 Air Ingress Accident Objectives and Overall Strategy: Depresurization Pure Diffusion Natural Convection Challenging: Natural convection Multi-component Diffusion (air

  11. MNRAS 431, 24932512 (2013) doi:10.1093/mnras/stt345 Advance Access publication 2013 March 21

    E-Print Network [OSTI]

    Baes, Maarten

    2013-01-01

    MNRAS 431, 2493­2512 (2013) doi:10.1093/mnras/stt345 Advance Access publication 2013 March 21 to build an in-depth and multicomponent representation of NGC 4449 `bottom-up', taking advantage://mnras.oxfordjournals.org/Downloadedfrom #12;2494 O. L. Karczewski et al. note that including the extended H I envelope and the molecular gas

  12. Chemical Wave Logic Gates Oliver Steinbock, Petteri Kettunen, and Kenneth Showalter*

    E-Print Network [OSTI]

    Showalter, Kenneth

    Chemical Wave Logic Gates Oliver Steinbock, Petteri Kettunen, and Kenneth Showalter* Department Form: August 6, 1996X Logic gates based on chemical wave propagation in geometrically constrained. Computational studies of the serial coupling of elements to form multicomponent gates and general chemical wave

  13. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, D.J.

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  14. AFLOW: An automatic framework for high-throughput materials discovery Stefano Curtarolo a,b,

    E-Print Network [OSTI]

    Curtarolo, Stefano

    , Denis O. Demchenko f , Dane Morgan g a Department of Mechanical Engineering and Materials Science, Duke Commonwealth University, Richmond, VA 23284, United States g Department of Materials Science and Engineering-optimization techniques used for the study of high-temperature reactions in multicomponent hydrides [29­31]. In its

  15. Transient flame propagation process and flame-speed oscillation phenomenon in a carbon dust cloud

    E-Print Network [OSTI]

    Qiao, Li

    chemistry, variable thermodynamic properties, and multicomponent transport properties. The particle of pulverized coal produces more than half of the electric power generation in the United States. Combustible of the fire safety of coal have been motivated during the past few decades as a result of coal mine accidents

  16. CX-011843: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhanced Shielding Performance of High Level Waste Storage Packages via Multi-Component Coatings – Virginia Polytechnic Institute and State University CX(s) Applied: B3.6 Date: 01/22/2014 Location(s): Idaho Offices(s): Idaho Operations Office

  17. November 2012 Wave propagation in complex media,

    E-Print Network [OSTI]

    Snieder, Roel

    of the novel multi-component marine seismic data which have recently been available for offshore exploration to seismic imaging Advisor: Prof. Roel Snieder Committee Members: Prof. Thomas Furtak Prof. Yaoguo Li Prof on September 5, 2012 #12;#12;WAVE PROPAGATION IN COMPLEX MEDIA, SCATTERING THEORY, AND APPLICATION TO SEISMIC

  18. J PHYS IV FRANCE 7 (1997) Colloque C2, SuppICmentau Journal de PhysiqueI11d'avril 1997

    E-Print Network [OSTI]

    Boyer, Edmond

    1997-01-01

    of investigationshave characterized the structural,optical, mechanical and electrical properties of these materials[l,21 the 3d ions of the matrix is so important in the determination of their optical properties require multicomponent fluorideglasses.These materialscan be dopedwith 3d transition metal ions, as ~ i

  19. Comment on ``Osmotic Propulsion: The Osmotic In a recent Letter [1] it has been claimed that colloidal

    E-Print Network [OSTI]

    Jülicher, Frank

    Comment on ``Osmotic Propulsion: The Osmotic Motor'' In a recent Letter [1] it has been claimed that colloidal particles immersed in a multicomponent fluid would be subject to an ``osmotic force'' Fosm ¼ À R Sp ÅdA if a solute concentration gradient exists. Here Å ¼ nkBT de- notes an osmotic pressure, n

  20. A reactive BGK-type model: influence of elastic collisions and chemical interactions

    E-Print Network [OSTI]

    Ceragioli, Francesca

    , Portugal Abstract. A BGK-type model for a reactive multicomponent gas undergoing chemical bimolecularA reactive BGK-type model: influence of elastic collisions and chemical interactions R. Monaco£ , M, as well as on common mean velocity and tempera- ture, is investigated with respect to chemical equilibrium

  1. RCP Fall 2011 SPONSORS MEETING PETROLEUM HALL, GREEN CENTER

    E-Print Network [OSTI]

    Back into Seismic Interpretation 12:00 - 1:00 PM Lunch Friedhoff Hall 1:00 - 1:30 PM David Hays Seismic: The Business Value Challenge: Alex Martinez and Mike Matheney, ExxonMobil 9:45 - 10:00 AM Delhi Field Time-Lapse Multicomponent Seismic Acquisition: Randy Luckiw and Jeff Hislop, Tesla-Conquest 10

  2. Control structure selection of a deethanizer column with partial condenser Proceedings of European Congress of Chemical Engineering (ECCE-6)

    E-Print Network [OSTI]

    Skogestad, Sigurd

    separates ethane (C2) from propane (C3). This is a multicomponent column with a partial condenser and vapor for pressure control, the results show that this is not a problem if a temperature loop is also closed a high column pressure or a low condenser temperature, so the use of a partial condenser can avoid

  3. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, David J. (Redmond, OR)

    1996-03-12

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer.

  4. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, D.J.; Newbold, D.D.; Frost, C.B.

    1997-07-08

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane. 11 figs.

  5. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, David J. (Redmond, OR); Newbold, David D. (Bend, OR); Frost, Chester B. (Bend, OR)

    1997-01-01

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of at least one common-axis hole through all components of the composite membrane and the provision of a gas-tight seal around the periphery of the hole or holes through a coating metal layer of the membrane.

  6. Developing models of aerosol representation to investigate composition, evolution, optical properties, and CCN spectra using measurements of size-resolved hygroscopicity 

    E-Print Network [OSTI]

    Gasparini, Roberto

    2006-08-16

    , size and hygroscopicity information were combined to model the aerosol as a population of multi-component particles. With this model, the aerosol hygroscopic growth factor f(RH), relating the submicron scattering at high RH to that at low RH...

  7. A 5-step reduced mechanism for combustion of CO/H2/H2O/CH4/CO2 mixtures with low hydrogen/methane and high H2O content

    E-Print Network [OSTI]

    Nicolaou, Z. M.; Chen, J. Y.; Swaminathan, N.

    2012-10-17

    In this study a 5-step reduced chemical kinetic mechanism involving 9 species is developed for combustion of Blast Furnace Gas (BFG), a multi-component fuel containing CO/H2/CH4/CO2, typically with low hydrogen, methane and high water fractions...

  8. Heat release rate markers for premixed combustion

    E-Print Network [OSTI]

    Nikolaou, Zacharias M.; Swaminathan, Nedunchezhian

    2014-06-16

    The validity of the commonly used flame marker for heat release rate (HRR) visualization, namely the rate of the reaction OH + CH2O ? HCO + H2O is re-examined. This is done both for methane–air and multi-component fuel–air mixtures for lean...

  9. Mech 327 Course Syllabus 1 University of British Columbia

    E-Print Network [OSTI]

    Phani, A. Srikantha

    in this course include: Exergy analysis of thermal system Multi-component, moist, and reacting working fluids and equations of state for characterization and analysis of thermal systems New topics to be introduced an appropriate problem solving methodology and the above principles for the design and analysis of thermal

  10. Shear stabilization of a solidifying front: Weakly nonlinear analysis in a long-wave limit

    E-Print Network [OSTI]

    Schulze, Tim

    The manufacturing of single crystals of multi-component materials with uniform material properties is frequently--including metal- lic alloys, semiconductor materials and crystals for optical devices--fall into this category materials. The control of fluid motion and interfaces during these processes is essen- tial

  11. Process for the production of superconductor containing filaments

    DOE Patents [OSTI]

    Tuominen, Olli P. (Candler, NC); Hoyt, Matthew B. (Arden, NC); Mitchell, David F. (Asheville, NC); Morgan, Carol W. (Asheville, NC); Roberts, Clyde Gordon (Asheville, NC); Tyler, Robert A. (Canton, NC)

    2002-01-01

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  12. Microporosity is one of the major defects encountered in castings and is caused by two concomitant mechanisms: solidification shrinkage and gas segregation. It reduces mechanical properties of the cast part like fatigue life.

    E-Print Network [OSTI]

    Psaltis, Demetri

    mechanisms: solidification shrinkage and gas segregation. It reduces mechanical properties of the cast part·Microporosity is one of the major defects encountered in castings and is caused by two concomitant for multigas systems in multi-component alloys. Modeling of Casting, Welding and Adv. Solidif. Proc. XI, volume

  13. Dynamic Reservoir Characterization for High Resolution Connectivity Mapping and Conformance Control, Morrow Sandstone Reservoir, Postle Field, Oklahoma

    E-Print Network [OSTI]

    this hypothesis and to capture the economic benefit of optimizing EOR processes through DRC. Such a #12 in this optimization process as a Phase XII project. Past RCP monitoring studies have indicated that multicomponent (9 Control, Morrow Sandstone Reservoir, Postle Field, Oklahoma "You've got to know when to hold `em, know

  14. ORRECTEDPROOF Please cite this article in press as: Martinez, M. J., et al., Comparing predictions of PEM fuel cell behavior using MaxwellStefan and CFD

    E-Print Network [OSTI]

    Van Zee, John W.

    Fick's law16 CFD17 PEMFC18 Correction flux19 Correction velocity20 a b s t r a c t This study examines the accuracy of solving the multi-component equations for a Proton Exchange Mem- brane Fuel Cell (PEMFC models is less than 5%. Thus, the use of the corrected AMC model is appropriate for PEMFC applications

  15. Maximizing Commercial Hydraulic Software Simulation in Thermal Distribution System Continuous Commissioning 

    E-Print Network [OSTI]

    Chen, Q.; Xu, C.; Claridge, D. E.; Turner, W. D.; Deng, S.

    2005-01-01

    inefficient compared to current standards. This paper deals with energy savings that may be effected for one such plant. Three basic ideas are evaluated:- o Use of Multi-Component Chilling (MCC). o Addition of an Expander. o Heat Recovery from Gas Turbine...

  16. Metal Biosorption Equilibria in a Ternary System

    E-Print Network [OSTI]

    Volesky, Bohumil

    Metal Biosorption Equilibria in a Ternary System K. H. Chong and B. Volesky* Department of Chemical/Accepted October 4, 1995 Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system

  17. KYLE T. SPIKES Assistant Professor The University of Texas at Austin

    E-Print Network [OSTI]

    Yang, Zong-Liang

    , grid searching, and prestack seismic inversion in seismic reservoir characterization of the Haynesville, and T. Hess, 2014, Inversion of multicomponent 3D vertical seismic profile data for porosity and CO2. Spikes, K. T., 2012, Overview of rock property relationships and characterization methods for selected

  18. Kyle Spikes Assistant Professor

    E-Print Network [OSTI]

    Yang, Zong-Liang

    , in preparation. *Carter, R. W., K. T. Spikes, and T. Hess, 2014, Inversion of multicomponent 3D vertical seismic of rock-physics modeling, grid searching, and prestack seismic inversion in seismic reservoir, 2013, Characterizing the reservoir properties of the Haynesville Shale using rock-physics modeling

  19. 8Reviews in Mineralogy & Geochemistry Vol. 72 pp. 311-408, 2010

    E-Print Network [OSTI]

    Zhang, Youxue

    of diffusion, the effect of temperature, pressure, H2O content, fO2 , and more generally melt composition on diffusion in simple- system melts, of interests to glass and ceramic scientists, is not included covers literature diffusion data (except multicomponent diffusion matrix data, and those of H, C, O

  20. Application of Energy Saving Concepts to LPG Recovery Plants 

    E-Print Network [OSTI]

    Carpenter, M. J.; Barnwell, J.

    1982-01-01

    inefficient compared to current standards. This paper deals with energy savings that may be effected for one such plant. Three basic ideas are evaluated:- o Use of Multi-Component Chilling (MCC). o Addition of an Expander. o Heat Recovery from Gas Turbine...

  1. GEOPHYSICS, VOL. 62, NO. 2 (MARCH-APRIL 1997); p. 676-689,9 FIGS., 2 TABLES. Processing of a nine-component near-offset

    E-Print Network [OSTI]

    Edinburgh, University of

    scheme for process- ing a multicomponent vertical seismic profile (VSP). This sequence is applied near-offset vertical seismic profiles (VSPs) are of particular value since the directly trans- mitted-component near-offset VSP for seismic anisotropy Colin MacBeth*, Xiang-Yang Li*, Xinwu Zeng*, Dale Coxs, and John

  2. Copyright 2007, Society of Petroleum Engineers This paper was prepared for presentation at the 2007 SPE Annual Technical Conference and

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    consists of adding water and surfactant to a multi-component OBM invading a formation saturated-bound, and movable water. The dynamic process of OBM invasion causes component concentrations to vary with space-dimensional spatial distributions of water and oil saturation that are transformed into spatial distributions

  3. GEOPHYSICS, VOL. 62, NO. 2 (MARCH-APRIL 1997); P. 630643, 12 FIGS., 1 TABLE. Data-matrix asymmetry and polarization changes

    E-Print Network [OSTI]

    Edinburgh, University of

    methods for interpreting data-matrix asymmetry and polarization changes with depth from multicomponent with fracture swarms. Presented at the 65th Annual International Meeting, Society of Exploration Geophysicists Kingdom. c 1997 Society of Exploration Geophysicists. All rights reserved. INTRODUCTION Shear

  4. GEOPHYSICS, VOL. 68, NO. 6 (NOVEMBER-DECEMBER 2003); P. 20732081, 8 FIGS. 10.1190/1.1635061

    E-Print Network [OSTI]

    recordings Remco Muijs, Johan O. A. Robertsson, Andrew Curtis, and Klaus Holliger ABSTRACT Accurate knowledge plus pressure) seabed recordings allows the P- and S-wave velocities as well as the density, and it is applicable to multicomponent data recorded in routine seabed surveys. Compared to exist- ing techniques

  5. GEOPHYSICS, VOL. 70, NO. 4 (JULY-AUGUST 2005); P. R15R23, 9 FIGS., 1 TABLE. 10.1190/1.1990220

    E-Print Network [OSTI]

    -wave ve- locities is important for processing and interpreting multi- component land seismic data because using a propagator in- version. This approach requires data recorded by at least one multicomponent- mental projects (Ward, 1990). Furthermore, this knowledge is required to correctly process and interpret

  6. European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006

    E-Print Network [OSTI]

    Vuik, Kees

    dissolved, is required to obtain a microstructure suited to undergo heavy plastic deformation. This pro , the interface concentration is the solid solubility predicted from thermodynamics. In multicomponent alloys phases. Whereas equilib- rium phases can be predicted quite accurately from thermodynamic models

  7. Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae)

    E-Print Network [OSTI]

    Elias, Damian Octavio

    Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae of multicomponent seismic courtship signals in addition to and produced in concert with its multiple visual ornaments and movement displays. Here, we demonstrate the importance of these seismic signals

  8. Complex Distillation Arrangements : Extending the Petlyuk Ideas

    E-Print Network [OSTI]

    Skogestad, Sigurd

    and Technology N--7034 Trondheim Norway Abstract The task of separating a multicomponent mixture into streams shell using dividing walls or vertical partitions. INTRODUCTION Industrial distillation processes is also known as the Petlyuk column, due to a theoretical study of Pet­ lyuk et al. (1965), or as a fully

  9. Complex Distillation Arrangements : Extending the Petlyuk Ideas

    E-Print Network [OSTI]

    Skogestad, Sigurd

    and Technology N­7034 Trondheim Norway Abstract The task of separating a multicomponent mixture intostreams shell using dividing walls or vertical partitions. INTRODUCTION Industrial distillation processes is also known as the Petlyuk column, due to a theoretical study of Pet- lyuk et al. (1965), or as a fully

  10. ITOUGH2 software qualification

    SciTech Connect (OSTI)

    Finsterle, S.; Pruess, K.; Fraser, P.

    1996-10-01

    The purpose of this report is to provide all software baseline documents necessary for the software qualification of ITOUGH2. ITOUGH2 is a computer program providing inverse modeling capabilities for TOUGH2. TOUGH2 is a numerical simulation code for multi-dimensional coupled fluid and heat flow of multiphase, multicomponent fluid mixtures in porous and fractured media.

  11. Under consideration for publication in J. Fluid Mech. 1 Available potential energy density for a

    E-Print Network [OSTI]

    Tailleux, Remi

    Under consideration for publication in J. Fluid Mech. 1 Available potential energy density ??) In this paper, the concept of available potential energy (APE) density is extended to a multicomponent Boussinesq fluid with a nonlinear equation of state. As shown by previous studies, the APE density

  12. Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A

    E-Print Network [OSTI]

    Lev B. Leinson

    2014-12-16

    In a simple model it is demonstrated that the neutron star surface temperature evolution is sensitive to the phase state of the triplet superfluid condensate. A multicomponent triplet pairing of superfluid neutrons in the core of a neutron star with participation of several magnetic quantum numbers leads to neutrino energy losses exceeding the losses from the unicomponent pairing. A phase transition of the neutron condensate into the multicomponent state triggers more rapid cooling of superfluid core in neutron stars. This makes it possible to simulate an anomalously rapid cooling of neutron stars within the minimal cooling paradigm without employing any exotic scenarios suggested earlier for rapid cooling of isolated neutron star in Cassiopeia A.

  13. Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A

    E-Print Network [OSTI]

    Leinson, Lev B

    2015-01-01

    In a simple model it is demonstrated that the neutron star surface temperature evolution is sensitive to the phase state of the triplet superfluid condensate. A multicomponent triplet pairing of superfluid neutrons in the core of a neutron star with participation of several magnetic quantum numbers leads to neutrino energy losses exceeding the losses from the unicomponent pairing. A phase transition of the neutron condensate into the multicomponent state triggers more rapid cooling of superfluid core in neutron stars. This makes it possible to simulate an anomalously rapid cooling of neutron stars within the minimal cooling paradigm without employing any exotic scenarios suggested earlier for rapid cooling of isolated neutron star in Cassiopeia A.

  14. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  15. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Kushal Shah; Vassili Gelfreich; Vered Rom-Kedar; Dmitry Turaev

    2015-04-03

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  16. Metal-organic frameworks for Xe/Kr separation

    DOE Patents [OSTI]

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  17. Metal-organic frameworks for Xe/Kr separation

    DOE Patents [OSTI]

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  18. Solvent recovery targeting

    SciTech Connect (OSTI)

    Ahmad, B.S.; Barton, P.I.

    1999-02-01

    One of the environmental challenges faced by the pharmaceutical and specialty chemical industries is the widespread use of organic solvents. With a solvent-based chemistry, the solvent necessarily has to be separated from the product. Chemical species in waste-solvent streams typically form multicomponent azeotropic mixtures, and this often complicates separation and, hence, recovery of solvents. A design approach is presented whereby process modifications proposed by the engineer to reduce the formation of waste-solvent streams can be evaluated systematically. This approach, called solvent recovery targeting, exploits a recently developed algorithm for elucidating the separation alternatives achievable when applying batch distillation to homogeneous multicomponent mixtures. The approach places the composition of the waste-solvent mixture correctly in the relevant residue curve map and computes the maximum amount of pure material that can be recovered via batch distillation. Solvent recovery targeting is applied to two case studies derived from real industrial processes.

  19. Toward design of the Collider Beam Collimation System

    SciTech Connect (OSTI)

    Drozhdin, A.; Mokhov, N.; Soundranayagam, R.; Tompkins, J.

    1994-02-01

    A multi-component beam collimation system for the Superconducting Super Collider is described. System choice justification and design requirements are presented. System consists of targets, scrapers, and collimators with appropriate cooling and radiation shielding. Each component has an independent control for positioning and aligning with respect to the beam. Results of beam loss distribution, energy deposition calculations, and thermal analyses, as well as cost estimate, are presented.

  20. Crucial tests of the existence of a Time Operator

    E-Print Network [OSTI]

    Thomas Durt

    2010-03-14

    In the present paper we show that the Temporal Wave Function approach of the decay process, which is a multicomponent version of the Time Operator approach leads to new, non-standard, predictions concerning the statistical properties of decay time distributions of single kaons and entangled pairs of mesons. These results suggest crucial experimental tests for the existence of a Time Operator for the decay process to be realized in High Energy Physics or Quantum Optics.

  1. Upscaling of Long-Term U(VI) Desorption from Pore Scale Kinetics to Field-Scale Reactive Transport Models

    SciTech Connect (OSTI)

    Steefel, Carl I.; Li Li; Davis, J.A.; Curtis, G.P.; Honeyman, B.D.; Kent, D.B.; Kohler, M.; Rodriguez, D.R.; Johnson, K.J.; Miller, A.

    2006-06-01

    The focus of the project is the development of scientifically defensible approaches for upscaling reactive transport models (RTM) through a detailed understanding of U(VI) desorption across several spatial scales: bench-, intermediate-, and field-scales. The central hypothesis of the project is that the development of this methodology will lead to a scientifically defensible approach for conceptual model development for multicomponent RTM at contaminated DOE sites, leading to predictive transport simulations with reduced uncertainty.

  2. Predicting the radiation tolerance of oxides

    SciTech Connect (OSTI)

    Sickafus, K. (Kurt E.); Grimes, R. W. (Robin W.)

    2001-01-01

    We have used atomistic computer simulations and ion beam irradiations to examine radiation damage accumulation in multicomponent oxides, We have developed contour energy maps via computer simulations to predict the effects of oxide structure and chemical composition on radiation-induced atomic disorder, defect migration, and swelling. Ion irradiation damage experiments have been perfonned on, pyrochlore and fluorite-structured oxide ceramics to test the predictions from computer models.

  3. Solid source MOCVD system

    DOE Patents [OSTI]

    Hubert, Brian N. (Yakima, WA); Wu, Xin Di (San Jose, CA)

    1998-01-01

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  4. Solid source MOCVD system

    DOE Patents [OSTI]

    Hubert, B.N.; Wu, X.D.

    1998-10-13

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  5. Ternary liquid scintillator for optical fiber applications

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  6. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    E-Print Network [OSTI]

    Tomas Roubicek; Giuseppe Tomassetti

    2013-09-12

    A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

  7. Liquid scintillators for optical fiber applications

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 1, 2, 4, 5, 3H, 6H, 1 OH, tetrahydro-8-trifluoromethyl (1) benzopyrano (9, 9a, 1-gh) quinolizin-10-one (Coumarin) as a solute in a fluor solvent such as benzyl alcohol or pseudo-cumene. The use of BIBUQ as an additional or primary solute is also disclosed.

  8. Heat treatment giving a stable high temperature micro-structure in cast austenitic stainless steel

    DOE Patents [OSTI]

    Anton, Donald L. (Toland, CT); Lemkey, Franklin D. (Windsor, CT)

    1988-01-01

    A novel micro-structure developed in a cast austenitic stainless steel alloy and a heat treatment thereof are disclosed. The alloy is based on a multicomponent Fe-Cr-Mn-Mo-Si-Nb-C system consisting of an austenitic iron solid solution (.gamma.) matrix reinforced by finely dispersed carbide phases and a heat treatment to produce the micro-structure. The heat treatment includes a prebraze heat treatment followed by a three stage braze cycle heat treatment.

  9. Nonlinear diffusion in Acetone-Benzene Solution

    E-Print Network [OSTI]

    Obukhovsky, Vjacheslav V

    2010-01-01

    The nonlinear diffusion in multicomponent liquids under chemical reactions influence has been studied. The theory is applied to the analysis of mass transfer in a solution of acetone-benzene. It has been shown, that the creation of molecular complexes should be taken into account for the explanation of the experimental data on concentration dependence of diffusion coefficients. The matrix of mutual diffusivities has been found and effective parameters of the system have been computed.

  10. Star formation and substructure in galaxy clusters

    SciTech Connect (OSTI)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2?, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  11. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  12. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    SciTech Connect (OSTI)

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale reservoirs, and continued global technology exchange.

  13. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect (OSTI)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  14. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  15. Generating Nonclassical States from Classical Radiation by Subtraction Measurements

    E-Print Network [OSTI]

    Luke C. G. Govia; Emily J. Pritchett; Frank K. Wilhelm

    2013-09-10

    We describe the creation of nonclassical states of microwave radiation via ideal dichotomic single photon detection, i.e., a detector that only indicates presence or absence of photons. Ideally, such a detector has a back action in the form of the subtraction operator. Using the non-linearity of this back action, it is possible to create a large family of nonclassical states of microwave radiation, including squeezed and multi-component cat states, starting from a coherent state. We discuss the applicability of this protocol to current experimental designs of Josephson Photomultipliers (JPMs).

  16. On Boiling of Crude Oil under Elevated Pressure

    E-Print Network [OSTI]

    Pimenova, Anastasiya V

    2015-01-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  17. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect (OSTI)

    Chang, C.H.

    1992-01-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  18. Numerical simulation of alumina spraying in argon-helium plasma jet

    SciTech Connect (OSTI)

    Chang, C.H.

    1992-08-01

    A new numerical model is described for simulating thermal plasmas containing entrained particles, with emphasis on plasma spraying applications. The plasma is represented as a continuum multicomponent chemically reacting ideal gas, while the particles are tracked as discrete Lagrangian entities coupled to the plasma. Computational results are presented from a transient simulation of alumina spraying in a turbulent argon-helium plasma jet in air environment, including torch geometry, substrate, and multiple species with chemical reactions. Particle-plasma interactions including turbulent dispersion have been modeled in a fully self-consistent manner. Interactions between the plasma and the torch and substrate walls are modeled using wall functions. (15 refs.)

  19. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, Ray B. (Livermore, CA)

    1988-01-01

    A triple material piezoresistive gage provides multi-component elastic stress or measurements. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements.

  20. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1987-05-19

    A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

  1. Slow light microfluidics: a proposal

    E-Print Network [OSTI]

    Sumetsky, M

    2014-01-01

    The resonant slow light structures created along a thin-walled optical capillary by nanoscale deformation of its surface can perform comprehensive simultaneous detection and manipulation of microfluidic components. This concept is illustrated with a model of a 0.5 millimeter long 5 nm high triangular bottle resonator created at a 50 micron radius silica capillary containing floating microparticles. The developed theory shows that the microparticle positions can be determined from the bottle resonator spectrum. In addition, the microparticles can be driven and simultaneously positioned at predetermined locations by the localized electromagnetic field created by the optimized superposition of eigenstates of this resonator, thus, exhibiting a multicomponent near field optical tweezers.

  2. Isochronal synchrony and bidirectional communication with delay-coupled nonlinear oscillators

    E-Print Network [OSTI]

    Brian B. Zhou; Rajarshi Roy

    2006-10-10

    We propose a basic mechanism for isochronal synchrony and communication with mutually delay-coupled chaotic systems. We show that two Ikeda ring oscillators (IROs), mutually coupled with a propagation delay, synchronize isochronally when both are symmetrically driven by a third Ikeda oscillator. This synchronous operation, unstable in the two delay-coupled oscillators alone, facilitates simultaneous, bidirectional communication of messages with chaotic carrier waveforms. This approach to combine both bidirectional and unidirectional coupling represents an application of generalized synchronization using a mediating drive signal for a spatially distributed and internally synchronized multi-component system.

  3. On Boiling of Crude Oil under Elevated Pressure

    E-Print Network [OSTI]

    Anastasiya V. Pimenova; Denis S. Goldobin

    2015-10-08

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  4. Simulation of residual oil displacement in a sinusoidal channel with the lattice Boltzmann method

    E-Print Network [OSTI]

    Otomo, Hiroshi; Hazlett, Randy; Li, Yong; Staroselsky, Ilya; Zhang, Raoyang; Chen, Hudong

    2016-01-01

    We simulate oil slug displacement in a sinusoidal channel in order to validate computational models and algorithms for multi-component flow. This case fits in the gap between fully realistic cases characterized by complicated geometry and academic cases with simplistic geometry. Our computational model is based on the lattice Boltzmann method and allows for variation of physical parameters such as wettability and viscosity. The effect of variation of model parameters is analyzed, in particular via comparison with analytical solutions. We discuss the requirements for accurate solution of the oil slug displacement problem.

  5. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1988-05-17

    A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

  6. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    SciTech Connect (OSTI)

    Vaughan, K.H.

    1988-04-01

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  7. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  8. Restoring The Azimuthal Symmetry Of Charged Particle Lateral Density In The Range Of KASCADE-Grande

    SciTech Connect (OSTI)

    Sima, O.; Rebel, H.; Apel, W. D.; Bekk, K.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Gils, H. J.; Haungs, A.; Heck, D.; Huege, T.; Isar, P. G.; Klages, H. O.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Nehls, S.

    2010-11-24

    KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located in Karlsruhe Institute of Technology (Campus North), Germany. An important observable for analyzing the EAS is the lateral density of charged particles in the intrinsic shower plane. This observable is deduced from the basic information provided by the Grande scintillators - the energy deposit - first in the observation plane, by using a Lateral Energy Correction Function (LECF), then in the intrinsic shower plane, by applying an adequate mapping procedure. In both steps azimuthal.

  9. Emergent gravitational dynamics from multi-BEC hydrodynamics?

    E-Print Network [OSTI]

    Lorenzo Sindoni

    2010-11-19

    In this paper, we examine the possibility to implement some form of emergent Newtonian gravity in a generic multi-component Bose--Einstein condensate. Parallely to what happens for the emergence of low energy Lorentz invariance, strong requirements have to be imposed on the underlying condensed matter model. We will show, within a simplified model, that the presence of a global symmetry alleviates the problems associated to Lorentz violation, allows the presence of a long range potential, to which the analogue matter fields (the quasi-particles) are coupled following a weaker form of equivalence principle.

  10. Evaluation of a reduced mechanism for turbulent premixed combustion

    E-Print Network [OSTI]

    Nikolaou, Zacharias M.; Swaminathan, Nedunchezhian; Chen, Jyh-Yuan

    2014-07-21

    stricter, due to increasing levels of CO2 in the atmosphere. In light of these developments, low calo- rific value fuels such as Coke Oven Gas (COG), Blast Furnace Gas (BFG), and those coming from bio-gasifiers, are becoming increas- ingly popular... as alternative fuels for power generation using indus- trial gas-turbines [1]. These are typically multi-component fuels, involving CO; H2; H2O; CH4; CO2; O2 and N2, with their composi- reaction set usually involves more than hundreds of reactions and tens...

  11. Local electronic effects and irradiation resistance in high-entropy alloys

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Egami, Takeshi; Stocks, George Malcolm; Nicholson, Don; Khorgolkhuu, Od; Ojha, Madhusudan

    2015-01-01

    High-entropy alloys are multicomponent solid solutions in which various elements with different chemistries and sizes occupy the same crystallographic lattice sites. Thus, none of the atoms perfectly fit the lattice site, giving rise to considerable local lattice distortions and atomic-level stresses. These characteristics can be beneficial for performance under both radiation and in a high-temperature environment, making them attractive candidates as nuclear materials. We discuss electronic origin of the atomic-level stresses based upon first-principles calculations using a density functional theory approach.

  12. Ternary Free Energy Lattice Boltzmann Model with Tunable Surface Tensions and Contact Angles

    E-Print Network [OSTI]

    Semprebon, Ciro; Kusumaatmaja, Halim

    2015-01-01

    We present a new ternary free energy lattice Boltzmann model. The distinguishing feature of our model is that we are able to analytically derive and independently vary all fluid-fluid surface tensions and the solid surface contact angles. We carry out a number of benchmark tests: (i) double emulsions and liquid lenses to validate the surface tensions, (ii) ternary fluids in contact with a square well to compare the contact angles against analytical predictions, and (iii) ternary phase separation to verify that the multicomponent fluid dynamics is accurately captured. Additionally we also describe how the model here presented here can be extended to include an arbitrary number of fluid components.

  13. An investigation of gas separation membranes for reduction of thermal treatment emissions

    SciTech Connect (OSTI)

    Stull, D.M.; Logsdon, B.W.; Pellegrino, J.J.

    1994-05-16

    Gas permeable membranes were evaluated for possible use as air pollution control devices on a fluidized bed catalytic incineration unit. The unit is a candidate technology for treatment of certain mixed hazardous and radioactive wastes at the Rocky Flats Plant. Cellulose acetate and polyimide membranes were tested to determine the permeance of typical off-gas components such as carbon dioxide, nitrogen, and oxygen. Multi-component permeation studies included gas mixtures containing light hydrocarbons. Experiments were also conducted to discover information about potential membrane degradation in the presence of organic compounds.

  14. Thermoelectric and Thermomagnetic Effects in Dilute Plasmas

    E-Print Network [OSTI]

    L. S. Garcia-Colin; A. L. Garcia-Perciante; A. Sandoval-Villalbazo

    2006-12-13

    When an electrically charged system is subjected to the action of an electromagnetic field, it responds by generating an electrical current. In the case of a multicomponent plasma other effects, the so called cross effects, influence the flow of charge as well as the heat flow. In this paper we discuss these effects and their corresponding transport coefficients in a fully ionized plasma using Boltzmann's equation. Applications to non-confined plasmas, specially to those prevailing in astrophysical systems are highlighted. Also, a detailed comparison is given with other available results.

  15. mph_hpca_revise.dvi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII: TheJointCoupling Multi-Component Models

  16. mpiP | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26th AnnualHistoryMIII: TheJointCoupling Multi-Component

  17. Differences in the fast optical variability of the dwarf nova V1504 Cyg between quiescence and outbursts detected in Kepler data and simulations of the rms-flux relations

    E-Print Network [OSTI]

    Dobrotka, A

    2015-01-01

    An optical light curve of SU UMa type dwarf nova V1504 Cyg taken by Kepler was analysed in order to study fast optical variability (flickering). We calculated power density spectra and rms-flux relations for two different stages of activity, i.e. quiescence and regular outbursts. A multicomponent power density spectrum with two break frequencies was found during both activity stages. The rms-flux relation is obvious only in the quiescent data. However, while the collection of all outburst data do not show this variability, every individual outburst does show it in the majority of cases keeping the rms value approximately in the same interval. Furthermore, the same analysis was performed for light curve subsamples taken from the beginning, middle and the end of the supercycle both for quiescence and regular outbursts. Every light curve subsample shows the same multicomponent power density spectrum. The stability of the break frequencies over the supercycle can be confirmed for all frequencies except for the hi...

  18. Cryomagmatism in the outer solar system

    SciTech Connect (OSTI)

    Kargel, J.S.

    1990-01-01

    Assemblages of cryovolcanic, tectonic, and impact structures form varied landscapes quite alien in their collective expression. Many variables can affect the cryovolcanic style of a satellite but none more so than cryolava composition. The compositional variable is examined in considerable detail. Existing knowledge of phase equilibria and physical properties of cosmochemically relevant unary, binary, and multi-component chemical systems are summarized. Where published knowledge was found lacking, measurements of the physical chemistry of volatile mixtures are presented. Cryovolcanic landscapes are briefly toured, and knowledge of the physical chemistry of volatile mixtures is applied to problems of cryovolcanological interest. Aqueous cryolavas may range in composition from salt-water brines to cryogenic ammonia-water-rich multi-components solutions possibly involving methanol, ammonium sulfide, alkali chlorides, and many other potential components. Cryomagmatic distillation can greatly accentuate the importance of trace and minor constituents of icy satellites. The viscosities, densities, and other physical properties of these liquids vary considerably and depend sensitively on their exact compositions. These properties affect everything from cryovolcanic eruptive styles and landforms, to the way cryovolcanic crusts respond to tectonic stress. It is believed that the compositional variable is directly or indirectly implicated in a wide varity of geomorphic aspects of contrast among the icy satellites. Thus, even though as yet any specific morphology can be attributed to a specific composition, there appears to be a powerful link between composition of the ices originally accreted by a satellite and its subsequent interior evolution and exterior geomorphic appearance.

  19. Elucidating the mysteries of wetting.

    SciTech Connect (OSTI)

    Webb, Edmund Blackburn, III (,; ); Bourdon, Christopher Jay; Grillet, Anne Mary; Sackinger, Philip A.; Grest, Gary Stephen; Emerson, John Allen; Ash, Benjamin Jesse; Heine, David R.; Brooks, Carlton, F.; Gorby, Allen D.

    2005-11-01

    Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.

  20. A Case Study of Sedimentation of Charged Colloids: The Primitive Model and the Effective One-Component Approach

    E-Print Network [OSTI]

    Aldemar Torres; Alejandro Cuetos; Marjolein Dijkstra; Rene van Roij

    2007-02-20

    Sedimentation-diffusion equilibrium density profiles of suspensions of charge-stabilized colloids are calculated theoretically and by Monte Carlo simulation, both for a one-component model of colloidal particles interacting through pairwise screened-Coulomb repulsions and for a three-component model of colloids, cations, and anions with unscreened-Coulomb interactions. We focus on a state point for which experimental measurements are available [C.P. Royall et al., J. Phys.: Cond. Matt. {\\bf 17}, 2315 (2005)]. Despite the apparently different picture that emerges from the one- and three-component model (repelling colloids pushing each other to high altitude in the former, versus a self-generated electric field that pushes the colloids up in the latter), we find similar colloidal density profiles for both models from theory as well as simulation, thereby suggesting that these pictures represent different view points of the same phenomenon. The sedimentation profiles obtained from an effective one-component model by MC simulations and theory, together with MC simulations of the multi-component primitive model are consistent among themselves, but differ quantitatively from the results of a theoretical multi-component description at the Poisson-Boltzmann level. We find that for small and moderate colloid charge the Poisson-Boltzmann theory gives profiles in excellent agreement with the effective one-component theory if a smaller effective charge is used. We attribute this discrepancy to the poor treatment of correlations in the Poisson-Boltzmann theory.

  1. Interface conditions of two-shot molded parts

    SciTech Connect (OSTI)

    Kisslinger, Thomas, E-mail: thomas.kisslinger@pccl.at [Polymer Competence Center Leoben GmbH, 8700 Leoben (Austria); Bruckmoser, Katharina, E-mail: katharina.bruckmoser@unileoben.ac.at; Resch, Katharina, E-mail: katharina.resch@unileoben.ac.at [Department of Polymer Engineering and Science, Chair of Materials Science and Testing of Polymers, Montanuniversitaet Leoben, 8700 Leoben (Austria); Lucyshyn, Thomas, E-mail: thomas.lucyshyn@unileoben.ac.at, E-mail: guenter.langecker@unileoben.ac.at; Langecker, Guenter Ruediger, E-mail: thomas.lucyshyn@unileoben.ac.at, E-mail: guenter.langecker@unileoben.ac.at; Holzer, Clemens, E-mail: clemens.holzer@unileoben.ac.at [Department of Polymer Engineering and Science, Chair of Polymer Processing, Montanuniversitaet Leoben, 8700 Leoben (Austria)

    2014-05-15

    The focus of this work is on interfaces of two-shot molded parts. It is well known that e.g. material combination, process parameters and contact area structures show significant effects on the bond strength of multi-component injection molded parts. To get information about the bond strength at various process parameter settings and material combinations a test mold with core back technology was used to produce two-component injection molded tensile test specimens. At the core back process the different materials are injected consecutively, so each component runs through the whole injection molding cycle (two-shot process). Due to this consecutive injection molding processes, a cold interface is generated. This is defined as overmolding of a second melt to a solidified polymer preform. Strong interest lies in the way the interface conditions change during the adhesion formation between the individual components. Hence the interface conditions were investigated by computed tomography and Raman spectroscopy. By analyzing these conditions the understanding of the adhesion development during the multi-component injection molding was improved.

  2. Diffusiophoretic Self-Propulsion for Partially Catalytic Spherical Colloids

    E-Print Network [OSTI]

    Joost de Graaf; Georg Rempfer; Christian Holm

    2015-02-11

    Colloidal spheres with a partial platinum surface coating perform auto-phoretic motion when suspended in hydrogen peroxide solution. We present a theoretical analysis of the self-propulsion velocity of these particles using a continuum multi-component, self-diffusiophoretic model. With this model as a basis, we show how the slip-layer approximation can be derived and in which limits it holds. First, we consider the differences between the full multi-component model and the slip-layer approximation. Then the slip model is used to demonstrate and explore the sensitive nature of the particle's velocity on the details of the molecule-surface interaction. We find a strong asymmetry in the dependence of the colloid's velocity as a function of the level of catalytic coating, when there is a different interaction between the solute and solvent molecules and the inert and catalytic part of the colloid, respectively. The direction of motion can even be reversed by varying the level of the catalytic coating. Finally, we investigate the robustness of these results with respect to variations in the reaction rate near the edge between the catalytic and inert parts of the particle. Our results are of significant interest to the interpretation of experimental results on the motion of self-propelled particles.

  3. The RealGas and RealGasH2O Options of the TOUGH+ Code for the Simulation of Coupled Fluid and Heat Flow in Tight/Shale Gas Systems

    SciTech Connect (OSTI)

    Moridis, George; Freeman, Craig

    2013-09-30

    We developed two new EOS additions to the TOUGH+ family of codes, the RealGasH2O and RealGas . The RealGasH2O EOS option describes the non-isothermal two-phase flow of water and a real gas mixture in gas reservoirs, with a particular focus in ultra-tight (such as tight-sand and shale gas) reservoirs. The gas mixture is treated as either a single-pseudo-component having a fixed composition, or as a multicomponent system composed of up to 9 individual real gases. The RealGas option has the same general capabilities, but does not include water, thus describing a single-phase, dry-gas system. In addition to the standard capabilities of all members of the TOUGH+ family of codes (fully-implicit, compositional simulators using both structured and unstructured grids), the capabilities of the two codes include: coupled flow and thermal effects in porous and/or fractured media, real gas behavior, inertial (Klinkenberg) effects, full micro-flow treatment, Darcy and non-Darcy flow through the matrix and fractures of fractured media, single- and multi-component gas sorption onto the grains of the porous media following several isotherm options, discrete and fracture representation, complex matrix-fracture relationships, and porosity-permeability dependence on pressure changes. The two options allow the study of flow and transport of fluids and heat over a wide range of time frames and spatial scales not only in gas reservoirs, but also in problems of geologic storage of greenhouse gas mixtures, and of geothermal reservoirs with multi-component condensable (H2O and CH4) and non-condensable gas mixtures. The codes are verified against available analytical and semi-analytical solutions. Their capabilities are demonstrated in a series of problems of increasing complexity, ranging from isothermal flow in simpler 1D and 2D conventional gas reservoirs, to non-isothermal gas flow in 3D fractured shale gas reservoirs involving 4 types of fractures, micro-flow, non-Darcy flow and gas composition changes during production.

  4. Intercalation compounds and electrodes for batteries

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young-Il; Huang, Biyan

    2004-09-07

    This invention concerns intercalation compounds and in particular lithium intercalation compounds which have improved properties for use in batteries. Compositions of the invention include particulate metal oxide material having particles of multicomponent metal oxide, each including an oxide core of at least first and second metals in a first ratio, and each including a surface coating of metal oxide or hydroxide that does not include the first and second metals in the first ratio formed by segregation of at least one of the first and second metals from the core. The core may preferably comprise Li.sub.x M.sub.y N.sub.z O.sub.2 wherein M and N are metal atom or main group elements, x, y and z are numbers from about 0 to about 1 and y and z are such that a formal charge on M.sub.y N.sub.z portion of the compound is (4-x), and having a charging voltage of at least about 2.5V. The invention may also be characterized as a multicomponent oxide microstructure usable as a lithium intercalation material including a multiphase oxide core and a surface layer of one material, which is a component of the multiphase oxide core, that protects the underlying intercalation material from chemical dissolution or reaction. In a particular preferred example the multicomponent oxide may be an aluminum-doped lithium manganese oxide composition. Such aluminum-doped lithium manganese oxide compositions, having an orthorhombic structure, also form a part of the invention. In addition, the invention includes articles, particularly electrodes, for batteries formed from the compositions of the invention, and batteries including such electrodes. The invention further relates to a composite intercalation material comprising at least two compounds in which at least one compound has an orthorhombic structure Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2, where y is nonzero, or a mixture of orthorhombic and monoclinic Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2.

  5. Nematic ordering of topological defects in active liquid crystals

    E-Print Network [OSTI]

    Oza, Anand U

    2015-01-01

    Identifying the ordering principles of intracellular matter is key to understanding the physics of microbiological systems. Recent experiments show that ATP-driven microtubule-kinesin bundles can form non-equilibrium networks of liquid-crystalline order when trapped in an oil-water interface near a solid boundary. At high densities, the bundles realize a 2D active nematic phase characterized by spontaneous creation and annihilation of topological defects, reminiscent of particle-pair production processes in quantum systems. This remarkable discovery sparked considerable theoretical interest, yet a satisfactory mathematical description has remained elusive, primarily for the following two reasons. First, prevailing multi-component theories feature a large number of unknown parameters that make quantitative comparison with experiment infeasible. Second, the currently favored hydrodynamic models assume divergence-free 2D interfacial flow, thereby promoting turbulent pattern formation through upward cascades. Suc...

  6. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Kang, Qinjin [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr I [Los Alamos National Laboratory

    2009-01-01

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  7. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    SciTech Connect (OSTI)

    Zapol, Peter; Bourg, Ian; Criscenti, Louise Jacqueline; Steefel, Carl I.; Schultz, Peter Andrew

    2011-10-01

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  8. Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method

    E-Print Network [OSTI]

    Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

    2014-01-01

    High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

  9. Dissipative dark matter and the rotation curves of dwarf galaxies

    E-Print Network [OSTI]

    Foot, R

    2015-01-01

    There is ample evidence from rotation curves that dark matter halo's around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) the Tully-Fisher relation. Dark matter halo's around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halo's can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo should have evolved to a steady state or `equilibrium' configuration where heating and cooling rates local...

  10. Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-03-09

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  11. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions

    SciTech Connect (OSTI)

    Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

    2010-01-11

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  12. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect (OSTI)

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  13. Optical computing with soliton trains in Bose-Einstein condensates

    E-Print Network [OSTI]

    Florian Pinsker

    2014-11-18

    Optical computing devices can be implemented based on controlled generation of soliton trains in single and multicomponent Bose-Einstein condensates (BEC). Our concepts utilize the phenomenon that the frequency of soliton trains in BEC can be governed by changing interactions within the atom cloud. We use this property to store numbers in terms of those frequencies for a short time until observation. The properties of soliton trains can be changed in an intended way by other components of BEC occupying comparable states or via phase engineering. We elucidate in which sense such an additional degree of freedom can be regarded as a tool for controlled manipulation of data. Finally the outcome of any manipulation made is read out by observing the signature within the density profile.

  14. Gas permeation carbon capture --- Process modeling and optimization

    SciTech Connect (OSTI)

    Morinelly, Juan; Miller, David

    2011-01-01

    A multi-staged gas permeation carbon capture process model was developed in Aspen Custom Modeler{reg_sign} (ACM) and optimized in the context of the retrofit of a 550 MW subcritical pulverized coal (PC) power plant. The gas permeation stages in the process are described by a custom multi-component, hollowfiber membrane model. Gas transport across the asymmetric membrane was modeled according to the solution-diffusion model for the selective skin layer and the assumption of negligible flux resistance by the porous support. Counter-current, one-dimensional plug flow was assumed with permeate pressure drop in the fiber lumen side due to capillary constrained flow. A modular optimization framework was used to minimize the levelized cost of electricity (LCOE) by optimizing a set of key process variables. The framework allows the external control of multiple simulation modules from different software packages from a common interface.

  15. Development of computer simulations for landfill methane recovery

    SciTech Connect (OSTI)

    Massmann, J.W.; Moore, C.A.; Sykes, R.M.

    1981-12-01

    Two- and three-dimensional finite-difference computer programs simulating methane recovery systems in landfills have been developed. These computer programs model multicomponent combined pressure and diffusional flow in porous media. Each program and the processes it models are described in this report. Examples of the capabilities of each program are also presented. The two-dimensional program was used to simulate methane recovery systems in a cylindrically shaped landfill. The effects of various pump locations, geometries, and extraction rates were determined. The three-dimensional program was used to model the Puente Hills landfill, a field test site in southern California. The biochemical and microbiological details of methane generation in landfills are also given. Effects of environmental factors, such as moisture, oxygen, temperature, and nutrients on methane generation are discussed and an analytical representation of the gas generation rate is developed.

  16. Effects of volatiles on melt production and reactive flow in the mantle

    E-Print Network [OSTI]

    Keller, Tobias

    2015-01-01

    Magmatism in the Earth interior has a significant impact on its dynamic, thermal and compositional evolution. Experimental studies of petrology of mantle melting find that small concentrations of water and carbon dioxide have a significant effect on the solidus temperature and distribution of melting in the upper mantle. However, it has remained unclear what effect small fractions of deep, volatile-rich melts have on melting and melt transport in the shallow asthenosphere. We present a method to simulate the thermochemical evolution of the upper mantle in the presence of volatiles. The method is based on a novel, thermodynamically consistent framework for reactive, disequilibrium, multi-component melting/crystallisation. This is coupled with a system of equations representing conservation of mass, momentum, and energy for a partially molten grain aggregate. Application of this method to upwelling-column models demonstrates that it captures leading-order features of hydrated and carbonated peridotite melting. ...

  17. Coincidence of collective relaxation anomaly and specific heat peak in a bulk metallic glass-forming liquid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Podlesynak, Andrey; Ehlers, Georg; Mills, Rebecca; O'Keeffe, Stephanie; Stevick, Joseph; Kempton, James; Jelbert, Glenton; Dmowski, Wojciech; Lokshin, Konstantin; et al

    2015-07-21

    The study of multicomponent metallic liquids' relaxational behavior is still the key to understanding and improving the glass-forming abilities of bulk metallic glasses. Here, we report measurements of the collective relaxation times in a melted bulk metallic glass (LM601Zr51Cu36Ni4Al9) in the kinetic regime (Q: 1.5–4.0Å–1) using quasielastic neutron scattering. The results reveal an unusual slope change in the Angell plots of this metallic liquid's collective relaxation time around 950°C, beyond the material's melting point. Measurement of specific heat capacity also reveals a peak around the same temperature. Adams-Gibbs theory is used to rationalize the coincidence, which motivates more careful experimentalmore »and computational studies of the metallic liquids in the future.« less

  18. Dose factor entry and display tool for BNCT radiotherapy

    DOE Patents [OSTI]

    Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)

    1999-01-01

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  19. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect (OSTI)

    Vaughan, K.H.

    1993-06-01

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  20. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect (OSTI)

    Saikia, P. Goswami, K. S.; Saikia, B. K.

    2014-03-15

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  1. The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions

    SciTech Connect (OSTI)

    Shaw, A. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India); Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Goswami, K. S. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India)

    2012-10-15

    The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

  2. Fields and fluids on curved non-relativistic spacetimes

    E-Print Network [OSTI]

    Geracie, Michael; Roberts, Matthew M

    2015-01-01

    We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...

  3. Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties

    E-Print Network [OSTI]

    Engstrom, T A; Crespi, V H

    2015-01-01

    A systematic search for multicomponent crystal structures is carried out for five different ternary systems of nuclei in a polarizable background of electrons, representative of accreted neutron star crusts and some white dwarfs. Candidate structures are "bred" by a genetic algorithm, and optimized at constant pressure under the assumption of linear response (Thomas-Fermi) charge screening. Subsequent phase equilibria calculations reveal eight distinct crystal structures in the $T=0$ bulk phase diagrams, five of which are complicated multinary structures not before predicted in the context of compact object astrophysics. Frequent instances of geometrically similar but compositionally distinct phases give insight into structural preferences of systems with pairwise Yukawa interactions, including and extending to the regime of low density colloidal suspensions made in a laboratory. As an application of these main results, we self-consistently couple the phase stability problem to the equations for a self-gravit...

  4. Catalytic oxidation of hydrocarbons and alcohols by carbon dioxide on oxide catalysts

    SciTech Connect (OSTI)

    Krylov, O.V. . N.N. Semenov Inst. of Chemical Physics); Mamedov, A.Kh.; Mirzabekova, S.R. . Yu.G. Mamedaliev Inst. of Petrochemical Processes)

    1995-02-01

    The great interest displayed lately in heterogeneous catalytic reactions of carbon dioxide is caused by two reasons: (1) the necessity to fight the greenhouse effect and (2) the exhaust of carbon raw material sources. Reactions of oxidative transformation of organic compounds of different classes (alkanes, alkenes, and alcohols) with a nontraditional oxidant, carbon dioxide, were studied on oxide catalysts Fe-O, Cr-O, Mn-O and on multicomponent systems based on manganese oxide. The supported manganese oxide catalysts are active, selective, and stable in conversion of the CH[sub 4] + CO[sub 2] mixture into synthesis gas and in oxidative dehydrogenation of C[sub 2] [minus] C[sub 7] hydrocarbons and the lower alcohols. Unlike metal catalysts manganese oxide based catalysts do not form a carbon layer during the reaction.

  5. Spectral and Polarization Properties of Photospheric Emission From Stratified Jets

    E-Print Network [OSTI]

    Ito, Hirotaka; Matsumoto, Jin; Lee, Shiu-Hang; Tolstov, Alexey; Mao, Jirong; Dainotti, Maria; Mizuta, Akira

    2015-01-01

    We explore the spectral and polarization properties of photospheric emissions from stratified jets in which multiple components, separated by a sharp velocity shear regions, are distributed in lateral direction. Propagation of thermal photons injected at high optical depth region are calculated until they escape from the photosphere. It is found that presence of the lateral structure within the jet leads to non-thermal feature of the spectra and significant polarization signal in the resulting emission. The deviation from thermal spectra as well as the polarization degree tends to be enhanced as the velocity gradient in the shear region increases. In particular, we show that emissions from multi-component jet can reproduce the typical observed spectra of gamma-ray bursts (GRBs) irrespective to the position of the observer when a velocity shear region is closely spaced in various lateral ($\\theta$) positions. The degree of polarization associated in the emission is significant (> few%) at wide range of observe...

  6. Handbook of gas hydrate properties and occurrence

    SciTech Connect (OSTI)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  7. Neutron reactions in accreting neutron stars: a new pathway to efficient crust heating

    E-Print Network [OSTI]

    Sanjib S. Gupta; Toshihiko Kawano; Peter Möller

    2008-11-11

    In our calculation of neutron star crust heating we include several key new model features. In earlier work electron capture (EC) only allowed neutron emission from the daughter ground-state; here we calculate, in a deformed QRPA model, EC decay rates to all states in the daughter that are allowed by Gamow-Teller selection rules and energetics. The subsequent branching ratios between the 1n,...,xn channels and the competing $\\gamma$-decay are calculated in a Hauser-Feshbach model. Since EC accesses excited states, many more neutrons are emitted in our calculation than in previous work, leading to accelerated reaction flows. In our multi-component plasma model a single (EC,xn) reaction step can produce several neutron-deficient nuclei, each of which can further decay by (EC,xn). Hence, the neutron emission occurs more continuously with increasing depth as compared to that in a one-component plasma model.

  8. Mixed conducting membranes for syngas production

    DOE Patents [OSTI]

    Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

    2002-01-01

    This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

  9. The Transitivity of Trust Problem in the Interaction of Android Applications

    E-Print Network [OSTI]

    Bartsch, Steffen; Bunke, Michaela; Hofrichter, Oliver; Berger, Bernhard

    2012-01-01

    Mobile phones have developed into complex platforms with large numbers of installed applications and a wide range of sensitive data. Application security policies limit the permissions of each installed application. As applications may interact, restricting single applications may create a false sense of security for the end users while data may still leave the mobile phone through other applications. Instead, the information flow needs to be policed for the composite system of applications in a transparent and usable manner. In this paper, we propose to employ static analysis based on the software architecture and focused data flow analysis to scalably detect information flows between components. Specifically, we aim to reveal transitivity of trust problems in multi-component mobile platforms. We demonstrate the feasibility of our approach with Android applications, although the generalization of the analysis to similar composition-based architectures, such as Service-oriented Architecture, can also be explo...

  10. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  11. Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos

    E-Print Network [OSTI]

    Yvonne Y. Y. Wong

    2008-10-06

    We present the first systematic derivation of the one-loop correction to the large scale matter power spectrum in a mixed cold+hot dark matter cosmology with subdominant massive neutrino hot dark matter. Starting with the equations of motion for the density and velocity fields, we derive perturbative solutions to these quantities and construct recursion relations for the interaction kernels, noting and justifying all approximations along the way. We find interaction kernels similar to those for a cold dark matter-only universe, but with additional dependences on the neutrino energy density fraction f_nu and the linear growth functions of the incoming wavevectors. Compared with the f_nu=0 case, the one-loop corrected matter power spectrum for a mixed dark matter cosmology exhibits a decrease in small scale power exceeding the canonical ~8 f_nu suppression predicted by linear theory, a feature also seen in multi-component N-body simulations.

  12. Sorption Modeling and verification for Off-Gas Treatment

    SciTech Connect (OSTI)

    Tavlarides, Lawrence L.; Lin, Ronghong; Nan, Yue; Yiacoumi, Sotira; Tsouris, Costas; Ladshaw, Austin; Sharma, Ketki; Gabitto, Jorge; DePaoli, David

    2015-04-29

    The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL engineered sorbent HZ PAN, water sorption on molecular sieve 3A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient uptake data. Two parallel approaches have been explored for integrating the kernels described above into a mass-transport model for adsorption in fixed beds. In one, the GSTA isotherm kernel has been incorporated into the MOOSE framework; in the other approach, a focused finite-difference framework and PDE kernels have been developed. Issues, including oscillatory behavior in MOOSE solutions to advection-diffusion problems, and opportunities have been identified for each approach, and a path forward has been identified toward developing a stronger modeling platform. Experimental systems were established for collection of microscopic kinetics and equilibria data for single and multicomponent uptake of gaseous species on solid sorbents. The systems, which can operate at ambient temperature to 250°C and dew points from -69 to l7°C, are useful for collecting data needed for modeling performance of sorbents of interest. Experiments were conducted to determine applicable models and parameters for isotherms and mass transfer for water and/or iodine adsorption on MS3A. Validation experiments were also conducted for water adsorption on fixed beds ofMS3A. For absorption, work involved modeling with supportive experimentation. A dynamic model was developed to simulate C02 absorption with chemical reaction using high alkaline content water solutions. A computer code was developed to implement the model based upon transient mass and energy balances. Experiments were conducted in a laboratory-scale column to determine model parameters. The influence of geometric parameters and operating variables on C02 absorption was studied over a wide range of conditions. This project has resulted in 7 publications, with 3 manuscripts in preparation. Also, 15 presentations were given at national meetings of ANS and AIChE and at Material Recovery and Waste Forms Campaign Working Group meetings.

  13. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  14. Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure

    SciTech Connect (OSTI)

    Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

    2009-10-27

    This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

  15. A Comparison of Fick and Maxwell-Stefan Diffusion Formulations in PEMFC Cathode Gas Diffusion Layers

    E-Print Network [OSTI]

    Lindstrom, Michael

    2013-01-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. Fick formulations can be considered as approximations of Maxwell-Stefan in a certain sense. For this application, the formulations can be compared computationally in a simple, one dimensional setting. We observe that the predictions of the formulations are very similar, despite their seemingly different structure. Analytic insight is given to the result. In addition, it is seen that for both formulations, diffusion laws are small perturbations from bulk flow. The work is also intended as a reference to multi-component gas diffusion formulations in the fuel cell setting.

  16. Layered water Cherenkov detector for the study of ultra high energy cosmic rays

    E-Print Network [OSTI]

    Letessier-Selvon, Antoine; Blanco, Miguel; Maris, Ioana C; Settimo, Mariangela

    2014-01-01

    We present a new design for the water Cherenkov detectors that are in use in various cosmic ray observatories. This novel design can provide a significant improvement in the independent measurement of the muonic and electromagnetic component of extensive air showers. From such multi-component data an event by event classification of the primary cosmic ray mass becomes possible. According to popular hadronic interaction models, such as EPOS-LHC or QGSJetII-04, the discriminating power between iron and hydrogen primaries reaches Fisher values of $\\sim$ 2 or above for energies in excess of $10^{19}$ eV with a detector array layout similar to that of the Pierre Auger Observatory.

  17. A study of transverse momentum distributions of jets produced in p-p, p-\\bar p, d-Au, Au-Au, and Pb-Pb collisions at high energies

    E-Print Network [OSTI]

    Wei, Hua-Rong

    2015-01-01

    The transverse momentum distributions of jets produced in p-p, p-\\bar p, d-Au, Au-Au, and Pb-Pb collisions at high energies with different selected conditions are analyzed by using a multi-source thermal model. The multi-component (mostly two-component) Erlang distribution used in our description is in good agreement with the experimental data measured by the STAR, D0, CDF II, ALICE, ATLAS, and CMS Collaborations. Related parameters are extracted from the transverse momentum distributions and some information on different interacting systems are obtained. In the two-component Erlang distribution, the first component has usually two or more sources which are contributed by strong scattering interactions between two quarks or more quarks and gluons, while the second component has mostly two sources which are contributed by harder head-on scattering between two quarks.

  18. Metal - non-metal transition and the second critical point in expanded metals

    E-Print Network [OSTI]

    V. B. Bobrov; S. A. Trigger; A. G. Zagorodny

    2013-02-16

    Based on the non-relativistic Coulomb model within which the matter is a system of interacting electrons and nuclei, using the quantum field theory and linear response theory methods, opportunity for the existence of the second critical point in expanded metals, which is directly related to the metal--nonmetal transition, predicted by Landau and Zeldovitch, is theoretically justified. It is shown that the matter at the second critical point is in the state of true dielectric with zero static conductivity. The results obtained are in agreement with recent experiments for expanded metals. The existence of the second critical point is caused by the initial multi-component nature of the matter consisting of electrons and nuclei and the long-range character of the Coulomb interaction. (Accepted in PTEP)

  19. An Energy Savings Model for the Heat Treatment of Castings

    SciTech Connect (OSTI)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  20. Astrophysics Simulations from the ASC/Alliances Center for Astrophysical Thermonuclear Flashes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The "Flash Center" works to solve the long-standing problem of thermonuclear flashes on the surfaces of compact stars such as neutron stars and white dwarfs, and in the interior of white dwarfs (i.e., Type I supernovae). The physical conditions, and many of the physical phenomena, are similar to those confronted by the Department of Energy Stockpile Stewardship program. The (fully ionized) plasmas are at very high temperatures and densities; and the physical problems of nuclear ignition, deflagration or detonation, turbulent mixing, and interface dynamics for complex multicomponent fluids are common to the weapons program. Because virtually every aspect of this problem represents a computational Grand Challenge, large-scale numerical simulations are at the heart of its resolution (Taken from Executive Summary page). More than 35 simulations and computer animations developed through research at the "Flash Center" are available here. Each .avi or .mov file also references the related research paper or presentation and provides a link.

  1. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 1. Scandium Group (Sc, Y, La)

    SciTech Connect (OSTI)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warsaw (Poland); Gumi?ski, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warsaw (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha (China)

    2014-03-15

    This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) are treated as the input substances in this report. The literature has been covered through the end of 2013.

  2. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOE Patents [OSTI]

    Fernandez, Felix E. (Mayaguez, PR)

    2003-01-01

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  3. Synergetic effects of II-VI sensitization upon TiO{sub 2} for photoelectrochemical water splitting; a tri-layered structured scheme

    SciTech Connect (OSTI)

    Mumtaz, Asad, E-mail: asad-032@yahoo.com [Department of Fundamental and Applied Sciences, University Teknologi PETRONAS (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e{sup ?}) and hole (h{sup +}) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study.

  4. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  5. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  6. Future Extensive Air Shower arrays: from Gamma-Ray Astronomy to Cosmic Rays

    E-Print Network [OSTI]

    Di Sciascio, Giuseppe

    2015-01-01

    Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 10$^{11}$ - 10$^{18}$ eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.

  7. Future Extensive Air Shower arrays: from Gamma-Ray Astronomy to Cosmic Rays

    E-Print Network [OSTI]

    Giuseppe Di Sciascio

    2015-03-18

    Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.). The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 10$^{11}$ - 10$^{18}$ eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.

  8. Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

    1995-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  9. Self-organized manifold learning and heuristic charting via adaptive metrics

    E-Print Network [OSTI]

    Horvath, Denis; Brutovsky, Branislav

    2014-01-01

    Classical metric and non-metric multidimensional scaling (MDS) variants are widely known manifold learning (ML) methods which enable construction of low dimensional representation (projections) of high dimensional data inputs. However, their use is crucially limited to the cases when data are inherently reducible to low dimensionality. In general, drawbacks and limitations of these, as well as pure, MDS variants become more apparent when the exploration (learning) is exposed to the structured data of high intrinsic dimension. As we demonstrate on artificial and real-world datasets, the over-determination problem can be solved by means of the hybrid and multi-component discrete-continuous multi-modal optimization heuristics. Its remarkable feature is, that projections onto 2D are constructed simultaneously with the data categorization (classification) compensating in part for the loss of original input information. We observed, that the optimization module integrated with ML modeling, metric learning and categ...

  10. Processes for fabricating composite reinforced material

    SciTech Connect (OSTI)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  11. Porosity in hybrid materials

    SciTech Connect (OSTI)

    Schaefer, D.W.; Beaucage, G.; Loy, D. [Sandia National Labs., Albuquerque, NM (United States)

    1995-12-31

    Multicomponent, or hybrid composites are emerging as precursors to porous materials. Sacrifice of an ephemeral phase can be used to generate porosity, the nature of which depends on precursor structure. Retention of an organic constituent, on the other hand, can add desirable toughness to an otherwise brittle ceramic. We use small-angle x-ray and neutron scattering to examine porosity in both simple and hybrid materials. We find that microphase separation controls porosity in almost all systems studied. Pore distributions are controlled by the detailed bonding within and between phases as well as the flexibility of polymeric constituents. Thus hybridization opens new regions of pore distributions not available in simple systems. We look at several sacrificial concepts and show that it is possible to generate multimodal pore size distributions due to the complicated phase structure in the precursor.

  12. ITOUGH2 user`s guide version 2.2

    SciTech Connect (OSTI)

    Finsterle, S.

    1993-08-01

    ITOUGH2 is a program to estimate hydrogeologic model parameters for the numerical simulator TOUGH2. TOUGH2 was developed by Karsten Pruess at Lawrence Berkeley Laboratory for simulating non-isothermal flows of multicomponent, multiphase fluids in porous and fractured media. ITOUGH2 solves the inverse problem by automatic model calibration based on an indirect approach, in which some function of the difference between observed and model-predicted system response and appropriately weighted prior information about the parameters is minimized using standard optimization techniques. ITOUGH2 also provides a detailed error analysis of the estimated parameter set, and employs some procedures to study error propagation for prediction runs. This report includes a review of the inverse modeling theory, and a detailed description of the program architecture, input language, and the various user features provided by ITOUGH2. A sample problem is given to illustrate code application.

  13. Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields

    E-Print Network [OSTI]

    Gaw?dzki, Krzysztof

    2015-01-01

    We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature $\\beta$ and electric potential $V$, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asym...

  14. Dynamic shear responses of polymer-polymer interfaces

    E-Print Network [OSTI]

    Yasuya Nakayama; Kiyoyasu Kataoka; Toshihisa Kajiwara

    2012-07-17

    In multi-component soft matter, interface properties often play a key role in determining the properties of the overall system. The identification of the internal dynamic structures in non-equilibrium situations requires the interface rheology to be characterized. We have developed a method to quantify the rheological contribution of soft interfaces and evaluate the dynamic modulus of the interface. This method reveals that the dynamic shear responses of interfaces in bilayer systems comprising polypropylene and three different polyethylenes can be classified as having hardening and softening effects on the overall system: a interface between linear long polymers becomes more elastic than the component polymers, while large polydispersity or long-chain-branching of one component make the interface more viscous. We find that the chain lengths and architectures of the component polymers, rather than equilibrium immiscibility, play an essential role in determining the interface rheological properties.

  15. Off-disk straylight measurements for the Swedish 1-meter Solar Telescope

    E-Print Network [OSTI]

    Löfdahl, Mats G

    2015-01-01

    Context. Accurate photometry with ground based solar telescopes requires characterization of straylight. Scattering in Earth's atmosphere and in the telescope optics are potentially significant sources of straylight, for which the point spread function (PSF) has wings that reach very far. This kind of straylight produces an aureola, extending several solar radii off the solar disk. Aims. Measure such straylight using the ordinary science instrumentation. Methods. We scanned the intensity on and far off the solar disk by use of the science cameras in several different wavelength bands on a day with low-dust conditions. We characterized the far wing straylight by fitting a model to the recorded intensities involving a multi-component straylight PSF and the limb darkening of the disk. Results. The measured scattered light adds an approximately constant fraction of the local granulation intensity to science images at any position on the disk. The fraction varied over the day but never exceeded a few percent. The ...

  16. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect (OSTI)

    Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

    2012-02-01

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  17. Elastic-Wavefield Seismic Stratigraphy: A New Seismic Imaging Technology

    SciTech Connect (OSTI)

    Bob A. Hardage; Milo M. Backus; Michael V. DeAngelo; Sergey Fomel; Khaled Fouad; Robert J. Graebner; Paul E. Murray; Randy Remington; Diana Sava

    2006-07-31

    The purpose of our research has been to develop and demonstrate a seismic technology that will provide the oil and gas industry a better methodology for understanding reservoir and seal architectures and for improving interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic stratigraphy beyond the constraints of compressional (P-P) seismic data by using all modes (P-P, P-SV, SH-SH, SV-SV, SV-P) of a seismic elastic wavefield to define depositional sequences and facies. Our objective was to demonstrate that one or more modes of an elastic wavefield may image stratal surfaces across some stratigraphic intervals that are not seen by companion wave modes and thus provide different, but equally valid, information regarding depositional sequences and sedimentary facies within that interval. We use the term elastic wavefield stratigraphy to describe the methodology we use to integrate seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples that we use to document the principles of elastic wavefield stratigraphy. We have also used examples from published papers that illustrate some concepts better than did the multicomponent seismic data that were available for our analysis. In each interpretation study, we used rock physics modeling to explain how and why certain geological conditions caused differences in P and S reflectivities that resulted in P-wave seismic sequences and facies being different from depth-equivalent S-wave sequences and facies across the targets we studied.

  18. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect (OSTI)

    Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  19. inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    SciTech Connect (OSTI)

    Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.; Machesky, Michael L.

    2009-01-01

    Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.

  20. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  1. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  2. New Fission-Product Waste Forms: Development and Characterization

    SciTech Connect (OSTI)

    Alexandra Navrotsky

    2010-07-30

    Research performed on the program “New Fission Product Waste Forms: Development and Characterization,” in the last three years has fulfilled the objectives of the proposal which were to 1) establish ceramic waste forms for disposing of Cs, Sr and minor actinides, 2) fully characterize the phase relationships, structures and thermodynamic and kinetic stabilities of promising waste forms, 3) establish a sound technical basis for understanding key waste form properties, such as melting temperatures and aqueous durability, based on an in-depth understanding of waste form structures and thermochemistry, and 4) establish synthesis, testing, scaleup and commercialization routes for wasteform implementation through out in-kind collaborations. In addition, since Cs and Sr form new elements by radioactive decay, the behavior and thermodynamics of waste forms containing different proportions of Cs, Sr and their decay products were discovered using non-radioactive analogues. Collaborations among researchers from three institutions, UC Davis, Sandia National Laboratories, and Shott Inc., were formed to perform the primary work on the program. The unique expertise of each of the members in the areas of waste form development, structure/property relationships, hydrothermal and high temperature synthesis, crystal/glass production, and thermochemistry was critical to program success. In addition, collaborations with the Brigham Young Univeristy, Ben Gurion University, and Los Alamos National Laboratory, were established for standard entropies of ceramic waste forms, sol-gel synthesis, and high temperature synthesis. This work has had a significant impact in a number of areas. First, the studies of the thermodynamic stability of the mineral analogues provided an important technical foundation for assessment the viability of multicomponent oxide phases for Cs and Sr removal. Moreover, the thermodynamic data discovered in this program established information on the reaction pathways for the potential reaction products. The phase equilibria and thermodynamics involving the intermediates in the decay process in this program will assist in selection of the best process for Cs or Sr immobilization. In addition, data from the study can be used to develop engineering solutions for potential process upsets. Second, the glass – crystal stability of multicomponent oxide phases that were representative silicates on this program is highly distinguishable for mother compounds and decay products, thus providing a fundamental understanding on the separate effects from chemistry and from radiation. Finally, we have developed a foundation for understanding chemistry-structure-energetics relationships in titanosilicates that can be used to develop more effective materials.

  3. Numerical Simulations of Leakage from Underground LPG Storage Caverns

    SciTech Connect (OSTI)

    Yamamoto, Hajime; Pruess, Karsten

    2004-09-01

    To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

  4. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect (OSTI)

    Christopher Liner

    2012-05-31

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

  5. Nematic ordering of topological defects in active liquid crystals

    E-Print Network [OSTI]

    Anand U. Oza; Jörn Dunkel

    2015-07-15

    Identifying the ordering principles of intracellular matter is key to understanding the physics of microbiological systems. Recent experiments show that ATP-driven microtubule-kinesin bundles can form non-equilibrium networks of liquid-crystalline order when trapped in an oil-water interface near a solid boundary. At high densities, the bundles realize a 2D active nematic phase characterized by spontaneous creation and annihilation of topological defects, reminiscent of particle-pair production processes in quantum systems. This remarkable discovery sparked considerable theoretical interest, yet a satisfactory mathematical description has remained elusive, primarily for the following two reasons. First, prevailing multi-component theories feature a large number of unknown parameters that make quantitative comparison with experiment infeasible. Second, the currently favored hydrodynamic models assume divergence-free 2D interfacial flow, thereby promoting turbulent pattern formation through upward cascades. Such cascades are unlikely to occur in experiments, where interface and bulk fluid can continuously exchange matter. Here, we propose a compact alternative continuum theory for dense active liquid crystals by merging ideas from the Landau-de Gennes and Swift-Hohenberg theories. The resulting fourth-order model agrees quantitatively with experimental data, correctly predicts a regime of long-range nematic alignment of defects, and manifests an analogy with a generalized Gross-Pitaevskii quantum theory. Generally, our results suggest that universal ordering principles may govern a wide range of active materials.

  6. Additive development for ultra-clean coal slurry fuel: Final report

    SciTech Connect (OSTI)

    Berggren, M.H.; Swanson, W.W.

    1988-05-24

    AMAX performed research to develop improved quality, cost-effective dispersing additives for coal-water slurry fuels intended for high-intensity combustion systems. Dispersants were identified on the basis of coal surface characteristics and coal-dispersant interactions. Micronized samples of physically and chemically cleaned coal feedstocks from the Eastern and Midwestern regions of the United States were examined using bulk and surface analysis techniques. Utilization of coal surface and dispersant functionality was optimized through multicomponent application of additives, pH control, and control of surface oxidation. A low-cost, low-alkali, sulfur-free dextrin compound was found to be effective in enhancing dispersion when applied to the coal surfaces as a pretreatment or with conventional dispersants as a co-additive. The cleaning method and ash content had minimal direct impact on coal surface functionality. Parameters such as internal moisture, particle size, surface area, surface oxidation, and soluble ions were the primary considerations which influenced slurry loading and additive consumption. The dispersing additive packages functioned over the range of coal types and cleaning levels investigated. The preferred additives were compatible with each other, allowing for blending to optimize performance, cost, and alkali contamination. Each additive was found to be suitable for use in applications which utilize elevated-temperature fuel delivery systems. 17 refs., 8 figs., 27 tabs.

  7. Atomic layer deposition growth of a novel mixed-phase barrier for seedless copper electroplating applications

    SciTech Connect (OSTI)

    Kumar, Sumit; Greenslit, Daniel; Chakraborty, Tonmoy; Eisenbraun, Eric T. [College of Nanoscale Science and Engineering, University at Albany, State University of New York, 251 Fuller Road, Albany, New York 12203 (United States)

    2009-05-15

    A novel plasma-enhanced atomic layer deposition-grown mixed-phase/nanolaminate Ru-TaN barrier has been investigated, and it was confirmed that the copper diffusion barrier and direct-plate characteristics of the mixed-phase barrier can be modulated by varying the metal ratio in the film. This liner was subsequently optimized to yield a composition that combines the robust barrier properties of TaN with direct-plate characteristics of Ru. It was found that the deposited multicomponent system consists of individual crystalline and amorphous phase regions distributed across the barrier. The resulting optimized mixed-phase barrier was found to exhibit excellent copper diffusion barrier characteristics in layers as thin as 2 nm. A high degree of (111) texture (>84%) was observed for the direct-plated copper on this Ru-TaN barrier, which was very similar to the electroplated Cu deposited on a physical vapor deposition copper-seed control sample. Additionally, the filling characteristics in sub-50-nm features were found to be equivalent to those of conventionally copper-seeded interconnect structures.

  8. A review on recent advances in the numerical simulation for coalbed-methane-recovery process

    SciTech Connect (OSTI)

    Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia)

    2007-12-15

    The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

  9. Mapping the inner regions of the polar disk galaxy NGC4650A with MUSE

    E-Print Network [OSTI]

    Iodice, E; Combes, F; de Zeeuw, T; Arnaboldi, M; Weilbacher, P M; Bacon, R; Kuntschner, H; Spavone, M

    2015-01-01

    [abridged] The polar disk galaxy NGC4650A was observed during the commissioning of the MUSE at the ESO VLT to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The extended view of NGC~4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of...

  10. The cooling of the Cassiopeia A neutron star as a probe of a triplet neutron pairing in the core

    E-Print Network [OSTI]

    Leinson, Lev B

    2015-01-01

    The observed rapid cooling of the Cassiopeia A neutron star (Cas A NS) can be interpreted as being triggered by the onset of neutron superfluidity in the core of the star, causing enhanced neutrino emission from neutron Cooper pair breaking and formation (PBF). This provides a unique possibility for probing the neutron condensate in the core. Using consistent neutron star core and crust equation of state and composition, I explore the sensitivity of this interpretation to the phase state of the triplet superfluid condensate. Modeling cooling within an expected range of neutron star masses and envelope compositions, I found that the fast cooling of the Cas A NS can not be explained by the PBF processes in the conventional one-component $^3$P$_2$ condensate with $m_{j}=0$. The best-fit solutions are obtained for the multicomponent superfluid phases listed in Table. The $O_1$ solution yields $M=1.52M_{Sun}$ (carbon envelope with $10^{-15}M_{Sun}$). The $O_2$ solution yield $M=1.47M_{Sun}$ (carbon envelope with $...

  11. Structure of a functional ribonucleoprotein pseudouridine synthase bound to a substrate RNA

    SciTech Connect (OSTI)

    Liang, Bo; Zhou, Jing; Kahen, Elliot; Terns, Rebecca M.; Terns, Michael P.; Li, Hong; (Inst. Mol. BioScience); (FSU); (Georgia)

    2009-09-29

    Box H/ACA small nucleolar and Cajal body ribonucleoprotein particles comprise the most complex pseudouridine synthases and are essential for ribosome and spliceosome maturation. The multistep and multicomponent-mediated enzyme mechanism remains only partially understood. Here we report a crystal structure at 2.35 {angstrom} of a substrate-bound functional archaeal enzyme containing three of the four proteins, Cbf5, Nop10 and L7Ae, and a box H/ACA RNA that reveals detailed information about the protein-only active site. The substrate RNA, containing 5-fluorouridine at the modification position, is fully docked and catalytically rearranged by the enzyme in a manner similar to that seen in two stand-alone pseudouridine synthases. Structural analysis provides a mechanism for plasticity in the diversity of guide RNA sequences used and identifies a substrate-anchoring loop of Cbf5 that also interacts with Gar1 in unliganded structures. Activity analyses of mutated proteins and RNAs support the structural findings and further suggest a role of the Cbf5 loop in regulation of enzyme activity.

  12. FULLY RESOLVED QUIET-SUN MAGNETIC FLUX TUBE OBSERVED WITH THE SUNRISE/IMAX INSTRUMENT

    SciTech Connect (OSTI)

    Lagg, A.; Solanki, S. K.; Riethmueller, T. L.; Schuessler, M.; Hirzberger, J.; Feller, A.; Borrero, J. M.; Barthol, P.; Gandorfer, A.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.

  13. Granular mixtures modeled as elastic hard spheres subject to a drag force

    E-Print Network [OSTI]

    Francisco Vega Reyes; Vicente Garzo; Andres Santos

    2007-04-24

    Granular gaseous mixtures under rapid flow conditions are usually modeled by a multicomponent system of smooth inelastic hard spheres with constant coefficients of normal restitution. In the low density regime an adequate framework is provided by the set of coupled inelastic Boltzmann equations. Due to the intricacy of the inelastic Boltzmann collision operator, in this paper we propose a simpler model of elastic hard spheres subject to the action of an effective drag force, which mimics the effect of dissipation present in the original granular gas. The Navier--Stokes transport coefficients for a binary mixture are obtained from the model by application of the Chapman--Enskog method. The three coefficients associated with the mass flux are the same as those obtained from the inelastic Boltzmann equation, while the remaining four transport coefficients show a general good agreement, especially in the case of the thermal conductivity. Finally, the approximate decomposition of the inelastic Boltzmann collision operator is exploited to construct a model kinetic equation for granular mixtures as a direct extension of a known kinetic model for elastic collisions.

  14. Three-particle cumulant Study of Conical Emission

    E-Print Network [OSTI]

    Claude Pruneau

    2009-01-07

    We discuss the sensitivity of the three-particle azimuthal cumulant method for a search and study of conical emission in central relativistic $A+A $ collisions. Our study is based on a multi-component Monte Carlo model which include flow background, Gaussian mono-jets, jet-flow, and Gaussian conical signals. We find the observation of conical emission is hindered by the presence of flow harmonics of fourth order ($v_4 $) but remains feasible even in the presence of a substantial background. We consider the use of probability cumulants for the suppression of 2$^{nd}$ order flow harmonics. We find that while probability cumulant significantly reduce $v_2^2$ contributions, they also complicate the cumulant of jets, and conical emission. The use of probability cumulants is therefore not particularly advantageous in searches for conical emission. We find the sensitivity of the (density) cumulant method depends inextricably on strengths of $v_2 $, $v_4 $, background and non-Poisson character of particle production. It thus cannot be expressed in a simple form, and without specific assumptions about the values of these parameters.

  15. Exploring Interacting Quantum Many-Body Systems by Experimentally Creating Continuous Matrix Product States in Superconducting Circuits

    E-Print Network [OSTI]

    C. Eichler; J. Mlynek; J. Butscher; P. Kurpiers; K. Hammerer; T. J. Osborne; A. Wallraff

    2015-08-26

    Improving the understanding of strongly correlated quantum many body systems such as gases of interacting atoms or electrons is one of the most important challenges in modern condensed matter physics, materials research and chemistry. Enormous progress has been made in the past decades in developing both classical and quantum approaches to calculate, simulate and experimentally probe the properties of such systems. In this work we use a combination of classical and quantum methods to experimentally explore the properties of an interacting quantum gas by creating experimental realizations of continuous matrix product states - a class of states which has proven extremely powerful as a variational ansatz for numerical simulations. By systematically preparing and probing these states using a circuit quantum electrodynamics (cQED) system we experimentally determine a good approximation to the ground-state wave function of the Lieb-Liniger Hamiltonian, which describes an interacting Bose gas in one dimension. Since the simulated Hamiltonian is encoded in the measurement observable rather than the controlled quantum system, this approach has the potential to apply to exotic models involving multicomponent interacting fields. Our findings also hint at the possibility of experimentally exploring general properties of matrix product states and entanglement theory. The scheme presented here is applicable to a broad range of systems exploiting strong and tunable light-matter interactions.

  16. Effect of dipolar moments in domain sizes of lipid bilayers and monolayers

    E-Print Network [OSTI]

    Alex Travesset

    2006-12-14

    Lipid domains are found in systems such as multi-component bilayer membranes and single component monolayers at the air-water interface. It was shown by Andelman et al. (Comptes Rendus 301, 675 (1985)) and McConnell et al. (Phys. Chem. {\\bf 91}, 6417 (1987)) that in monolayers, the size of the domains results from balancing the line tension, which favors the formation of a large single circular domain, against the electrostatic cost of assembling the dipolar moments of the lipids. In this paper, we present an exact analytical expression for the electric potential, ion distribution and electrostatic free energy for different problems consisting of three different slabs with different dielectric constants and Debye lengths, with a circular homogeneous dipolar density in the middle slab. From these solutions, we extend the calculation of domain sizes for monolayers to include the effects of finite ionic strength, dielectric discontinuities (or image charges) and the polarizability of the dipoles and further generalize the calculations to account for domains in lipid bilayers. In monolayers, the size of the domains is dependent on the different dielectric constants but independent of ionic strength. In asymmetric bilayers, where the inner and outer leaflets have different dipolar densities, domains show a strong size dependence with ionic strength, with molecular-sized domains that grow to macroscopic phase separation with increasing ionic strength. We discuss the implications of the results for experiments and briefly consider their relation to other two dimensional systems such as Wigner crystals or heteroepitaxial growth.

  17. Self-assembly molecular squares with metal complexes as bridging ligands

    SciTech Connect (OSTI)

    Sun, S.S.; Silva, A.S.; Brinn, I.M.; Lees, A.J.

    2000-04-03

    Polynuclear transition metal complexes containing multichromophoric units, such as metal polypyridyl complexes, are of considerable current interest. Much attention has been paid to the synthesis of multicomponent systems that exhibit photoinduced intercomponent electron and/or energy-transfer processes and to their potential applications for photonic and electronic devices. Systems incorporating Re(I)- Ru(II)-, and Os(II)-based polypyridyl chromophores are the most commonly studied because of their favorable redox and spectroscopic characteristics. In this communication, the authors combine the concepts of self-assembly and complexes as ligands and report the preparation of a series of molecular squares with the general molecular formula [fac-Br(CO){sub 3}Re({mu}-(pyterpy){sub 2}M)]{sub 4}(PF{sub 6}){sub 8}, where pyterpy is 4{prime}-(4{prime}{double_prime}-pyridyl)-2,2{prime}:6{prime}2{double_prime}-terpyridine and M = Fe, Ru, or Os. The spectroscopic properties and a preliminary anion binding study of these novel octanuclear molecular squares are also presented.

  18. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, Madhav R. (Morgantown, WV); Yang, Ralph T. (Williamsville, NY)

    1987-01-01

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon, zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high parity hydrogen from gaseous products of coal gasification and as an acid gas scrubber.

  19. Photoionization analysis of chemo-dynamical dwarf galaxies simulations

    E-Print Network [OSTI]

    Melekh, B; Hensler, G; Buhajenko, O

    2015-01-01

    Photoionization modelling allows to follow the transport, the emergence, and the absorption of photons taking into account all important processes in nebular plasmas. Such modelling needs the spatial distribution of density, chemical abundances and temperature, that can be provided by chemo-dynamical simulations (ChDS) of dwarf galaxies. We perform multicomponent photoionization modelling (MPhM) of the ionized gas using 2-D ChDSs of dwarf galaxies. We calculate emissivity maps for important nebular emission lines. Their intensities are used to derive the chemical abundance of oxygen by the so-called Te- and R23-methods. Some disagreements are found between oxygen abundances calculated with these methods and the ones coming from the ChDSs. We investigate the fraction of ionizing radiation emitted in the star-forming region which is able to leak out the galaxy. The time- and direction-averaged escape fraction in our simulation is 0.35-0.4. Finally, we have calculated the total Halpha lumi- nosity of our model g...

  20. Impact of size polydispersity on the nature of Lennard-Jones liquids

    E-Print Network [OSTI]

    Trond S. Ingebrigtsen; Hajime Tanaka

    2015-03-10

    Polydisperse fluids are encountered everywhere in biological and industrial processes. These fluids naturally show a rich phenomenology exhibiting fractionation and shifts in critical point and freezing temperatures. Here, we study the impact of size polydispersity on the basic nature of Lennard-Jones (LJ) liquids, which represent most molecular liquids without hydrogen bonds, via two- and three-dimensional molecular dynamics computer simulations. A single-component liquid constituting spherical particles and interacting via the LJ potential is known to exhibit strong correlations between virial and potential energy equilibrium fluctuations at constant volume. This correlation significantly simplifies the physical description of the liquid, and these liquids are now known as Roskilde-simple (RS) liquids. We show that this simple nature of the single-component LJ liquid is preserved even for very high polydispersities (above 40% polydispersity for the studied uniform distribution). We also investigate isomorphs of moderately polydisperse LJ liquids. Isomorphs are curves in the phase diagram of RS liquids along which structure, dynamics, and some thermodynamic quantities are invariant in dimensionless units. We find that isomorphs are a good approximation even for polydisperse LJ liquids. The theory of isomorphs thus extends readily to multi-component systems and can be used to improve even further the understanding of these intriguing systems.

  1. Noble gas geochemistry in thermal springs

    SciTech Connect (OSTI)

    Kennedy, B.M.; Reynolds, J.H. (Univ. of California, Berkeley (USA)); Smith, S.P. (Charles Evans and Associates, Redwood City, CA (USA))

    1988-07-01

    The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was found to be depth dependent. The deeper the sample collection within the spring, the greater the enrichment in Kr, Xe, radiogenic {sup 4}He, and {sup 40}Ar and the greater the depletion in Ne relative to {sup 36}Ar. The compositional variations are consistent with multi-component mixing. The dominant component consists of dissolved atmospheric gases acquired by the pool at the surface in contact with air. This component is mixed in varying degree with two other components, one each for gas and water entering the bottom of the pool. The two bottom components are not in equilibrium. In Horseshoe Spring, the bubbles entering at the bottom strip the atmospheric-derived pool gases from the surrounding water while en route to the surface. If the original bottom bubbles are noble gas, as in the case of Horseshoe, the acquired pool gases can then quickly obliterate the original bubble composition. These results are used to demonstrate that Yellowstone spring surface gas samples, and perhaps similarity sampled thermal springs from other hydrothermal systems, have gas abundances that depend more on spring morphology than processes occurring deeper in the hydrothermal system.

  2. Emission Line Properties of the Large Bright Quasar Survey

    E-Print Network [OSTI]

    Karl Forster; Paul J. Green; Thomas L. Aldcroft; Marianne Vestergaard; Craig B. Foltz; Paul C. Hewett

    2000-11-20

    We present measurements of the optical/UV emission lines for a large homogeneous sample of 993 quasars from the Large Bright Quasar Survey. Our largely automated technique accounts for continuum breaks and galactic reddening, and we perform multicomponent fits to emission line profiles, including the effects of blended iron emission, and of absorption lines both galactic and intrinsic. Here we describe the fitting algorithm and present the results of line fits to the LBQS sample, including upper limits to line equivalent widths when warranted. The distribution of measured line parameters, principally equivalent width and FWHM, are detailed for a variety of lines, including upper limits. We thus initiate a large-scale investigation of correlations between the high energy continuum and emission lines in quasars, to be extended to complementary samples using similar techniques. High quality, reproducible measurements of emission lines for uniformly selected samples will advance our understanding of active galaxies, especially in a new era of large surveys selected by a variety of complementary methods.

  3. Method and apparatus for the selective separation of gaseous coal gasification products by pressure swing adsorption

    DOE Patents [OSTI]

    Ghate, M.R.; Yang, R.T.

    1985-10-03

    Bulk separation of the gaseous components of multi-component gases provided by the gasification of coal including hydrogen, carbon monoxide, methane, and acid gases (carbon dioxide plus hydrogen sulfide) are selectively adsorbed by a pressure swing adsorption technique using activated carbon zeolite or a combination thereof as the adsorbent. By charging a column containing the adsorbent with a gas mixture and pressurizing the column to a pressure sufficient to cause the adsorption of the gases and then reducing the partial pressure of the contents of the column, the gases are selectively and sequentially desorbed. Hydrogen, the least absorbable gas of the gaseous mixture, is the first gas to be desorbed and is removed from the column in a co-current direction followed by the carbon monoxide, hydrogen and methane. With the pressure in the column reduced to about atmospheric pressure the column is evacuated in a countercurrent direction to remove the acid gases from the column. The present invention is particularly advantageous as a producer of high purity hydrogen from gaseous products of coal gasification and as an acid gas scrubber. 2 figs., 2 tabs.

  4. Semiclassical analysis of the Wigner 12j symbol with one small angular momentum

    SciTech Connect (OSTI)

    Yu Liang [Department of Physics, University of California, Berkeley, California 94720 (United States)

    2011-08-15

    We derive an asymptotic formula for the Wigner 12j symbol, in the limit of one small and 11 large angular momenta. There are two kinds of asymptotic formulas for the 12j symbol with one small angular momentum. We present the first kind of formula in this paper. Our derivation relies on the techniques developed in the semiclassical analysis of the Wigner 9j symbol [L. Yu and R. G. Littlejohn, Phys. Rev. A 83, 052114 (2011)], where we used a gauge-invariant form of the multicomponent WKB wave functions to derive asymptotic formulas for the 9j symbol with small and large angular momenta. When applying the same technique to the 12j symbol in this paper, we find that the spinor is diagonalized in the direction of an intermediate angular momentum. In addition, we find that the geometry of the derived asymptotic formula for the 12j symbol is expressed in terms of the vector diagram for a 9j symbol. This illustrates a general geometric connection between asymptotic limits of the various 3nj symbols. This work contributes an asymptotic formula for the 12j symbol to the quantum theory of angular momentum, and serves as a basis for finding asymptotic formulas for the Wigner 15j symbol with two small angular momenta.

  5. Predictive modeling of reactive wetting and metal joining.

    SciTech Connect (OSTI)

    van Swol, Frank B.

    2013-09-01

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  6. Ab Initio Enhanced calphad Modeling of Actinide-Rich Nuclear Fuels

    SciTech Connect (OSTI)

    Morgan, Dane; Yang, Yong Austin

    2013-10-28

    The process of fuel recycling is central to the Advanced Fuel Cycle Initiative (AFCI), where plutonium and the minor actinides (MA) Am, Np, and Cm are extracted from spent fuel and fabricated into new fuel for a fast reactor. Metallic alloys of U-Pu-Zr-MA are leading candidates for fast reactor fuels and are the current basis for fast spectrum metal fuels in a fully recycled closed fuel cycle. Safe and optimal use of these fuels will require knowledge of their multicomponent phase stability and thermodynamics (Gibbs free energies). In additional to their use as nuclear fuels, U-Pu-Zr-MA contain elements and alloy phases that pose fundamental questions about electronic structure and energetics at the forefront of modern many-body electron theory. This project will validate state-of-the-art electronic structure approaches for these alloys and use the resulting energetics to model U-Pu-Zr-MA phase stability. In order to keep the work scope practical, researchers will focus on only U-Pu-Zr-{Np,Am}, leaving Cm for later study. The overall objectives of this project are to: Provide a thermodynamic model for U-Pu-Zr-MA for improving and controlling reactor fuels; and, Develop and validate an ab initio approach for predicting actinide alloy energetics for thermodynamic modeling.

  7. Final Technical Report, DOE/ER/64323

    SciTech Connect (OSTI)

    Valocchi, Albert J. University of Illinois, Dept of Civil & Environ Engr

    2013-06-05

    The DOE SciDAC program funded a team that developed PFLOTRAN, the next-generation (�peta-scale�) massively parallel, multiphase, multicomponent reactive flow and transport code. These codes are required to improve understanding and risk management of subsurface contaminant migration and geological sequestration of carbon dioxide. The important fate and transport processes occurring in the subsurface span a wide range of spatial and temporal scales, and involve nonlinear interactions among many different chemical constituents. Due to the complexity of this problem, modeling subsurface processes normally requires simplifying assumptions. However, tools of advanced scientific computing that have been used in other areas such as energy and materials research can also help address challenging problems in the environmental and geoscience fields. The overall project was led by Los Alamos National Laboratory and included Argonne, Oak Ridge and Pacific Northwest National Laboratories, in addition to the University of Illinois. This report summarizes the results of the research done at the University of Illinois, which focused on improvements to the underlying physical and computational modeling of certain transport and mixing processes.

  8. Nanocrystallization in spark plasma sintered Fe{sub 48}Cr{sub 15}Mo{sub 14}Y{sub 2}C{sub 15}B{sub 6} bulk amorphous alloy

    SciTech Connect (OSTI)

    Singh, Ashish; Harimkar, Sandip P.; Katakam, Shravana; Dahotre, Narendra B.; Ilavsky, Jan

    2013-08-07

    Spark plasma sintering (SPS) is evolving as an attractive process for the processing of multi-component Fe-based bulk amorphous alloys and their in-situ nanocomposites with controlled primary nanocrystallization. Extended Q-range small angle neutron scattering (EQ-SANS) analysis, complemented by x-ray diffraction and transmission electron microscopy, was performed to characterize nanocrystallization behavior of SPS sintered Fe-based bulk amorphous alloys. The SANS experiments show significant scattering for the samples sintered in the supercooled region indicating local structural/compositional changes associated with the profuse nucleation of nanoclusters (?4 nm). For the samples spark plasma sintered near and above crystallization temperature (>653 °C), the SANS data show the formation of interference maximum indicating the formation and growth of (Fe,Cr){sub 23}C{sub 6} crystallites. The SANS data also indicate the evolution of bimodal crystallite distribution at higher sintering temperatures (above T{sub x1}). The growth of primary nanocrystallites results in impingement of concentration gradient fields (soft impingement effect), leading to non-random nucleation of crystallites near the primary crystallization.

  9. An Internal Coaxial Cable Electrical Connector For Use In Downhole Tools

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2005-09-20

    A seal for a coaxial cable electrical connector more specifically an internal seal for a coaxial cable connector placed within a coaxial cable and its constituent components. A coaxial cable connector is in electrical communcation with an inductive transformer and a coaxial cable. The connector is in electrical communication with the outer housing of the inductive transformer. A generally coaxial center conductor, a portion of which could be the coil in the inductive transformer, passes through the connector, is electrically insulated from the connector, and is in electrical communication with the conductive core of the coaxial cable. The electrically insulating material also doubles as a seal to safegaurd against penetration of fluid, thus protecting against shorting out of the electrical connection. The seal is a multi-component seal, which is pre-compressed to a desired pressure rating. The coaxial cable and inductive transformer are disposed within downhole tools to transmit electrical signals between downhole tools within a drill string. The internal coaxial cable connector and its attendant seal can be used in a plurality of downhole tools, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.

  10. Effective theories for Dark Matter interactions and the neutrino portal paradigm

    E-Print Network [OSTI]

    Vannia Gonzalez Macias; Jose Wudka

    2015-06-11

    In this article we discuss a general effective-theory description of a multi-component dark sector with an unspecified non-trivial symmetry and its interactions with the Standard Model generated by the exchange of heavy mediators. We then categorize the relevant effective operators given the current experimental sensistivity where the underlying theory is weakly coupled and renormalizable, with neutral mediators: either scalars or fermions. An interesting scenario resulting from this categorization is the neutrino portal, where only fermion mediators are present, and where the dark sector consists of fermions and scalars such that the lightest dark particle is a fermion, this scenario is characterized by having naturally suppressed couplings of the DM to all SM particles except the neutrinos and has received little attention in the literature. We find that there is a wide region in parameter space allowed by the current experimental constraints (relic abundance, direct and indirect detection limits); the cleanest signature of this paradigm is the presence of monochromatic neutrino lines with energy equal to that of the DM mass, but experimental sensitivity would have to be improved significantly before this can be probed.

  11. Quantification of initial-data uncertainty on a shock-accelerated gas cylinder

    SciTech Connect (OSTI)

    Tritschler, V. K. Avdonin, A.; Hickel, S.; Hu, X. Y.; Adams, N. A.

    2014-02-15

    We quantify initial-data uncertainties on a shock accelerated heavy-gas cylinder by two-dimensional well-resolved direct numerical simulations. A high-resolution compressible multicomponent flow simulation model is coupled with a polynomial chaos expansion to propagate the initial-data uncertainties to the output quantities of interest. The initial flow configuration follows previous experimental and numerical works of the shock accelerated heavy-gas cylinder. We investigate three main initial-data uncertainties, (i) shock Mach number, (ii) contamination of SF{sub 6} with acetone, and (iii) initial deviations of the heavy-gas region from a perfect cylindrical shape. The impact of initial-data uncertainties on the mixing process is examined. The results suggest that the mixing process is highly sensitive to input variations of shock Mach number and acetone contamination. Additionally, our results indicate that the measured shock Mach number in the experiment of Tomkins et al. [“An experimental investigation of mixing mechanisms in shock-accelerated flow,” J. Fluid. Mech. 611, 131 (2008)] and the estimated contamination of the SF{sub 6} region with acetone [S. K. Shankar, S. Kawai, and S. K. Lele, “Two-dimensional viscous flow simulation of a shock accelerated heavy gas cylinder,” Phys. Fluids 23, 024102 (2011)] exhibit deviations from those that lead to best agreement between our simulations and the experiment in terms of overall flow evolution.

  12. The high-redshift gamma-ray burst GRB140515A

    E-Print Network [OSTI]

    Melandri, A; D'Avanzo, P; Sanchez-Ramirez, R; Nappo, F; Nava, L; Japelj, J; Postigo, A de Ugarte; Oates, S; Campana, S; Covino, S; D'Elia, V; Ghirlanda, G; Gafton, E; Ghisellini, G; Gnedin, N; Goldoni, P; Gorosabel, J; Libbrecht, T; Malesani, D; Salvaterra, R; Thone, C C; Vergani, S D; Xu, D; Tagliaferri, G

    2015-01-01

    High-redshift gamma-ray bursts have several advantages for the study of the distant universe, providing unique information about the structure and properties of the galaxies in which they exploded. Spectroscopic identification with large ground-based telescopes has improved our knowledge of the class of such distant events. We present the multi-wavelength analysis of the high-$z$ Swift gamma-ray burst GRB140515A ($z = 6.327$). The best estimate of the neutral hydrogen fraction of the intergalactic medium (IGM) towards the burst is $x_{HI} \\leq 0.002$. The spectral absorption lines detected for this event are the weakest lines ever observed in gamma-ray burst afterglows, suggesting that GRB140515A exploded in a very low density environment. Its circum-burst medium is characterised by an average extinction (A$_{\\rm V} \\sim 0.1$) that seems to be typical of $z \\ge 6$ events. The observed multi-band light curves are explained either with a very flat injected spectrum ($p = 1.7$) or with a multi-component emission...

  13. Effects of amines on formation of sub-3 nm particles and their subsequent growth

    SciTech Connect (OSTI)

    Yu H.; McGraw R.; Lee S.-H.

    2012-01-28

    Field observations and quantum chemical calculations suggest that amines can be important for formation of nanometer size particles. Amines and ammonia often have common atmospheric emission sources and the similar chemical and physical properties. While the effects of ammonia on aerosol nucleation have been previously investigated, laboratory studies of homogeneous nucleation involving amines are lacking. We have made kinetics studies of multicomponent nucleation (MCN) with sulfuric acid, water, ammonia and amines under conditions relevant to the atmosphere. Low concentrations of aerosol precursors were measured with chemical ionization mass spectrometers (CIMS) to provide constrained precursor concentrations needed for nucleation. Particle sizes larger than {approx}2 nm were measured with a nano-differential mobility analyzer (nano-DMA), and number concentrations of particles larger than {approx}1 nm were measured with a particle size magnifier (PSM). Our observations provide the laboratory evidence that amines indeed can participate in aerosol nucleation and growth at the molecular cluster level. The enhancement of particle number concentrations due to several atmospherically relevant amine compounds and ammonia were related to the basicity of these compounds, indicating that acid-base reactions may contribute to the formation of sub-3 nm particles.

  14. The cascade of reservoirs of the ``Mayak`` Plant: Case history and the first version of a computer simulator

    SciTech Connect (OSTI)

    Mironenko, M.V.; Spasennykh, M.Yu.; Polyakov, V.B.

    1994-07-01

    The improvement of the ecological conditions at waste storing reservoirs is an important task of the restoration activity at Production Association (PA) ``Mayak`` (South Urals). The radionuclides mostly {sup 90}Sr, {sup 137}Cs, and chemical pollutants deposited in the reservoir water and in the bottom sediment are very dangerous sources for the contamination of Techa River below the reservoirs and the contamination of groundwater in the surrounding formations. The spreading of radioactive contaminants has both hydrogeological and the chemical features. The thermodynamic approach used to account for physical-chemical interactions between water and the bed rocks based on Gibbs free energy minimization of multicomponent system (H-O-Ca-Mg-K-Na-S-Cl-C-Sr) permitted the authors to calculate the corresponding ionic and complex species existing in the solutions, and to characterize the processes of precipitation and dissolution. The model takes into account the input and output surface and underground water fluxes, mass exchange of the reservoir with the atmosphere, radioactive decay and water-sediment interaction including processes of the {sup 90}Sr and {sup 137}Cs sorption on the grains of the sediment and the radionuclide diffusion in the pore water. This model was used in the retrospective and prognosis calculations of radiation and hydrochemical regime of these reservoirs.

  15. Mesoscale Structures at Complex Fluid-Fluid Interfaces: a Novel Lattice Boltzmann / Molecular Dynamics Coupling

    E-Print Network [OSTI]

    Marcello Sega; Mauro Sbragaglia; Sofia Sergeevna Kantorovich; Alexey Olegovich Ivanov

    2014-02-19

    Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are fundamental requirements for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phys. C, 1998, 9, 1429], that couples the "Shan-Chen" multicomponent Lattice Boltzmann technique to off-lattice molecular dynamics to simulate efficiently complex fluid-fluid interfaces. We demonstrate how this approach can be used to study a wide class of challenging problems. Several examples are given, with an accent on bicontinuous phases formation in polyelectrolyte solutions and ferrofluid emulsions. We also show that the introduction of solvation free energies in the particle-fluid interaction unveils the hidden, multiscale nature of the particle-fluid coupling, allowing to treat symmetrically (and interchangeably) the on-lattice and off-lattice components of the system.

  16. Bent-Tailed Radio Sources in the Australia Telescope Large Area Survey of the Chandra Deep Field-South

    E-Print Network [OSTI]

    Dehghan, Siamak; Franzen, Thomas M O; Norris, Ray P; Miller, Neal A

    2015-01-01

    Using the 1.4 GHz Australia Telescope Large Area Survey (ATLAS), supplemented with the 1.4 GHz Very Large Array images, we undertook a search for bent-tailed (BT) radio galaxies in the Chandra Deep Field-South (CDFS). Here we present a catalog of 56 detections, which include 45 bent-tailed sources, four diffuse low-surface-brightness objects (one relic, two halos, and one unclassified object), and a further seven complex, multi-component sources. We report BT sources with rest-frame powers in the range $10^{22} \\leq$ $\\textrm{P}_{1.4 \\textrm{ GHz}} \\leq 10^{26}$ W Hz$^{-1}$, redshifts up to 2 and linear extents from tens of kpc up to about one Mpc. This is the first systematic study of such sources down to such low powers and high redshifts and demonstrates the complementary nature of searches in deep, limited area surveys as compared to shallower, large surveys. Of the sources presented here one is the most distant bent-tailed source yet detected at a redshift of 2.1688. Two of the sources are found to be as...

  17. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  18. Extraction of furfural with carbon dioxide

    SciTech Connect (OSTI)

    Gamse, T.; Marr, R.; Froeschl, F.; Siebenhofer, M.

    1997-01-01

    A new approach to separate furfural from aqueous waste has been investigated. Recovery of furfural and acetic acid from aqueous effluents of a paper mill has successfully been applied on an industrial scale since 1981. The process is based on the extraction of furfural and acetic acid by the solvent trooctylphosphineoxide (TOPO). Common extraction of both substances may cause the formation of resin residues. Improvement was expected by selective extraction of furfural with chlorinated hydrocarbons, but ecological reasons stopped further development of this project. The current investigation is centered in the evaluation of extraction of furfural by supercritical carbon dioxide. The influence of temperature and pressure on the extraction properties has been worked out. The investigation has considered the multi-component system furfural-acetic acid-water-carbon dioxide. Solubility of furfural in liquid and supercritical carbon dioxide has been measured, and equilibrium data for the ternary system furfural-water-CO{sub 2} as well as for the quaternary system furfural-acetic acid-water-CO{sub 2} have been determined. A high-pressure extraction column has been used for evaluation of mass transfer rates.

  19. Ionization Driven Fragmentation of Gas Outflows Responsible for FeLoBALs in Quasars

    E-Print Network [OSTI]

    Bautista, Manuel A

    2010-01-01

    We show that time variations in the UV ionizing continuum of quasars, on scales of $\\sim$1 year, affect the dynamic structure of the plasmas responsible for low ionization broad absorption lines. Variations of the ionizing continuum produce non-equilibrium photoionization conditions over a significant fraction of the absorbing clouds and supersonically moving ionization fronts. When the flux drops the contraction of the ionized region drives a supersonic cooling front towards the radiation source and a rarefaction wave in the opposite direction. The pressure imbalance is compensated by an increased speed of the cool gas relative to the front. When the flux recovers the cool gas is re-ionized and re-heated by a supersonic ionization front traveling away from the radiation source and a forward shock is created. The reheated clouds equilibrate to a temperature of $\\sim 10^4$ K and are observed to have different radial velocities than the main cloud. Such fragmentation seems consistent with the multicomponent str...

  20. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect (OSTI)

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  1. Design of Surface Micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  2. Design of Surface micromachined Compliant MEMS

    SciTech Connect (OSTI)

    Joe Anthony Bradley

    2002-08-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  3. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect (OSTI)

    Saikia, Partha, E-mail: partha.008@gmail.com; Saikia, Bipul Kumar; Goswami, Kalyan Sindhu [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam 782 402 (India); Phukan, Arindam [Madhabdev College, Narayanpur, Lakhimpur, Assam 784164 (India)

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  4. Spectral curves in gauge/string dualities: integrability, singular sectors and regularization

    E-Print Network [OSTI]

    Boris Konopelchenko; Luis Martínez Alonso; Elena Medina

    2013-05-15

    We study the moduli space of the spectral curves $y^2=W'(z)^2+f(z)$ which characterize the vacua of $\\mathcal{N}=1$ U(n) supersymmetric gauge theories with an adjoint Higgs field and a polynomial tree level potential $W(z)$. It is shown that there is a direct way to associate a spectral density and a prepotential functional to these spectral curves. The integrable structure of the Whitham equations is used to determine the spectral curves from their moduli. An alternative characterization of the spectral curves in terms of critical points of a family of polynomial solutions $\\mathbb{W}$ to Euler-Poisson-Darboux equations is provided. The equations for these critical points are a generalization of the planar limit equations for one-cut random matrix models. Moreover, singular spectral curves with higher order branch points turn out to be described by degenerate critical points of $\\mathbb{W}$. As a consequence we propose a multiple scaling limit method of regularization and show that, in the simplest cases, it leads to the Painlev\\`{e}-I equation and its multi-component generalizations.

  5. Fields and fluids on curved non-relativistic spacetimes

    E-Print Network [OSTI]

    Michael Geracie; Kartik Prabhu; Matthew M. Roberts

    2015-09-23

    We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example we write down the most general theory of dissipative fluids consistent with the second law in curved non-relativistic geometries and find significant differences in the allowed transport coefficients from those found previously. Kubo formulas for all response coefficients are presented. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its relation to non-relativistic limits may be found in a companion paper [arXiv:1503.02682].

  6. ON MOLECULAR HYDROGEN FORMATION AND THE MAGNETOHYDROSTATIC EQUILIBRIUM OF SUNSPOTS

    SciTech Connect (OSTI)

    Jaeggli, S. A.; Lin, H. [Institute for Astronomy, University of Hawai'i, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Uitenbroek, H. [National Solar Observatory, Sacramento Peak, P.O. Box 62, Sunspot, NM 88349 (United States)

    2012-02-01

    We have investigated the problem of sunspot magnetohydrostatic equilibrium with comprehensive IR sunspot magnetic field survey observations of the highly sensitive Fe I lines at 15650 A and nearby OH lines. We have found that some sunspots show isothermal increases in umbral magnetic field strength which cannot be explained by the simplified sunspot model with a single-component ideal gas atmosphere assumed in previous investigations. Large sunspots universally display nonlinear increases in magnetic pressure over temperature, while small sunspots and pores display linear behavior. The formation of molecules provides a mechanism for isothermal concentration of the umbral magnetic field, and we propose that this may explain the observed rapid increase in umbral magnetic field strength relative to temperature. Existing multi-component sunspot atmospheric models predict that a significant amount of molecular hydrogen (H{sub 2}) exists in the sunspot umbra. The formation of H{sub 2} can significantly alter the thermodynamic properties of the sunspot atmosphere and may play a significant role in sunspot evolution. In addition to the survey observations, we have performed detailed chemical equilibrium calculations with full consideration of radiative transfer effects to establish OH as a proxy for H{sub 2}, and demonstrate that a significant population of H{sub 2} exists in the coolest regions of large sunspots.

  7. About a possible path towards the reverse engineering of quantum mechanics

    E-Print Network [OSTI]

    Alberto Ottolenghi

    2011-11-17

    An out of the box intellectual path exploring the foundations of quantum mechanics is discussed in some detail, in order to clarify why a possibly different way to look at the relevant fundamental questions can be identified and can support further research. Two key concepts arise. (1) Einstein critics to quantum mechanics could be taken seriously, but ironically, in order to really do so, one would have to take seriously also some of Lorentz critics to special relativity - both in a possibly more modern way; such interconnection possibly having been a blocking factor to openly discuss some of the cross implications of alternative views about quantum mechanics to date. (2) The probabilistic interpretation is a by-product of (a) quantum evolution equations, (b) conservation laws for the combination of measuring system and measured object and (c) persistency of calibration of the measuring system - as such there is no intellectual conflict whatsoever between hidden variables theories and probabilistic interpretation, provided we consider multicomponent hidden variable models and we allow for the existence of an underlying network. The implications of such concepts, in particular for the development of a microscopic quantisation program, are heuristically discussed or preliminarily explored.

  8. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, L.D.; Cerni, T.A.

    1989-10-17

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  9. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, Thanh Nhon (Flossmoor, IL)

    1999-01-01

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

  10. Combined heat and mass transfer device for improving separation process

    DOE Patents [OSTI]

    Tran, T.N.

    1999-08-24

    A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

  11. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    E-Print Network [OSTI]

    Sachiko Kuroyanagi; Takashi Hiramatsu; Jun'ichi Yokoyama

    2015-09-28

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform $512^3$ lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direct detection gravitational wave experiments such as DECIGO.

  12. Reheating signature in the gravitational wave spectrum from self-ordering scalar fields

    E-Print Network [OSTI]

    Kuroyanagi, Sachiko; Yokoyama, Jun'ichi

    2015-01-01

    We investigate the imprint of reheating on the gravitational wave spectrum produced by self-ordering of multi-component scalar fields after a global phase transition. The equation of state of the Universe during reheating, which usually has different behaviour from that of a radiation-dominated Universe, affects the evolution of gravitational waves through the Hubble expansion term in the equations of motion. This gives rise to a different power-law behavior of frequency in the gravitational wave spectrum. The reheating history is therefore imprinted in the shape of the spectrum. We perform $512^3$ lattice simulations to investigate how the ordering scalar field reacts to the change of the Hubble expansion and how the reheating effect arises in the spectrum. We also compare the result with inflation-produced gravitational waves, which has a similar spectral shape, and discuss whether it is possible to distinguish the origin between inflation and global phase transition by detecting the shape with future direc...

  13. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect (OSTI)

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  14. A Lagrangian formalism for nonequilibrium thermodynamics

    E-Print Network [OSTI]

    François Gay-Balmaz; Hiroaki Yoshimura

    2015-10-03

    In this paper, we present a Lagrangian formalism for nonequilibrium thermodynamics. This formalism is an extension of the Hamilton principle in classical mechanics that allows the inclusion of irreversible phenomena in both discrete and continuum systems (i.e., systems with finite and infinite degrees of freedom). The irreversibility is encoded into a nonlinear nonholonomic constraint given by the expression of entropy production associated to all the irreversible processes involved. Hence from a mathematical point of view, our variational formalism may be regarded as a generalization of the Lagrange-d'Alembert principle used in nonholonomic mechanics. In order to formulate the nonholonomic constraint, we associate to each irreversible process a variable called the thermodynamic displacement. This allows the definition of a corresponding variational constraint. Our theory is illustrated with various examples of discrete systems such as mechanical systems with friction, matter transfer, electric circuits, chemical reactions, and diffusion across membranes. For the continuum case, the variational formalism is naturally extended to the setting of infinite dimensional nonholonomic Lagrangian systems and is expressed in material representation, while its spatial version is obtained via a nonholonomic Lagrangian reduction by symmetry. In the continuum case, our theory is systematically illustrated by the example of a multicomponent viscous heat conducting fluid with chemical reactions and mass transfer.

  15. Phonon densities of states and related thermodynamic properties of high temperature ceramics.

    SciTech Connect (OSTI)

    Loong, C.-K.

    1998-08-28

    Structural components and semiconductor devices based on silicon nitride, aluminum nitride and gallium nitride are expected to function more reliably at elevated temperatures and at higher levels of performance because of the strong atomic bonding in these materials. The degree of covalency, lattice specific heat, and thermal conductivity are important design factors for the realization of advanced applications. We have determined the phonon densities of states of these ceramics by the method of neutron scattering. The results provide a microscopic interpretation of the mechanical and thermal properties. Moreover, experimental data of the static, structures, and dynamic excitations of atoms are essential to the validation of interparticle potentials employed for molecular-dynamics simulations of high-temperature properties of multi-component ceramic systems. We present an overview of neutron-scattering investigations of the atomic organization, phonon excitations, as well as calculations of related thermodynamic properties of Si{sub 3}N{sub 4}, {beta}-sialon, AlN and GaN. The results are compared with those of the oxide analogs such as SiO{sub 2} and Al{sub 2}O{sub 3}.

  16. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    SciTech Connect (OSTI)

    Witusiewicz, V.T.; Sommer, F.

    2000-04-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni{sub 26}Zr{sub 74}. In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys.

  17. Low-frequency inelastic light scattering in a ZBLAN (ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) glass

    SciTech Connect (OSTI)

    Adichtchev, S. V.; Malinovsky, V. K.; Surovtsev, N. V., E-mail: lab21@iae.nsk.su [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ignatieva, L. N.; Merkulov, E. B. [Institute of Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok 690022 (Russian Federation)] [Institute of Chemistry, Far East Branch of Russian Academy of Sciences, Vladivostok 690022 (Russian Federation)

    2014-05-14

    Low-frequency (down to 30 GHz) inelastic light scattering is studied in a multicomponent glass ZBLAN (ZrF{sub 4}-BaF{sub 2}-LaF{sub 3}-AlF{sub 3}-NaF) in a wide temperature range. The contributions of the THz vibrational spectrum (boson peak) and of the fast relaxation are extracted and analyzed. It is shown that the fast relaxation spectrum is described by a distribution of relaxation times leading to a power-law ?{sup ?} dependence in the frequency range 30–300 GHz. Temperature dependence of ?(T) is well described by the Gilroy-Phillips model, while the integrated intensity of the fast relaxation increases significantly with the temperature. This feature distinguishes the fast relaxation in ZBLAN from the case of most single-component glasses. Thermodynamic and kinetic fragility indexes are significantly different for the ZBLAN glass. The correlations between the boson peak intensity, elastic moduli, and fragility index, found earlier for single-component glasses, are fulfilled for the thermodynamic fragility index of ZBLAN. In contrast, the correlation between the fast relaxation intensity at T{sub g} and the fragility holds better for the kinetic fragility index of ZBLAN. We propose that thermodynamic and kinetic fragilities reflect different aspects of glassy dynamics in the case of glass formers with the complex chemical composition and structure topology: the former correlates with the elastic properties and the boson peak, the latter with the relaxation.

  18. SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A^p_1, at Large Bjorken x

    SciTech Connect (OSTI)

    Jonathan Mulholland

    2012-05-01

    The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid {sup 14}NH{sub 3} polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetries measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A{sub 1}{sup p} and A{sub 2}{sup p} as well as the spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. This work addresses the extraction of the virtual Compton asymmetry A{sub 1}{sup p} in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q{sup 2} bins from 1.9 to 4.7 GeV{sup 2}.

  19. Method of and apparatus for measuring vapor density

    DOE Patents [OSTI]

    Nelson, Loren D. (Morrison, CO); Cerni, Todd A. (Littleton, CO)

    1989-01-01

    Apparatus and method determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavlength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to: ##EQU1## where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4)+K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation.

  20. Hollow cathode theory and experiment. II. A two-dimensional theoretical model of the emitter region

    SciTech Connect (OSTI)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Polk, James E.

    2005-12-01

    Despite their long history and wide range of applicability that includes electric propulsion, detailed understanding of the driving physics inside orificed hollow cathodes remains elusive. The theoretical complexity associated with the multicomponent fluid inside the cathode, and the difficulty of accessing empirically this region, have limited our ability to design cathodes that perform better and last longer. A two-dimensional axisymmetric theoretical model of the multispecies fluid inside an orificed hollow cathode is presented. The level of detail attained by the model is allowed by its extended system of governing equations not solved for in the past within the hollow cathode. Such detail is motivated in part by the need to quantify the effect(s) of the plasma on the emitter life, and by the need to build the foundation for future modeling that will assess erosion of the keeper plate. Results from numerical simulations of a 1.2-cm-diam cathode operating at a discharge current of 25 A and a gas flow rate of 5 SCCM show that approximately 10 A of electron current, and 3.45 A of ion current return back to the emitter surface. The total emitted electron current is 33.8 A and the peak emitter temperature is found to be 1440 K. Comparisons with the measurements suggest that anomalous heating of the plasma is possible near the orifice region. The model predicts heavy species temperatures as high as 2034 K and peak voltage drops near the emitting surface not exceeding 8 V.

  1. Observed properties of boxy/peanut/barlens bulges

    E-Print Network [OSTI]

    Laurikainen, E

    2015-01-01

    We review the observed morphological, photometric, and kinematic properties of boxy/peanut (B/P) shape bulges. Nearly half of the bulges in the nearby edge-on galaxies have these characteristics, which fraction is similar to the observed bar fraction in Hubble types earlier than Scd. B/P bulges are generally detected in the edge-on view, but it has been recently demonstrated that barlenses, which are lens-like structures embedded in bars, are the more face-on counterparts of the B/P bulges. Multi-component structural decompositions have shown that B/P/barlens structures are likely to account for most of the bulge light, including the early-type disks harboring most of the bulge mass in galaxies. Cool central disks are often embedded in the B/P/barlens bulges. Barred galaxies contain also dynamically hot classical bulges, but it is not yet clear to what extent they are really dynamically distinct structure components, and to what extent stars wrapped into the central regions of the galaxies during the formatio...

  2. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2006-12-31

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  3. Coolside waste management research. Quarterly technical report, April 1--June 30, 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This report consists of 3 monthly progress reports. The first represents a summary of results from mineralogical studies of the field lysimeter samples. This part of the project is an ongoing task to understand the long term mineralogical reactions that occur in the lysimeters as a function of static loading (compaction) and moisture content. The data is congruent with results obtained from geotechnical characterization of pre-aged and non-aged Coolside samples with and without surcharge. The investigations are expected to aid in the understanding of the processes that control permeability and leaching potential of the materials and to produce sufficient information on the physical and chemical nature of Coolside waste to design and construct physically stable and environmentally safe landfills. The capacity of various FGD wastes to absorb CO{sub 2} has been recently investigated with the results summarized in the second monthly. The potential usage is for the removal of CO{sub 2} from multi-component gas streams, in particular, natural-gas streams. The third comprises results from ongoing geotechnical testing. The results are concurrent with mineralogical findings that suggest that ettringite, gypsum and calcium-alumino-silicate hydrate phases proceed to form within the aging materials. In specimens with higher degrees of static loading, minerals are forced to grow within available pore space and fractures, which causes less swell. This report also summarizes results from a study of the effects of Coolside leachate on natural clay liners.

  4. Determining the Bayesian optimal sampling strategy in a hierarchical system.

    SciTech Connect (OSTI)

    Grace, Matthew D.; Ringland, James T.; Boggs, Paul T.; Pebay, Philippe Pierre

    2010-09-01

    Consider a classic hierarchy tree as a basic model of a 'system-of-systems' network, where each node represents a component system (which may itself consist of a set of sub-systems). For this general composite system, we present a technique for computing the optimal testing strategy, which is based on Bayesian decision analysis. In previous work, we developed a Bayesian approach for computing the distribution of the reliability of a system-of-systems structure that uses test data and prior information. This allows for the determination of both an estimate of the reliability and a quantification of confidence in the estimate. Improving the accuracy of the reliability estimate and increasing the corresponding confidence require the collection of additional data. However, testing all possible sub-systems may not be cost-effective, feasible, or even necessary to achieve an improvement in the reliability estimate. To address this sampling issue, we formulate a Bayesian methodology that systematically determines the optimal sampling strategy under specified constraints and costs that will maximally improve the reliability estimate of the composite system, e.g., by reducing the variance of the reliability distribution. This methodology involves calculating the 'Bayes risk of a decision rule' for each available sampling strategy, where risk quantifies the relative effect that each sampling strategy could have on the reliability estimate. A general numerical algorithm is developed and tested using an example multicomponent system. The results show that the procedure scales linearly with the number of components available for testing.

  5. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect (OSTI)

    Capobianco, Ryan [Virginia Polytechnic Institute and State University; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Bodnar, Robert [Virginia Polytechnic Institute and State University

    2013-01-01

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  6. Nanoimaging to Prevent and Treat Alzheimer’s and Parkinson’s Diseases. Scientific/Technical report

    SciTech Connect (OSTI)

    Yuri L. Lyubchenko, PhD, DSc

    2012-12-20

    This project will develop innovative approaches to characterization of the very early stages of protein aggregation that eventually can be translated to the development of early diagnostic tools and efficient treatments for Alzheimer’s, Parkinson’s and Huntington’s diseases. Funding will be used to acquire nanoimaging technology for nanoscale imaging, manipulation and analysis of biomedical materials to develop treatments that will repair disabled proteins and cure diseases that result from protein malfunction, specifically Alzheimer’s and Parkinson’s diseases. Expected outcomes include tests for early diagnosis and therapeutic treatments for these devastating neurological diseases. To elucidate the mechanisms of protein misfolding, we will establish an extensive program of experimental studies using a broad arsenal of advanced nanoscale and traditional techniques that will be integrated with molecular-scale modeling of protein misfolding and the nucleation of aggregate structures. To identify intracellular machinery or/and multicomponent complexes critically involved in protein misfolding, we will characterize interactions between targeted proteins and specific intracellular components or metabolites that impact on protein conformational pathways leading to protein misfolding accompanied by formation of toxic aggregated morphologies. To design innovative nanotechnology tools for the control of intracellular protein misfolding and aggregation processes, we will develop a predictive molecular scale model for intracellular protein misfolding and the formation of toxic aggregates. Verified through experimental studies, the objective is to establish an enabling foundation for the engineering of novel molecular diagnostics and therapeutics for various cellular pathologies.

  7. BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Array

    E-Print Network [OSTI]

    Array, Keck; Ade, P A R; Ahmed, Z; Aikin, R W; Alexander, K D; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bowens-Rubin, R; Brevik, J A; Buder, I; Bullock, E; Buza, V; Connors, J; Crill, B P; Duband, L; Dvorkin, C; Filippini, J P; Fliescher, S; Grayson, J; Halpern, M; Harrison, S; Hilton, G C; Hui, H; Irwin, K D; Karkare, K S; Karpel, E; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leitch, E M; Lueker, M; Megerian, K G; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Richter, S; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Steinbach, B; Sudiwala, R V; Teply, G P; Thompson, K L; Tolan, J E; Tucker, C; Turner, A D; Vieregg, A G; Weber, A C; Wiebe, D V; Willmert, J; Wong, C L; Wu, W L K; Yoon, K W

    2015-01-01

    We present results from an analysis of all data taken by the BICEP2 & Keck Array CMB polarization experiments up to and including that taken during the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes $Q$ and $U$ in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 GHz to 353 GHz. An excess over lensed-LCDM is detected at modest significance in the 95x150 $BB$ spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23x95, or for dust/sync correlation in spectra such as 23x353. We take the likelihood of all the spectra for a multi-component model including lensed-LCDM, dust, synchrotron and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio $...

  8. Finite temperature effects on the X-ray absorption spectra of lithium compounds: First-principles interpretation of X-ray Raman measurements

    SciTech Connect (OSTI)

    Pascal, Tod A.; Prendergast, David, E-mail: dgprendergast@lbl.gov [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 (United States)] [The Molecular Foundry, Materials Science Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, California 94720 (United States); Boesenberg, Ulrike; Kostecki, Robert; Richardson, Thomas J. [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States)] [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States); Weng, Tsu-Chien; Sokaras, Dimosthenis; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94720 (United States)] [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford, California 94720 (United States); McDermott, Eamon; Moewes, Alexander [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan S7N 5E2 (Canada)] [University of Saskatchewan, Department of Physics and Engineering Physics, Saskatoon, Saskatchewan S7N 5E2 (Canada); Cabana, Jordi [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States) [Environmental Energy Technologies Division, LBNL, Berkeley, California 94720 (United States); Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60605 (United States)

    2014-01-21

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li{sub 2}SO{sub 4}, Li{sub 2}O, Li{sub 3}N, and Li{sub 2}CO{sub 3} using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole approach. Based on thermodynamic sampling via ab initio molecular dynamics simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. The excellent agreement with high-resolution XRS measurements validates the accuracy of our first-principles approach to simulating XAS, and provides both accurate benchmarks for model compounds and a predictive theoretical capability for identification and characterization of multi-component systems, such as lithium-ion batteries, under working conditions.

  9. Electrochemical and Antimicrobial Properties of Diamondlike Carbon-Metal Composite Films

    SciTech Connect (OSTI)

    MORRISON, M. L.; BUCHANAN, R. A.; LIAW, P. K.; BERRY, C. J.; BRIGMON, R.; RIESTER, L.; JIN, C.; NARAYAN, R. J.

    2005-05-11

    Implants containing antimicrobial metals may reduce morbidity, mortality, and healthcare costs associated with medical device-related infections. We have deposited diamondlike carbon-silver (DLC-Ag), diamondlike carbon-platinum (DLC-Pt), and diamondlike carbon-silver-platinum (DLC-AgPt) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films revealed that the silver and platinum self-assemble into nanoparticle arrays within the diamondlike carbon matrix. The diamondlike carbon-silver film possesses hardness and Young's modulus values of 37 GPa and 331 GPa, respectively. The diamondlike carbon-metal composite films exhibited passive behavior at open-circuit potentials. Low corrosion rates were observed during testing in a phosphate-buffered saline (PBS) electrolyte. In addition, the diamondlike carbon-metal composite films were found to be immune to localized corrosion below 1000 mV (SCE). DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus bacteria. It is believed that a galvanic couple forms between platinum and silver, which accelerates silver ion release and provides more robust antimicrobial activity. Diamondlike carbon-silver-platinum films may provide unique biological functionalities and improved lifetimes for cardiovascular, orthopaedic, biosensor, and implantable microelectromechanical systems.

  10. Capillary, wettability and interfacial dynamics in polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Mukherjee, Partha P [Los Alamos National Laboratory

    2009-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for different applications. Despite tremendous progress in recent years, a pivotal performance/durability limitation in the PEFC arises from liquid water transport, perceived as the Holy Grail in PEFC operation. The porous catalyst layer (CL), fibrous gas diffusion layer (GDL) and flow channels play a crucial role in the overall PEFC performance due to the transport limitation in the presence of liquid water and flooding phenomena. Although significant research, both theoretical and experimental, has been performed, there is serious paucity of fundamental understanding regarding the underlying structure-transport-performance interplay in the PEFC. The inherent complex morphologies, micro-scale transport physics involving coupled multiphase, multicomponent, electrochemically reactive phenomena and interfacial interactions in the constituent components pose a formidable challenge. In this paper, the impact of capillary transport, wetting characteristics and interfacial dynamics on liquid water transport is presented based on a comprehensive mesoscopic modeling framework with the objective to gain insight into the underlying electrodynamics, two-phase dynamics and the intricate structure-transport-interface interactions in the PEFC.

  11. Tracking the evolution of a coherent magnetic flux rope continuously from the inner to the outer corona

    SciTech Connect (OSTI)

    Cheng, X.; Ding, M. D.; Guo, Y.; Zhang, J.; Sun, J. Q.; Li, C.; Vourlidas, A.; Liu, Y. D.; Olmedo, O.

    2014-01-01

    The magnetic flux rope (MFR) is believed to be the underlying magnetic structure of coronal mass ejections (CMEs). However, it remains unclear how an MFR evolves into and forms the multi-component structure of a CME. In this paper, we perform a comprehensive study of an extreme-ultraviolet (EUV) MFR eruption on 2013 May 22 by tracking its morphological evolution, studying its kinematics, and quantifying its thermal property. As EUV brightenings begin, the MFR starts to rise slowly and shows helical threads winding around an axis. Meanwhile, cool filamentary materials descend spirally down to the chromosphere. These features provide direct observational evidence of intrinsically helical structure of the MFR. Through detailed kinematical analysis, we find that the MFR evolution has two distinct phases: a slow rise phase and an impulsive acceleration phase. We attribute the first phase to the magnetic reconnection within the quasi-separatrix layers surrounding the MFR, and the much more energetic second phase to the fast magnetic reconnection underneath the MFR. We suggest that the transition between these two phases is caused by the torus instability. Moreover, we identify that the MFR evolves smoothly into the outer corona and appears as a coherent structure within the white-light CME volume. The MFR in the outer corona was enveloped by bright fronts that originated from plasma pile-up in front of the expanding MFR. The fronts are also associated with the preceding sheath region followed by the outmost MFR-driven shock.

  12. Possible Origin of Improved High Temperature Performance of Hydrothermally Aged Cu/Beta Zeolite Catalysts

    SciTech Connect (OSTI)

    Peden, Charles HF; Kwak, Ja Hun; Burton, Sarah D.; Tonkyn, Russell G.; Kim, Do Heui; Lee, Jong H.; Jen, H. W.; Cavattaio, Giovanni; Cheng, Yisun; Lambert, Christine

    2012-04-30

    The hydrothermal stability of Cu/beta NH3 SCR catalysts are explored here. In particular, this paper focuses on the interesting ability of this catalyst to maintain and even enhance high-temperature performance for the "standard" SCR reaction after modest (900 °C, 2 hours) hydrothermal aging. Characterization of the fresh and aged catalysts was performed with an aim to identify possible catalytic phases responsible for the enhanced high temperature performance. XRD, TEM and 27Al NMR all showed that the hydrothermally aging conditions used here resulted in almost complete loss of the beta zeolite structure between 1 and 2 hours aging. While the 27Al NMR spectra of 2 and 10 hour hydrothermally-aged catalysts showed significant loss of a peak associated with tetrahedrally-coordinated Al species, no new spectral features were evident. Two model catalysts, suggested by these characterization data as possible mimics of the catalytic phase formed during hydrothermal aging of Cu/beta, were prepared and tested for their performance in the "standard" SCR and NH3 oxidation reactions. The similarity in their reactivity compared to the 2 hour hydrothermally-aged Cu/beta catalyst suggests possible routes for preparing multi-component catalysts that may have wider temperature windows for optimum performance than those provided by current Cu/zeolite catalysts.

  13. Inkjet Deposition of Layer-by-Layer Assembled Films

    SciTech Connect (OSTI)

    Andres, C. M.; Kotov, Nicholas A.

    2010-09-23

    Layer-by-layer assembly (LBL) can create advanced composites with exceptional properties unavailable by other means, but the laborious deposition process and multiple dipping cycles hamper their utilization in microtechnologies and electronics. Multiple rinse steps provide both structural control and thermodynamic stability to LBL multilayers, but they significantly limit their practical applications and contribute significantly to the processing time and waste. Here we demonstrate that by employing inkjet technology one can deliver the necessary quantities of LBL components required for film buildup without excess, eliminating the need for repetitive rinsing steps. This feature differentiates this approach from all other recognized LBL modalities. Using a model system of negatively charged gold nanoparticles and positively charged poly(diallyldimethylammonium) chloride, the material stability, nanoscale control over thickness, and particle coverage offered by the inkjet LBL technique are shown to be equal or better than the case of multilayers made with traditional dipping cycles. The opportunity for fast deposition of complex metallic patterns using a simple inkjet printer is also shown. The additive nature of LBL deposition based on the formation of insoluble nanoparticle-polyelectrolyte complexes of various compositions provides an excellent opportunity for versatile, multicomponent, and noncontact patterning for the simple production of stratified patterns that are much needed in advanced devices.

  14. First Principles Calculations of Oxygen Vacancy Formation and Migration in Ba1?xSrxCo1?yFeyO3?? Perovskites

    SciTech Connect (OSTI)

    Merkle, Rotraut; Mastrikov, Yuri; Kotomin, Eugene Alexej; Kukla, Maija M.; Maier, Joachim

    2011-12-28

    Based on first principles DFT calculations, we analyze oxygen vacancy formation and migration energies as a function of chemical composition in complex multicomponent (Ba,Sr)(Co,Fe)O3?? perovskites which are candidate materials for SOFC cathodes and permeation membranes. The atomic relaxation, electronic charge redistribution and energies of the transition states of oxygen migration are compared for several perovskites to elucidate the atomistic reason for the exceptionally low migration barrier in Ba0.5Sr0.5Co0.8Fe0.2O3?? that was previously determined experimentally. The critical comparison of Ba1?xSrxCo1?yFeyO3?? perovskites with different cation compositions and arrangements shows that in addition to the geometric constraints the electronic structure plays a considerable role for the height of the oxygen migration barrier in these materials. These findings help understand advantages and limitations of the fast oxygen permeation and exchange properties of Ba0.5Sr0.5Co0.8Fe0.2O3??.

  15. Spectral and polarization properties of photospheric emission from stratified jets

    SciTech Connect (OSTI)

    Ito, Hirotaka; Nagataki, Shigehiro; Matsumoto, Jin; Lee, Shiu-Hang; Tolstov, Alexey; Mao, Jirong; Dainotti, Maria; Mizuta, Akira

    2014-07-10

    We explore the spectral and polarization properties of photospheric emissions from stratified jets in which multiple components, separated by sharp velocity shear regions, are distributed in lateral directions. Propagation of thermal photons injected at a high optical depth region are calculated until they escape from the photosphere. It is found that the presence of the lateral structure within the jet leads to the nonthermal feature of the spectra and significant polarization signal in the resulting emission. The deviation from thermal spectra, as well as the polarization degree, tends to be enhanced as the velocity gradient in the shear region increases. In particular, we show that emissions from multicomponent jet can reproduce the typical observed spectra of gamma-ray bursts irrespective of the position of the observer when a velocity shear region is closely spaced in various lateral (?) positions. The degree of polarization associated with the emission is significant (>few percent) at a wide range of observer angles and can be higher than 30%.

  16. Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)

    SciTech Connect (OSTI)

    Burton, E.

    2014-02-01

    The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA) and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.

  17. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; Sinitsyn, Nikolai A.

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore »ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  18. Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields

    E-Print Network [OSTI]

    Krzysztof Gaw?dzki; Clément Tauber

    2015-01-29

    We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature $\\beta$ and electric potential $V$, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asymptotics. For the purely transmitting case they coincide with those obtained in the litterature, but numerous cases of junctions with transmission and reflection are also covered. The large deviations rate function of FCS for charge and energy transfers is shown to satisfy the fluctuation relations and the expressions for FCS obtained here are compared with the Levitov-Lesovic formulae.

  19. Self-Assembly of Rod-Coil Block Copolymers And Their Application in Electroluminescent Devices

    SciTech Connect (OSTI)

    Tao, Y.; Ma, B.; Segalman, R.A.

    2009-05-26

    The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

  20. Effects of gravitational-wave recoil on the dynamics and growth of supermassive black holes

    E-Print Network [OSTI]

    Laura Blecha; Abraham Loeb

    2008-08-01

    Simulations of binary black hole mergers indicate that asymmetrical gravitational wave (GW) emission can cause black holes to recoil at speeds up to thousands of km/s. These GW recoil events can dramatically affect the coevolution of recoiling supermassive black holes (SMBHs) and their host galaxies. However, theoretical studies of SMBH-galaxy evolution almost always assume a stationary central black hole. In light of the numerical results on GW recoil velocities, we relax that assumption here and consider the consequences of recoil for SMBH evolution. We follow the trajectories of SMBHs ejected in a smooth background potential that includes both a stellar bulge and a multi-component gaseous disk. In addition, we calculate the accretion rate onto the SMBH as a function of time using a hybrid prescription of viscous (alpha-disk) and Bondi accretion. We find that recoil kicks between 100 km/s and the escape speed cause SMBHs to wander through the galaxy and halo for about 1 Myr - 1 Gyr before settling back to the galactic center. However, the mass accreted during this time is roughly constant at about 10% of the initial mass, independent of the recoil velocity. This indicates that while large recoils may disrupt active galactic nuclei feedback processes, recoil itself is an effective means of regulating SMBH growth. Recoiling SMBHs may be observable as spatially or kinematically offset quasars, but finding such systems could be challenging, because the largest offsets correspond to the shortest quasar lifetimes.