Sample records for geothermometers multicomponent geothermometers

  1. A new illite geothermometer

    SciTech Connect (OSTI)

    Ballantyne, Judith M.; Moore, Joseph N.

    1988-01-01T23:59:59.000Z

    Sericite, either as illite or illite/smectite, is ubiquitous in geothermal systems. Theoretical Ca- and Na-smectite contents of non-expanding geothermal sericites have been calculated from published electron microprobe analyses. Geothermal sericites can be modeled as solid solutions of muscovite and smectite. For those sericites that fit the model, the amount of smectite in solid solution is related to temperature by the expression TºC = 1000/(0.45LogX{sub smectite} + 2.38) – 273. The temperature dependence of illite interlayer chemistry suggests a related temperature dependence of the K, Na and Ca content of geothermal fluids. The original data used by Fournier and Truesdell (1973) to derive the empirical Na-K-Ca geothermometer for geothermal fluids can be modeled equally well by an equation incorporating the equilibrium constant for the reaction of smectite to illite: T ºC = 1.145*10{sup 3}/([0.35LogNa + 0.175LogCa – 0.75LogK] + 1.51) – 273, where the concentration units are molalities. This supports the hypothesis that illite and illite/smectite are important controls on the concentrations of Na, K and Ca in geothermal fluids.

  2. Multicomponent Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,SpurrMulberry, Ohio:

  3. Cation Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChinaOpen EnergyCation

  4. Silica Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SA Jump to: navigation,

  5. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation Of Chemical...

  6. Category:Silica Geothermometers | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here. Category:ConceptualGeothermal Regulatory

  7. Evaluation Of Chemical Geothermometers For Calculating Reservoir

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEurico

  8. Cation Geothermometers At Lightning Dock Geothermal Area (Witcher, 2006) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric Survey as explorationpage? ForChinaOpen Energy

  9. Chemical Geothermometers And Mixing Models For Geothermal Systems | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.Telluric SurveyChelan County, Washington: EnergyChemical Design

  10. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers...

    Open Energy Info (EERE)

    errors (2-3%) than for the original equation (5-29%). Authors Surendra P. Verma and Edgar Santoyo Published Journal Journal of Volcanology and Geothermal Research, 1997 DOI Not...

  11. A New Improved Na-K Geothermometer By Artificial Neural Networks | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf The 28-29Making

  12. New Improved Equations For Na-K, Na-Li And Sio2 Geothermometers By Outlier

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to:Neppel WindNew Grid EnergyHarvest Jump

  13. An Empirical Na-K-Ca Geothermometer For Natural Waters | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmite

  14. Application Of An Artificial Neural Network Model To A Na-K Geothermometer

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrim County, Michigan:Applewood, Colorado:Of Travale, Tuscany|

  15. Validation of Multicomponent Equilibrium Geothermometry at Four Geothermal Power Plants

    SciTech Connect (OSTI)

    Ghanashyam Neupane; Jeffrey S Baum; Earl D Mattson; Gregory L Mines; Carl D Palmer; Robert W Smith

    2001-01-01T23:59:59.000Z

    This paper evaluates our ability to predict geothermal reservoir temperatures using water compositions measured from surface hot springs or shallow subsurface wells at four geothermal sites prior to the startup of geothermal energy production using RTEst, a multicomponent equilibrium geothermometer we have developed and are testing. The estimated reservoir temperatures of these thermal expressions are compared to measured bottom-hole temperatures of production wells at Raft River, ID; Neal Hot Springs, OR; Roosevelt Hot Springs, UT; and Steamboat Springs, NV geothermal sites. In general, temperatures of the producing reservoir estimated from the composition of water from surface expressions/shallow wells using RTEst are similar to the measured bottom-hole temperatures. For example, estimates for the Neal Hot Springs system are within ±10 ºC of the production temperatures. However, some caution must be exercised in evaluating RTEst predictions. Estimated temperature for a shallow Raft River well (Frazier well) is found to be slightly lower (ca. 15 ºC) than the bottom-hole temperatures from the geothermal plant production wells. For the Raft River system, local geology and fluid mixing model indicate that the fluid source for this shallow well may not have originated from the production reservoir. Similarly, RTEst results for Roosevelt Hot springs and Steamboat Springs geothermal areas were found consistent with the reservoir temperatures obtained from deep wells. These results suggest that the RTEst could be a valuable tool for estimating temperatures and evaluation geothermal resources.

  16. Multicomponent Equilibrium Models for Testing Geothermometry Approaches

    SciTech Connect (OSTI)

    Cooper, D. Craig; Carl D. Palmer; Robert W. Smith; Travis L. McLing

    2013-02-01T23:59:59.000Z

    Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.

  17. Multicomponent membranes

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL); Funk, Edward W. (Highland Park, IL)

    1988-01-01T23:59:59.000Z

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  18. Exploring the reactivity of bacterial multicomponent monooxygenases

    E-Print Network [OSTI]

    Tinberg, Christine Elaine

    2010-01-01T23:59:59.000Z

    Chapter 1. Introduction: The Reactivity of Bacterial Multicomponent Monooxygenases Bacterial multicomponent monooxygenases constitute a remarkable family of enzymes that oxidize small, inert hydrocarbon substrates using ...

  19. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    SciTech Connect (OSTI)

    KRUGER AA; HRMA PR

    2009-10-08T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  20. Improvements in geothermometry. Final technical report

    SciTech Connect (OSTI)

    Potter, J.; Dibble, W.; Parks, G.; Nur, A.

    1982-07-01T23:59:59.000Z

    The following are covered: the basis of the Na-K-Ca geothermometer, geothermometry via model calculations, non ideality and complexing, and experimental calibration.

  1. A Review of Methods Applied by the US Geological Survey in the...

    Open Energy Info (EERE)

    preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are...

  2. THERMODYNAMICS Unified Model for Nonideal Multicomponent

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    THERMODYNAMICS Unified Model for Nonideal Multicomponent Molecular Diffusion Coefficients Alana and a rigorous descrip- tion of mixture nonideality in the framework of irreversible thermodynamics. Molecular

  3. Geothermal: Sponsored by OSTI -- Validation of Multicomponent...

    Office of Scientific and Technical Information (OSTI)

    Validation of Multicomponent Equilibrium Geothermometry at Four Geothermal Power Plants Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  4. GROUND STATES AND DYNAMICS OF MULTICOMPONENT BOSEEINSTEIN CONDENSATES

    E-Print Network [OSTI]

    Bao, Weizhu

    GROUND STATES AND DYNAMICS OF MULTICOMPONENT BOSE­EINSTEIN CONDENSATES WEIZHU BAO MULTISCALE MODEL a multicomponent Bose­Einstein condensate (BEC) at zero or a very low temperature. In preparation for the numerics of multicomponent BEC. Key words. multicomponent, Bose­Einstein condensate, vector Gross­Pitaevskii equations

  5. On rational solutions of multicomponent and matrix KP hierarchies

    E-Print Network [OSTI]

    Alberto Tacchella

    2010-11-05T23:59:59.000Z

    We derive some rational solutions for the multicomponent and matrix KP hierarchies generalising an approach by Wilson. Connections with the multicomponent version of the KP/CM correspondence are discussed.

  6. aniline dioxygenase-related multicomponent: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and cleared with chloral hydrate to allow high Haseloff, Jim 4 Multi-Component Dark Matter HEP - Phenomenology (arXiv) Summary: We explore multi-component dark matter models...

  7. Thermodynamics and Mass Transport in Multicomponent,

    E-Print Network [OSTI]

    Manga, Michael

    Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest, cryogenic systems, thermodynamics, fluid dynamics, clathrates, Mars, Enceladus, sound speed Abstract Heat of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties

  8. THERMODYNAMICS Molecular Simulation of Multicomponent Reaction

    E-Print Network [OSTI]

    Lisal, Martin

    THERMODYNAMICS Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System Martin Lisal´ E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals N1G 2W1, Canada Ivo Nezbeda E. Hala Laboratory of Thermodynamics, Institute of Chemical Process

  9. Multicomponent interfacial transport as described by

    E-Print Network [OSTI]

    Kjelstrup, Signe

    at the surface Distillation column Fuel cells Biological membranes Spinodal decomposition #12;5 Multicomponent R1q 100 % Rq2-R2q R2 q 100% R12-R21 R21 100 % Measure of the error: =210-4 -- optimal perturbation

  10. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA

    SciTech Connect (OSTI)

    Simmons, Stuart F [Colorado School of Mines; Spycher, Nicolas [Lawrence Berkeley National Laboratory; Sonnenthal, Eric [Lawrence Berkeley National Laboratory; Dobson, Patrick [Lawrence Berkeley National Laboratory

    2013-05-20T23:59:59.000Z

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  11. Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...

    Open Energy Info (EERE)

    Hot Springs, and in the south-central part of LVNP in the Walker "O" No. 1 well at Terminal Geyser are rich in chloride and yield calculated geothermometer temperatures between...

  12. Geochemistry And Geothermometry Of Spring Water From The Blackfoot...

    Open Energy Info (EERE)

    a direct result of high potassium concentrations in the water. A correction for carbon dioxide applied to the Na-K-Ca geothermometer lowers the estimated temperatures of the...

  13. Multi-component Nanoparticle Based Lubricant Additive to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanoparticle Based Lubricant Additive to Improve Efficiency and Durability in Engines Multi-component Nanoparticle Based Lubricant Additive to Improve Efficiency and...

  14. MULTISCALE MODELING OF SOLIDIFICATION OF MULTI-COMPONENT ALLOYS

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    MULTISCALE MODELING OF SOLIDIFICATION OF MULTI-COMPONENT ALLOYS A Dissertation Presented;MULTISCALE MODELING OF SOLIDIFICATION OF MULTI-COMPONENT ALLOYS Lijian Tan, Ph.D. Cornell University 2007-dimensional dendrite growth of pure material and alloys, eutectic and peritectic solidification, convection effects

  15. Curvature Dependency of Surface Tension in Multicomponent Systems

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Curvature Dependency of Surface Tension in Multicomponent Systems Erik Santiso Dept. of Chemical InterScience (www.interscience.wiley.com). The effect of curvature on the surface tension of droplets for multicomponent systems, the relation between the surface tension at the surface of tension and the distance

  16. J/$?$ absorption in a multicomponent hadron gas

    E-Print Network [OSTI]

    Dariusz Prorok; Ludwik Turko; David Blaschke

    2008-08-04T23:59:59.000Z

    A model for anomalous $J/\\Psi$ suppression in high energy heavy ion collisions is presented. As the additional suppression mechanism beyond standard nuclear absorption inelastic $J/\\Psi$ scattering with hadronic matter is considered. Hadronic matter is modeled as an evolving multi-component gas of point-like non-interacting particles (MCHG). Estimates for the sound velocity of the MCHG are given and the equation of state is compared with Lattice QCD data in the vicinity of the deconfinement phase transition. The approximate cooling pattern caused by longitudinal expansion is presented. It is shown that under these conditions the resulting $J/\\Psi$ suppression pattern agrees well with NA38 and NA50 data.

  17. MULTICOMPONENT BIOSORPTION IN FIXED BEDS DAVID KRATOCHVIL and BOHUMIL VOLESKY*

    E-Print Network [OSTI]

    Volesky, Bohumil

    MULTICOMPONENT BIOSORPTION IN FIXED BEDS DAVID KRATOCHVIL and BOHUMIL VOLESKY* Department D and U[-] v intersticial velocity in packed-bed column [cm/ min] Vc volume of the packed-bed

  18. Basilar-membrane response to multicomponent stimuli in chinchilla

    E-Print Network [OSTI]

    Kemnitz, Joseph

    Basilar-membrane response to multicomponent stimuli in chinchilla William S. Rhodea) and Alberto 53706 Received 28 November 2000; accepted for publication 11 April 2001 The response of chinchilla

  19. Single Pass Multi-component Harvester

    SciTech Connect (OSTI)

    Reed Hoskinson; J. Richard Hess

    2004-08-01T23:59:59.000Z

    Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

  20. Ground states and dynamics of multi-component Bose-Einstein condensates

    E-Print Network [OSTI]

    Markowich, Peter A.

    Ground states and dynamics of multi-component Bose-Einstein condensates Weizhu Bao #3; Department) an external driven #12;eld for dynamics describing a multi-component Bose- Einstein condensate (BEC) at zero-component Bose-Einstein condensates. Key Words. Multi-component, Bose-Einstein condensate (BEC), Vector Gross

  1. The Single Pass Multi-component Harvester

    SciTech Connect (OSTI)

    Reed Hoskinson; John R. Hess

    2004-08-01T23:59:59.000Z

    The authors are solely responsible for the content of this technical presentation. The technical presentation does not necessarily reflect the official position of the American Society of Agricultural Engineers (ASAE), and its printing and distribution does not constitute an endorsement of views which may be expressed. Technical presentations are not subject to the formal peer review process by ASAE editorial committees; therefore, they are not to be presented as refereed publications. Citation of this work should state that it is from an ASAE meeting paper. EXAMPLE: Author's Last Name, Initials. 2004. Title of Presentation. ASAE Paper No. 04xxxx. St. Joseph, Mich.: ASAE. For information about securing permission to reprint or reproduce a technical presentation, please contact ASAE at hq@asae.org or 269-429-0300 (2950 Niles Road, St. Joseph, MI 49085-9659 USA). Abstract. In order to meet the U. S. government’s goal of supplementing the energy available from petroleum by increasing the production of energy from renewable resources, increased production of bioenergy has become one of the new goals of the United States government and our society. U.S. Executive Orders and new Federal Legislation have mandated changes in government procedures and caused reorganizations within the government to support these goals. The Biomass Research and Development Initiative is a multi-agency effort to coordinate and accelerate all U.S. Federal biobased products and bioenergy research and development. The Initiative is managed by the National Biomass Coordination Office, which is staffed by both the DOE and the USDA. One of the most readily available sources of biomass from which to produce bioenergy is an agricultural crop residue, of which straw from small grains is the most feasible residue with which to start. For the straw residue to be used its collection must be energy efficient and its removal must not impact the sustainability of the growing environment. In addition, its collection must be economically advantageous to the producer. To do all that, a single pass multi-component harvester system is most desirable. Results from our first prototype suggest that current combines probably do adequate threshing and that a separate chassis can be developed that does additional separation and that is economically feasible.

  2. Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities

    E-Print Network [OSTI]

    Gu, Tingyue

    Multicomponent Adsorption and Chromatography with Uneven Saturation Capacities Tingyue Gu, Gow, the extent of size exclusion is not the same for all the components. This often causes uneven adsorption capacity and vice versa. A study of size exclusion coupled with adsorption is a rel- atively new topic

  3. FUNCTIONAL ESTIMATION FOR A MULTICOMPONENT AGE REPLACEMENT MODEL

    E-Print Network [OSTI]

    L'Ecuyer, Pierre

    1 FUNCTIONAL ESTIMATION FOR A MULTICOMPONENT AGE REPLACEMENT MODEL Pierre L'Ecuyer, Benoit Martin, controlled by a replacement rule based on age thresholds. We show how to estimate the expected cost­ generative simulation, maintenance models, age replacement policies. #12; 2 L'ECUYER, MARTIN, AND V ' AZQUEZ

  4. FUNCTIONAL ESTIMATION FOR A MULTICOMPONENT AGE REPLACEMENT MODEL

    E-Print Network [OSTI]

    Vázquez-Abad, Felisa J.

    FUNCTIONAL ESTIMATION FOR A MULTICOMPONENT AGE REPLACEMENT MODEL Pierre L'Ecuyer, Benoit Martin, controlled by a replacement rule based on age thresholds. We show how to estimate the expected cost­ generative simulation, maintenance models, age replacement policies. #12; L'ECUYER, MARTIN, AND V ' AZQUEZ

  5. Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials

    E-Print Network [OSTI]

    integral methods in two dimensions to multi-component fluid flows and multi-phase problems in materials, and more recently to multi-phase problems in materials science. By multi-fluid or multi-phase we mean systems where the constituitive properties of the fluid or material change abruptly at a dividing

  6. Boundary Integral Methods for Multicomponent Fluids and Multiphase Materials

    E-Print Network [OSTI]

    integral methods in two dimensions to multi­component fluid flows and multi­phase problems in materials, and more recently to multi­phase problems in materials science. By multi­fluid or multi­phase we mean systems where the constituitive properties of the fluid or material change abruptly at a dividing

  7. Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity,

    E-Print Network [OSTI]

    Cambridge, University of

    Modelling precipitation of niobium carbide in austenite: multicomponent diffusion, capillarity, and coarsening N. Fujita and H. K. D. H. Bhadeshia The growth of niobium carbide in austenite involves the diffusion of both niobium and carbon. These elements diffuse at very different rates. A model is presented

  8. Method for producing nanocrystalline multicomponent and multiphase materials

    DOE Patents [OSTI]

    Eastman, Jeffrey A. (Woodridge, IL); Rittner, Mindy N. (Des Plaines, IL); Youngdahl, Carl J. (Westmont, IL); Weertman, Julia R. (Evanston, IL)

    1998-01-01T23:59:59.000Z

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound.

  9. Method for producing nanocrystalline multicomponent and multiphase materials

    DOE Patents [OSTI]

    Eastman, J.A.; Rittner, M.N.; Youngdahl, C.J.; Weertman, J.R.

    1998-03-17T23:59:59.000Z

    A process for producing multi-component and multiphase nanophase materials is provided wherein a plurality of elements are vaporized in a controlled atmosphere, so as to facilitate thorough mixing, and then condensing and consolidating the elements. The invention also provides for a multicomponent and multiphase nanocrystalline material of specified elemental and phase composition having component grain sizes of between approximately 1 nm and 100 nm. This material is a single element in combination with a binary compound. In more specific embodiments, the single element in this material can be a transition metal element, a non-transition metal element, a semiconductor, or a semi-metal, and the binary compound in this material can be an intermetallic, an oxide, a nitride, a hydride, a chloride, or other compound. 6 figs.

  10. Computation of liquid-liquid equilibrium in multicomponent electrolyte systems

    SciTech Connect (OSTI)

    Vianna, R.F.; d`Avila, S.G. [Universidade Estadual de Campinas (Brazil)

    1996-12-31T23:59:59.000Z

    A computational algorithm for predicting liquid-liquid equilibrium (LLE) data, based on a generalization of the maximum likelihood method applied to implicit constraints, is presented. The algorithm accepts multicomponent data and binary interaction parameters. A comparative study of the models NRTL and electrolyte-NRTL, used for estimating activity coefficients in a quaternary electrolyte system, is presented and discussed. Results show that both models give accurate predictions and the algorithm presents a good performance without convergence or initialization problems. This suggests that the basic NRTL model can be used for describing phase behavior in weak electrolyte systems and the procedure can be of great use for design and optimization of processes involving multicomponent electrolyte systems. 9 refs., 1 fig., 1 tab.

  11. Performance of Multi-Level and Multi-Component Compressed Bitmap Indexes

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    LBNL-60891 Performance of Multi-Level and Multi-Component Compressed Bitmap Indexes Kesheng Wu cardinality attributes when certain compression methods are applied. There are many different bitmap indexes subsets of compressed bitmap indexes that use multi-component and multi-level encodings. We combine

  12. A level set simulation of dendritic solidification of multi-component alloys

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    A level set simulation of dendritic solidification of multi-component alloys Lijian Tan, Nicholas Zabaras 1 Materials Process Design and Control Laboratory, Sibley School of Mechanical and Aerospace microstructure evolution in the solidification of multi-component alloys. Phase boundaries are tracked by solving

  13. ON THE LINEAR GROWTH OF THE SPLITANDMERGE SIMULATION TREE FOR A MULTICOMPONENT AGE REPLACEMENT MODEL

    E-Print Network [OSTI]

    Vázquez-Abad, Felisa J.

    ON THE LINEAR GROWTH OF THE SPLIT­AND­MERGE SIMULATION TREE FOR A MULTICOMPONENT AGE REPLACEMENT Functional estimation, split­and­merge tree, opti­ mization, maintenance models, age replacement poli­ cies Abstract We a consider a replacement policy based on age thresholds, for a multicomponent system. We want

  14. Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal fluid flow

    E-Print Network [OSTI]

    Numerical models of caldera deformation: Effects of multiphase and multicomponent hydrothermal studies addressing the effects of multiphase flow on crustal mechanics have been attempted. Recent numerical simulations of multiphase (liquid-gas), multicomponent (H2O­CO2) hydrothermal fluid flow

  15. Modulation of Drug Transport Properties by Multicomponent Diffusion in Surfactant Aqueous Solutions

    E-Print Network [OSTI]

    Annunziata, Onofrio

    Modulation of Drug Transport Properties by Multicomponent Diffusion in Surfactant Aqueous Solutions ReceiVed July 1, 2008 Diffusion coefficients of drug compounds are crucial parameters used for modeling diffusion. A multicomponent diffusion study on drug-surfactant-water ternary mixtures is reported here

  16. Multicomponent 'dark' cnoidal waves: stability and soliton asymptotes

    SciTech Connect (OSTI)

    Vysloukh, Victor A; Petnikova, V M; Rudenko, K V; Shuvalov, Vladimir V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    1999-07-31T23:59:59.000Z

    The problem of steady-state propagation of several mutually incoherent optical waves - components of 'dark' multicomponent solitons and cnoidal waves - through a photorefractive crystal with a drift nonlinearity of the defocusing type is considered and solved. Analytical expressions are obtained for the distributions of the optical field between the components of the resulting solutions, containing up to three self-consistent components inclusive. It is shown that these solutions are stable and that their spatial structure is retained in mutual collisions and after stochastic perturbations of the intensity distributions. (this issue is dedicated to the memory of s a akhmanov)

  17. Fluid description of multi-component solar partially ionized plasma

    SciTech Connect (OSTI)

    Khomenko, E., E-mail: khomenko@iac.es; Collados, M.; Vitas, N. [Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife (Spain); Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife (Spain); Díaz, A. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2014-09-15T23:59:59.000Z

    We derive self-consistent formalism for the description of multi-component partially ionized solar plasma, by means of the coupled equations for the charged and neutral components for an arbitrary number of chemical species, and the radiation field. All approximations and assumptions are carefully considered. Generalized Ohm's law is derived for the single-fluid and two-fluid formalism. Our approach is analytical with some order-of-magnitude support calculations. After general equations are developed, we particularize to some frequently considered cases as for the interaction of matter and radiation.

  18. Analysis of gas centrifuge cascade for separation of multicomponent isotopes and optimal feed position

    SciTech Connect (OSTI)

    Chuntong Ying; Hongjiang Wu; Mingsheng Zhou; Yuguang Nie; Guangjun Liu [Tsinghua Univ., Beijing (China)

    1997-10-01T23:59:59.000Z

    Analysis of the concentration distribution in a gas centrifuge cascade for separation of multicomponent isotope mixtures is different from that in a cascade for separation of two-component mixtures. This paper presents the governing equations for a multicomponent isotope separation cascade. Numerically predicted separation factors for the gas centrifuge cascade agree well with the experimental data. A theoretical optimal feed position is derived for a short square cascade for a two-component mixture in a close-separation case. The optimal feed position for a gas centrifuge cascade for separation of multicomponent mixture is discussed.

  19. Phase transition in multicomponent field theory at finite temperature

    E-Print Network [OSTI]

    Yukalov, V I

    2015-01-01T23:59:59.000Z

    Nuclear matter at finite temperature and barion density exhibits several phase transitions that could happen at the early stages of the Universe evolution and could be realized in heavy-ion or hadron-hadron collisions. Microscopic description of phase transitions is notoriously difficult because of the absence of small parameters. Here we present a general approach allowing to treat situations, when there are no small parameters. The approach is based on optimized perturbation theory and self-similar approximation theory. It allows, starting with divergent perturbation series in powers of an asymptotically small parameter, to construct expressions extrapolating asymptotic series to arbitrary values of the parameter, including its infinite limit. Examples of such approximants are: right root approximants, left root approximants, continued root approximants, exponential approximants, and factor approximants. The approach is illustrated by the phase transition of gauge symmetry breaking in a multicomponent field...

  20. Phase conversion dissipation in multi-component compact stars

    E-Print Network [OSTI]

    Mark G. Alford; Sophia Han; Kai Schwenzer

    2015-01-15T23:59:59.000Z

    We propose a mechanism for the damping of density oscillations in multi-component compact stars. The mechanism is the periodic conversion between different phases, i.e. the movement of the interface between them, induced by pressure oscillations in the star. The damping grows nonlinearly with the amplitude of the oscillation. We study in detail the case of r-modes in a hybrid star with a sharp interface, and we find that this mechanism is powerful enough to saturate the r-mode at very low saturation amplitude, of order $10^{-10}$, and is therefore likely to be the dominant r-mode saturation mechanism in hybrid stars with a sharp interface.

  1. Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels

    E-Print Network [OSTI]

    Vittilapuram Subramanian, Kannan

    2006-04-12T23:59:59.000Z

    The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been used to describe the gas...

  2. Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels 

    E-Print Network [OSTI]

    Vittilapuram Subramanian, Kannan

    2006-04-12T23:59:59.000Z

    The quasi-steady, spherically symmetric combustion of multicomponent isolated fuel droplets has been modeled using modified Shvab-Zeldovich variable mechanism. Newly developed modified Shvab-Zeldovich equations have been ...

  3. Analytical Solutions for Multicomponent, Two-Phase Flow in Porous Media with Double Contact Discontinuities

    E-Print Network [OSTI]

    Orr, F. M. Jr

    This paper presents the first instance of a double contact discontinuity in analytical solutions for multicomponent, two-phase flow in porous media. We use a three-component system with constant equilibrium ratios and fixed ...

  4. Structural investigations of hydroxylase proteins and complexes in bacterial multicomponent monooxygenase systems

    E-Print Network [OSTI]

    McCormick, Michael S. (Michael Scott)

    2008-01-01T23:59:59.000Z

    Bacterial multicomponent monooxgenases (BMMs) such as toluene/o-xylene monooxygenase (ToMO), phenol hydroxylase (PH), and soluble methane monooxygenase (sMMO) catalyze hydrocarbon oxidation reactions at a carboxylatebridged ...

  5. Effects of formulation conditions on micellar interactions and solution rheology in multi-component micellar systems

    E-Print Network [OSTI]

    Nachbar, Leslie Sarah

    2011-01-01T23:59:59.000Z

    Surfactants are crucial to the personal care industry due to their unique surface activity, cleansing, and self assembly properties. Typically, multi-component systems are used in order to maximize mildness, hard water ...

  6. Abstract Titanium is one of many trace elements to substitute for silicon in the mineral quartz. Here, we

    E-Print Network [OSTI]

    Watson, E. Bruce

    Abstract Titanium is one of many trace elements to substitute for silicon in the mineral quartz element--titanium--shows special promise in this regard. Concentrations of Ti in meta- morphic and igneous-006-0132-1 123 ORIGINAL PAPER TitaniQ: a titanium-in-quartz geothermometer David A. Wark Æ E. Bruce Watson

  7. Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Proceedings World Geothermal Congress 2005 Antalya, Turkey, 24-29 April 2005 1 Geothermal: Martinique, geothermal exploration, thermal springs, soil gas profiles, chemical geothermometers ABSTRACT in starting again geothermal research on the Martinique island, in the Lesser Antilles. The first works, which

  8. Universal Whitham hierarchy, dispersionless Hirota equations and multi-component KP hierarchy

    E-Print Network [OSTI]

    Kanehisa Takasaki; Takashi Takebe

    2007-08-31T23:59:59.000Z

    The goal of this paper is to identify the universal Whitham hierarchy of genus zero with a dispersionless limit of the multi-component KP hierarchy. To this end, the multi-component KP hierarchy is (re)formulated to depend on several discrete variables called ``charges''. These discrete variables play the role of lattice coordinates in underlying Toda field equations. A multi-component version of the so called differential Fay identity are derived from the Hirota equations of the $\\tau$-function of this ``charged'' multi-component KP hierarchy. These multi-component differential Fay identities have a well-defined dispersionless limit (the dispersionless Hirota equations). The dispersionless Hirota equations turn out to be equivalent to the Hamilton-Jacobi equations for the $S$-functions of the universal Whitham hierarchy. The differential Fay identities themselves are shown to be a generating functional expression of auxiliary linear equations for scalar-valued wave functions of the multi-component KP hierarchy.

  9. Interpreting multicomponent seismic data in the Gulf of Mexico for shallow sedimentary properties: methodology and case history

    E-Print Network [OSTI]

    Texas at Austin, University of

    OTC 15118 Interpreting multicomponent seismic data in the Gulf of Mexico for shallow sedimentary of multicomponent data analysis for the detection of gas hydrate prospects in the northern Gulf of Mexico. Methane and pressure conditions in the region. In many regions of North America, including the southern Gulf of Mexico

  10. New Structural Model for Multicomponent Pile Cross Sections under Axial Load

    E-Print Network [OSTI]

    Horvath, John S.

    New Structural Model for Multicomponent Pile Cross Sections under Axial Load John S. Horvath, Ph.D., P.E., M.ASCE1 Abstract: Piles composed of more than one material in their cross section have been used for more than 100 years. Originally this was limited to driven steel shell or pipe piles filled

  11. Integrated Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Distillation Ivar J. Halvorsen1 and Sigurd Skogestad Norwegian University of Science and Technology, Department at the Topical conference on Separations Technology, Session 23 - Distillation Modeling and Processes II. 2001 Column Designs for Minimum Energy and Entropy Requirements in Multicomponent Distillation Ivar J

  12. MODELING OF MICROSTRUCTURE EVOLUTION IN MULTICOMPONENT ALLOYS USING THE LEVEL SET METHOD WITH ADAPTIVE MESH

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    MODELING OF MICROSTRUCTURE EVOLUTION IN MULTICOMPONENT ALLOYS USING THE LEVEL SET METHOD Sibley School of Mechanical and Aerospace Engineering 188 Frank H. T. Rhodes Hall Cornell University-component alloy, Microstructure, Solidification. A level set method combining features of front tracking methods

  13. Particle dissolution and cross-diffusion in multi-component alloys F.J. Vermolen a,

    E-Print Network [OSTI]

    Vuik, Kees

    , HSLA steels, all engineer- ing steels, as well as aluminium extrusion alloys. Although precipitateParticle dissolution and cross-diffusion in multi-component alloys F.J. Vermolen a, *, C. Vuik into account the influences of cross-diffusion, in multi- component alloys is proposed and analyzed using

  14. Integrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions

    E-Print Network [OSTI]

    Kim, Sangho

    More recently the coupling method has also been applied to a Pratt & Whitney gas turbine.7 The RANSIntegrated Simulations for Multi-Component Analysis of Gas Turbines : RANS Boundary Conditions 94305, U.S.A The aero-thermal computation of the flow path of an entire gas turbine engine can

  15. Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool

    E-Print Network [OSTI]

    Clement, Prabhakar

    Benchmarking a Visual-Basic based multi-component one-dimensional reactive transport modeling tool of a comprehensive numerical modeling tool, RT1D, which can be used for simulating biochemical and geochemical, and it does not require any additional software tools. The code can be easily adapted by others for simulating

  16. Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products and Generalized Petlyuk Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Minimum Energy Consumption in Multicomponent Distillation. 3. More Than Three Products products (where normally M e N). We derive the expressions for a generalized extended Pet- lyuk arrangement for the generalized Pet- lyuk column with more than three products. The Vmin diagram was presented in part 1

  17. A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples

    E-Print Network [OSTI]

    Flowers, Gwenn

    A multicomponent coupled model of glacier hydrology 1. Theory and synthetic examples Gwenn E; published 12 November 2002. [1] Basal hydrology is acknowledged as a fundamental control on glacier dynamics of existing basal hydrology models is the treatment of the glacier bed as an isolated system. We present

  18. Computational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized Solar Cell

    E-Print Network [OSTI]

    can be mitigated by using dye-sensitized solar cells (DSSCs),4 which use organic dye molecules coated by nearly an order of magnitude through plasmon enhanced absorption by the dye.10 This particular solar cellComputational Modeling of Plasmon-Enhanced Light Absorption in a Multicomponent Dye Sensitized

  19. Multicomponent Transport of Sulfate in a Goethite-Silica Sand System

    E-Print Network [OSTI]

    Sparks, Donald L.

    Multicomponent Transport of Sulfate in a Goethite-Silica Sand System at Variable pH and Ionic of protons and sulfate on goethite and silica were used in combination with a one-dimensional mass-transport model to predict the transport of sulfate at variable pH and ionic strength in a goethite-silica system

  20. Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate Systems

    E-Print Network [OSTI]

    Bazant, Martin Z.

    Application of the Cell Potential Method To Predict Phase Equilibria of Multicomponent Gas Hydrate the first documentation nearly two centuries ago,2 natural gas clathrate-hydrates, called clathrates, have at understanding and avoiding clathrate formation. More recently, natural gas hydrates have been proposed

  1. PHYSICAL REVIEW B 85, 155101 (2012) Electronic properties of layered multicomponent wide-band-gap oxides: A combinatorial approach

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    devices including solar cells, smart windows, and flat panel displays, and they also find application as heating, antistatic, and optical coatings (for select reviews, see Refs. 1­7). Multicomponent TCOs

  2. Multicomponent seismic data, combining P-wave and converted P-to-SV wave (C-wave) wavefields, provide inde-

    E-Print Network [OSTI]

    Texas at Austin, University of

    (fast and slow) with differing polarization. The 4C, 3D ocean-bottom cable (OBC) multicomponent seismic and stratigraphic features within the gas-charged intervals. C- waves (Figure 3) penetrate these P-wave wipeout

  3. Head-on collision of ion-acoustic solitary waves in multicomponent plasmas with positrons

    SciTech Connect (OSTI)

    El-Shamy, E. F.; Sabry, R. [Department of Physics, Theoretical Physics Group, Faculty of Science, Mansoura University, Damietta-Branch, New Damietta 34517, Damietta (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Shukla, P. K. [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2010-08-15T23:59:59.000Z

    The head-on collision between two ion-acoustic solitary waves in an unmagnetized multicomponent plasma consisting of hot ions, hot positrons, and two-electron temperature distributions is investigated using the extended Poincare-Lighthill-Kuo method. The Kortwege-de Vries equations and the analytical phase shifts after the head-on collision of two solitary waves in this multicomponent plasma are obtained. The effects of two different types of isothermal electrons, the ratio of the hot ion temperature to the effective temperature, the ratio of the effective temperature to the positron temperature, the ratio of the number density of positrons to that of electrons species, and the physical processes (either isothermal or adiabatic) on the phase shifts are studied. It is found that these parameters can significantly influence the phase shifts of the solitons. The relevance of this investigation to space and laboratory plasmas is pointed out.

  4. Self-assembly of multicomponent structures in and out of equilibrium

    E-Print Network [OSTI]

    Stephen Whitelam; Rebecca Schulman; Lester Hedges

    2012-04-17T23:59:59.000Z

    Theories of phase change and self-assembly often invoke the idea of a `quasiequilibrium', a regime in which the nonequilibrium association of building blocks results nonetheless in a structure whose properties are determined solely by an underlying free energy landscape. Here we study a prototypical example of multicomponent self-assembly, a one-dimensional fiber grown from red and blue blocks. If the equilibrium structure possesses compositional correlations different from those characteristic of random mixing, then it cannot be generated without error at any finite growth rate: there is no quasiequilibrium regime. However, by exploiting dynamic scaling, structures characteristic of equilibrium at one point in phase space can be generated, without error, arbitrarily far from equilibrium. Our results thus suggest a `nonperturbative' strategy for multicomponent self-assembly in which the target structure is, by design, not the equilibrium one.

  5. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect (OSTI)

    Porytsky, P. [Institute for Nuclear Research, 03680 Kyiv (Ukraine); Krivtsun, I.; Demchenko, V. [Paton Welding Institute, 03680 Kyiv (Ukraine); Reisgen, U.; Mokrov, O.; Zabirov, A. [RWTH Aachen University, ISF-Welding and Joining Institute, 52062 Aachen (Germany); Gorchakov, S.; Timofeev, A.; Uhrlandt, D. [Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald (Germany)

    2013-02-15T23:59:59.000Z

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  6. A non-equilibrium model for fixed-bed multi-component adiabatic adsorption

    E-Print Network [OSTI]

    Harwell, Jeffrey Harry

    1979-01-01T23:59:59.000Z

    to enter the bed. Solutions along a z ~ constant char- acteristic are the history of the. volumn element of the bed located a s constant, This physical interpretat1on is a physical approximation of the real world where adsorber discontinuities... 1 3. 3. 2 3e3e3 3. 3. 4 3. 3. 5 Solution of the multi-component adiabatic adsorption equation, . ~ ~ ~ Fluid phase equations. Fixed-bed solid phase equations. , ~ Construction of the solution surface by stepwise integra- tion...

  7. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01T23:59:59.000Z

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, such as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.

  8. Mechanism reduction for multicomponent surrogates: A case study using toluene reference fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Niemeyer, Kyle E.; Sung, Chih-Jen

    2014-11-01T23:59:59.000Z

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, suchmore »as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close prediction of ignition delay when varying the mixture composition away from that used for the reduction. In homogeneous compression-ignition engine simulations, the skeletal mechanisms closely matched the point of ignition and accurately predicted species profiles for lean to stoichiometric conditions. Furthermore, the efficacy of generating a multicomponent skeletal mechanism was compared to combining skeletal mechanisms produced separately for neat fuel components; using the same error limits, the latter resulted in a larger skeletal mechanism size that also lacked important cross reactions between fuel components. Based on the present results, general guidelines for reducing detailed mechanisms for multicomponent fuels are discussed.« less

  9. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect (OSTI)

    Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

    2011-01-15T23:59:59.000Z

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  10. Thermal extraction analysis of five Los Azufres production wells

    SciTech Connect (OSTI)

    Kruger, Paul; Quijano, Luis

    1995-01-26T23:59:59.000Z

    Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

  11. An experimental investigation into the effects of fluid composition on certain geothermometry methods

    E-Print Network [OSTI]

    Pope, Leslie Anne

    1985-01-01T23:59:59.000Z

    at the lower temperatures, and 5) thermal waters do not mix with shallower, cooler ground water. Silica geothermometer The dissolved silica content of geothermal water is used in geothermometry because silica is present in most geologic settings... This presents a real problem in evaluation of the geo- thermal potential of the area; one method gives reservoir temperatures high enough for potential geothermal energy use but another gives temperatures that are too low. The waters studied by Henry can...

  12. A Symmetric Free Energy Based Multi-Component Lattice Boltzmann Method

    E-Print Network [OSTI]

    Qun Li; A. J. Wagner

    2007-04-26T23:59:59.000Z

    We present a lattice Boltzmann algorithm based on an underlying free energy that allows the simulation of the dynamics of a multicomponent system with an arbitrary number of components. The thermodynamic properties, such as the chemical potential of each component and the pressure of the overall system, are incorporated in the model. We derived a symmetrical convection diffusion equation for each component as well as the Navier Stokes equation and continuity equation for the overall system. The algorithm was verified through simulations of binary and ternary systems. The equilibrium concentrations of components of binary and ternary systems simulated with our algorithm agree well with theoretical expectations.

  13. Arbitrary amplitude ion-acoustic waves in a multicomponent plasma with superthermal species

    SciTech Connect (OSTI)

    El-Tantawy, S. A. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); International Center for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany)

    2011-11-15T23:59:59.000Z

    Properties of fully nonlinear ion-acoustic waves in a multicomponent plasma consisting of warm positive ions, superthermal electrons, as well as positrons, and dust impurities have been investigated. By using the hydrodynamic model for ions and superthermal electron/positron distribution, a Sagdeev potential has been derived. Existence conditions for large amplitude solitary and shock waves are presented. In order to show that the characteristics of the solitary and shock waves are influenced by the plasma parameters, the relevant numerical analysis of the Sagdeev potential is presented. The nonlinear structures, as predicted here, may be associated with the electrostatic perturbations in interstellar medium.

  14. First and second order approximations to stage numbers in multicomponent enrichment cascades

    SciTech Connect (OSTI)

    Scopatz, A. [University of Chicago, 5754 S. Ellis Ave, Chicago, IL, 60637 (United States)

    2013-07-01T23:59:59.000Z

    This paper describes closed form, Taylor series approximations to the number product stages in a multicomponent enrichment cascade. Such closed form approximations are required when a symbolic, rather than a numeric, algorithm is used to compute the optimal cascade state. Both first and second order approximations were implemented. The first order solution was found to be grossly incorrect, having the wrong functional form over the entire domain. On the other hand, the second order solution shows excellent agreement with the 'true' solution over the domain of interest. An implementation of the symbolic, second order solver is available in the free and open source PyNE library. (authors)

  15. Improvements in geothermometry. Final technical report. Rev

    SciTech Connect (OSTI)

    Potter, J.; Dibble, W.; Parks, G.; Nur, A.

    1982-08-01T23:59:59.000Z

    Alkali and alkaline earth geothermometers are useful for estimating geothermal reservoir temperatures, though a general theoretical basis has yet to be established and experimental calibration needs improvement. Equilibrium cation exchange between feldspars provided the original basis for the Na-K and Na-K-Ca geothermometers (Fournier and Truesdell, 1973), but theoretical, field and experimental evidence prove that neither equilibrium nor feldspars are necessary. Here, evidence is summarized in support of these observations, concluding that these geothermometers can be expected to have a surprisingly wide range of applicability, but that the reasons behind such broad applicability are not yet understood. Early experimental work proved that water-rock interactions are slow at low temperatures, so experimental calibration at temperatures below 150/sup 0/ is impractical. Theoretical methods and field data were used instead for all work at low temperatures. Experimental methods were emphasized for temperatures above 150/sup 0/C, and the simplest possible solid and solution compositions were used to permit investigation of one process or question at a time. Unexpected results in experimental work prevented complete integration of the various portions of the investigation.

  16. Cation geothermometry in oil field waters

    SciTech Connect (OSTI)

    Smith, L.K.; Dunn, T.L.; Surdam, R.C. (Univ. of Wyoming, Laramie, WY (United States))

    1992-01-01T23:59:59.000Z

    The assumptions used in the development of cation ratio geothermometers are: (1) the ratios of the cations are controlled by cation exchange between solid silicate phases, (2) aluminum is conserved in the solid phases, and (3) neither hydrogen ions nor CO[sub 2] enter into the net reactions. These assumptions do not apply to oilfield waters where organic species are present and commonly abundant. Nine different published cation geothermometers of Na/K, Na-K-Ca, Na-K-Ca-Mg, and Mg/Li were applied to 309 water samples from both oilfield and geothermal wells. None of the cation geothermometers predicted consistent or accurate temperatures for the oilfield waters. Plots of measured v. predicted temperature for oilfield water samples gave correlation coefficients of less than 0.35. In contrast, those same plots for geothermal water samples within the same temperature range gave correlation coefficients between 0.45 and 0.95. This analysis suggests that the presence of organic species exerts a strong control on the cation ratios. Organic species form complexes of varying stability with the cations. This, in turn, changes the relative concentrations of the cations in solution over that which is expected when cation exchange between silicate phases controls the ratios. Organic complexes also strongly affect pH and P[sub CO[sub 2

  17. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    SciTech Connect (OSTI)

    Paulsson Geophysical Services

    2008-03-31T23:59:59.000Z

    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  18. Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas

    SciTech Connect (OSTI)

    Bobylev, A.V., E-mail: alexander.bobylev@kau.se [Department of Mathematics, Karlstad University, SE-65188 Karlstad (Sweden); Potapenko, I.F., E-mail: firena@yandex.ru [Keldysh Institute for Applied Mathematics, RAS, 125047 Moscow (Russian Federation)

    2013-08-01T23:59:59.000Z

    Highlights: •A general approach to Monte Carlo methods for multicomponent plasmas is proposed. •We show numerical tests for the two-component (electrons and ions) case. •An optimal choice of parameters for speeding up the computations is discussed. •A rigorous estimate of the error of approximation is proved. -- Abstract: A general approach to Monte Carlo methods for Coulomb collisions is proposed. Its key idea is an approximation of Landau–Fokker–Planck equations by Boltzmann equations of quasi-Maxwellian kind. It means that the total collision frequency for the corresponding Boltzmann equation does not depend on the velocities. This allows to make the simulation process very simple since the collision pairs can be chosen arbitrarily, without restriction. It is shown that this approach includes the well-known methods of Takizuka and Abe (1977) [12] and Nanbu (1997) as particular cases, and generalizes the approach of Bobylev and Nanbu (2000). The numerical scheme of this paper is simpler than the schemes by Takizuka and Abe [12] and by Nanbu. We derive it for the general case of multicomponent plasmas and show some numerical tests for the two-component (electrons and ions) case. An optimal choice of parameters for speeding up the computations is also discussed. It is also proved that the order of approximation is not worse than O(?(?)), where ? is a parameter of approximation being equivalent to the time step ?t in earlier methods. A similar estimate is obtained for the methods of Takizuka and Abe and Nanbu.

  19. Henn-Lecordier -AVS 99 -MS -WeM10 1 Reaction Sensing in Multicomponent CVD Processes

    E-Print Network [OSTI]

    Rubloff, Gary W.

    : average specific heat ratio Mavg: average molecular weight · Multicomponent systems ­ F = f ( Average · Remote downstream sampling ­ poor repeatability · Sampling at reactor outlet ­ minimize wall reaction in acoustic sensor for real-time sensing requires 2.5 L.Torr/s throughput 0.5 Torr Remote sampling300 Torr 20

  20. Technical status report on the prediction of amorphous phase separation in multicomponent borosilicate glasses. Revision 0

    SciTech Connect (OSTI)

    Peeler, D.K.

    1998-12-31T23:59:59.000Z

    This status report describes the current status for predicting of amorphous phase separation in multicomponent borosilicate glasses and the two major development criteria (composition and thermal history). The goal of this subtask is to perform targeted research activities to define and, where applicable, extend the boundaries of existing phase stability models that restrict HLW glass waste loading. Specifically, the focus will be on delimiting boundaries for immiscible phase separation. The development of data, understanding, and quantitative description for composition and kinetic effects on the development of amorphous phase separation will continue in FY98. This effort will provide insight into the compositional effects on phase stability and will lead to a better understanding of the methods used to predict the development of amorphous phase separation in HLW glasses.

  1. Mechanism reduction for multicomponent surrogates: a case study using toluene reference fuels

    E-Print Network [OSTI]

    Niemeyer, Kyle E

    2014-01-01T23:59:59.000Z

    Strategies and recommendations for performing skeletal reductions of multicomponent surrogate fuels are presented, through the generation and validation of skeletal mechanisms for a three-component toluene reference fuel. Using the directed relation graph with error propagation and sensitivity analysis method followed by a further unimportant reaction elimination stage, skeletal mechanisms valid over comprehensive and high-temperature ranges of conditions were developed at varying levels of detail. These skeletal mechanisms were generated based on autoignition simulations, and validation using ignition delay predictions showed good agreement with the detailed mechanism in the target range of conditions. When validated using phenomena other than autoignition, such as perfectly stirred reactor and laminar flame propagation, tight error control or more restrictions on the reduction during the sensitivity analysis stage were needed to ensure good agreement. In addition, tight error limits were needed for close pr...

  2. Chromium Phase Behavior in a Multi-Component Borosilicate Glass Melt

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.; Wilson, B. K.; Plaisted, Trevor J.; Heald, Steve M.

    2006-07-31T23:59:59.000Z

    This paper reports the phase behavior of a multicomponent borosilicate glass melt with 0?3 mass% Cr2O3 at 800?1500°C in equilibrium with air. Both upper and lower liquidus temperatures were observed. When the temperature was between the upper and lower liquidus temperatures, eskolaite (Cr2O3) formed in melts with >2 mass% Cr2O3. Below the lower liquidus temperature, a dispersed chromate phase appeared in the melt that eventually became macroscopically segregated. The chemical durability of the glasses was virtually unaffected by chromium concentration. The particular glass studied was prototypic for the vitrification of high-Cr high-level radioactive wastes stored in underground tanks at the Hanford site. The results suggest a significant potential cost benefit for Hanford tank waste cleanup.

  3. Coupling Multi-Component Models with MPH on Distributed MemoryComputer Architectures

    SciTech Connect (OSTI)

    He, Yun; Ding, Chris

    2005-03-24T23:59:59.000Z

    A growing trend in developing large and complex applications on today's Teraflop scale computers is to integrate stand-alone and/or semi-independent program components into a comprehensive simulation package. One example is the Community Climate System Model which consists of atmosphere, ocean, land-surface and sea-ice components. Each component is semi-independent and has been developed at a different institution. We study how this multi-component, multi-executable application can run effectively on distributed memory architectures. For the first time, we clearly identify five effective execution modes and develop the MPH library to support application development utilizing these modes. MPH performs component-name registration, resource allocation and initial component handshaking in a flexible way.

  4. Partial Molar Liquidus Temperatures of Multivalent Elements in Multicomponent Borosilicate Glass

    SciTech Connect (OSTI)

    Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Izak, Pavel (ASSOC WESTERN UNIVERSITY); Vienna, John D. (BATTELLE (PACIFIC NW LAB)); Thomas, M-L (.); Irwin, G M. (.)

    2002-01-01T23:59:59.000Z

    A multicomponent borosilicate glass containing several multivalent elements (Fe, Ni, Cr, Mn) and precipitating (Fe,Ni,Mn,Cr)(Fe,Cr,Mn)2O4 spinel as its primary phase, was equilibrated with the gas phase over the range of oxygen partial pressures, from 10{sup -13} Pa to 10{sup 5} Pa and temperatures, T, from 850 C to 1300 C. The oxidation-reduction equilibrium of Fe in the glass was measured with Mossbauer spectroscopy and wet colorimetry. These data were combined with oxidation-reduction equilibria for Fe, Ni, and Cr in a borosilicate frit of a similar composition found in the literature to estimate concentrations of Fe(II), Fe(III), Ni(II), Cr(II), Cr(III), and Cr(VI) as functions of T. Measured liquidus temperature (TL) data for the test glasses within the same range were then added to a critically evaluated TL database composed of multicomponent borosilicate glasses within the spinel primary crystalline phase field. The set of partial molar liquidus temperatures for elements other than oxygen determined from this database was then augmented by values for Fe(II), Fe(III), Cr(II), Cr(III), and Cr(VI). A 0.1-mol% change in the metal ion concentration increases TL as follows: Fe(II) by 4.6 C, Fe(III) by 2.8 C, Cr(II) by 185?C, Cr(III) by 66 C, and Cr(VI) by -17 C. The calculated TL based on partial molar liquidus temperatures agreed with the measured TL in the range from 10{sup -13} Pa to 10{sup 5} Pa.

  5. WATER RESOURCES RESEARCH, VOL. 29, NO. 11, PAGES 3727-3740, NOVEMBER 1993 Modeling of Multiphase Transport of Multicomponent Organic Contaminants

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    WATER RESOURCES RESEARCH, VOL. 29, NO. 11, PAGES 3727-3740, NOVEMBER 1993 Modeling of Multiphase, Berkeley A numerical compositionalsimulator (Multiphase Multicomponent Nonisothermal Organics Trans- portSimulator(M2NOTS))hasbeendevelopedformodelingtransient,three-dimensional,noniso- thermal, and multiphase

  6. Analysis of Substrate Access to Active Sites in Bacterial Multicomponent Monooxygenase Hydroxylases: X-Ray Crystal Structure of Xenon-Pressurized Phenol Hydroxylase from Pseudomonas Sp Ox1

    E-Print Network [OSTI]

    McCormick, Michael S.

    In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the ?-subunit trace a conserved path from the protein exterior to the carboxylate-bridged ...

  7. Three-dimensional stability of dust-ion acoustic solitary waves in a magnetized multicomponent dusty plasma with negative ions

    SciTech Connect (OSTI)

    El-Taibany, W. F.; El-Shamy, E. F. [Department of Physics, Faculty of Science, Mansoura University, Damietta Branch, P.O. 34517, Damietta El-Gedida (Egypt); El-Bedwehy, N. A. [Department of Mathematics, Faculty of Science, Mansoura University, Damietta Branch, P.O. 34517, Damietta El-Gedida (Egypt)

    2011-03-15T23:59:59.000Z

    Using the small-k expansion perturbation method, the three-dimensional stability of dust-ion acoustic solitary waves (DIASWs) in a magnetized multicomponent dusty plasma containing negative heavy ions and stationary variable-charge dust particles is analyzed. A nonlinear Zakharov-Kuznetsov equation adequate for describing these solitary structures is derived. Moreover, the basic features of the DIASWs are studied. The determination of the stability region leads to two different cases depending on the oblique propagation angle. In addition, the growth rate of the produced waves is estimated. The increase of either the negative ion number density or their temperatures or even the number density of the dust grains results in reducing the wave growth rate. Finally, the present results should elucidate the properties of DIASWs in a multicomponent plasma with negative ions, particularly in laboratory experiment and plasma process.

  8. Performances of Multi-Level and Multi-Component Compressed BitmapIndices

    SciTech Connect (OSTI)

    Wu, Kesheng; Stockinger, Kurt; Shoshani, Arie

    2007-04-30T23:59:59.000Z

    This paper presents a systematic study of two large subsetsof bitmap indexing methods that use multi-component and multi-levelencodings. Earlier studies on bitmap indexes are either empirical or foruncompressed versions only. Since most of bitmap indexes in use arecompressed, we set out to study the performance characteristics of thesecompressed indexes. To make the analyses manageable, we choose to use aparticularly simple, but efficient, compression method called theWord-Aligned Hybrid (WAH) code. Using this compression method, a numberof bitmap indexes are shown to be optimal because their worst-case timecomplexities for answering a query is a linear function of the number ofhits. Since compressed bitmap indexes behave drastically different fromuncompressed ones, our analyses also lead to a number of new methods thatare much more efficient than commonly used ones. As a validation for theanalyses, we implement a number of the best methods and measure theirperformance against well-known indexes. The fastest new methods arepredicted and observed to be 5 to 10 times faster than well-knownindexing methods.

  9. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    SciTech Connect (OSTI)

    Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

    2008-10-15T23:59:59.000Z

    During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

  10. Effects of multi-component diffusion and heat release on laminar diffusion flame liftoff

    SciTech Connect (OSTI)

    Li, Zhiliang; Chen, Ruey-Hung [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States); Phuoc, Tran X. [National Energy Technology Laboratory, Department of Energy, P.O. Box 10940, MS 84-340, Pittsburgh, PA 15261 (United States)

    2010-08-15T23:59:59.000Z

    Numerical simulations were conducted of the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C{sub 3}H{sub 8} and CH{sub 4} fuels. Both non-reacting and reacting jets were investigated, including multi-component diffusivities and heat release effects (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for liftoff previously arrived at in similarity solutions. The cold-flow simulation for He-diluted CH{sub 4} fuel does not predict flame liftoff; however, adding heat release reaction lead to the prediction of liftoff, which is consistent with experimental observations. Including reaction was also found to improve liftoff height prediction for C{sub 3}H{sub 8} flames, with the flame base location differing from that in the similarity solution - the intersection of the stoichiometric and iso-velocity (equal to 1-D flame speed) is not necessary for flame stabilization (and thus liftoff). Possible mechanisms other than that proposed for similarity solution may better help to explain the stabilization and liftoff phenomena. (author)

  11. Modeling solute redistribution and microstructural development in fusion welds of multi-component alloys

    SciTech Connect (OSTI)

    Dupont, J.N.; Robino, C.V.; Newbury, B.D.

    1999-12-15T23:59:59.000Z

    Solute redistribution and microstructural evolution have been modeled for gas tungsten arc fusion welds in experimental Ni base superalloys. The multi-component alloys were modeled as a pseudo-ternary {gamma}-Nb-C system. The variation in fraction liquid and liquid composition during the primary L {r{underscore}arrow} {gamma} and eutectic type L {r{underscore}arrow} ({gamma} + NbC) stages of solidification were calculated for conditions of negligible Nb diffusion and infinitely rapid C diffusion in the solid phase. Input parameters were estimated by using the Thermo-Calc NiFe Alloy data base and compared to experimentally determined solidification parameters. The solidification model results provide useful information for qualitatively interpreting the influence of alloy composition on weld microstructure. The quantitative comparisons indicate that, for the alloy system evaluated, the thermodynamic database provides sufficiently accurate values for the distribution coefficients of Nb and C. The calculated position of the {gamma}-NbC two-fold saturation line produces inaccurate results when used as inputs for the model, indicating further refinement to the database is needed for quantitative estimates.

  12. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers http://www.bioportfolio.com/news/article/620380/The-Targeted-Delivery-Of-Multicomponent-Cargos-To-Cancer-Cells-By-Nanoporous-Particle.html[4/21/

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    and Conferences Corporate Events Gene Channels News Publish Report Store Resources Video Prostate Cancer Treatment Learn about innovative treatments for Prostate Cancer diagnosis today CancerThe targeted delivery of multicomponent cargos to cancer cells by nanoporous particle

  13. Vaporization modeling of petroleum-biofuel drops using a hybrid multi-component approach

    SciTech Connect (OSTI)

    Zhang, Lei; Kong, Song-Charng [Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering Building, Ames, IA 50011 (United States)

    2010-11-15T23:59:59.000Z

    Numerical modeling of the vaporization characteristics of multi-component fuel mixtures is performed in this study. The fuel mixtures studied include those of binary components, biodiesel, diesel-biodiesel, and gasoline-ethanol. The use of biofuels has become increasingly important for reasons of environmental sustainability. Biofuels are often blended with petroleum fuels, and the detailed understanding of the vaporization process is essential to designing a clean and efficient combustion system. In this study, a hybrid vaporization model is developed that uses continuous thermodynamics to describe petroleum fuels and discrete components to represent biofuels. The model is validated using the experimental data of n-heptane, n-heptane-n-decane mixture, and biodiesel. Since biodiesel properties are not universal due to the variation in feedstock, methods for predicting biodiesel properties based on the five dominant fatty acid components are introduced. Good levels of agreement in the predicted and measured drop size histories are obtained. Furthermore, in modeling the diesel-biodiesel drop, results show that the drop lifetime increases with the biodiesel concentration in the blend. During vaporization, only the lighter components of diesel fuel vaporize at the beginning. Biodiesel components do not vaporize until some time during the vaporization process. On the other hand, results of gasoline-ethanol drops indicate that both fuels start to vaporize once the process begins. At the beginning, the lighter components of gasoline have a slightly higher vaporization rate than ethanol. After a certain time, ethanol vaporizes faster than the remaining gasoline components. At the end, the drop reduces to a regular gasoline drop with heavier components. Overall, the drop lifetime increases as the concentration of ethanol increases in the drop due to the higher latent heat. (author)

  14. Well-posedness, global existence and blow-up phenomena for an integrable multi-component Camassa-Holm system

    E-Print Network [OSTI]

    Zeng Zhang; Zhaoyang Yin

    2014-11-24T23:59:59.000Z

    This paper is concerned with a multi-component Camassa-Holm system, which has been proven to be integrable and has peakon solutions. This system includes many one-component and two-component Camassa-Holm type systems as special cases. In this paper, we first establish the local well-posedness and a continuation criterion for the system, then we present several global existence or blow-up results for two important integrable two-component subsystems. Our obtained results cover and improve recent results in \\cite{Gui,yan}.

  15. Multicomponent aerosol dynamic of the Pb-O[sub 2] system in a bench scale flame incinerator

    SciTech Connect (OSTI)

    Lin, W.Y.; Sethi, V.; Biswas, P.

    1992-01-01T23:59:59.000Z

    The article gives results of a study to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe (in conjunction with real-time aerosol instruments) was used to measure the evolution of the particle size distribution at different locations in the flame region. A multicomponent lognormal aerosol model was developed accounting for the chemistry of the lead-oxygen system, and for such aerosol dynamic phenomena as nucleation, coagulation, and condensation. Reasonable agreement was obtained between the predictions of the model using appropriate kinetic parameters and the experimental results.

  16. Cooling rate and size effects on the medium-range structure of multicomponent oxide glasses simulated by molecular dynamics

    SciTech Connect (OSTI)

    Tilocca, Antonio [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)] [Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2013-09-21T23:59:59.000Z

    A set of molecular dynamics simulations were performed to investigate the effect of cooling rate and system size on the medium-range structure of melt-derived multicomponent silicate glasses, represented by the quaternary 45S5 Bioglass composition. Given the significant impact of the glass degradation on applications of these materials in biomedicine and nuclear waste disposal, bulk structural features which directly affect the glass dissolution process are of particular interest. Connectivity of the silicate matrix, ion clustering and nanosegregation, distribution of ring and chain structural patterns represent critical features in this context, which can be directly extracted from the models. A key issue is represented by the effect of the computational approach on the corresponding glass models, especially in light of recent indications questioning the suitability of conventional MD approaches (that is, involving melt-and-quench of systems containing ?10{sup 3} atoms at cooling rates of 5-10 K/ps) when applied to model these glasses. The analysis presented here compares MD models obtained with conventional and nonconventional cooling rates and system sizes, highlighting the trend and range of convergence of specific structural features in the medium range. The present results show that time-consuming computational approaches involving much lower cooling rates and/or significantly larger system sizes are in most cases not necessary in order to obtain a reliable description of the medium-range structure of multicomponent glasses. We identify the convergence range for specific properties and use them to discuss models of several glass compositions for which a possible influence of cooling-rate or size effects had been previously hypothesized. The trends highlighted here represent an important reference to obtain reliable models of multicomponent glasses and extract converged medium-range structural features which affect the glass degradation and thus their application in different fields. In addition, as a first application of the present findings, the fully converged structure of the 45S5 glass was further analyzed to shed new light on several dissolution-related features whose interpretation has been rather controversial in the past.

  17. Solution of the associative mean spherical approximation for a multicomponent dimerizing hard-sphere multi-Yukawa fluid

    SciTech Connect (OSTI)

    Kalyuzhnyi, Yu. V. [Institute for Condensed Matter Physics, Svientsitskoho 1, 290011 Lviv, (Ukraine)] [Institute for Condensed Matter Physics, Svientsitskoho 1, 290011 Lviv, (Ukraine); Blum, L. [Department of Physics, University of Puerto Rico, Rio Piedras, Puerto Rico 00931 (Puerto Rico)] [Department of Physics, University of Puerto Rico, Rio Piedras, Puerto Rico 00931 (Puerto Rico); Rescic, J. [Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1001 Ljubljana, (Slovenia)] [Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1001 Ljubljana, (Slovenia); Stell, G. [Department of Chemistry, State University of New York at Stony Brook, New York 11794-3400 (United States)] [Department of Chemistry, State University of New York at Stony Brook, New York 11794-3400 (United States)

    2000-07-15T23:59:59.000Z

    The analytical solution of the associative mean spherical approximation (AMSA) for a Yukawa dimerizing multicomponent hard-sphere fluid is derived. The general multi-Yukawa case is discussed. The simpler one-Yukawa case with factorizable coefficients is explicitly solved. As in the previously discussed electrolyte case the solution of the AMSA reduces to the solution of only one nonlinear algebraic equation for the scaling parameter {gamma}{sup B}. The analytical results for the AMSA closure is illustrated by numerical examples and computer simulation for the one-component one-Yukawa dimerizing fluid. Good agreement between theoretical and computer simulation results was found for both the thermodynamic properties and the structure of the system. (c) 2000 American Institute of Physics.

  18. Modeling of metallic aerosol formation in a multicomponent system at high temperatures using a discrete-sectional model. Appendix 7

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    A multicomponent discrete-sectional model was used to simulate the fate of lead in a high temperature system. The results show the ability of the developed model to simulate metallic aerosol systems at high temperatures. The PbO reaction and nucleation rate can be determined by comparing the simulations and the experimental data. Condensation on SiO{sub 2} particle surfaces is found important for removing the PbO vapor. The value of the accommodation factor that is applied to account for nonidealities in the condensation process are determined. The differences between the nanosized particles and the bulk particles are elucidated. The use of such a model helped to understand the effects of various mechanisms in determining the metal oxide vapor concentration profile and in establishing the ultimate particle size distribution.

  19. DESIGN, SYNTHESIS AND STUDY OF MULTI-COMPONENT AND INTEGRATED SYSTEMS FOR LIGHT-DRIVEN HYDROGEN GENERATION

    SciTech Connect (OSTI)

    Professor Richard Eisenberg

    2012-07-18T23:59:59.000Z

    The research focussed on fundamental problems in the conversion of light to stored chemical energy. Specifically, work was completed on the design, synthesis and study of multi-component super- and supramolecular systems for photoinduced charge separation, one of the key steps in artificial photosynthesis, and on the use of these and related systems for the photochemical generation of H2 from water. At the center of these systems are chromophores comprised of square planar coordinated Pt(II) ions with arylacetylide and either diimine or terpyridyl ligands. Previous work had shown that the chromophores are photoluminescent in fluid solution with long-lived metal-to-ligand charge transfer (3MLCT) excited states that are necessarily directional. An advance which set the stage for a number of proposed studies was the light-driven production of hydrogen from water using a Pt(terpyridyl)(arylacetylide)+ chromophore and a sacrificial electron donor. The reaction is catalytic and appears to rival previously reported ruthenium bipyridyl systems in terms of H2 production. Variation of system components and mechanistic studies were conducted to understand better the individual steps in the overall process and how to improve its efficiency. Success with light driven H2 generation was employed as a key probe as new systems were constructed consisting of triads for photoinduced charge separation placed in close proximity to the H2 generating catalyst - a Pt colloid - through direct linkage or supramolecular interactions with the polymer used to stabilize the colloid. In order to prepare new donor-chromophore-acceptor (D-C-A) triads and associated D-C and C-A dyads, new ligands were synthesized having functional groups for different coupling reactions such as simple amide formation and Pd-catalyzed coupling. In these systems, the donor was attached to the arylacetylide ligands and the acceptor was linked to the diimine or terpyridyl chelate. Research under the contract proved successful in the development of synthetic methodologies to make multi-component systems designed so as to maintain electronic communication between components held in a defined spatial arrangement. Systems effective for light driven H2 generation were examined by photophysical methods including transient absorption spectroscopy to observe charge-separated states and chart their dynamics. Quantum yields for hydrogen production were also measured. Additional studies examined the effectiveness of these systems for H2 generation and involved the development of new catalysts and systems based thereon. From these studies, a better understanding of initial steps in the light driven generation of hydrogen were obtained.

  20. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers

    SciTech Connect (OSTI)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01T23:59:59.000Z

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added feature is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.

  1. 9519 biotite granodiorite reacted in a temperature gradient

    SciTech Connect (OSTI)

    Charles, R.W.; Bayhurst, G.K.

    1980-10-01T23:59:59.000Z

    A biotite granodiorite from the Fenton Hill Hot Dry Rock (HDR) geothermal system was reacted in a controlled temperature gradient with initially distilled water for 60d. Polished rock prisms were located in the gradient at 72, 119, 161, 209, 270, and 310/sup 0/C. Scanning electron microscope and microprobe analyses show the appearance of secondary phases: Ca-montmorillonite at 72/sup 0/C and 119/sup 0/C; zeolite, either stilbite or heulandite, at 161/sup 0/C; and another zeolite, thomsonite, at higher temperatures. Solution analyses show a steady state equilibrium exists between solution and overgrowths after about 2 weeks of reaction. The chemographic relations for the system are explored in some detail indicating the divariant assemblages may be placed in a reasonable sequence in intensive variable space. These relations predict high and low temperature effects not directly observed experimentally as well as relevant univariant equilibria. Solution chemistry indicates the Na-Ca-K geothermometer more adequately predicts temperature in this system than does the silica geothermometer.

  2. A one-dimensional sectional model to simulate multicomponent aerosol dynamics in the marine boundary layer 1. Model description

    SciTech Connect (OSTI)

    Fitzgerald, J.W.; Hoppel, W.A. [Remote Sensing Division, Naval Research Laboratory, Washington, District of Columbia (United States)] [Remote Sensing Division, Naval Research Laboratory, Washington, District of Columbia (United States); Gelbard, F. [Modeling and Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico (United States)] [Modeling and Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico (United States)

    1998-07-01T23:59:59.000Z

    A one-dimensional, multicomponent sectional model has been developed to simulate the temporal and vertical variations of the aerosol size distribution and composition in the marine boundary layer (MBL). An important aspect of the model is its ability to handle the transport of aerosols in an atmosphere with humidity gradients with no numerical diffusion caused by the swelling and shrinking of the particles as they move through the humidity gradients. This is achieved by rewriting the aerosol general dynamical equation (GDE) in terms of dry radius thus transferring all variations in radius caused by temporal and spatial humidity variations to the rate coefficients appearing in the equations. The model then solves the new GDE in fixed dry size sections, with the humidity dependence of the processes now included in variable coefficients. This procedure also results in correct gradient transport. A limiting assumption is that the particles equilibrate instantaneously with the ambient water vapor. This assumption limits the maximum particle size which can be treated in the model to ambient (wet) radii less than about 30 {mu}m. All processes currently believed to be important in shaping the MBL size distribution are included in the current version of the model. These include generation of sea-salt aerosol at the ocean surface, nucleation of new particles, coagulation, growth due to condensation of gas-phase reaction products, growth due to sulfate formation during cloud processing, precipitation scavenging, surface deposition, turbulent mixing, gravitational settling, and exchange with the free troposphere. Simple gas-phase chemistry which includes the oxidation of dimethylsulfide and SO{sub 2} to sulfate is incorporated in the current version of the model. {copyright} 1998 American Geophysical Union

  3. Spitzer Survey of Stellar Structure in Galaxies (S$^4$G). The Pipeline 4: Multi-component decomposition strategies and data release

    E-Print Network [OSTI]

    Salo, Heikki; Laine, Jarkko; Comerón, Sebastien; Gadotti, Dimitri A; Buta, Ron; Sheth, Kartik; Zaritsky, Dennis; Ho, Luis; Knapen, Johan; Athannassoula, E; Bosma, Albert; Laine, Seppo; Cisternas, Mauricio; Kim, Taehyun; Regan, Juan Carlos Muñoz-Mateos Michael; Hinz, Joannah L; de Paz, Armando Gil; Menendez-Delmestre, Karin; Mizusawa, Trisha; Erroz-Ferrer, Santiago; Meidt, Sharon E; Querejeta, Miguel

    2015-01-01T23:59:59.000Z

    The Spitzer Survey of Stellar Structure in Galaxies (S$^4$G, Sheth et. al. 2010) is a deep 3.6 and 4.5 $\\mu$m imaging survey of 2352 nearby ($pipeline 4, which is dedicated to 2-dimensional structural surface brightness decompositions of 3.6 $\\mu$m images, using GALFIT3.0 \\citep{peng2010}. Besides automatic 1-component S\\'ersic fits, and 2-component S\\'ersic bulge + exponential disk fits, we present human supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge S\\'ersic index and bulge-to-total light ratio ($B/T$), confirming earlier results \\citep{laurikainen2007, gadotti2008, weinzirl2009}. In this first paper, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the d...

  4. Notes on Well-Posed, Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows

    SciTech Connect (OSTI)

    Ray A. Berry

    2005-07-01T23:59:59.000Z

    At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known as ensemble averaging can also be used to produce the governing equation systems. In fact volume and time averaging can be viewed as special cases of ensemble averaging. Ensemble averaging is beginning to gain some notice, for example the general-purpose multi-material flow simulation code CFDLib under continuing developed at the Los Alamos National Laboratory [Kashiwa and Rauenzahn 1994] is based on an ensemble averaged formulation. The purpose of this short note is to give an introduction to the ensemble averaging methodology and to show how ensemble averaged balance equations and entropy inequality can be obtained from the microscopic balances. It then details some seven-equation, two-pressure, two-velocity hyperbolic, well-posed models for two-phase flows. Lastly, a simple example is presented of a model in which the flow consists of two barotropic fluids with no phase change in which an equilibrium pressure equation is obtained in the spirit of pressure-based methods of computational fluid dynamics.

  5. A New Direction in Dark-Matter Complementarity: Dark-Matter Decay as a Complementary Probe of Multi-Component Dark Sectors

    E-Print Network [OSTI]

    Keith R. Dienes; Jason Kumar; Brooks Thomas; David Yaylali

    2015-02-13T23:59:59.000Z

    In single-component theories of dark matter, the $2\\to 2$ amplitudes for dark-matter production, annihilation, and scattering can be related to each other through various crossing symmetries. These crossing relations lie at the heart of the celebrated complementarity which underpins different existing dark-matter search techniques and strategies. In multi-component theories of dark matter, by contrast, there can be many different dark-matter components with differing masses. This then opens up a new, "diagonal" direction for dark-matter complementarity: the possibility of dark-matter decay from heavier to lighter dark-matter components. In this work, we discuss how this new direction may be correlated with the others, and demonstrate that the enhanced complementarity which emerges can be an important ingredient in probing and constraining the parameter spaces of such models.

  6. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift

    SciTech Connect (OSTI)

    Kanematsu, Yusuke; Tachikawa, Masanori [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)] [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2014-04-28T23:59:59.000Z

    We have developed the multicomponent hybrid density functional theory [MC-(HF+DFT)] method with polarizable continuum model (PCM) for the analysis of molecular properties including both nuclear quantum effect and solvent effect. The chemical shifts and H/D isotope shifts of the picolinic acid N-oxide (PANO) molecule in chloroform and acetonitrile solvents are applied by B3LYP electron exchange-correlation functional for our MC-(HF+DFT) method with PCM (MC-B3LYP/PCM). Our MC-B3LYP/PCM results for PANO are in reasonable agreement with the corresponding experimental chemical shifts and isotope shifts. We further investigated the applicability of our method for acetylacetone in several solvents.

  7. COMMIX-PPC: A three-dimensional transient multicomponent computer program for analyzing performance of power plant condensers. Volume 1, Equations and numerics

    SciTech Connect (OSTI)

    Chien, T.H.; Domanus, H.M.; Sha, W.T.

    1993-02-01T23:59:59.000Z

    The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added feature is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.

  8. Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc area of the Paradox Basin, UTE Mountain UTE Reservation, Colorado

    SciTech Connect (OSTI)

    Joe Hachey

    2007-09-30T23:59:59.000Z

    The goals of this project were: (1) To enhance recovery of oil contained within algal mounds on the Ute Mountain Ute tribal lands. (2) To promote the use of advanced technology and expand the technical capability of the Native American Oil production corporations by direct assistance in the current project and dissemination of technology to other Tribes. (3) To develop an understanding of multicomponent seismic data as it relates to the variations in permeability and porosity of algal mounds, as well as lateral facies variations, for use in both reservoir development and exploration. (4) To identify any undiscovered algal mounds for field-extension within the area of seismic coverage. (5) To evaluate the potential for applying CO{sub 2} floods, steam floods, water floods or other secondary or tertiary recovery processes to increase production. The technical work scope was carried out by: (1) Acquiring multicomponent seismic data over the project area; (2) Processing and reprocessing the multicomponent data to extract as much geological and engineering data as possible within the budget and time-frame of the project; (3) Preparing maps and data volumes of geological and engineering data based on the multicomponent seismic and well data; (4) Selecting drilling targets if warranted by the seismic interpretation; (5) Constructing a static reservoir model of the project area; and (6) Constructing a dynamic history-matched simulation model from the static model. The original project scope covered a 6 mi{sup 2} (15.6 km{sup 2}) area encompassing two algal mound fields (Towaoc and Roadrunner). 3D3C seismic data was to acquired over this area to delineate mound complexes and image internal reservoir properties such as porosity and fluid saturations. After the project began, the Red Willow Production Company, a project partner and fully-owned company of the Southern Ute Tribe, contributed additional money to upgrade the survey to a nine-component (3D9C) survey. The purpose of this upgrade to nine components was to provide additional shear wave component data that might prove useful in delineating internal mound reservoir attributes. Also, Red Willow extended the P-wave portion of the survey to the northwest of the original 6 mi{sup 2} (15.6 km{sup 2}) 3D9C area in order to extend coverage further to the northwest to the Marble Wash area. In order to accomplish this scope of work, 3D9C seismic data set covering two known reservoirs was acquired and processed. Three-dimensional, zero-offset vertical seismic profile (VSP) data was acquired to determine the shear wave velocities for processing the sh3Dseismic data. Anisotropic velocity, and azimuthal AVO processing was carried out in addition to the conventional 3D P-wave data processing. All P-, PS- and S-wave volumes of the seismic data were interpreted to map the seismic response. The interpretation consisted of conventional cross-plots of seismic attributes vs. geological and reservoir engineering data, as well as multivariate and neural net analyses to assess whether additional resolution on exploration and engineering parameters could be achieved through the combined use of several seismic variables. Engineering data in the two reservoirs was used to develop a combined lithology, structure and permeability map. On the basis of the seismic data, a well was drilled into the northern mound trend in the project area. This well, Roadrunner No.9-2, was brought into production in late April 2006 and continues to produce modest amounts of oil and gas. As of the end of August 2007, the well has produced approximately 12,000 barrels of oil and 32,000 mcf of gas. A static reservoir model was created from the seismic data interpretations and well data. The seismic data was tied to various markers identified in the well logs, which in turn were related to lithostratigraphy. The tops and thicknesses of the various units were extrapolated from well control based upon the seismic data that was calibrated to the well picks. The reservoir engineering properties were available from a number of wel

  9. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    SciTech Connect (OSTI)

    Heiken, G.; Duffield, W. (eds.)

    1990-09-01T23:59:59.000Z

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  10. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    SciTech Connect (OSTI)

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20T23:59:59.000Z

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  11. Colorado's hydrothermal resource base: an assessment

    SciTech Connect (OSTI)

    Pearl, R.H.

    1981-01-01T23:59:59.000Z

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  12. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    SciTech Connect (OSTI)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31T23:59:59.000Z

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the concept that the same weight must be given to S-wave sequences and facies as is given to P-wave sequences and facies. This philosophy differs from the standard practice of depending on only conventional P-wave seismic stratigraphy to characterize reservoir units. The fundamental physics of elastic wavefield seismic stratigraphy is that S- wave modes sense different sequences and facies across some intervals than does a P-wave mode because S-wave displacement vectors are orthogonal to P- wave displacement vectors and thus react to a different rock fabric than do P waves. Although P and S images are different, both images can still be correct in terms of the rock fabric information they reveal.

  13. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect (OSTI)

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01T23:59:59.000Z

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  14. Multicomponent affinity radial flow chromatography

    E-Print Network [OSTI]

    Gu, Tingyue

    procedure thut uses thejnite element, the orthogonal collocation, (2nd the Gear's stijfrnethods. Kinetic.lrrorntrtogrrrphy-frontal adsorption, wash, und elution-have been .simulated. The ejJects ofthe cwncentrrrtion and the (finit

  15. Multicomponent Seismic Technology Assessment of

    E-Print Network [OSTI]

    Texas at Austin, University of

    , and R. Boswell, eds., Natural gas hydrates--Energy resource potential and associated geologic hazards) in the Green Canyon area of the northern Gulf of Mexico were analyzed in this study. These expulsion features

  16. MULTICOMPONENT SEISMIC ANALYSIS AND CALIBRATION TO IMPROVE RECOVERY FROM ALGAL MOUNDS: APPLICATION TO THE ROADRUNNER/TOWAOC AREA OF THE PARADOX BASIN, UTE MOUNTAIN UTE RESERVATION, COLORADO

    SciTech Connect (OSTI)

    Paul La Pointe; Claudia Rebne; Steve Dobbs

    2003-07-10T23:59:59.000Z

    This report describes the results made in fulfillment of contract DE-FG26-02NT15451, ''Multicomponent Seismic Analysis and Calibration to Improve Recovery from Algal Mounds: Application to the Roadrunner/Towaoc Area of the Paradox Basin, Ute Mountain Ute Reservation, Colorado''. Optimizing development of highly heterogeneous reservoirs where porosity and permeability vary in unpredictable ways due to facies variations can be challenging. An important example of this is in the algal mounds of the Lower and Upper Ismay reservoirs of the Paradox Basin in Utah and Colorado. It is nearly impossible to develop a forward predictive model to delineate regions of better reservoir development, and so enhanced recovery processes must be selected and designed based upon data that can quantitatively or qualitatively distinguish regions of good or bad reservoir permeability and porosity between existing well control. Recent advances in seismic acquisition and processing offer new ways to see smaller features with more confidence, and to characterize the internal structure of reservoirs such as algal mounds. However, these methods have not been tested. This project will acquire cutting edge, three-dimensional, nine-component (3D9C) seismic data and utilize recently-developed processing algorithms, including the mapping of azimuthal velocity changes in amplitude variation with offset, to extract attributes that relate to variations in reservoir permeability and porosity. In order to apply advanced seismic methods a detailed reservoir study is needed to calibrate the seismic data to reservoir permeability, porosity and lithofacies. This will be done by developing a petrological and geological characterization of the mounds from well data; acquiring and processing the 3D9C data; and comparing the two using advanced pattern recognition tools such as neural nets. In addition, should the correlation prove successful, the resulting data will be evaluated from the perspective of selecting alternative enhanced recovery processes, and their possible implementation. The work is being carried out on the Roadrunner/Towaoc Fields of the Ute Mountain Ute Tribe, located in the southwestern corner of Colorado. Although this project is focused on development of existing resources, the calibration established between the reservoir properties and the 3D9C seismic data can also enhance exploration success. During the time period covered by this report, the majority of the project effort has gone into the permitting, planning and design of the 3D seismic survey, and to select a well for the VSP acquisition. The business decision in October, 2002 by WesternGeco, the projects' seismic acquisition contractor, to leave North America, has delayed the acquisition until late summer, 2003. The project has contracted Solid State, a division of Grant Geophysical, to carry out the acquisition. Moreover, the survey has been upgraded to a 3D9C from the originally planned 3D3C survey, which should provide even greater resolution of mounds and internal mound structure.

  17. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell

    2006-01-01T23:59:59.000Z

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all three thermometers closely agree gives the predictions added credibility. Unfortunately, the final result of this exploration is that a moderate temperature geothermal resource has been clearly identified but it appears to be restricted to a relatively small area that would be difficult to develop.

  18. Combining Multicomponent Seismic Attributes, New Rock Physics Models, and In Situ Data to Estimate Gas-Hydrate Concentrations in Deep-Water, Near-Seafloor Strata of the Gulf of Mexico

    SciTech Connect (OSTI)

    Bureau of Economic Geology

    2009-04-30T23:59:59.000Z

    The Bureau of Economic Geology was contracted to develop technologies that demonstrate the value of multicomponent seismic technology for evaluating deep-water hydrates across the Green Canyon area of the Gulf of Mexico. This report describes the methodologies that were developed to create compressional (P-P) and converted-shear (P-SV) images of near-seafloor geology from four-component ocean-bottom-cable (4C OBC) seismic data and the procedures used to integrate P-P and P-SV seismic attributes with borehole calibration data to estimate hydrate concentration across two study areas spanning 16 and 25 lease blocks (or 144 and 225 square miles), respectively. Approximately 200 km of two-dimensional 4C OBC profiles were processed and analyzed over the course of the 3-year project. The strategies we developed to image near-seafloor geology with 4C OBC data are unique, and the paper describing our methodology was peer-recognized with a Best Paper Award by the Society of Exploration Geophysicists in the first year of the project (2006). Among the valuable research findings demonstrated in this report, the demonstrated ability to image deep-water near-seafloor geology with sub-meter resolution using a standard-frequency (10-200 Hz) air gun array on the sea surface and 4C sensors on the seafloor has been the accomplishment that has received the most accolades from professional peers. Our study found that hydrate is pervasive across the two study areas that were analyzed but exists at low concentrations. Although our joint inversion technique showed that in some limited areas, and in some geologic units across those small areas, hydrates occupied up to 40-percent of the sediment pore space, we found that when hydrate was present, hydrate concentration tended to occupy only 10-percent to 20-percent of the pore volume. We also found that hydrate concentration tended to be greater near the base of the hydrate stability zone than it was within the central part of the stability zone.

  19. A multicomponent smoking cessation program for couples

    E-Print Network [OSTI]

    Nottingham, Carolyn Robin

    1987-01-01T23:59:59.000Z

    A NULTICONPONENT SNOKING CESSATION PROGRAN FOR COUPLES A Thesis by CAROLYN ROBIN NOTTINGHAN Submitted to the Graduate College of Texas AAN University in partial fulfillment of the requirements for the degree of NASTER OF SCIENCE December... 1987 Najor Subject: Psychology A NULTICONPONENT SNOKING CESSATION PROGRAN FOR COUPLES A Thesis CARO(. YN ROBIN NOTTINGHAN Approved as to style and content by: fe Kern ( ir of Cinittee) Wendy Wo (Memb Ar ()r R e Steve Wore l (Head...

  20. Use of computers for multicomponent distillation calculations

    E-Print Network [OSTI]

    Sullivan, Samuel Lane

    1959-01-01T23:59:59.000Z

    The corrected values for the b 's are best cal- i culated by multiplying (b. /d ) by (d. ) The compositions for each component in the vapor and liquid streams leaving plate j are calculated by use of the following equations. ('i/ i)ca ( i)co y. ji c Z (v... . . /b. ) (b. ) ji i ca i co i=1 , f a j x N+1 C (47-b) A temperature profile may be calculated by making either bubble or dew point calculations based on the compositions obtained by use of Equations (46) and (47). The specified distillate rate must...

  1. Mineral Selection for Multicomponent Equilibrium Geothermometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plamer, C. D.; Ohly, S. R.; Smith, R. W.; Neupane, G.; McLing, T.; Mattson, E.

    2015-04-01T23:59:59.000Z

    Muliticomponent geothermometry requires knowledge of the mineral phases in the reservoir with which the geothermal fluids may be equilibrated.

  2. Multicomponent mixture analysis by multidimensional phosphorimetry

    SciTech Connect (OSTI)

    Ho, C.N.; Warner, I.M.

    1982-12-01T23:59:59.000Z

    A technique based on the rapid scanning capability of the video fluorometer to acquire an emission-excitation matrix (EEM) has been developed for phosphorimetry. This technique overcomes the problem of convolution of time decay with phosphorescence excitation and emission spectra by integrating the signal on target. This method also circumvents the need for very rapid acquisition of data for samples with phosphors of very short lifetimes. A phosphorescence emission-excitation matrix (PEEM) obtained in this manner permits time resolution. Sets of each time-PEEM allow a ratio deconvolution algorithm to successfully resolve mixtures of polynuclear aromatic compounds. 9 figures.

  3. Variably Saturated Flow and Multicomponent Biogeochemical Reactive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a Uranium Bioremediation Field Abstract: Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to...

  4. Multi-component hydrogen storage material

    DOE Patents [OSTI]

    Faheem, Syed A. (Huntley, IL); Lewis, Gregory J. (Santa Cruz, CA); Sachtler, J.W. Adriaan (Des Plaines, IL); Low, John J. (Schaumburg, IL); Lesch, David A. (Hoffman Estates, IL); Dosek, Paul M. (Joliet, IL); Wolverton, Christopher M. (Evanston, IL); Siegel, Donald J. (Ann Arbor, MI); Sudik, Andrea C. (Canton, MI); Yang, Jun (Canton, MI)

    2010-09-07T23:59:59.000Z

    A reversible hydrogen storage composition having an empirical formula of: Li.sub.(x+z)N.sub.xMg.sub.yB.sub.zH.sub.w where 0.4.ltoreq.x.ltoreq.0.8; 0.2.ltoreq.y.ltoreq.0.6; 0

  5. I I I . Isotherm al Multicomponent Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernuclei in Hall C High2 - _ I

  6. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-12-01T23:59:59.000Z

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  7. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01T23:59:59.000Z

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  8. Apacheta, a new geothermal prospect in Northern Chile

    SciTech Connect (OSTI)

    Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

    2002-05-24T23:59:59.000Z

    The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

  9. Results of investigation at the Miravalles geothermal field, Costa Rica. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica; Parte 2, Muestreo de fluidos pozo abajo

    SciTech Connect (OSTI)

    Grigsby, C.O.; Goff, F.; Trujillo, P.E. Jr.; Counce, D.A.; Dennis, B.; Kolar, J.; Corrales, R. (Los Alamos National Lab., NM (USA); Instituto Costarricense de Electricidad, San Jose (Costa Rica))

    1989-10-01T23:59:59.000Z

    Samples of the geothermal fluids in the Miravalles, Costa Rica, geothermal system were collected from production wellbores using downhole fluid samplers, from flowing wellheads using miniseparators, and from hot springs that discharge in the area. The reservoir fluid at Miravalles is a neutral-chloride-type water, but fumaroles and acid-sulfate springs are present within the main thermal area, and there are bicarbonate-rich hot springs that are clearly related to the neutral-chloride reservoir fluids. Dissolved gases are primarily a mixture of CO{sub 2} with air, but samples collected in the fumarolic areas also contain H{sub 2}S. Water-stable isotope analyses suggest local meteoric recharge, and the reservoir fluid shows oxygen isotopic shifts of about 2.5% due to high-temperature oxygen exchange between water and rock. Chemical geothermometer temperatures are consistent with the measured downhole temperature of 220{degrees} to 255{degrees}C. This pattern of neutral-chloride reservoir fluids with acid-sulfate springs near the source region and bicarbonate-rich chloride hot springs at the periphery of the system suggests a lateral outflow type of hydrothermal system. In addition to the geochemical evidence, temperature profiles from several of the wells show temperature reversals that are characteristic of lateral outflow plumes. We find no evidence for the underlying, higher temperature (300{degrees}C) system, which has been suggested by other investigators. 24 refs., 14 figs., 6 tabs.

  10. Favorable Geochemistry from Springs and Wells in COlorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  11. Stabilization of kerogen thermal maturation: Evidence from geothermometry and burial history reconstruction, Niobrara Limestone, Berthoud oil field, western Denver Basin, Colorado

    SciTech Connect (OSTI)

    Barker, C.E.; Crysdale, B.L. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    The burial history of this fractured Niobrara Limestone reservoir and source rock offers a setting for studying the stabilization of thermal maturity because soon after peak temperature of approximately 100{degree}C was reached, exhumation lowered temperature to about 60-70{degree}C. Vitrinite reflectance (Rm = 0.6-0.7%) and published clay mineralogy data from the Niobrara Limestone indicate that peak paleotemperature was approximately 100{degree}C. Fluid inclusion data also indicate oil migration occurred at 100{degree}C. Burial history reconstruction indicates 100{degree}C was reached in the Niobrara Limestone only during minimum burial, which occurred at 70 Ma and 8000 ft depth. However, erosion beginning at 70 Ma and continuing until 50 Ma removed over 3,000 ft of rock. This depth of erosion agrees with an Rm of 0.4% measured in surface samples of the Pierre Shale. The exhumation of the reservoir decreased temperature by about 30{degree}C to near the corrected bottom-hole temperature of 50-70{degree}C. Lopatin time-temperature index (TTI) analysis suggests the Niobrara Limestone as a source rock matured to the oil generation stage (TTI = 10) about 25 Ma, significantly later than maximum burial, and after exhumation caused cooling. The Lopatin TTI method in this case seems to overestimate the influence of heating time. If time is an important factor, thermal maturity should continue to increase after peak burial and temperature so that vitrinite reflectance will not be comparable to peak paleotemperatures estimated from geothermometers set at near-peak temperature and those estimated from burial history reconstruction. The agreement between geothermometry and the burial history reconstruction in Berthoud State 4 suggests that the influence of heating time must be small. The elapsed time available at near peak temperatures was sufficient to allow stabilization of thermal maturation in this case.

  12. The Multicomponent KP Hierarchy: Differential Fay Identities and Lax Equations

    E-Print Network [OSTI]

    Lee-Peng Teo

    2010-10-28T23:59:59.000Z

    In this article, we show that four sets of differential Fay identities of an $N$-component KP hierarchy derived from the bilinear relation satisfied by the tau function of the hierarchy are sufficient to derive the auxiliary linear equations for the wave functions. From this, we derive the Lax representation for the $N$-component KP hierarchy, which are equations satisfied by some pseudodifferential operators with matrix coefficients. Besides the Lax equations with respect to the time variables proposed in \\cite{2}, we also obtain a set of equations relating different charge sectors, which can be considered as a generalization of the modified KP hierarchy proposed in \\cite{3}.

  13. New Approach to a General Nonlinear Multicomponent Chromatography

    E-Print Network [OSTI]

    Gu, Tingyue

    - ponent fixed-bed adsorption/desorption operations, such as frontal, displacement and elution, have operationsaccurately and efficiently. Model Considera fixed-bed adsorptioncolumnpacked wirb uniform- porous, spherical

  14. New Design Methods and Algorithms for Multi-component Distillation...

    Broader source: Energy.gov (indexed) [DOE]

    CX-100137 Categorical Exclusion Determination ITP Chemicals: Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Energy...

  15. The semismooth Newton method for multicomponent reactive transport with minerals

    E-Print Network [OSTI]

    Kraeutle, Serge

    is that problems containing CCs (so-called complementarity problems, CPs) are well known in the field of optimization theory. In this field, it is a well known strategy to solve CPs with the semismooth Newton method essential. The article is structured as follows. In Sec. 2.1 we introduce the mineral precipitation

  16. Determination of minimum reflux in the distillation of multicomponent mixtures

    E-Print Network [OSTI]

    Holland, Charles Donald

    1949-01-01T23:59:59.000Z

    as the smallest possible value of reflux ratio at which the specified separation can be carried out. This requires in- finite plates in both sections. a3 Murdoch has shown that when there are infinite plates in both sec- tions~ the top product contains... of con- stant composition attained by the use of infinite plates in the rectifying section is called the rectifying pinch. In the same manner a zone of con- stant composition~ or strip;ing section pinch, is reached by calculating up the column from...

  17. Carrier Generation in Multicomponent Wide-Bandgap Oxides: Altynbek Murat,

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    of the metal-oxygen bond strengths of the oxide constituents. Moreover, a layered structure and/or a distinct sensitivity of the electrical properties to the oxygen partial pressure, pO2, during pulsed laser deposition

  18. Simulation of multicomponent evaporation in electron beam melting and refining

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Van Den Avyle, J.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)

    1996-06-01T23:59:59.000Z

    Experimental results and a mathematical model are presented to describe differential evaporation rates in electron beam melting of titanium alloys containing aluminum and vanadium. Experiments characterized the evaporation rate of commercially pure titanium, and vapor composition over titanium with up to 6% Al and 4.5% V content as a function of beam power, scan frequency and background pressure. The model is made up of a steady-state heat and mass transport model of a melting hearth and a model of transient thermal and flow behavior near the surface. Activity coefficients for aluminum and vanadium in titanium are roughly estimated by fitting model parameters to experimental results. Based on the ability to vary evaporation rate by 10-15% using scan frequency alone, we discuss the possibility of on-line composition control by means of intelligent manipulation of the electron beam.

  19. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

    2007-08-14T23:59:59.000Z

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  20. New Design Methods and Algorithms for Energy Efficient Multicomponent...

    Energy Savers [EERE]

    Rakesh Agrawal, School of Chemical Engineering, Purdue University U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation...

  1. Baryonic Bound State of Vortices in Multicomponent Superconductors

    E-Print Network [OSTI]

    Muneto Nitta; Minoru Eto; Toshiaki Fujimori; Keisuke Ohashi

    2012-07-30T23:59:59.000Z

    We construct a bound state of three 1/3-quantized Josephson coupled vortices in three-component superconductors with intrinsic Josephson couplings, which may be relevant with regard to iron-based superconductors. We find a Y-shaped junction of three domain walls connecting the three vortices, resembling the baryonic bound state of three quarks in QCD. The appearance of the Y-junction (but not a Delta-junction) implies that in both cases of superconductors and QCD, the bound state is described by a genuine three-body interaction (but not by the sum of two-body interactions). We also discuss a confinement/deconfinement phase transition.

  2. Contemporary Mathematics A Numerical Simulation of Multicomponent Gas Flow in

    E-Print Network [OSTI]

    Ewing, Richard E.

    and gravitational e#11;ects. Traditionally, the standard Darcy equation provides this relation. In this paper, however, we replace this classical law with the Forchheimer equation to model non-Darcy ow [F, RM, HG]. The Forchheimer equation is believed to be more accurate than the classical Darcy's equation for gas ow with high

  3. ON THE SIMULATION OF MULTICOMPONENT GAS FLOW IN POROUS MEDIA

    E-Print Network [OSTI]

    Ewing, Richard E.

    quadrilaterals as a solver to the non­Darcy flow equation, and a conservative Godunov­type scheme for the mass. Traditionally, the standard Darcy equation provides this relation. In this paper, however, we replace this classical law with the Forchheimer equation to model non­Darcy flow [9, 17, 13]. The mathematical nature

  4. Controlling morphology of multi-component block copolymer based materials

    E-Print Network [OSTI]

    Mickiewicz, Rafal Adam, 1974-

    2009-01-01T23:59:59.000Z

    The ability of block copolymers to self-assemble into ordered microstructures has attracted much interest both from a pure scientific perspective and for their potential in numerous industrial applications. The microphase ...

  5. Multicomponent reactive transport modeling of uranium bioremediation field experiments

    SciTech Connect (OSTI)

    Fang, Yilin; Yabusaki, Steven B.; Morrison, Stan J.; Amonette, James E.; Long, Philip E.

    2009-10-15T23:59:59.000Z

    Biostimulation field experiments with acetate amendment are being performed at a former uranium mill tailings site in Rifle, Colorado, to investigate subsurface processes controlling in situ bioremediation of uranium-contaminated groundwater. An important part of the research is identifying and quantifying field-scale models of the principal terminal electron-accepting processes (TEAPs) during biostimulation and the consequent biogeochemical impacts to the subsurface receiving environment. Integrating abiotic chemistry with the microbially mediated TEAPs in the reaction network brings into play geochemical observations (e.g., pH, alkalinity, redox potential, major ions, and secondary minerals) that the reactive transport model must recognize. These additional constraints provide for a more systematic and mechanistic interpretation of the field behaviors during biostimulation. The reaction network specification developed for the 2002 biostimulation field experiment was successfully applied without additional calibration to the 2003 and 2007 field experiments. The robustness of the model specification is significant in that 1) the 2003 biostimulation field experiment was performed with 3 times higher acetate concentrations than the previous biostimulation in the same field plot (i.e., the 2002 experiment), and 2) the 2007 field experiment was performed in a new unperturbed plot on the same site. The biogeochemical reactive transport simulations accounted for four TEAPs, two distinct functional microbial populations, two pools of bioavailable Fe(III) minerals (iron oxides and phyllosilicate iron), uranium aqueous and surface complexation, mineral precipitation, and dissolution. The conceptual model for bioavailable iron reflects recent laboratory studies with sediments from the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site that demonstrated that the bulk (~90%) of Fe(III) bioreduction is associated with the phyllosilicates rather than the iron oxides. The uranium reaction network includes a U(VI) surface complexation model based on laboratory studies with Old Rifle UMTRA sediments and aqueous complexation reactions that include ternary complexes (e.g., calcium-uranyl-carbonate). The bioreduced U(IV), Fe(II), and sulfide components produced during the experiments are strongly associated with the solid phases and may play an important role in long-term uranium immobilization.

  6. Quantitative Imaging of Multi-component Turbulent Jets

    E-Print Network [OSTI]

    Victoria, University of

    to emulate releases in which leak geometry is circular. Effects of buoyancy, crossflow and adjacent surfaces................................................................................................3 1.2.2 Crossflow

  7. On measurement of thermal diffusion coefficients in multicomponent mixtures

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    with a rectangular cross section when the less dense species goes to the cold side. This work centers

  8. Modeling Multicomponent Diffusion and Convection in Porous Media

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    the bottom-hot side of the porous media, may be at higher concentration at the cold-top side in ternary apparatus.8-10 On the other hand, in hy- drocarbon reservoirs, there is generally more methane on the cold

  9. Composition at the interface between multicomponent nonequilibrium fluid phases

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    . These secondary recovery mechanisms are particularly important in fractured hydrocar- bon reservoirs.4 An accurate, gas has been in- jected into oil reservoirs to maintain the pressure and thus, improve oil recovery.3 is already developed. Moreover, CO2-injection is a hot candidate for improved oil recovery projects. Thus, CO

  10. Multi-component Nanoparticle Based Lubricant Additive to Improve Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUserBattelle for

  11. New Design Methods and Algorithms for Multi-component Distillation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof Energy Investigates Port ReadinessProcesses |

  12. Minimum Energy Consumption in Multicomponent Distillation. 1. Vmin Diagram for a Two-Product Column

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of Science and Technology, N-7491 Trondheim, Norway The Vmin diagram is introduced to effectively visualize derivation of the Vmin diagram was based on computing pinch zone compositions for columns with an infinite 215 and 316 of this series. The behavior of composition profiles and pinch zones in a column and how

  13. Minimum Energy Consumption in Multicomponent Distillation. 2. Three-Product Petlyuk Arrangements

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of Science and Technology, N-7491 Trondheim, Norway We show that the minimum energy requirement algebraic procedure, via expressions for pinch zone compositions at the connection points as functions

  14. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    experiment in Opalinus Clay for the management ofconductivity of the Opalinus clay at a regional scale:1953. Adsorption studies on clay minerals. II. A formulation

  15. Performances of Multi-Level and Multi-Component Compressed Bitmap Indices

    E-Print Network [OSTI]

    Wu, Kesheng; Stockinger, Kurt; Shoshani, Arie

    2007-01-01T23:59:59.000Z

    Without compression, the index sizes monotonically decreaseprocessing cost. With compression, the index sizes no longermulti-component indexes without compression. Let C 1 , C

  16. Metabolic patterns of substrate removal in multi-component aqueous systems

    E-Print Network [OSTI]

    Richards, Paul Allen

    1967-01-01T23:59:59.000Z

    . 25 8. 35 8. 45 8. 4o 8. 45 8. 50 8. 5o 8. 50 8. 45 8. 5o 86 Bo 84 86 50 FIGURE 3 'S I CRGANIC CONPONENT ANALYSES SI 0-STR! PPI NG ip ethyl ethanoate ethanol In Ph 30 L C3 CC 20 C) 7 ' 5 7. 0 IO 0 I 2 3 4 5 6 7 8 9 10 I] 12.... 5 W 8. 0 7 ' 5 7. 0 10 6. 5 0 I 2 3 4 5 6 8 9 10 11 12 13 14 TIME (hours) TABLE TEST 6 ANALYSIS DATA SUHNARY T ime hrs. -min. ethyl ethanoate mg/I A B propyl etnanoate mg/I A B butyl ethanoate mg/I A B pentyl ethanoate hexyl...

  17. Rational design of self-assembly pathways for complex multicomponent structures

    E-Print Network [OSTI]

    William M. Jacobs; Aleks Reinhardt; Daan Frenkel

    2015-02-04T23:59:59.000Z

    The field of complex self-assembly is moving toward the design of multi-particle structures consisting of thousands of distinct building blocks. To exploit the potential benefits of structures with such `addressable complexity,' we need to understand the factors that optimize the yield and the kinetics of self-assembly. Here we use a simple theoretical method to explain the key features responsible for the unexpected success of DNA-brick experiments, which are currently the only demonstration of reliable self-assembly with such a large number of components. Simulations confirm that our theory accurately predicts the narrow temperature window in which error-free assembly can occur. Even more strikingly, our theory predicts that correct assembly of the complete structure may require a time-dependent experimental protocol. Furthermore, we predict that low coordination numbers result in non-classical nucleation behavior, which we find to be essential for achieving optimal nucleation kinetics under mild growth conditions. We also show that, rather surprisingly, the use of heterogeneous bond energies improves the nucleation kinetics and in fact appears to be necessary for assembling certain intricate three-dimensional structures. This observation makes it possible to sculpt nucleation pathways by tuning the distribution of interaction strengths. These insights not only suggest how to improve the design of structures based on DNA bricks, but also point the way toward the creation of a much wider class of chemical or colloidal structures with addressable complexity.

  18. Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks

    SciTech Connect (OSTI)

    William C. Conner

    2007-08-02T23:59:59.000Z

    These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

  19. Rigorous Separation Design. 1. Multicomponent Mixtures, Nonideal Mixtures, and Prefractionating Column Networks

    E-Print Network [OSTI]

    Linninger, Andreas A.

    -integrated prefractionating columns. Our employed inverse design procedure enables the systematic design of physically process design with ecological or energy targets.1,2 Distillation is arguably the most significant suggested.4­12 For example, thermally coupled distillation columns known as Petlyuk configurations13 only

  20. Multicomponent seismic data registration for subsurface characterization in the shallow Gulf of Mexico

    E-Print Network [OSTI]

    Texas at Austin, University of

    Gulf of Mexico Sergey Fomel, Milo M. Backus, Michael V. DeAngelo, Paul E. Murray, Bob A. Hardage with application to subsurface characterization in the shallow Gulf of Mexico. In this study, we extend-S images. Application of this technique to data from the Gulf of Mexico reveals the structure of sediments

  1. Use of computers for making multicomponent distillation calculations for reboiler-absorbers

    E-Print Network [OSTI]

    Canik, Leebert J

    1961-01-01T23:59:59.000Z

    /vli are those which are in material balance and in agreement with the specifications. The relationship may be stated as follows. (20) In a similar manner, the quantity 01 is used to express the relationship between the calculated and corrected values of wli... calculation and the minimum rate to I/1. 2 times the value used to make the calculation. At the end of the twentieth trial, p was further reduced to 0. 025 and at the end of the thirtieth trial, p was reduced to 0. 01. For other problems presented herein...

  2. Effective super Tonks-Girardeau gases as ground states of strongly attractive multicomponent fermions

    SciTech Connect (OSTI)

    Yin Xiangguo; Chen Shu [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Guan Xiwen [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia)

    2011-01-15T23:59:59.000Z

    In the strong interaction limit, attractive fermions with N-component hyperfine states in a one-dimensional waveguide form unbreakable bound cluster states. We demonstrate that the ground state of strongly attractive SU(N) Fermi gases can be effectively described by a super Tonks-Girardeau gaslike state composed of bosonic cluster states with strongly attractive cluster-cluster interaction for even N and a Fermi duality of a super Tonks-Girardeau gaslike state composed of fermionic cluster states with weakly interacting cluster-cluster p-wave interaction for odd N.

  3. Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors 

    E-Print Network [OSTI]

    Othman, Enas Azhar

    2014-04-07T23:59:59.000Z

    Qatar holds the world's third-largest proven reserves of natural gas at 885 trillion cubic feet according to a recent report. Because of its desert climate, gas hydrate formation may seem an unlikely event in Qatar. However, ...

  4. Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloys

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering; Avyle, J. van den; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States). Materials Processing Dept.

    1997-12-01T23:59:59.000Z

    Experimental evidence and a mathematical model are presented to evaluate the effect of beam-scan frequency on composition change in electron-beam melting of titanium alloys. Experiments characterized the evaporation rate of commercially pure (CP) titanium and vapor composition over titanium alloy with up to 6 wt pct aluminum and 4.5 wt pct vanadium, as a function of beam power, scan frequency, and background pressure. These data and thermal mapping of the hearth melt surface are used to estimate activity coefficients of aluminum and vanadium in the hearth. The model describes transient heat transfer in the surface of the melt and provides a means of estimating enhancement of pure titanium evaporation and change in final aluminum composition due to local heating at moderate beam-scan frequencies.

  5. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Avyle, J.V.D.; Damkroger, B. [Sandia National Laboratories, Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia`s 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (10{sup {minus}3}, 10{sup {minus}4} and 10{sup {minus}5} torr).

  6. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    SciTech Connect (OSTI)

    Powell, A.; Szekely, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Van Den Avyle, J.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)

    1995-10-12T23:59:59.000Z

    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia`s 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (150 and 225 kW), scan frequency (30, 115 and 450 Hz) and background pressure (10{sup {minus}3}, 10{sup {minus}4} and 10{sup {minus}5} torr).

  7. Metrological characteristics of the multiparameter method of analysis of multicomponent solutions

    SciTech Connect (OSTI)

    Mikhailov, V.A.

    1986-02-01T23:59:59.000Z

    On the basis of previously obtained results of the study of nitrate solutions and the parameters of chloride solutions in the homogenous region for acid-salt-water systems, the authors have investigated the conditions and possibilities of the multiparameter method. The authors, having studied the density, viscosity, and electrical conductivity of three acid-salt-water chloride systems as a function of the composition of the solution, obtained equations relative to the measured values of the density, viscosity, and electrical conductivity for determination of the acid and salt contents for solutions of nitrate and chloride systems. The authors estimated the detection limits, the ranges of measurable contents, the standard deviations of the analysis results, the allowable contents of other components, and the requirements imposed on the accuracy in the measurement of the density, viscosity, electrical conductivity and temperature.

  8. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    DOE Patents [OSTI]

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26T23:59:59.000Z

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  9. Final Report for: "Bis-pi-allylpalladium Complexes in Catalysis of Multicomponent Reactions"

    SciTech Connect (OSTI)

    Malinakova, H. C.; Shiota, Atsushi

    2012-06-29T23:59:59.000Z

    The research project involved the development of new and functionally improved Pd(II) catalyst for a three-component reaction of boronic acids, allenes and imines to afford homoallylic amines that are useful in synthesis of biologically active heterocycles. Furthermore, insights into the reaction mechanism and the structure and reactivity of the catalytically active intermediates involved in this process were sought. As a result of this work, a new type of Pd-catalysts possessing an auxiliary ligand attached to the Pd center via a C-Pd and N-Pd bonds were identified, and found to be more active than the traditional catalysts derived from Pd(OAc)2. The new catalysts provided an access to a broader range of homoallylic amine products. Although the final unequivocal evidence regarding the structure of the Pd(II) complex involved in the nucleophilic transfer of the allyl fragment from the palladium center to the imine could not be obtained, mechanistic insights into the events that are detrimental to the activity of the originally reported Pd(OAc)2-based catalytic systems were uncovered.

  10. AN INTEGRATED MULTI-COMPONENT PROCESSING AND INTERPRETATION FRAMEWORK FOR 3D BOREHOLE SEISMIC DATA

    SciTech Connect (OSTI)

    M. Karrenbach

    2005-04-15T23:59:59.000Z

    This report covers the November 2004-March 2005 time period. A mid year project review meeting was held at DOE facilities on November 30th. Work has been performed successfully on several tasks 3 through 15. Most of these tasks have been executed independently. We progressed steadily and completed some of the sub-tasks, while others are still on going. We achieved the goals that we had set up in the task schedule. Reviewing the results of this work period indicates that our plan is solid and we did not encounter any unforeseen problems. The work plan will continue as projected.

  11. An analysis of the regenerative expansion cycle in multi-component hydrocarbon separation systems

    E-Print Network [OSTI]

    Horton, John Leroy

    1966-01-01T23:59:59.000Z

    absolute zero if the equip- ment is perfectly insulated and the amount of heat transfer surface is infinitely large. 5~~~%IIIIN(@Ni5@RAI)5@$5 IWW&~ 55SRINKa'RNSQRINSF)WJL%fOE& IMMMm y&~'~8?NMi&lKSSIKSAINF~ ILRRRF' ', IflF+RF)ISNi%IFkKAF4%:. , NJ NN&NRF... T X (d+g) T + T?(~ ~g) T dTm~zdl (TxTz) dT ~ dl [(Ot +Q) T i Y?- (Ol Jg) 7 - T] z dl % L y ln c z dT 1) Tz t Tx " (4++) T 1 1 [(al tg- 1) 7 + T? xl (aL )g) T 3 when L = 0 T = T 1 Tz = Tz 1 0 = ln (~t g- 1) T t T?- (4++) T zl xl zl c...

  12. THERMODYNAMIC DRIVING FORCES AND EQUILIBRIUM IN MULTICOMPONENT SYSTEMS WITH ANISOTROPIC SURFACES

    E-Print Network [OSTI]

    Taylor, Jean

    and surface motion are formulated for surfaces with anisotropic surface * *free energy. Weighted mean curvature is used in a way that reveals how the free energy of cu* *rved surfaces acts like a thermodynamic driving force and thus how it interacts with* * bulk free energies. The relations are valid

  13. Study of multi-component fuel premixed combustion using direct numerical simulation

    E-Print Network [OSTI]

    Nikolaou, Zacharias M.

    2014-04-29T23:59:59.000Z

    Fossil fuel reserves are projected to be decreasing, and emission regulations are becoming more stringent due to increasing atmospheric pollution. Alternative fuels for power generation in industrial gas turbines are thus required able to meet...

  14. Multi-component single-substrate conducting polymer actuation systems and fabrication techniques

    E-Print Network [OSTI]

    Paster, Eli Travis

    Conducting polymer materials can be employed as actuation elements, length sensors, force sensors, energy storage devices, and electrical components. Combining the various functionalities of conducting polymers to create ...

  15. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    SciTech Connect (OSTI)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01T23:59:59.000Z

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  16. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

    2010-10-26T23:59:59.000Z

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  17. A sequential partly iterative approach for multicomponent reactive transport with CORE2D

    E-Print Network [OSTI]

    Samper, J.

    2009-01-01T23:59:59.000Z

    Juncosa R. , Delgado J. and Montenegro L. (2000) CORE 2D : App. Samper, J. , Yang, C. , Montenegro, L. , 2003. CORE 2DSamper, J. , Zhang, G. , Montenegro, L. , 2006a. Coupled

  18. Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay

    E-Print Network [OSTI]

    Zheng, L.

    2010-01-01T23:59:59.000Z

    Samper, J. , Zheng, L. , Montenegro, L. , 2006c. CoupledSamper, J. , Zheng, L. , Montenegro, L. , Fernández, A.M. ,A.M. Fernández and L. Montenegro, 2008b, Inverse modeling of

  19. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

    E-Print Network [OSTI]

    Biesheuvel, P. M.

    We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary ...

  20. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

    E-Print Network [OSTI]

    Bazant, Martin Z.

    of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. 4 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Abstract We present porous on the current via a shift in local pH, i.e. "current-induced charge regulation." We present results

  1. A comparison of various calculational methods for constant volatility ratio, constant reflux multicomponent distillation

    E-Print Network [OSTI]

    Hurst, James William

    1952-01-01T23:59:59.000Z

    in equilibrium with the liquid leaving the plate. The reverse may be tru e, but this is much rarer. In dealing with an actual column of the plate type, consideration must therefore be given to the average plate efficiency. The number of theoretical plates... Thesis J'ames William Hurst January l952 CONT%ITS Sur mary Page I. Introduction. II. Literature Survey 1 e 9 III. Calculational Procedures. . . . . . . . . . . 24 A. Bases of L. ethods. e 24 B. Detailed methods of Calculation IV. Illustrative...

  2. Multicomponent Radial Flow Chromatography T. Gu', G-J. Tsai2, and G. T. Tsao3

    E-Print Network [OSTI]

    Gu, Tingyue

    was solved numerically by using finite element and orthogonal collocation methods for the discretizations collocation points number of quadratic elements number of components v(X1 - Xo)Peclet number of radial

  3. Multicomponent dynamics of coupled quantum subspaces and field-induced molecular ionizations

    SciTech Connect (OSTI)

    Nguyen-Dang, Thanh-Tung; Viau-Trudel, Jérémy [Département de Chimie, Université Laval, Québec, Québec G1K 7P4 (Canada)] [Département de Chimie, Université Laval, Québec, Québec G1K 7P4 (Canada)

    2013-12-28T23:59:59.000Z

    To describe successive ionization steps of a many-electron atom or molecule driven by an ultrashort, intense laser pulse, we introduce a hierarchy of successive two-subspace Feshbach partitions of the N-electron Hilbert space, and solve the partitioned time-dependent Schrödinger equation by a short-time unitary algorithm. The partitioning scheme allows one to use different level of theory to treat the many-electron dynamics in different subspaces. We illustrate the procedure on a simple two-active-electron model molecular system subjected to a few-cycle extreme Ultra-Violet (XUV) pulse to study channel-resolved photoelectron spectra as a function of the pulse's central frequency and duration. We observe how the momentum and kinetic-energy distributions of photoelectrons accompanying the formation of the molecular cation in a given electronic state (channel) change as the XUV few-cycle pulse's width is varied, from a form characteristic of an impulsive ionization regime, corresponding to the limit of a delta-function pulse, to a form characteristic of multiphoton above-threshold ionization, often associated with continuous-wave infinitely long pulse.

  4. Rock physics and geophysics for unconventional resource, multi-component seismic, quantitative interpretation

    E-Print Network [OSTI]

    Glinsky, Michael E; Sassen, Doug; Rael, Howard; Chen, Jinsong

    2013-01-01T23:59:59.000Z

    An extension of a previously developed, rock physics, model is made that quantifies the relationship between the ductile fraction of a brittle/ductile binary mixture and the isotropic seismic reflection response. Making a weak scattering (Born) approximation and plane wave (eikonal) approximation, with a subsequent ordering according to the smallness of the angle of incidence, a linear singular value decomposition analysis is done to understand the stack weightings, number of stacks, and the type of stacks that will optimally estimate the two fundamental rock physics parameters. It is concluded that the full PP stack and the "full" PS stack are the two optimal stacks needed to estimate the two rock physics parameters. They dominate over both the second order AVO "gradient" stack and the higher order (4th order) PP stack.

  5. Rational design of self-assembly pathways for complex multicomponent structures

    E-Print Network [OSTI]

    Jacobs, William M.; Reinhardt, Aleks; Frenkel, Daan

    2015-05-04T23:59:59.000Z

    be assembled in order to complete one or more cycles, i.e. closed loops of stabilizing bonds in a fragment. For example, the critical number of monomers in the exam- ple structure at 319 K, V ‡ = 8, is one fewer than the nine subunits required to form a... . Sci- ence 338:1458(SI). 28Shneidman VA (2003) On the lowest energy nucleation path in a supersaturated lattice gas. J Stat Phys 112:293–318. ...

  6. Coupling Multi-Component Models with MPH on Distributed Memory Computer Architectures

    E-Print Network [OSTI]

    He, Yun; Ding, Chris

    2005-01-01T23:59:59.000Z

    Among these, NASA’s Earth System Models Framework (ESMF) [to facilitate coupling earth system model components and to

  7. MULTI-COMPONENT OBSERVATIONS OF 1017 eV EAS WITH A HYBRID

    E-Print Network [OSTI]

    Department of Physics and Institutc for High Energy Astrophysics. University of Utah. Utah 84112. USA 2, USA 6 Permanent Address: Department of Physics, Alexandria University, Egypt. ABSTRACT 2486 quality HIRES-MIA coincident EAS around 1017 eV were recorded and analyzed, providing event direction, energy

  8. The breakthrough time and permeation rate of multi-component solvents for selected glove materials

    E-Print Network [OSTI]

    Brown, Bruce Gustav

    1987-01-01T23:59:59.000Z

    APPENDIX A TABLE OF CONTENTS (continued) Page LIST OF VARIOUS PHYSICAL, CHEMICAL AND TOXICOLOGICAL PROPERTIES OF THE RESEARCH SOLVENTS. APPENDIX B 65 LIST OF EQUIPMENT. APPENDIX C ASSEMBLY OF PESCE LAB SALES PERMEATION TEST CELL WITH TEST... the chemicals tested including the permeation rat s and breakthrough times through the glove. Vitron, Butyl and Nitrile Latex are just a few types of The citations used on the following pages follow the style of the American Industrial Hygiene Association...

  9. Direct gas chromatography for the study of substrate removal kinetics in multi-component aqueous systems

    E-Print Network [OSTI]

    Langley, William Douglas

    1966-01-01T23:59:59.000Z

    . Apparatus and Analytical Procedures. ~ 5 10 III ~ CHEMICAL NOMENCLATURE AND ANALYTICAL RESPONSE s ~ 16 IV, RESULTS e 22 Tests A and B 22 Test C Test D Test E Test EE . ~ Test S ~ 23 ~ 33 41 49 56 TABLE OF CONTENTS, Continued Section Page Va... Table Page l. Chemical Nomenclature. ~ ~ . . . . . . . 16 2. Accuracy~ Precision, and Linearity of Detector and Recorder System. 18 3. Response to Chemical Oxygen Demand Test. . . . 21 4. Test Cg Reaction Conditions. . . . . . , . 24 5. Test C...

  10. Formulation of substrate removal kinetics in multi-component aqueous systems

    E-Print Network [OSTI]

    Chaney, Ernest William

    1967-01-01T23:59:59.000Z

    : Or anic Component Analyses. . 44 14 Test J-a: Organic Component Analyses, . 15 Test J-b: Organic Component Analyses. . 16 Test K-c. 'Organic Component Analyses. . 51 53 59 17 Organic Substrate Added, Days 1-6. . 81 18 Organic Substrate Added, Days...: Removal of 1-pentanol 47 48 17 Test J-a: Organic Removal Analyses. . 52 18 Test J-b: Organic Removal Analyses. . . 54 19 Test J-b: Organic Removal Analyses. . 55 20 Test K-c- Organic Removal Analyses. . . 60 Comparison of Removal Patterns of I...

  11. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-11-01T23:59:59.000Z

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.

  12. Multicomponent reactive transport modeling at the Ratones uranium mine, Cceres (Spain)

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    abandonadas puede dar lugar a impactos importantes en la calidad del agua subterránea. Por lo tanto, predecir Ratones es una mina de uranio subterránea, que fue abandonada e inundada en 1974. Gracias al ambiente

  13. Calculational procedure for multicomponent distillation columns with side-stream-strippers

    E-Print Network [OSTI]

    Dickey, Billy Ray

    1962-01-01T23:59:59.000Z

    On the basis of the compositions obtained, the temperature is caloulated for each plate by use of tha bubble point procedure. For the corrected profile, a new value of D must be assumed, and a value of D calculated while holding the "control component..."i& 1 yec ! o cc, 'cu!atc !, et corrvctec', d;otit! itc r itcs, (c ), ;rhich arc in com onent-material co . . cc und w!!o . v . :um e. u ls t!ie secor. fie. disti'1. ' e rate, &i-v 1 "~ ol quntions (1: i ind (19! . ay t ien ii used to c . " &&ul . te...

  14. An analysis of the regenerative expansion cycle in multi-component hydrocarbon separation systems 

    E-Print Network [OSTI]

    Horton, John Leroy

    1966-01-01T23:59:59.000Z

    ? EXPANDER SERIAL 0'3 Aspermont, Texas Test 0 Date Time 1 2 3 9 7/15/65 7/15/65 7/15/65 7/15/65 7/17/65 3:00pm 3:30pm 4:00pm 8:45pm 7:40am Amb ien t Air p Pf Pr W T f T r Tl T2 T3 T4 T5 T6 Vol. W mcfd Vol. F mcfd Vol. R mcfd Q? MBtu... and liquid, m C P? sC Pq Complete Cycle 3 Streams Unequal Lengths Heat Transferred (Q~) Figure XII Chapter III - D while Stream Y is a superheated vapor. The temperatures of Streams Y and Z remain equal along Sections A, B and C. As pointed out...

  15. Structural studies of bacterial multicomponent monooxygenases : insights into substrate specificity, diiron center tuning and component interactions

    E-Print Network [OSTI]

    Sazinsky, Matthew H. (Matthew Howard), 1976-

    2004-01-01T23:59:59.000Z

    (cont.) ?-subunit cavities. The presence of 6-bromohexan-l-ol induces one of the active site helices to adopt a [pi] conformation. Together, these findings suggest modes by which molecules may move through the MMOH cavities ...

  16. System and method to determine thermophysical properties of a multi-component gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Behring II, Kendricks A.

    2003-08-05T23:59:59.000Z

    A system and method to characterize natural gas hydrocarbons using a single inferential property, such as standard sound speed, when the concentrations of the diluent gases (e.g., carbon dioxide and nitrogen) are known. The system to determine a thermophysical property of a gas having a first plurality of components comprises a sound velocity measurement device, a concentration measurement device, and a processor to determine a thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the concentration measurements, wherein the number of concentration measurements is less than the number of components in the gas. The method includes the steps of determining the speed of sound in the gas, determining a plurality of gas component concentrations in the gas, and determining the thermophysical property as a function of a correlation between the thermophysical property, the speed of sound, and the plurality of concentrations.

  17. Indirect measurement of diluents in a multi-component natural gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Owen, Thomas E.

    2006-03-07T23:59:59.000Z

    A method of indirectly measuring the diluent (nitrogen and carbon dioxide) concentrations in a natural gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. A set of reference gas mixtures with known molecular weights and diluent concentrations is used to calculate the constant values. For the gas in question, if the speed of sound in the gas is measured at three states, the three resulting expressions of molecular weight can be solved for the nitrogen and carbon dioxide concentrations in the gas mixture.

  18. Device For Determining Therophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

    2005-02-01T23:59:59.000Z

    A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  19. Gas Hydrate Equilibrium Measurements for Multi-Component Gas Mixtures and Effect of Ionic Liquid Inhibitors

    E-Print Network [OSTI]

    Othman, Enas Azhar

    2014-04-07T23:59:59.000Z

    hydrate inhibition data from a newly commissioned micro bench top reactor, a high-pressure autoclave and a rocking cell. The conditions for hydrate formation for pure methane and carbon dioxide were also measured, for validation purposes. The measured data...

  20. A multi-component partitioning model to predict organic leaching from stabilized/solidified oily wastes

    E-Print Network [OSTI]

    O'Cleirigh, Declan Ronan

    1997-01-01T23:59:59.000Z

    42 44 44 Figure 12. 3 Pseudo-Component Model using Modified K values, j = 1 Figure 13. TOC Leaching Rate from a Solidified Oily Waste, . ????, 46 50 LIST OF TABLES Table 1. Composition of Ordinary Portland Cement Table 2. Basic Hydration.... Ordinary Portland Cement (OPC) and flyash are common binders of choice as they are inexpensive, stable against damage and fire, and methods of mixing and processing them are well understood. Poor treatment efficiencies have been found when solidifying...

  1. Freckle suppression in directional solidification of binary and multicomponent alloys using magnetic fields

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    a Lorentz force that opposes the thermosolutal buoyancy force and can be used to control or suppress melt coupling the electromagnetic and fluid flow phenomena. The induced electric potential depends on the fluid heating effect is neglected in the energy equation because of the high electrical conductivity of most

  2. Analysis of seismic anisotropy in 3D multi-component seismic data 

    E-Print Network [OSTI]

    Qian, Zhongping

    2010-01-01T23:59:59.000Z

    The importance of seismic anisotropy has been recognized by the oil industry since its first observation in hydrocarbon reservoirs in 1986, and the application of seismic anisotropy to solve geophysical problems has been ...

  3. Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous solutions

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    formation in storage. Other interests include deep ocean carbon sequestration, use of hydrate deposits

  4. A Numerical Model for Miscible Displacement of Multi-Component Reactive Species

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Azarouala a Water Department/Groundwater and Geochemistry Modeling, BRGM (French Geological Survey) 3 of our approach. Therefore, the model may prove useful for many practical applications. 1. INTRODUCTION Demands to undertake modeling analysis of coupled groundwater ow, solute transport, and reactive water

  5. Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    , and fractured media is presented in single phase. In the numerical model we combine the mixed finite element), finite volume (FV) or finite element (FE) methods generally do not provide satisfactory results combined the mixed finite element (MFE) method and the discontin- uous Galerkin (DG) method. The MFE method is

  6. Magnetism and magnetocaloric effect in multicomponent Laves-phase compounds: Study and comparative analysis

    SciTech Connect (OSTI)

    ?wik, J., E-mail: cwikjac@ml.pan.wroc.pl

    2014-01-15T23:59:59.000Z

    This paper presents a review and results of comparative study of the influence of Gd on some physical properties of (R{sub 0.9}R?{sub 0.1}){sub 1?x}Gd{sub x}Co{sub 2} solid solutions with R=Dy, Ho and R?=Er, Ho and x varied from 0.05 to 0.15. Powder X-ray diffraction analysis performed at room temperature revealed that all studied solid solutions solidify with the formation of a Laves-phase MgCu{sub 2}-type structure (space group Fd?3m). The magnetization behavior and the magnetic transition are analyzed in terms of the Landau theory. The studies of magnetic properties and heat capacity showed that a relatively small Gd addition significantly increases T{sub C} of the compounds. The maximum percentage increase in T{sub C}, namely, ?43% was observed for (Ho{sub 0.9}Er{sub 0.1}){sub 1?x}Gd{sub x}Co{sub 2}. However, the highest temperature was noted for the (Dy{sub 0.9}Ho{sub 0.1}){sub 0.85}Gd{sub 0.15}Co{sub 2} solid solution; it is T{sub C}=183.4 K. Below the ordering temperature, all samples are ferrimagnetically ordered; at high temperatures, they are Curie–Weiss paramagnets. Moreover, a small Gd addition eliminates the field-induced magnetic transition near T{sub C} and, as consequence, transforms the nature of magnetic transition from the first- to second-order. The magnetocaloric effect has been estimated in terms of both isothermal magnetic entropy and adiabatic temperature changes. The highest adiabatic temperature change ?T{sub ad}=3 K and highest isothermal entropy change ?S{sub mag}=12.1 J/kg K were observed for (Ho{sub 0.9}Er{sub 0.1}){sub 0.95}Gd{sub 0.05}Co{sub 2} at ?90 K in magnetic fields of 2 T and 3 T, respectively. A decrease in the entropy change has been observed with increasing Gd content in all studied samples. The smallest values of ?S{sub mag} were observed for the (Dy{sub 0.9}Ho{sub 0.1}){sub 1?x}Gd{sub x}Co{sub 2} solid solutions. Under an external field change of from 0 to 3 T, the maximum entropy change for (Dy{sub 0.9}Ho{sub 0.1}){sub 1?x}Gd{sub x}Co{sub 2} compounds decreases from 6.9 at x=0.05–4.3 J/kg K at x=0.15. The refrigerant capacity for all solid solutions (with 0.05?x?0.15) is reported. The effect of increasing Gd content in the solid solutions on their magnetic and magnetocaloric properties is discussed. - Graphical abstract: Temperature dependencies of ?T{sub ad} induced by µ{sub 0}H=1 and 2 T in (a) (Ho{sub 0.9}Er{sub 0.1}){sub 1?x}Gd{sub x}Co{sub 2} and (b) (Dy{sub 0.9}Er{sub 0.1}){sub 1?x}Gd{sub x}Co{sub 2} solid solutions. Display Omitted.

  7. Multicomponent stimulus interactions observed in basilar-membrane vibration in the basal region

    E-Print Network [OSTI]

    Czajkowski, Cynthia

    of the chinchilla cochlea William S. Rhodea) and Alberto Recio Department of Physiology, University of Wisconsin-membrane vibration at the 3­4-mm region of the chinchilla cochlea with a characteristic frequency between 6.5 and 8

  8. New Design Methods and Algorithms for Energy Efficient Multicomponent Distillation Column Trains

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDynNet-Zero Campus at UniversityMarketsWellsRakesh

  9. Method for FractMethod for Fracture Detection Using Multicomponent Seismic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-HarvardEnergy Innovation

  10. New Design Methods and Algorithms for Multi-component Distillation Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew CatalyticDemands on Heavy Duty

  11. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    SciTech Connect (OSTI)

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27T23:59:59.000Z

    During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

  12. ANTHEM: a two-dimensional multicomponent self-consistent hydro-electron transport code for laser-matter interaction studies

    SciTech Connect (OSTI)

    Mason, R.J.

    1982-01-01T23:59:59.000Z

    The ANTHEM code for the study of CO/sub 2/-laser-generated transport is outlined. ANTHEM treats the background plasma as coupled Eulerian thermal and ion fluids, and the suprathermal electrons as either a third fluid or a body of evolving collisional PIC particles. The electrons scatter off the ions; the suprathermals drag against the thermal background. Self-consistent E- and B-fields are computed by the Implicit Moment Method. The current status of the code is described. Typical output from ANTHEM is discussed with special application to Augmented-Return-Current CO/sub 2/-laser-driven targets.

  13. Final Technical Report DE-FG02-99ER14933 Inversion of multicomponent seismic data and rock physics interpretation

    SciTech Connect (OSTI)

    Mavko, G.

    2006-03-15T23:59:59.000Z

    An important accomplishment was to understand the seismic velocity anisotropy resulting from the combined roles of depositional stratification and stress in unconsolidated sands. The report presents an experimental study of velocity anisotropy in unconsolidated sands at measured compressive stresses up to 40 bars, which correspond to the first hundred meters of the subsurface. Two types of velocity anisotropy are considered, that due to intrinsic textural anisotropy, and that due to stress anisotropy. We found that sand samples display a bi-linear dependence of velocity anisotropy with stress anisotropy. There exists a transition stress beyond which the stress-induced anisotropy outweighs the intrinsic anisotropy for three different sands.

  14. Semiautomatic segmentation and follow-up of multicomponent low-grade tumors in longitudinal brain MRI studies

    SciTech Connect (OSTI)

    Weizman, Lior, E-mail: weizmanl@gmail.com [School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)] [School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Sira, Liat Ben [Department of Radiology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv 64239 (Israel)] [Department of Radiology, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv 64239 (Israel); Joskowicz, Leo [School of Engineering and Computer Science and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)] [School of Engineering and Computer Science and The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Rubin, Daniel L.; Yeom, Kristen W. [Department of Radiology, Stanford University, Stanford, California 94305 (United States)] [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Constantini, Shlomi; Shofty, Ben [Tel Aviv Medical Center, Dana Children's Hospital, Tel Aviv University, Tel Aviv 64239 (Israel)] [Tel Aviv Medical Center, Dana Children's Hospital, Tel Aviv University, Tel Aviv 64239 (Israel); Bashat, Dafna Ben [Tel Aviv Medical Center, Functional Brain Center, Tel Aviv University, Tel Aviv 64239 (Israel)] [Tel Aviv Medical Center, Functional Brain Center, Tel Aviv University, Tel Aviv 64239 (Israel)

    2014-05-15T23:59:59.000Z

    Purpose: Tracking the progression of low grade tumors (LGTs) is a challenging task, due to their slow growth rate and associated complex internal tumor components, such as heterogeneous enhancement, hemorrhage, and cysts. In this paper, the authors show a semiautomatic method to reliably track the volume of LGTs and the evolution of their internal components in longitudinal MRI scans. Methods: The authors' method utilizes a spatiotemporal evolution modeling of the tumor and its internal components. Tumor components gray level parameters are estimated from the follow-up scan itself, obviating temporal normalization of gray levels. The tumor delineation procedure effectively incorporates internal classification of the baseline scan in the time-series as prior data to segment and classify a series of follow-up scans. The authors applied their method to 40 MRI scans of ten patients, acquired at two different institutions. Two types of LGTs were included: Optic pathway gliomas and thalamic astrocytomas. For each scan, a “gold standard” was obtained manually by experienced radiologists. The method is evaluated versus the gold standard with three measures: gross total volume error, total surface distance, and reliability of tracking tumor components evolution. Results: Compared to the gold standard the authors' method exhibits a mean Dice similarity volumetric measure of 86.58% and a mean surface distance error of 0.25 mm. In terms of its reliability in tracking the evolution of the internal components, the method exhibits strong positive correlation with the gold standard. Conclusions: The authors' method provides accurate and repeatable delineation of the tumor and its internal components, which is essential for therapy assessment of LGTs. Reliable tracking of internal tumor components over time is novel and potentially will be useful to streamline and improve follow-up of brain tumors, with indolent growth and behavior.

  15. Multi-Component Copper Catalyzed Methods to Access Highly-Substituted Amine-Bearing Carbon Centers from Simple Starting Materials

    E-Print Network [OSTI]

    Pierce, Conor John

    2013-01-01T23:59:59.000Z

    titanium capable of co-catalytic activity to give propargylamine Under an atmosphere of either air or industrial grade Nitrogen,

  16. Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    methods Mathematical modelling CO2 storage Enhanced oil recovery Groundwater contamination Multi, oil, gas) occupying the pore space of geological formations underground (see Fig. 1 for an ex- ample and oil fields [7], enhancing the recovery of oil and gas from hydrocarbon reservoirs through

  17. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thalman, R.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-01-01T23:59:59.000Z

    Multiphase OH and O? oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O? can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore »O? is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH/O? exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O? exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  18. Growth of multi-component alloy films with controlled graded chemical composition on sub-nanometer scale

    DOE Patents [OSTI]

    Bajt, Sasa; Vernon, Stephen P.

    2005-03-15T23:59:59.000Z

    The chemical composition of thin films is modulated during their growth. A computer code has been developed to design specific processes for producing a desired chemical composition for various deposition geometries. Good agreement between theoretical and experimental results was achieved.

  19. Apparatus and method for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-11T23:59:59.000Z

    A dilution apparatus for diluting a gas sample. The apparatus includes a sample gas conduit having a sample gas inlet end and a diluted sample gas outlet end, and a sample gas flow restricting orifice disposed proximate the sample gas inlet end connected with the sample gas conduit and providing fluid communication between the exterior and the interior of the sample gas conduit. A diluted sample gas conduit is provided within the sample gas conduit having a mixing end with a mixing space inlet opening disposed proximate the sample gas inlet end, thereby forming an annular space between the sample gas conduit and the diluted sample gas conduit. The mixing end of the diluted sample gas conduit is disposed at a distance from the sample gas flow restricting orifice. A dilution gas source connected with the sample gas inlet end of the sample gas conduit is provided for introducing a dilution gas into the annular space, and a filter is provided for filtering the sample gas. The apparatus is particularly suited for diluting heated sample gases containing one or more condensable components.

  20. Phosphine-Mediated Multi-Component ?-Umpolung/Aldol/Wittig Cascade Reaction for the Synthesis of Functionalized Naphthalenes

    E-Print Network [OSTI]

    Zhang, Kui

    2013-01-01T23:59:59.000Z

    developed for the synthesis of pyrroles, 11 furans, 12 andWittig reactions for the synthesis of pyrroles. Scheme 11.

  1. Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips

    E-Print Network [OSTI]

    Le Roy, Robert J.

    and stacking in microfluidic chips David Sinton, Liqing Ren, Xiangchun Xuan and Dongqing Li* Department the capabilities of microfluidic chips. 1. Introduction The integration of preparatory, reactive, and post these processes on a microfluidic chip is one of the most important advantages of on- chip devices. Concentration

  2. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

    2008-02-12T23:59:59.000Z

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  3. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOE Patents [OSTI]

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15T23:59:59.000Z

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  4. A System And Method To Determine Thermophysical Properties Of A Multi-Component Gas At Arbitrary Temperature And Pressure

    DOE Patents [OSTI]

    Morrow, Thomas E. (San Antonio, TX); Behring, II, Kendricks A. (Gilbert, AZ)

    2004-03-09T23:59:59.000Z

    A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.

  5. Ab initio Based Modeling of Radiation Effects in Multi-Component Alloys: Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Dane Morgan

    2010-06-10T23:59:59.000Z

    The project began March 13, 2006, allocated for three years, and received a one year extension from March 13, 2009 to March 12, 2010. It has now completed 48 of 48 total months. The project was focused on using ab initio methods to gain insights into radiation induced segregation (RIS) in Ni-Fe-Cr alloys. The project had the following key accomplishments • Development of a large database of ab initio energetics that can be used by many researchers in the future for increased understanding of this system. For example, we have the first calculations showing a dramatic stabilization effect of Cr-Cr interstitial dumbbells in Ni. • Prediction of both vacancy and interstitial diffusion constants for Ni-Cr and Ni-Fe for dilute Cr and Fe. This work included generalization of widely used multifrequency models to make use of ab initio derived energetics and thermodynamics. • Prediction of qualitative trends of RIS from vacancy and interstitial mechanisms, suggesting the two types of defect fluxes drive Cr RIS in opposite directions. • Detailed kinetic Monte Carlo modeling of diffusion by vacancy mechanism in Ni-Cr as a function of Cr concentration. The results demonstrate that Cr content can have a significant effect on RIS. • Development of a quantitative RIS transport model, including models for thermodynamic factors and boundary conditions.

  6. Investigation of the particle dynamics of a multi-component solid phase in a dilute phase pneumatic conveying system 

    E-Print Network [OSTI]

    Lu, Yong

    2009-01-01T23:59:59.000Z

    In order to mitigate the risk of global warming by reducing CO2 emissions, the co-firing technique, burning pulverized coal and granular biomass together in conventional pulverised fuel power station boilers, has been advocated to generate “greener...

  7. Rencontres Gosynthtiques -9-11 avril 2013, Dijon MESURE DU FLUX DANS LES GOFILMS BENTONITIQUES

    E-Print Network [OSTI]

    Boyer, Edmond

    BENTONITIQUES FLOW RATE MEASUREMENT IN MULTICOMPONENT GEOSYNTHETIC CLAY LINERS Camille BARRAL1 , Nathalie TOUZE /d. Keywords: geosynthetics, geomembrane, multicomponent geosynthetic clay liner, flow rate. 1

  8. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    E-Print Network [OSTI]

    Vogelsberg, Cortnie Sue

    2012-01-01T23:59:59.000Z

    supramolecular compass is a step in the right direction towards multicomponent amphidynamic stimuli responsive materials,

  9. New Prospects for High Performance SONAR, Chemical Sensor, and Communication Device Materials

    E-Print Network [OSTI]

    Rappe, Andrew M.

    ), such as the cathode material lanthanum strontium cobalt ferrite (LSCF). The complexity of these multicomponent systems

  10. ALSNews 2009

    E-Print Network [OSTI]

    Tamura Ed., Lori

    2010-01-01T23:59:59.000Z

    solar fuel generation, and multi-component nanoparticle systems for light-induced hydrogen production

  11. DIANA: A multi-phase, multi-component hydrodynamic model for the analysis of severe accidents in heavy water reactors with multiple-tube assemblies

    SciTech Connect (OSTI)

    Tentner, A.M.

    1994-03-01T23:59:59.000Z

    A detailed hydrodynamic fuel relocation model has been developed for the analysis of severe accidents in Heavy Water Reactors with multiple-tube Assemblies. This model describes the Fuel Disruption and Relocation inside a nuclear fuel assembly and is designated by the acronym DIANA. DIANA solves the transient hydrodynamic equations for all the moving materials in the core and treats all the relevant flow regimes. The numerical solution techniques and some of the physical models included in DIANA have been developed taking advantage of the extensive experience accumulated in the development and validation of the LEVITATE (1) fuel relocation model of SAS4A [2, 3]. The model is designed to handle the fuel and cladding relocation in both voided and partially voided channels. It is able to treat a wide range of thermal/ hydraulic/neutronic conditions and the presence of various flow regimes at different axial locations within the same hydrodynamic channel.

  12. PREPRINT -September 27, 2010; contact camley@physics.ucsb.edu for information Dynamic simulations of multicomponent lipid membranes over long length and time scales

    E-Print Network [OSTI]

    Fygenson, Deborah Kuchnir

    as funda- mentally interesting soft matter systems [1­3]. Ternary mix- tures of saturated and unsaturated scales. Compelling agreement with both theory and experiment is obtained, suggesting this methodology description of the observed two-phase coexistence in ternary lipid/cholesterol systems. However, to facilitate

  13. REAL-TIME CHEMICAL SENSING IN THIN FILM MULTICOMPONENT Theodosia Gougousi, Department of Materials and Nuclear Engineering and Institute for Systems

    E-Print Network [OSTI]

    Gougousi, Theodosia

    with two cold wall CVD reactors, a load lock, and a buffer chamber. Heating lamps positioned outside and above the reactor provide heating to the wafer. The gas supply system is designed so that H2

  14. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols

    E-Print Network [OSTI]

    Ghosal, Sutapa

    2009-01-01T23:59:59.000Z

    1988, 334, 138-141,. Hausmann, M. ; Platt, U. J. Geophys.Res. 1994, 99, 25399-25413. Platt, U. ; Hausmann, M. Res.Trost, B. ; Unold, W. ; Platt, U. Tellus, 1997, 49B, 533-

  15. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    SciTech Connect (OSTI)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01T23:59:59.000Z

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  16. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems

    SciTech Connect (OSTI)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01T23:59:59.000Z

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-[var epsilon] model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  17. Multiple Roles of Component Proteins in Bacterial Multicomponent Monooxygenases: Phenol Hydroxylase and Toluene/o-Xylene Monooxygenase from Pseudomonas sp. OX1

    E-Print Network [OSTI]

    Tinberg, Christine E.

    Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged ...

  18. Ion Partitioning at the liquid/vapor interface of a multi-component alkali halide solution: A model for aqueous sea salt aerosols

    E-Print Network [OSTI]

    Ghosal, Sutapa

    2009-01-01T23:59:59.000Z

    A model for aqueous sea salt aerosols Sutapa Ghosal, 1species associated with sea salt ice and aerosols has beena minor component in sea salt, which has a Br – /Cl – molar

  19. LIQUIDUS TEMPERATURE-COMPOSITION MODEL FOR MULTI-COMPONENT GLASSES IN THE Fe, Cr, Ni, AND Mn SPINEL PRIMARY PHASE FIELD

    SciTech Connect (OSTI)

    Vienna, John D. (BATTELLE (PACIFIC NW LAB)); Hrma, Pavel R. (BATTELLE (PACIFIC NW LAB)); Crum, Jarrod (BATTELLE (PACIFIC NW LAB)); Mika, Martin (ASSOC WESTERN UNIVERSITY)

    2000-11-01T23:59:59.000Z

    We developed an extensive TL database of simulated HLW glasses within the spinel primary phase field. Partial specific TLs, Ti, were determined for all components that were systematically varied in database glasses -- i=Al, B, Ca, Cr, Fe, K, Li, Mg, Mn, Na, Ni, Si, Ti, U, and Zr. A clear relationship was found between the Ti values and field strength or ion potential. This led to a new model that can accurately predict the TL of glasses within component concentration ranges of the database. The model gives slightly better predictability than a first-order expansion of TL in composition while using only half of the fitted parameters and offers an improvement in predictability over previously published models. The success of this model gives insight to the nature of component effects on TL, which warrants further investigation. Namely, the concentrations of all glass components appear to be influential on TL in proportion to the character of their bonds or their bond strengths.

  20. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOE Patents [OSTI]

    Morrow, Thomas B. (San Antonio, TX); Behring, II, Kendricks A. (Torrance, CA)

    2004-10-12T23:59:59.000Z

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  1. Multi component Nanoparticle Based Lubricant Additive to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Multi-component Nanoparticle Based Lubricant Additive to Improve Efficiency and Durability in Engines ITP Nanomanufacturing:...

  2. Implications for Eulerian-Lagrangian modeling of multiphase ...

    E-Print Network [OSTI]

    Adjoint methods are particle methods: Implications for Eulerian-Lagrangian modeling of multiphase multicomponent transport Thomas F. Russell Division of

  3. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov (indexed) [DOE]

    interpretations) * Reduce exploration and development costs Innovation * Numerical optimization of multicomponent chemical geothermometry at multiple locations * Integration with...

  4. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 3, Programmer`s guide

    SciTech Connect (OSTI)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01T23:59:59.000Z

    The COMMIX-LAR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-lA to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a keg model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The internal aspects of the COMMIX-LAR/P program are presented, covering descriptions of subprograms, variables, and files.

  5. COMMIX-1AR/P: A three-dimensional transient single-phase computer program for thermal hydraulic analysis of single and multicomponent systems. Volume 2, User`s guide

    SciTech Connect (OSTI)

    Garner, P.L.; Blomquist, R.N.; Gelbard, E.M.

    1992-09-01T23:59:59.000Z

    The COMMIX-1AR/P computer program is designed for analyzing the steady-state and transient aspects of single-phase fluid flow and heat transfer in three spatial dimensions. This version is an extension of the modeling in COMMIX-1A to include multiple fluids in physically separate regions of the computational domain, modeling descriptions for pumps, radiation heat transfer between surfaces of the solids which are embedded in or surround the fluid, a k-{var_epsilon} model for fluid turbulence, and improved numerical techniques. The porous-medium formulation in COMMIX allows the program to be applied to a wide range of problems involving both simple and complex geometrical arrangements. The input preparation and execution procedures are presented for the COMMIX-1AR/P program and several postprocessor programs which produce graphical displays of the calculated results.

  6. Additivity of detector responses of a portable direct-reading 10. 2 eV photoionization detector and a flame ionization gas chromatograph for atmospheres of multicomponent organics: use of PID/FID ratios

    SciTech Connect (OSTI)

    Lee, I.N.; Hee, S.S.Q.; Clark, C.S.

    1987-05-01T23:59:59.000Z

    The H-Nu PI-101 with a photoionization detector (PID) of 10.2 eV and Century OVA-128 equipped with a flame ionization detector (FID) were evaluated for the additivity of their responses to a defined mixtures of dissimilar organic vapors at a 0 and 90% relative humidity (RH). The responses of both instruments were additive as long as the effect of RH was accounted for the PID. The PI-101 was not as precise as the Century OVA-128 for 90% RH atmospheres. PID/FID ratios did not change in the presence of 90% RH as long as the effect of RH also was accounted for in the PID reading. The compounds investigated included: toluene, benzaldehyde; 1,2,4-trichlorobenzene, methyl chloroform, methylene dichloride, methyl ethyl ketone, ethanol and acetonitrile.

  7. VOLUME 81, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JULY 1998 Bobylev-Krook-Wu Modes for Multicomponent Gas Mixtures

    E-Print Network [OSTI]

    Meleshko, Sergey V.

    -Krook-Wu (BKW) mode. The BKW mode is of physical interest for ex- plicit modeling of some nonequilibrium] that the conditions of the BKW mode exis- tence formulated in [3] could be weakened. As a matter of fact, the BKW modes were not considered in [4]. Re- cently, in [5] the BKW modes were obtained for a binary gas

  8. 2015 Advanced Manufacturing Office Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Identify Easily Implementable Energy- Efficient Low-Cost Multicomponent Distillation Column Trains with Large Energy Savings for Wide Number of Separations Purdue...

  9. Next Generation Manufacturing Processes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solvent-Extraction Technology New Design Methods and Algorithms for Multi-component Distillation Processes Process Intensification with Integrated Water-Gas-Shift Membrane Reactor...

  10. An Explicit Runge-Kutta Iteration for Diffusion in the Low Mach Number Combustion Code

    E-Print Network [OSTI]

    Grcar, Joseph F.

    2007-01-01T23:59:59.000Z

    usion in the Low Mach Number Combustion Code Joseph F. Grcarthe low Mach number combustion code. Contents 1 Introductionthe low Mach number combustion code, LMC. The multicomponent

  11. Combining Feedback Absorption Spectroscopy, Amplified Resonance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compounds in Automotive Emissions Discusses a novel combination of multi-component scanning direct absorption spectroscopy, resonant cavity and low-pressure sampling to...

  12. Sandia Energy - Molecular Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular spectroscopy, and molecular simulation to complex multicomponent and multiphase systems; particular emphasis on the use of molecular simulation and various...

  13. New Approaches for Understanding the Hanford 300 Area Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may have hindered adoption of inverse modeling in the past. The massively parallel, multiphase, multicomponent reactive flow and transport code "PFLOTRAN" was also used at NERSC...

  14. activity fusion reactions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Fusion reactions in multicomponent dense matter CERN Preprints Summary: We analyze thermonuclear and pycnonuclear fusion reactions in dense matter containing atomic nuclei...

  15. Geothermal: Sponsored by OSTI -- GeoT User's Guide: A Computer...

    Office of Scientific and Technical Information (OSTI)

    Program for Multicomponent Geothermometry and Geochemical Speciation, Version 1.4 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  16. Geothermal: Sponsored by OSTI -- Geochemistry Sampling for Traditional...

    Office of Scientific and Technical Information (OSTI)

    for Traditional and Multicomponent Equilibrium Geothermometry in Southeast Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  17. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the...

  18. Seismic Technology Adapted to Analyzing and Developing Geothermal...

    Open Energy Info (EERE)

    GEDCO, RARE Technology, and Sercel, Inc. to combine multicomponent seismic technology and rock physics modeling that will lead to the ability to image and analyze geothermal...

  19. CX-002608: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Accounting of Carbon Dioxide Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12112009 Location(s):...

  20. U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...

    Broader source: Energy.gov (indexed) [DOE]

    and Accounting of CO2 Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling Please see SOPO attached. This NEPA action is to...

  1. Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Optimal Design of Energy-Efficient Integrated Distillation Processes for

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Scheduler Optimal Design of Energy-Efficient Integrated Distillation Processes for Multicomponent Ideal Optimal design of energy-efficient integrated distillation processes for multicomponent ideal and non, The Netherlands The dividing wall distillation columns (DWC) find increased use in industrial practice

  2. Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 3, 257292 Review on some Stefan Problems for Particle Dissolution

    E-Print Network [OSTI]

    Vuik, Kees

    as in proces- sing aluminium extrusion alloys. Although precipitate dissolution is not the only 257 #12;F. J Problems for Particle Dissolution in Solid Metallic Alloys F. J. Vermolen1 , C. Vuik1 , E. Javierre1 , S alloys. This work deals with models for multi-component particle dissolution in multi-component alloys

  3. A level set method for three dimensional vector Stefan problems: Dissolution of stoichiometric particles

    E-Print Network [OSTI]

    Vuik, Kees

    in multi-component alloys occur- ring during the heat treatments of as-cast aluminium alloys prior to hot and size distribution of the particles with the hardness in the aluminium alloys. Due to the scientific particles in multi-component alloys E. Javierre *, C. Vuik, F.J. Vermolen, A. Segal Delft Institute

  4. DELFT UNIVERSITY OF TECHNOLOGY REPORT 01-15

    E-Print Network [OSTI]

    Vuik, Kees

    as aluminium extrusion alloys. Although precipitate dissolution is not the only metallurgical process taking and cross-diffusion in multi-component alloys F.J. Vermolen, C. Vuik and S. van der Zwaag ISSN 1389 dissolution and cross-diffusion in multi-component alloys ] [F.J. Vermolen, C. Vuik and S. van der Zwaag

  5. Centrum voor Wiskunde en Informatica REPORTRAPPORT

    E-Print Network [OSTI]

    Vuik, Kees

    process ocurring during the heat treatment of as-cast aluminium alloys prior to hot extrusion of Particles in Multi-Component Alloys F.J. Vermolen, C. Vuik Modelling, Analysis and Simulation (MAS) MAS in Multi-Component Alloys Fred Vermolen CWI P.O.Box 94079, 1090 GB Amsterdam, The Netherlands Kees Vuik

  6. OPTIMAL CONTROL OF PARTIALLY MISCIBLE TWO-PHASE FLOW WITH APPLICATIONS TO SUBSURFACE CO2 SEQUESTRATION

    E-Print Network [OSTI]

    Ulbrich, Michael

    control problems that are governed by multiphase multicomponent flow in porous media. The concrete in porous media. The objective is, e.g., to maximize the amount of trapped CO2 in an underground reservoir/FV methods for multiphase multicomponent flows in porous media we refer to [11] and references therein

  7. Mechanistic Modelling of Water Vapour Condensation in Presence of

    E-Print Network [OSTI]

    Haviland, David

    analysis of the water vapour condensation from the multicomponent mixture of condensable and noncondensable attention has been paid to the influence of the light gas and induced buoyancy forces on the condensation the multicomponent gas distribution and condensation heat transfer degradation are directly related

  8. Method of joining ITM materials using a partially or fully-transient liquid phase

    DOE Patents [OSTI]

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-03-14T23:59:59.000Z

    A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.

  9. hf. J. Hear Mass Transfer. Vol. 30, No. 9, pp. 1949-1961, 1987 0017-9310/87 %3.00+0.00 Printed in Great Britain (c) 1987 Pergamon Journals Ltd.

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    . For the multicomponent case, however, the transient thermal and specially the liquid mass transport may be the rate from those of the single-component fuel due to droplet dynamics. Certain regions of the combustor may

  10. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods. An X-Ray Probe for Soft...

  11. Blind benchmark predictions of the NACOK air ingress tests using the CFD code FLUENT

    E-Print Network [OSTI]

    Brudieu, Marie-Anne V

    2007-01-01T23:59:59.000Z

    The JAERI and NACOK experiments examine the combined effects of natural convection during an air ingress event: diffusion, onset of natural circulation, graphite oxidation and multicomponent chemical reactions. MIT has ...

  12. A Biophysical Approach to Investigate the Human Fe-S Cluster Assembly Pathway 

    E-Print Network [OSTI]

    Fox, Nicholas G

    2014-06-02T23:59:59.000Z

    Iron sulfur (Fe-S) clusters are essential cofactors that function in electron transport, catalyzing substrate turnover, environmental sensing, and initiating radical chemistry. Elaborate multi-component systems have evolved to protect organisms from...

  13. FUSION- A Knowledge Management System for Fuel Cell Optimization

    E-Print Network [OSTI]

    Jane Hunter; Kwok Cheung; Suzanne Little; John Drennan

    Fuel cells are highly complex multi-component systems. Their efficiency depends on their internal nanostructure and the complex chemical and physical processes occurring across their internal interfaces. Significant

  14. Frataxin (FXN) Based Regulation of the Iron-Sulfur Cluster Assembly Complex

    E-Print Network [OSTI]

    Rabb, Jennifer

    2012-07-16T23:59:59.000Z

    Iron-sulfur clusters are protein cofactors that are critical for all life forms. Elaborate multi-component systems have evolved for the biosynthesis of these cofactors to protect organisms from the toxic effects of free iron and sulfide ions...

  15. Why perform time-lapse seismic monitoring? Is it to ver-ify the reservoir model? No! We should conduct time-lapse

    E-Print Network [OSTI]

    the Teal South time-lapse multicomponent (4-D/4-C) study, in Eugene Island Block 354 in the Gulf of Mexico by Texaco, has been continued through a consortium organized by the Energy Research Clearing House. Some

  16. Active Control Strategies for Chemical Sensors and Sensor Arrays 

    E-Print Network [OSTI]

    Gosangi, Rakesh

    2013-07-17T23:59:59.000Z

    the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We...

  17. Problems of G and multidimensional models

    E-Print Network [OSTI]

    V. N. Melnikov; V. D. Ivashchuk

    2002-08-08T23:59:59.000Z

    The relations for G-dot in multidimensional model with Ricci-flat internal space and multicomponent perfect fluid are obtained. A two-component example: dust + 5-brane, is considered.

  18. Computational upscaled modeling of heterogeneous porous media flow utilizing finite volume method

    E-Print Network [OSTI]

    Ginting, Victor Eralingga

    2005-08-29T23:59:59.000Z

    . Finally we will present several applications of the multiscale method in the ?ow in porous media. Problems that we will consider are multiphase immiscible ?ow, multicomponent miscible ?ow, and soil in?ltration in saturated/unsaturated...

  19. A method for tradespace exploration of systems of systems

    E-Print Network [OSTI]

    Chattopadhyay, Debarati

    2009-01-01T23:59:59.000Z

    Systems of Systems (SoS) are a current focus of many organizations interested in integrating assets and utilizing new technology to create multi-component systems that deliver value over time. The dynamic composition of ...

  20. Design and Synthesis of a Novel Triptycene-Based Ligand for Modeling Carboxylate-Bridged Diiron Enzyme Active Sites

    E-Print Network [OSTI]

    Li, Yang

    A novel triptycene-based ligand with a preorganized framework was designed to model carboxylate-bridged diiron active sites in bacterial multicomponent monooxygenase (BMM) hydroxylase enzymes. The synthesis of the ...

  1. www.VadoseZoneJournal.org Vadose Zone Journal

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    , biofuels, sustainability, and nanotechnology. Since its inception, Vadose Zone Journal has grown tre, multicomponent (reactive) transport modeling, radionuclide transport, multiphase flow, recharge in arid transport, remote sensing of vadose zone properties, hillslope hydrology, gas diffusion, environmental

  2. The Microbial Opsin Family of Optogenetic Tools

    E-Print Network [OSTI]

    Zhang, Feng

    The capture and utilization of light is an exquisitely evolved process. The single-component microbial opsins, although more limited than multicomponent cascades in processing, display unparalleled compactness and speed. ...

  3. Study of Multi-scale Transport Phenomena in Tight Gas and Shale Gas Reservoir Systems 

    E-Print Network [OSTI]

    Freeman, Craig Matthew

    2013-11-25T23:59:59.000Z

    . In this work we contribute a numerical model which captures multicomponent desorption, diffusion, and phase behavior in ultra-tight rocks. We also describe a workflow for incorporating measured gas composition data into modern production analysis....

  4. Progress In Electromagnetics Research B, Vol. 25, 93111, 2010 DATA-ADAPTIVE RESOLUTION METHOD FOR THE

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    correlation and for well geosteering. Modern multicomponent induction logging tools were introduced by Baker-Hughes in anisotropic rock formations. Baker-Hughes' tool measures five magnetic field components: Hxx, Hyy, Hzz, Hxy

  5. Analytical modelling of hydrogen transport in reactor containments

    E-Print Network [OSTI]

    Manno, V.

    1983-01-01T23:59:59.000Z

    There are two diffusion processes, molecular and turbulent, which should be modelled in different ways. Molecular diffusion is modelled by Wilke's formula for the multi-component gas diffusion, where the diffusion constants ...

  6. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17T23:59:59.000Z

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  7. Dioxygen activation and substrate hydroxylation by the hydroxylase component of toluene/O-xylene monooxygenase from pseudomonas sporium OX1

    E-Print Network [OSTI]

    Murray, Leslie Justin

    2007-01-01T23:59:59.000Z

    Non-heme carboxylate-bridged diiron centers in the hydroxylase components of the bacterial multicomponent monooxygenases activate dioxygen at structurally homologous active sites. Catalysis requires the management of four ...

  8. A Biophysical Approach to Investigate the Human Fe-S Cluster Assembly Pathway

    E-Print Network [OSTI]

    Fox, Nicholas G

    2014-06-02T23:59:59.000Z

    Iron sulfur (Fe-S) clusters are essential cofactors that function in electron transport, catalyzing substrate turnover, environmental sensing, and initiating radical chemistry. Elaborate multi-component systems have evolved to protect organisms from...

  9. The role of mammalian target of rapamycin complex 1 in hepatic physiology and disease

    E-Print Network [OSTI]

    Sengupta, Shomit

    2010-01-01T23:59:59.000Z

    The multi-component kinase mTOR complex 1 (mTORC 1) coordinates nutrient and growth factor inputs with numerous downstream processes including protein translation, autophagy, metabolism and cell growth. We have found that ...

  10. Confocal microscopy studies of colloidal assembly on microfabricated physically templated surfaces 

    E-Print Network [OSTI]

    Sharma, Sumit

    2005-02-17T23:59:59.000Z

    deposition, and glass micro machining. Various stages of the process were optimized while selecting reactive ion etch (RIE) and nickel etch mask with a suitable etch recipe for microfabrication of patterns on thin multi-component glass coverslips. Pattern...

  11. Materials for Information Technology

    E-Print Network [OSTI]

    Tang, Ben Zhong

    and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide R. Mu¨lhaupt et al. Macromol. Rapid Commun. 2009 Hybrid Multicomponent Hydrogels for Tissue Engineering X. Q. Jia et al. Macromol. Biosci. 2009, 9, 140

  12. Nonlocal effects in effective-medium response of nanolayered metamaterials Justin Elser and Viktor A. Podolskiya

    E-Print Network [OSTI]

    Avrutsky, Ivan

    The authors analyze electromagnetic modes in multilayered nanocomposites and demonstrate that the response technique for hybrid modes as well as for multicomponent structures. In the se- lected geometry, x

  13. Diiron Oxidation State Control of Substrate Access to the Active Site of Soluble Methane Monooxygenase Mediated by the Regulatory Component

    E-Print Network [OSTI]

    Wang, Weixue

    The regulatory component (MMOB) of soluble methane monooxygenase (sMMO) has a unique N-terminal tail not found in regulatory proteins of other bacterial multicomponent monooxygenases. This N-terminal tail is indispensable ...

  14. Optimization of composite tubes for a thermal optical lens housing design

    E-Print Network [OSTI]

    Garcia Gonzalez, Hector Camerino

    2004-09-30T23:59:59.000Z

    This thesis describes the manufacturing, structural analysis and testing of a composite cylinder for space application. This work includes the design and fabrication of a reusable multicomponent mandrel made of aluminum and steel...

  15. Mutoru, Jane Wambui Curriculum Vitae

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    and multicomponent mixtures with carbon dioxide for applications in CO2 sequestration and enhanced oil recovery coefficients in mixtures of carbon dioxide, water, brine, and hydrocarbons Yale University, New Haven, CT Jan

  16. Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    SciTech Connect (OSTI)

    Guan, X. W.; Lee, J.-Y. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Batchelor, M. T. [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 (Australia); Yin, X.-G.; Chen Shu [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2010-08-15T23:59:59.000Z

    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multicomponent strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multicomponent Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of state which we obtained provides a precise description of multicomponent composite fermions and opens up the study of quantum criticality in one-dimensional systems of N-component Fermi gases with population imbalance.

  17. Method of forming a joint

    DOE Patents [OSTI]

    Butt, Darryl Paul; Cutler, Raymond Ashton; Rynders, Steven Walton; Carolan, Michael Francis

    2006-08-22T23:59:59.000Z

    A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.

  18. Planar ceramic membrane assembly and oxidation reactor system

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohrn, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, Paul Nigel (Allentown, PA)

    2009-04-07T23:59:59.000Z

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  19. Planar ceramic membrane assembly and oxidation reactor system

    DOE Patents [OSTI]

    Carolan, Michael Francis (Allentown, PA); Dyer, legal representative, Kathryn Beverly (Allentown, PA); Wilson, Merrill Anderson (West Jordan, UT); Ohm, Ted R. (Alliance, OH); Kneidel, Kurt E. (Alliance, OH); Peterson, David (Uniontown, OH); Chen, Christopher M. (Allentown, PA); Rackers, Keith Gerard (Louisville, OH); Dyer, deceased, Paul Nigel (Allentown, PA)

    2007-10-09T23:59:59.000Z

    Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.

  20. Combined catalysts for the combustion of fuel in gas turbines

    DOE Patents [OSTI]

    Anoshkina, Elvira V.; Laster, Walter R.

    2012-11-13T23:59:59.000Z

    A catalytic oxidation module for a catalytic combustor of a gas turbine engine is provided. The catalytic oxidation module comprises a plurality of spaced apart catalytic elements for receiving a fuel-air mixture over a surface of the catalytic elements. The plurality of catalytic elements includes at least one primary catalytic element comprising a monometallic catalyst and secondary catalytic elements adjacent the primary catalytic element comprising a multi-component catalyst. Ignition of the monometallic catalyst of the primary catalytic element is effective to rapidly increase a temperature within the catalytic oxidation module to a degree sufficient to ignite the multi-component catalyst.

  1. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01T23:59:59.000Z

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  2. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19T23:59:59.000Z

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  3. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01T23:59:59.000Z

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  4. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26T23:59:59.000Z

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  5. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)

    2012-02-21T23:59:59.000Z

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  6. High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN)

    2011-10-11T23:59:59.000Z

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  7. High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods

    DOE Patents [OSTI]

    Goyal, Amit

    2013-09-17T23:59:59.000Z

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  8. FLUIDIZABLE CATALYSTS FOR PRODUCING HYDROGEN BY STEAM REFORMING BIOMASS PYROLYSIS LIQUIDS

    E-Print Network [OSTI]

    , and gasification reactions. Our fixed-bed experiments showed that the carbohydrate-derived fraction of poplar-fluidizable (fixed-bed) commercial catalysts.1 These multicomponent catalysts, which generally contain Ni, K, Ca-Chemie manufactured the fixed-bed catalyst from which the ground and sieved catalyst was made. This material consisted

  9. Coupled Effects of Mechanics, Geometry, and Chemistry on Bio-membrane Behavior

    E-Print Network [OSTI]

    Winfree, Erik

    build and analyze complete models to understand the behavior of multi-component membranes. We proposeCoupled Effects of Mechanics, Geometry, and Chemistry on Bio-membrane Behavior Thesis by Ha Giang, and encouragement. #12;iv Abstract Lipid bilayer membranes are models for cell membranes­the structure that helps

  10. A Generic Approach to Coat Carbon Nanotubes With Nanoparticles

    E-Print Network [OSTI]

    Chen, Junhong

    A Generic Approach to Coat Carbon Nanotubes With Nanoparticles for Potential Energy Applications coated with nanoparticles of multiple materials to realize the multicomponent coating. High resolution.1115/1.2787026 Keywords: carbon nanotubes, nanoparticles, electrostatic force directed assembly, coating, size selection

  11. 7, 849910, 2007 Reformulating

    E-Print Network [OSTI]

    Boyer, Edmond

    and gas/liquid/solid partitioning of mixed inorganic/organic multicomponent so- lutions and the associated Title Page Abstract Introduction Conclusions References Tables Figures Back Close Full Screen / Esc Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion EGU Abstract Modeling

  12. High Definition Dynamic Reservoir Characterization for CO2 Management, Delhi Field, Louisiana

    E-Print Network [OSTI]

    , incorporating geomechanical inputs from time-lapse multicomponent seismic data. RCP is a pioneer brought permeability change into the simulation through geomechanical inputs and multipoint geostatistics in reservoir simulators, a connecting science is geomechanics. Some of the linkage and application is non

  13. CLOSED OPERATION OF MULTIVESSEL BATCH DISTILLATION -EXPERIMENTAL VERIFICATION

    E-Print Network [OSTI]

    Skogestad, Sigurd

    1 CLOSED OPERATION OF MULTIVESSEL BATCH DISTILLATION - EXPERIMENTAL VERIFICATION Submitted to AICheÆcient operation, multicomponent distillation, batch distillation, total re ux operation ABSTRACT. The multivessel batch distillation column, as well as conven- tional batch distillation, may be operated in a closed

  14. International Journal of Control Vol. 83, No. 3, March 2010, 457483

    E-Print Network [OSTI]

    Ray, Asok

    be avoided in modern multi-component and often non-collocated engineered systems. Under these circumstancesInternational Journal of Control Vol. 83, No. 3, March 2010, 457­483 Optimal control of infinite theoretic optimal control for perfectly observable situations and shows that such a framework is far more

  15. Department of Chemical Engineering Thermal and Flow Engineering Laboratory

    E-Print Network [OSTI]

    Zevenhoven, Ron

    design 12.9 Steam distillation 12.10 Multi-component distillation, azeotropic distillation, extractive distillation 13. Packed columns 13.1 Principle of operation, packings 13.2 Mass balance, mass transfer 13 drying using an absorption /stripping process 11. Batch distillation 11.1 Batch distillation principle 11

  16. chemical engineering research and design 8 9 ( 2 0 1 1 ) 11551167 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Skogestad, Sigurd

    .elsevier.com/locate/cherd Designing four-product dividing wall columns for separation of a multicomponent aromatics mixture I rights reserved. Keywords: Distillation; Energy saving; Dividing wall column; Thermal coupling 1 (Oluji´c et al., 2009). Hence the present day challenge is to design distillation systems

  17. februari 2014 Department of Chemical Engineering

    E-Print Network [OSTI]

    Zevenhoven, Ron

    column design 12.9 Steam distillation 12.10 Multi-component distillation, azeotropic distillation, extractive distillation 13. Packed columns 13.1 Principle of operation, packings 13.2 Mass balance, mass stages 10.3 Wet gas drying using an absorption /stripping process 11. Batch distillation 11.1 Batch

  18. februari 2011 Department of Chemical Engineering

    E-Print Network [OSTI]

    Zevenhoven, Ron

    efficiency 12.8 Tray capacity, tray column design 12.9 Steam distillation 12.10 Multi-component distillation, azeotropic distillation, extractive distillation 13. Packed columns 13.1 Principle of operation, packings 13.5 Design calculations 13.6 Concentrated solutions; distillation 14. Extraction and leaching 14.1 Liquid

  19. februari 2012 Department of Chemical Engineering

    E-Print Network [OSTI]

    Zevenhoven, Ron

    column design 12.9 Steam distillation 12.10 Multi-component distillation, azeotropic distillation, extractive distillation 13. Packed columns 13.1 Principle of operation, packings 13.2 Mass balance, mass stages 10.3 Wet gas drying using an absorption /stripping process 11. Batch distillation 11.1 Batch

  20. februari 2013 Department of Chemical Engineering

    E-Print Network [OSTI]

    Zevenhoven, Ron

    column design 12.9 Steam distillation 12.10 Multi-component distillation, azeotropic distillation, extractive distillation 13. Packed columns 13.1 Principle of operation, packings 13.2 Mass balance, mass stages 10.3 Wet gas drying using an absorption /stripping process 11. Batch distillation 11.1 Batch

  1. MCWASP, Modeling of Casting, Welding and Advanced Solidification Processes XI TMS (The Minerals, Metals & Materials Society),

    E-Print Network [OSTI]

    Zabaras, Nicholas J.

    -COMPONENT ALLOYS USING LEVEL SET METHODS Nicholas Zabaras1 , Lijian Tan1 1 Materials Process Design and Control Laboratory 188 Frank H.T Rhodes Hall, Sibley school of Mechanical and Aerospace Engineering, Cornell, Multi-component alloy, Multi-phase, Fluid flow. Abstract A level set method combining features of front

  2. IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 867 Experimental and Theoretical Study of RF Plasma

    E-Print Network [OSTI]

    Kaganovich, Igor

    is required even for fast PIC Monte Carlo (MC) models of the reactor processes in complex multicomponent gas reactors are carried out at specific input power more than W/cm . At these power conditions, the influence of secondary electron emission ( electrons) and gas heating on discharge self-organization should be studied

  3. JOURNAL DE PHYSIQUE Colloque C5, supplbment au n05, Tome 50, mai 1989

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -B- diketonate starting compounds in an ArIO, gas mixture [l,21 have been investigated. The plasma was realized as cathode in a quartz reactor. The aim of these activities is to optimize e.g. ThO, doped W layer structures for multicomponent PCVD. If this has to be avoided, the remedy is a fast plasma movement together with a thermal

  4. Process diagnostics and thickness metrology using in situ mass spectrometry for the chemical vapor deposition of W from H2 WF6

    E-Print Network [OSTI]

    Gougousi, Theodosia

    response time 4 s sensor system sampled gas directly from a commercial Ulvac ERA-1000 reactor in order wafers, at 67 Pa 0.5 Torr total pressure, and for wafer temperatures around 400 °C. A relatively fast An ideal real-time chemical sensor for monitoring pro- cesses involving multicomponent gas mixtures would

  5. Anomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical

    E-Print Network [OSTI]

    , as well as interpenetrating and bicontinu- ous networks.7,8 Phase inversion occurs when the mi- norityAnomalous Phase Inversion in Polymer Blends Prepared by Cryogenic Mechanical Alloying Archie P strategies for producing highly dis- persed multicomponent polymer blends. By their very nature

  6. Motional resonance coupling in cold multispecies Coulomb crystals B. Roth, P. Blythe, and S. Schiller

    E-Print Network [OSTI]

    Schiller, Stephan

    with results from molecular dynamics simulations and allow for a precise identification of sympathetically 10­12 . We have used excitation of motional resonances to iden- tify the molecular species embedded molecular dynamics MD simu- lations. We consider multicomponent ion crystals containing up to several

  7. Environmental Toxicology and Chemistry, Vol. 18, No. 3, pp. 426429, 1999 Printed in the USA

    E-Print Network [OSTI]

    Peters, Catherine A.

    UNIFAC. The NAPL phase activity coefficients for constituent compounds of four different coal tar, with the majority of activity coefficients in the range of 0.9 to 1.1. These results provide a firm theoretical--Nonaqueous phase liquid Polycyclic aromatic hydrocarbons Coal tar UNIFAC Multicomponent INTRODUCTION Many

  8. Interfacial systems for photochemical energy conversion: Progress report

    SciTech Connect (OSTI)

    Wrighton, M.S.

    1988-01-01T23:59:59.000Z

    The following research areas are briefly discussed: excited state electron transfer in multi-component redox molecules; pH-dependent rectification in viologen-quinone polymers; selective modifications of II-IV semiconductors; and electrocatalysis of redox processes with biological molecules. 13 refs. (CBS)

  9. S. K. Aggarwal Department of Mechanical Engineering,

    E-Print Network [OSTI]

    Aggarwal, Suresh K.

    on Droplet Vaporization This paper deals with the multicomponent nature of gas turbine fuels under high employed in spray codes for predicting gas turbine combustor flows do not adequately incorporate with those of a surrogate single-component fuel droplet over a range of parameters relevant to gas turbine

  10. Optical absorption and ionization of silicate glasses Leonid B. Glebov

    E-Print Network [OSTI]

    Glebov, Leon

    Optical absorption and ionization of silicate glasses Leonid B. Glebov School of Optics and hydroxyl), and induced (color centers) absorption of multicomponent silicate glasses in UV, visible-photon ionization was detected in alkaline-silicate glasses exposed to high-power laser radiation in nano

  11. Millimeter wave spectroscopy of rocks and fluids John A. Scalesa

    E-Print Network [OSTI]

    cables become attenuative and stray capacitances build up as frequencies approach a few gigahertz GHz techniques involve free-space noncontacting measurements which have a length scale that makes them ideal for characterizing bulk properties of multicomponent composites where the scale of homogeneity is on the order

  12. Using the Biphase Turbine to Generate Useful Energy from Process Streams 

    E-Print Network [OSTI]

    Helgeson, N. L.; Studhalter, W. R.

    1981-01-01T23:59:59.000Z

    component, two-phase stream, as in a water-steam combination; or it may be a multi-component, two phase stream such as is often present in industrial processes. The performance of the Biphase turbine and its advantages over single-phase energy conversion...

  13. Intensive monitoring of the strongly variable BL Lac S5 0716+714

    E-Print Network [OSTI]

    K. Otterbein; M. J. Hardcastle; S. J. Wagner; D. M. Worrall

    1998-01-24T23:59:59.000Z

    The BL Lac object S5 0716+714 was monitored during a multifrequency campaign in 1996. Preliminary analysis of the optical, ROSAT and RXTE data are presented. Strong variability on short time scales was observed. The data suggest an interpretation within a multi-component model.

  14. The world's offshore continental margins contain vast reserves of

    E-Print Network [OSTI]

    Texas at Austin, University of

    The world's offshore continental margins contain vast reserves of gas hydrate, a frozen form of nat-seafloor geology. Increasing use of marine multicomponent seismic technol- ogy by oil and gas companies now allows seafloor strata over distances of several kilometers across the Green Canyon area of the Gulf of Mexico

  15. Consequence analysis of aqueous ammonia spills using an improved liquid pool evaporation model 

    E-Print Network [OSTI]

    Raghunathan, Vijay

    2005-02-17T23:59:59.000Z

    ) units. This newly developed model can estimate the vaporization rate and net mass evaporating into the air from a multicomponent non- ideal chemical spill. The work has been divided into two parts. In the first step a generic, dynamic source term model...

  16. Fuzzy sensor for the perception of colour E. Benoit, G. Mauris, L. Foulloy

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Fuzzy sensor for the perception of colour E. Benoit, G. Mauris, L. Foulloy LAMII/CESALP Laboratoire on multi-dimensional spaces. This method is apply for creating fuzzy symbolic sensors which use multi-component measurements. Colour sensing is an interesting perception to apply this method. Indeed, men have good control

  17. Local thermodynamics of a magnetized, anisotropic plasma R. D. Hazeltine, S. M. Mahajan, and P. J. Morrison

    E-Print Network [OSTI]

    Morrison, Philip J.,

    by the American Institute of Physics. Related Articles Transport properties of multicomponent thermal plasmas uses familiar fluid equations, a few elements of kinetic theory, the MHD version of Faraday's law that, on some longer time scale, Coulomb collisions will erode the anisot- ropy. We consider a single

  18. Grouping maintenance strategy with availability constraint under limited

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with significant assumptions: maintenance durations are neglected and only one preventive maintenance for eachGrouping maintenance strategy with availability constraint under limited repairmen Phuc Do Van Hai maintenance strategies of multi-component systems by integrating two efficient optimization algorithms

  19. Copyright 2004, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the SPE Annual Technical Conference and

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    of the Society of Petroleum Engineers. Electronic reproduction, distribution, or storage of any part simulate numerically the response of borehole logging instruments by reproducing the multi-phase, multi-component and reliability of the inversions are conditioned by the accuracy of the a priori information about the spatial

  20. The mathematical structure of multiphase thermal models of flow in porous media

    E-Print Network [OSTI]

    - tions, Darcy's law for volumetric flow rates and an energy equation in terms of enthalpy. The model with the formulation and numerical solution of equations for modelling multicomponent, two-phase, thermal fluid flow is closed with an equation of state and phase equilibrium con- ditions that determine the distribution

  1. Finite volume methods for fluid flow in porous media

    E-Print Network [OSTI]

    Hiptmair, Ralf

    . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Multiphase and multicomponent flows . . . . . . . . . . . . . . . 13 2.5.1 Black-oil model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 General solution . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Pressure equation . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Pressure equation for incompressible immiscible flow . . . 11 2.3.4 Saturation equation

  2. Geophysical Prospecting, 1997, 45, 39-64 Fractured reservoir delineation using

    E-Print Network [OSTI]

    Edinburgh, University of

    Geophysical Prospecting, 1997, 45, 39-64 Fractured reservoir delineation using multicomponent of delineating fractured reservoirs and optimizing the development of the reservoirs using shear-wave data the potential of shear waves for fractured reservoir delineation. Introduction Most carbonate reservoirs contain

  3. 1 Copyright 2004 by ASME DECOMPOSITION-BASED ASSEMBLY SYNTHESIS FOR

    E-Print Network [OSTI]

    Saitou, Kazuhiro "Kazu"

    author ABSTRACT A method for optimally synthesizing multi-component structural assemblies of an aluminum Many modern mechanical products, such as ships hulls, airplanes and automotive bodies, are fairly by decomposing the entire product geometry. In the automotive industry, for example, a handful of basic

  4. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any

    E-Print Network [OSTI]

    Texas at Austin, University of

    interpretations of hydrocarbon systems. Our research goal was to expand the valuable science of seismic seismic sequences and seismic facies from all modes of an elastic wavefield into a seismic interpretation. We interpreted both onshore and marine multicomponent seismic surveys to select the data examples

  5. RCP Fall 2011 SPONSORS MEETING PETROLEUM HALL, GREEN CENTER

    E-Print Network [OSTI]

    Back into Seismic Interpretation 12:00 - 1:00 PM Lunch Friedhoff Hall 1:00 - 1:30 PM David Hays Seismic: The Business Value Challenge: Alex Martinez and Mike Matheney, ExxonMobil 9:45 - 10:00 AM Delhi Field Time-Lapse Multicomponent Seismic Acquisition: Randy Luckiw and Jeff Hislop, Tesla-Conquest 10

  6. Asymmetric Framework for Predicting Liquid-Liquid Equilibrium of Ionic Liquid-Mixed Solvent Systems

    E-Print Network [OSTI]

    Stadtherr, Mark A.

    of multicomponent (ternary) LLE data with conventional excess Gibbs free energy models such as NRTL.6-14 Previously, we have studied15 the capability of such models, specifically NRTL, UNIQUAC and electrolyte-NRTL (eNRTL is the NRTL-SAC (NRTL Segm

  7. A Study of Austenite Precipitate Growth in Duplex Stainless Steel A Research Performance Evaluation

    E-Print Network [OSTI]

    McGaughey, Alan

    A Study of Austenite Precipitate Growth in Duplex Stainless Steel A Research Performance Evaluation-based metals handbooks. Due the multi-component nature of the duplex stainless steels which are the basis stainless steel. Current State of Knowledge The velocity of an interface during a phase transformation can

  8. AQUIFER CHARACTERIZATION JOHN S. BRIDGE

    E-Print Network [OSTI]

    Bioremediation Site in southwestern Michigan, where detailed estimates of aquifer properties were needed to accurately simulate multi-component reactive transport and to design an effective bioremediation strategy-long continuous cores was collected in the vicinity of the bioremediation-system delivery wells. These cores were

  9. Air Ingress Benchmarking with Computational Fluid Dynamics Analysis

    E-Print Network [OSTI]

    1 Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Tieliang Zhai Professor by the US Nuclear Regulatory Commission #12;2 Air Ingress Accident Objectives and Overall Strategy: Depresurization Pure Diffusion Natural Convection Challenging: Natural convection Multi-component Diffusion (air

  10. algor_ams.ps.gz - Department of Mathematics, Purdue University

    E-Print Network [OSTI]

    tiphase and multicomponent ows in porous media coming from petroleum and .... Assume the function b(x) to be known and consider the concrete example of a .... accuracy can be increased if the sharp fronts in the water saturation are not ...

  11. Process for the production of superconductor containing filaments

    DOE Patents [OSTI]

    Tuominen, Olli P. (Candler, NC); Hoyt, Matthew B. (Arden, NC); Mitchell, David F. (Asheville, NC); Morgan, Carol W. (Asheville, NC); Roberts, Clyde Gordon (Asheville, NC); Tyler, Robert A. (Canton, NC)

    2002-01-01T23:59:59.000Z

    Superconductor containing filaments having embedments of superconducting material surrounded by a rayon matrix are formed by preparing a liquid suspension which contains at least 10 weight percent superconducting material; forming a multicomponent filament having a core of the suspension and a viscose sheath which contains cellulose xanthate; and thereafter, regenerating cellulose from the cellulose xanthate to form a rayon matrix.

  12. Numerical Simulation of Compositional Fluid Flow in Porous Media

    E-Print Network [OSTI]

    Ewing, Richard E.

    variables is developed for modeling the enhanced oil recovery pro- cesses. A mixed #12;nite element method to predict the reservoir performance under various exploita- tion schemes. In many enhanced oil recovery. Computational results for two- and three-phase multi-component uid ow occurring in enhanced oil re- covery

  13. Composite hydrogen separation element and module

    DOE Patents [OSTI]

    Edlund, D.J.

    1996-03-12T23:59:59.000Z

    There are disclosed improvements in multicomponent composite metal membranes useful for the separation of hydrogen, the improvements comprising the provision of a flexible porous intermediate layer between a support layer and a nonporous hydrogen-permeable coating metal layer, and the provision of a textured coating metal layer. 15 figs.

  14. Cu2ZnSnS x O4 x and Cu2ZnSnS x Se4 x : First principles simulations of optimal alloy configurations and their energies

    E-Print Network [OSTI]

    Holzwarth, Natalie

    .1063/1.4819206 The role of secondary phase precipitation on grain boundary electrical activity in Cu2ZnSnS4 (CZTS in thin film solar cells, multicomponent copper chalcogenide based com- pounds, namely, Cu2ZnSnS4(CZTS sulphide CZTS device has reported an efficiency of 8.4%,5 whereas the best pure selenide CZTSe device has

  15. Aerosol Science 35 (2004) 577598 www.elsevier.com/locate/jaerosci

    E-Print Network [OSTI]

    -dependence of the covariance matrix of a multicomponent particle population evolving under a size-independent coagulation rate as the particle population evolves to an internally mixed, self-preserving size distribution state. Published and physical properties of aerosols are determined by particle number density, composition, shape, and size

  16. Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae: Salticidae)

    E-Print Network [OSTI]

    Hoy, Ronald R.

    Seismic signals are crucial for male mating success in a visual specialist jumping spider (Araneae of multicomponent seismic courtship signals in addition to and produced in concert with its multiple visual ornaments and movement displays. Here, we demonstrate the importance of these seismic signals

  17. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, Kevin C. (4745 Trinity Dr., Los Alamos, NM 87544); Kodas, Toivo T. (5200 Noreen Dr. NE., Albuquerque, NM 87111)

    1994-01-01T23:59:59.000Z

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  18. This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research

    E-Print Network [OSTI]

    Lucia, Angelo

    of state Monte Carlo simulation Multi-scale modeling Multi-phase equilibrium flash a b s t r a c reserved. 1. Introduction and motivation The multi-component, multi-phase equilibrium flash problem contaminants in groundwater remediation, magmatic hydrothermal systems (Ingebritsen, Geiger, Hurwitz

  19. PARALLEL PROCESSING OF THREE-DIMENSIONAL FIELD-SCALE REACTIVE TRANSPORT APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    BRGM (French Geological Survey), Water Department, Groundwater and Geochemistry Modeling 3, Avenue C for the mixed hybrid finite element kernel. Com- putations of the reaction step are performed using a newly- tions. 1. INTRODUCTION The shape and scope of multi-component reactive transport models changed dramati

  20. CANADIAN JOURNAL OF EXPLORATION GEOPHYSICS VOL. 29, NO. 1 (JUNE 1993), P. 227-235

    E-Print Network [OSTI]

    Edinburgh, University of

    for the interpretation of multicomponent shear-wave data sets in cross-hole and other subsurface surveys. Shear the distinctive behaviour of shear waves appears to have direct applications to reservoir characterization. It can be caused either by aligned grains such as shales (Kaarsberg, 1968; Robertson and Corrigan, 1983

  1. Geophysical Prospecting, 2008, 56, 197211 doi:10.1111/j.1365-2478.2007.00669.x P-and S-wave velocities of consolidated sediments from a seafloor

    E-Print Network [OSTI]

    Shillington, Donna J.

    prospects. OBSs offer a relatively cheap and time-effective means of acquiring multi-component data compared of gas present in the pore space of Upper Cretaceous chalks and shales overlying the prospective reservoir. INTRODUCTION Geoscientists in academia and industry have increasingly recognised the value

  2. Kinetics and modeling of mixture effects during complete catalytic oxidation of benzene and methyl tert-butyl ether

    SciTech Connect (OSTI)

    Dangi, S.; Abraham, M.A. [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering] [Univ. of Tulsa, OK (United States). Dept. of Chemical Engineering

    1997-06-01T23:59:59.000Z

    The performance of a catalytic incinerator depends on the nature of the compounds being oxidized and cannot be predicted simply by knowing the performance of the incinerator with pure-component model compounds. Considering the importance of mixture effects, an attempt was made to develop a combined model to predict the conversion when benzene and methyl tert-butyl ether (MTBE) are simultaneously oxidized. Complete catalytic oxidation of benzene and MTBE, singly and in mixtures, was investigated over a platinum catalyst. No inhibition effects were seen with benzene, but MTBE conversion was distinctly inhibited by benzene. A Mars-van Krevelen rate model was used to explain the results. Model parameters were obtained from pure-component experiments and then incorporated into a multicomponent model without any adjustment or additional rate parameters. The multicomponent model was able to predict the conversion of benzene and MTBE oxidation in the binary mixture using the pure-component data without adjustable parameters.

  3. Metal-organic frameworks for Xe/Kr separation

    DOE Patents [OSTI]

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2013-08-27T23:59:59.000Z

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  4. Low velocity ion stopping in binary ionic mixtures

    SciTech Connect (OSTI)

    Tashev, Bekbolat; Baimbetov, Fazylkhan [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 480012 (Kazakhstan); Deutsch, Claude [LPGP (UMR-CNRS 8578), Universite Paris XI, 91405 Orsay (France); Fromy, Patrice [Direction de l'Informatique, Universite Paris XI, 91405 Orsay (France)

    2008-10-15T23:59:59.000Z

    Attention is focused on the low ion velocity stopping mechanisms in multicomponent and dense target plasmas built of quasiclassical electron fluids neutralizing binary ionic mixtures, such as, deuterium-tritium of current fusion interest, proton-heliumlike iron in the solar interior or proton-helium ions considered in planetology, as well as other mixtures of fiducial concern in the heavy ion beam production of warm dense matter at Bragg peak conditions. The target plasma is taken in a multicomponent dielectric formulation a la Fried-Conte. The occurrence of projectile ion velocities (so-called critical) for which target electron slowing down equals that of given target ion components is also considered. The corresponding multiquadrature computations, albeit rather heavy, can be monitored analytical through a very compact code operating a PC cluster. Slowing down results are systematically scanned with respect to target temperature and electron density, as well as ion composition.

  5. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01T23:59:59.000Z

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  6. Electron-beam scull melting with electromagnetic stirring of melt in crucible

    SciTech Connect (OSTI)

    Ladokhin, S.V. [Institute for Casting Problems, Kiev (Ukraine)

    1994-12-31T23:59:59.000Z

    The technologies and equipment have been developed for electron-beam scull melting with electromagnetic stirring of melt for some Ni-based superalloys as well as for multi-component Ti-, Zr-, Nb-, and Mo-based alloys. Two types of scull crucible sets with electromagnetic stirring systems have been constructed, with the metal pouring by the crucible tilting or through the hole in the crucible bottom. In the second case slag does not fall into a mold, and the electron beam may be used for metal heating in the costing head, thus improving the quality of castings. The technologies developed allow to utilize scrap, cost part reverts, chips etc. thus saving virgin alloys. The electromagnetic stirring application permits to product multi-component alloys, to increase the mass of the metal poured, and to reduce the specific energy expenditure and metal loss through evaporation.

  7. Metal-organic frameworks for Xe/Kr separation

    DOE Patents [OSTI]

    Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang

    2014-07-22T23:59:59.000Z

    Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.

  8. Conditions for extreme sensitivity of protein diffusion in membranes to cell environments

    E-Print Network [OSTI]

    Yaroslav Tserkovnyak; David R. Nelson

    2006-09-29T23:59:59.000Z

    We study protein diffusion in multicomponent lipid membranes close to a rigid substrate separated by a layer of viscous fluid. The large-distance, long-time asymptotics for Brownian motion are calculated using a nonlinear stochastic Navier-Stokes equation including the effect of friction with the substrate. The advective nonlinearity, neglected in previous treatments, gives only a small correction to the renormalized viscosity and diffusion coefficient at room temperature. We find, however, that in realistic multicomponent lipid mixtures, close to a critical point for phase separation, protein diffusion acquires a strong power-law dependence on temperature and the distance to the substrate $H$, making it much more sensitive to cell environment, unlike the logarithmic dependence on $H$ and very small thermal correction away from the critical point.

  9. The impact of the Self-Determined Learning Model of Instruction on student self-determination

    E-Print Network [OSTI]

    Wehmeyer, Michael L.; Shogren, Karrie A.; Palmer, Susan B.; Williams-Diehm, Kendra; Little, Todd D.; Boulton, Aaron Jacob

    2012-01-01T23:59:59.000Z

    multifaceted construct and interventions that achieve the best outcomes are multicomponent interventions. The SDLMI (Wehmeyer et al., 2000) is a model of teaching (i.e., intended for teachers as end users to guide and direct instruction) that supports teachers... the impact of the SDLMI (Wehmeyer et al., 2000) on self-determination. Project personnel contacted school districts, and districts that agreed to participate (« < 20) identi- fied high school campuses {n < 39) to participate. Next, the primary district...

  10. Application of binary parameters to the ternary cyclohexane/polybutadiene/benzene system using open tubular columns in gas chromatography 

    E-Print Network [OSTI]

    Tsotsis, Thomas Karl

    1986-01-01T23:59:59.000Z

    Analysis of Multicomponent Systems by Chromatography . Polymer-Polymer Interaction Present State of the Application of Polymer . 'iolution Theories SOLUTION THEORIES . 1 2 3 4 5 6 7 8 F lory-I I uggins Flory-Prigogine Equation of State... measurements by showing good agreement. between glc and equilibriuin sorption (static) data. This work also established guidelines for the useful application of the glc method to polymer solution thermodynamics. In contrast to the work of Schreiber, et al...

  11. System for analysis of explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA)

    2010-06-29T23:59:59.000Z

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  12. Reflux for multifeed distillation

    SciTech Connect (OSTI)

    Chou, S.M.; Yaws, C.L.

    1986-12-01T23:59:59.000Z

    Prior investigations have shown ways to determine minimum reflux for multicomponent distillation. This work extends earlier concepts in order to handle multifeeds. Reflux calculations for each feed, as though it were the only feed, are factored with the reflux effects of the other feeds to give an overall minimum reflux. Each factor has a finite value depending on the composition and thermal quality of the feed it represents.

  13. Ternary liquid scintillator for optical fiber applications

    DOE Patents [OSTI]

    Franks, Larry A. (Santa Barbara, CA); Lutz, Stephen S. (Santa Barbara, CA)

    1982-01-01T23:59:59.000Z

    A multicomponent liquid scintillator solution for use as a radiation-to-light converter in conjunction with a fiber optic transmission system. The scintillator includes a quantity of 5-amino-9-diethylaminobenz (a) phenoxazonium nitrate (Nile Blue Nitrate) as a solute in a fluor solvent such as benzyl alcohol. The use of PPD as an additional solute is also disclosed. The system is controllable by addition of a suitable quenching agent, such as phenol.

  14. Functional Differential Equations for the Free Energy and the Effective Energy in the Broken-Symmetry Phase of phi^4-Theory and Their Recursive Graphical Solution

    E-Print Network [OSTI]

    A. Pelster; H. Kleinert

    2000-06-20T23:59:59.000Z

    Extending recent work on QED and the symmetric phase of the euclidean multicomponent scalar \\phi^4-theory, we construct the vacuum diagrams of the free energy and the effective energy in the ordered phase of \\phi^4-theory. By regarding them as functionals of the free correlation function and the interaction vertices, we graphically solve nonlinear functional differential equations, obtaining loop by loop all connected and one-particle irreducible vacuum diagrams with their proper weights.

  15. Thermomechanics of hydrogen storage in metallic hydrides: modeling and analysis

    E-Print Network [OSTI]

    Tomas Roubicek; Giuseppe Tomassetti

    2013-09-12T23:59:59.000Z

    A thermodynamically consistent mathematical model for hydrogen adsorption in metal hydrides is proposed. Beside hydrogen diffusion, the model accounts for phase transformation accompanied by hysteresis, swelling, temperature and heat transfer, strain, and stress. We prove existence of solutions of the ensuing system of partial differential equations by a carefully-designed, semi-implicit approximation scheme. A generalization for a drift-diffusion of multi-component ionized "gas" is outlined, too.

  16. Crucial tests of the existence of a Time Operator

    E-Print Network [OSTI]

    Thomas Durt

    2010-03-14T23:59:59.000Z

    In the present paper we show that the Temporal Wave Function approach of the decay process, which is a multicomponent version of the Time Operator approach leads to new, non-standard, predictions concerning the statistical properties of decay time distributions of single kaons and entangled pairs of mesons. These results suggest crucial experimental tests for the existence of a Time Operator for the decay process to be realized in High Energy Physics or Quantum Optics.

  17. Software requirements, design, and verification and validation for the FEHM application - a finite-element heat- and mass-transfer code

    SciTech Connect (OSTI)

    Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.

    1997-07-01T23:59:59.000Z

    The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered.

  18. Solid source MOCVD system

    DOE Patents [OSTI]

    Hubert, B.N.; Wu, X.D.

    1998-10-13T23:59:59.000Z

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metallorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition. 13 figs.

  19. Solid source MOCVD system

    DOE Patents [OSTI]

    Hubert, Brian N. (Yakima, WA); Wu, Xin Di (San Jose, CA)

    1998-01-01T23:59:59.000Z

    A system for MOCVD fabrication of superconducting and non-superconducting oxide films provides a delivery system for the feeding of metalorganic precursors for multi-component chemical vapor deposition. The delivery system can include multiple cartridges containing tightly packed precursor materials. The contents of each cartridge can be ground at a desired rate and fed together with precursor materials from other cartridges to a vaporization zone and then to a reaction zone within a deposition chamber for thin film deposition.

  20. Upscaling of Long-Term U(VI) Desorption from Pore Scale Kinetics to Field-Scale Reactive Transport Models

    SciTech Connect (OSTI)

    Steefel, Carl I.; Li Li; Davis, J.A.; Curtis, G.P.; Honeyman, B.D.; Kent, D.B.; Kohler, M.; Rodriguez, D.R.; Johnson, K.J.; Miller, A.

    2006-06-01T23:59:59.000Z

    The focus of the project is the development of scientifically defensible approaches for upscaling reactive transport models (RTM) through a detailed understanding of U(VI) desorption across several spatial scales: bench-, intermediate-, and field-scales. The central hypothesis of the project is that the development of this methodology will lead to a scientifically defensible approach for conceptual model development for multicomponent RTM at contaminated DOE sites, leading to predictive transport simulations with reduced uncertainty.

  1. Nonlinear diffusion in Acetone-Benzene Solution

    E-Print Network [OSTI]

    Obukhovsky, Vjacheslav V

    2010-01-01T23:59:59.000Z

    The nonlinear diffusion in multicomponent liquids under chemical reactions influence has been studied. The theory is applied to the analysis of mass transfer in a solution of acetone-benzene. It has been shown, that the creation of molecular complexes should be taken into account for the explanation of the experimental data on concentration dependence of diffusion coefficients. The matrix of mutual diffusivities has been found and effective parameters of the system have been computed.

  2. Aerosol chemical vapor deposition of metal oxide films

    DOE Patents [OSTI]

    Ott, K.C.; Kodas, T.T.

    1994-01-11T23:59:59.000Z

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  3. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2013-11-21T23:59:59.000Z

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  4. Feasibility of Geophysical Monitoring of Carbon-Sequestrated Deep Saline Aquifers

    SciTech Connect (OSTI)

    Mallick, Subhashis; Alvarado, Vladimir

    2013-09-30T23:59:59.000Z

    As carbon dioxide (CO{sub 2}) is sequestered from the bottom of a brine reservoir and allowed to migrate upward, the effects of the relative permeability hysteresis due to capillary trapping and buoyancy driven migration tend to make the reservoir patchy saturated with different fluid phases over time. Seismically, such a patchy saturated reservoir induces an effective anisotropic behavior whose properties are primarily dictated by the nature of the saturation of different fluid phases in the pores and the elastic properties of the rock matrix. By combining reservoir flow simulation and modeling with seismic modeling, it is possible to derive these effective anisotropic properties, which, in turn, could be related to the saturation of CO{sub 2} within the reservoir volume any time during the post-injection scenario. Therefore, if time-lapse seismic data are available and could be inverted for the effective anisotropic properties of the reservoir, they, in combination with reservoir simulation could potentially predict the CO{sub 2} saturation directly from the time-lapse seismic data. It is therefore concluded that the time-lapse seismic data could be used to monitor the carbon sequestrated saline reservoirs. But for its successful implementation, seismic modeling and inversion methods must be integrated with the reservoir simulations. In addition, because CO{sub 2} sequestration induces an effective anisotropy in the sequestered reservoir and anisotropy is best detected using multicomponent seismic data compared to single component (P-wave) data, acquisition, processing, and analysis is multicomponent seismic data is recommended for these time-lapse studies. Finally, a successful implementation of using time-lapse seismic data for monitoring the carbon sequestrated saline reservoirs will require development of a robust methodology for inverting multicomponent seismic data for subsurface anisotropic properties.

  5. Mesoscopic lattice Boltzmann modeling of flowing soft systems

    E-Print Network [OSTI]

    Roberto Benzi; Sergio Chibbaro; Sauro Succi

    2008-07-28T23:59:59.000Z

    A mesoscopic multi-component lattice Boltzmann model with short-range repulsion between different species and short/mid-ranged attractive/repulsive interactions between like-molecules is introduced. The interplay between these composite interactions gives rise to a rich configurational dynamics of the density field, exhibiting many features of disordered liquid dispersions (micro-emulsions) and soft-glassy materials, such as long-time relaxation due to caging effects, anomalous enhanced viscosity, ageing effects under moderate shear and flow above a critical shear rate.

  6. Scattering of radiation in collisionless dusty plasmas

    SciTech Connect (OSTI)

    Tolias, P.; Ratynskaia, S. [Space and Plasma Physics, Royal Institute of Technology, Stockholm SE-100 44 (Sweden)

    2013-04-15T23:59:59.000Z

    Scattering of electromagnetic waves in collisionless dusty plasmas is studied in the framework of a multi-component kinetic model. The investigation focuses on the spectral distribution of the scattered radiation. Pronounced dust signatures are identified in the coherent spectrum due to scattering from the shielding cloud around the dust grains, dust acoustic waves, and dust-ion acoustic waves. The magnitude and shape of the scattered signal near these spectral regions are determined with the aid of analytical expressions and its dependence on the dust parameters is investigated. The use of radiation scattering as a potential diagnostic tool for dust detection is discussed.

  7. Thermoelectric and Thermomagnetic Effects in Dilute Plasmas

    E-Print Network [OSTI]

    L. S. Garcia-Colin; A. L. Garcia-Perciante; A. Sandoval-Villalbazo

    2006-12-13T23:59:59.000Z

    When an electrically charged system is subjected to the action of an electromagnetic field, it responds by generating an electrical current. In the case of a multicomponent plasma other effects, the so called cross effects, influence the flow of charge as well as the heat flow. In this paper we discuss these effects and their corresponding transport coefficients in a fully ionized plasma using Boltzmann's equation. Applications to non-confined plasmas, specially to those prevailing in astrophysical systems are highlighted. Also, a detailed comparison is given with other available results.

  8. Shell-Filling Effect in the Entanglement Entropies of Spinful Fermions

    E-Print Network [OSTI]

    Fabian H. L. Essler; Andreas M. Läuchli; Pasquale Calabrese

    2012-11-11T23:59:59.000Z

    We consider the von Neumann and R\\'enyi entropies of the one dimensional quarter-filled Hubbard model. We observe that for periodic boundary conditions the entropies exhibit an unexpected dependence on system size: for L=4 mod 8 the results are in agreement with expectations based on conformal field theory, while for L=0 mod 8 additional contributions arise. We explain this observation in terms of a shell-filling effect, and develop a conformal field theory approach to calculate the extra term in the entropies. Similar shell filling effects in entanglement entropies are expected to be present in higher dimensions and for other multicomponent systems.

  9. Varying Faces of Photospheric Emission in Gamma-Ray Bursts

    E-Print Network [OSTI]

    Axelsson, M

    2015-01-01T23:59:59.000Z

    Among the more than 1000 gamma-ray bursts observed by the Fermi Gamma-ray Space Telescope, a large fraction show narrow and hard spectra inconsistent with non-thermal emission, signifying optically thick emission from the photosphere. However, only a few of these bursts have spectra consistent with a pure Planck function. We will discuss the observational features of photospheric emission in these GRBs as well as in the ones showing multi-component spectra. We interpret the observations in light of models of subphotospheric dissipation, geometrical broadening and multi-zone emission, and show what we can learn about the dissipation mechanism and properties of GRB jets.

  10. Quantum plasma effects in the classical regime

    E-Print Network [OSTI]

    G. Brodin; M. Marklund; G. Manfredi

    2008-02-01T23:59:59.000Z

    For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin up and spin down are regarded as different fluids. By studying the propagation of Alfv\\'{e}n wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

  11. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    2008-12-23T23:59:59.000Z

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  12. A feasibility study of the determination of mass transfer rates from perturbation gas chromatography

    E-Print Network [OSTI]

    Huang, Wei-Yih

    1984-01-01T23:59:59.000Z

    and be given as ** ? '". , "-- **. * ? '". . "--( ? '". - *, :, ? ". , 'I. i=1, 2, . . . , (n-l) (4) where " indicates steady-state value and ~y-y-y* 1 i i AX = X ? X * 1 1 1 Por the local equilibrium case, if the flowing phase rate is slow.... (6) into Eq. (4), a set of linearized chro- matographic relations for the multicomponent case including the sorption effects will be obtained. This is well de- monstz'ated in Glover and Lau (19$3). For the non-equilibrium case, finite mass...

  13. Electron beam casting technology in the former Soviet Union

    SciTech Connect (OSTI)

    Ladokhin, S.V. [Inst. of Foundry Problems, Kiev (Ukraine)

    1995-12-31T23:59:59.000Z

    In this report the results of the investigation of metals and alloys melting and casting in the EB skull installations in the former USSR are given. The technological equipment used for these purposes is described. The long term prospects for the technological and engineering developments for multicomponent alloy melting and casting, including those containing volatile elements are shown. The significant technological advantages of the electro-magnetic stirring used in the course of the EB melting are demonstrated. The important advantage of the technology described is the efficient processing of metals and alloys metals.

  14. Fuel Conditioning Facility Electrorefiner Model Predictions versus Measurements

    SciTech Connect (OSTI)

    D Vaden

    2007-10-01T23:59:59.000Z

    Electrometallurgical treatment of spent nuclear fuel is performed in the Fuel Conditioning Facility (FCF) at the Idaho National Laboratory (INL) by electrochemically separating uranium from the fission products and structural materials in a vessel called an electrorefiner (ER). To continue processing without waiting for sample analyses to assess process conditions, an ER process model predicts the composition of the ER inventory and effluent streams via multicomponent, multi-phase chemical equilibrium for chemical reactions and a numerical solution to differential equations for electro-chemical transport. The results of the process model were compared to the electrorefiner measured data.

  15. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOE Patents [OSTI]

    McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN); Chisholm, Matthew F. (Oak Ridge, TN)

    2000-01-01T23:59:59.000Z

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  16. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1987-05-19T23:59:59.000Z

    A triple material piezoresistive gage provides multi-component elastic stress or strain measurements. Thin foils of three piezoresistive materials, e.g., ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grind or other grind arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated form the resistivity measurements. 4 figs.

  17. Chemical structure of vanadium-based contact formation on n-AlN

    SciTech Connect (OSTI)

    Pookpanratana, S.; France, R.; Blum, M.; Bell, A.; Bar, M.; Weinhardt, L.; Zhang, Y.; Hofmann, T.; Fuchs, O.; Yang, W.; Denlinger, J. D.; Mulcahy, S.; Moustakas, T. D.; Heske, Clemens

    2010-05-17T23:59:59.000Z

    We have investigated the chemical interaction between a Au/V/Al/V layer structure and n-type AlN epilayers using soft x-ray photoemission, x-ray emission spectroscopy, and atomic force microscopy. To understand the complex processes involved in this multicomponent system, we have studied the interface before and after a rapid thermal annealing step. We find the formation of a number of chemical phases at the interface, including VN, metallic vanadium, aluminum oxide, and metallic gold. An interaction mechanism for metal contact formation on the entire n-(Al,Ga)N system is proposed.

  18. Formation of zeolite during caustic dissolution of fiberglass; Implications for studies of the kaolinite-to-mullite transformation

    SciTech Connect (OSTI)

    Jantzen, C.M. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1990-12-01T23:59:59.000Z

    This paper reports on insoluble zeolitic reaction products formed during the caustic dissolution of fiberglass filters. The zeolite that forms in Linde B{sub 1}, the higher temperature form of the zeolite identified during caustic dissolution of free SiO{sub 2} in kaolinite-to-mullite transformations. The Linde B{sub 1} is a sodium aluminosilicate hydrate that preferentially incorporates Ca{sup 2+} and Mg{sup 2+}. Formation of the Linde B{sub 1} zeolite from fiberglass dissolution in NaOH indicates that caustic dissolution of kaolinite does not preferentially dissolve free amorphous SiO{sub 2}, but dissolves any multicomponent amorphous phase present.

  19. Crystallization during processing of nuclear waste glass

    SciTech Connect (OSTI)

    Hrma, Pavel R.

    2010-12-01T23:59:59.000Z

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glassmaking are reviewed.

  20. Viscosity of many-component glasses

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Arrigoni, Benjamin M.; Schweiger, Michael J.

    2009-06-01T23:59:59.000Z

    The effect of composition on the viscosity of multicomponent glasses was expressed as a function of temperature and composition for three composition regions containing various subsets of Al2O3, B2O3, Bi2O3, CaO, Cr2O3, F, Fe2O3, K2O, Li2O, MgO, MnO, Na2O, NiO, P2O5, SiO2, UO2, and ZrO2. Limits of applicability of the composition models are discussed.

  1. Slow light microfluidics: a proposal

    E-Print Network [OSTI]

    Sumetsky, M

    2014-01-01T23:59:59.000Z

    The resonant slow light structures created along a thin-walled optical capillary by nanoscale deformation of its surface can perform comprehensive simultaneous detection and manipulation of microfluidic components. This concept is illustrated with a model of a 0.5 millimeter long 5 nm high triangular bottle resonator created at a 50 micron radius silica capillary containing floating microparticles. The developed theory shows that the microparticle positions can be determined from the bottle resonator spectrum. In addition, the microparticles can be driven and simultaneously positioned at predetermined locations by the localized electromagnetic field created by the optimized superposition of eigenstates of this resonator, thus, exhibiting a multicomponent near field optical tweezers.

  2. Conservation and Renewable Energy Program: Bibliography, 1988 edition

    SciTech Connect (OSTI)

    Vaughan, K.H. (comp.)

    1988-04-01T23:59:59.000Z

    The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.

  3. Triple-material stress-strain resistivity gage

    DOE Patents [OSTI]

    Stout, R.B.

    1988-05-17T23:59:59.000Z

    A triple material piezoresistive gage provides multi-component elastic stress measurements is disclosed. Thin foils of three piezoresistive materials, e.g. ytterbium, manganin, and constantan, are configured in a nested serpentine rectilinear grid or other grid arrangement and embedded in a medium, preferably normal to the direction of shock wave propagation. The output of the gage is a resistivity change history for each material of the gage. Each resistivity change is independent of the others so that three diagonal components of the elastic stress or strain tensor can be calculated from the resistivity measurements. 4 figs.

  4. Differences in the fast optical variability of the dwarf nova V1504 Cyg between quiescence and outbursts detected in Kepler data and simulations of the rms-flux relations

    E-Print Network [OSTI]

    Dobrotka, A

    2015-01-01T23:59:59.000Z

    An optical light curve of SU UMa type dwarf nova V1504 Cyg taken by Kepler was analysed in order to study fast optical variability (flickering). We calculated power density spectra and rms-flux relations for two different stages of activity, i.e. quiescence and regular outbursts. A multicomponent power density spectrum with two break frequencies was found during both activity stages. The rms-flux relation is obvious only in the quiescent data. However, while the collection of all outburst data do not show this variability, every individual outburst does show it in the majority of cases keeping the rms value approximately in the same interval. Furthermore, the same analysis was performed for light curve subsamples taken from the beginning, middle and the end of the supercycle both for quiescence and regular outbursts. Every light curve subsample shows the same multicomponent power density spectrum. The stability of the break frequencies over the supercycle can be confirmed for all frequencies except for the hi...

  5. Phase Behavior of Aqueous NA-K-MG-CA-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    SciTech Connect (OSTI)

    M.S. Gruszkiewiez; D.A. Palmer; R.D. Springer; P. Wang; A. Anderko

    2006-09-14T23:59:59.000Z

    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems.

  6. A new nonlinear solution method for phase-change problems

    SciTech Connect (OSTI)

    Knoll, D.A.; Kothe, D.B.; Lally, B. [Los Alamos National Lab., NM (United States)

    1999-06-01T23:59:59.000Z

    Numerical simulation is playing an increasingly important role in support of industrial casting processes. The goal of simulations is to capture accurately the solidification dynamics in pure materials, and in multicomponent alloys. To achieve this goal a numerical algorithm must evolve accurately the latent heat in an isothermal solidification process, and it must also couple accurately the temperature and concentration fields in the nonisothermal solidification of multicomponent alloys. The authors present a new nonlinear algorithm for the efficient and accurate solution of isothermal and nonisothermal phase-change problems. The method correctly evolves latent heat release in isothermal and nonisothermal phase change, and more important, it provides a means for the efficient and accurate coupling between temperature and concentration fields in multispecies nonisothermal phase change. Newton-like superlinear convergence is achieved in the global nonlinear iteration, without the complexity of forming or inverting the Jacobian matrix. This Jacobian-free method is a combination of an outer Newton-based iteration and an inner conjugate gradient-like (krylov) iteration. The effects of the Jacobian are probed only through approximate matrix-vector products required in the conjugate gradient-like iteration.

  7. Elucidating the mysteries of wetting.

    SciTech Connect (OSTI)

    Webb, Edmund Blackburn, III (,; ); Bourdon, Christopher Jay; Grillet, Anne Mary; Sackinger, Philip A.; Grest, Gary Stephen; Emerson, John Allen; Ash, Benjamin Jesse; Heine, David R.; Brooks, Carlton, F.; Gorby, Allen D.

    2005-11-01T23:59:59.000Z

    Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.

  8. Cryomagmatism in the outer solar system

    SciTech Connect (OSTI)

    Kargel, J.S.

    1990-01-01T23:59:59.000Z

    Assemblages of cryovolcanic, tectonic, and impact structures form varied landscapes quite alien in their collective expression. Many variables can affect the cryovolcanic style of a satellite but none more so than cryolava composition. The compositional variable is examined in considerable detail. Existing knowledge of phase equilibria and physical properties of cosmochemically relevant unary, binary, and multi-component chemical systems are summarized. Where published knowledge was found lacking, measurements of the physical chemistry of volatile mixtures are presented. Cryovolcanic landscapes are briefly toured, and knowledge of the physical chemistry of volatile mixtures is applied to problems of cryovolcanological interest. Aqueous cryolavas may range in composition from salt-water brines to cryogenic ammonia-water-rich multi-components solutions possibly involving methanol, ammonium sulfide, alkali chlorides, and many other potential components. Cryomagmatic distillation can greatly accentuate the importance of trace and minor constituents of icy satellites. The viscosities, densities, and other physical properties of these liquids vary considerably and depend sensitively on their exact compositions. These properties affect everything from cryovolcanic eruptive styles and landforms, to the way cryovolcanic crusts respond to tectonic stress. It is believed that the compositional variable is directly or indirectly implicated in a wide varity of geomorphic aspects of contrast among the icy satellites. Thus, even though as yet any specific morphology can be attributed to a specific composition, there appears to be a powerful link between composition of the ices originally accreted by a satellite and its subsequent interior evolution and exterior geomorphic appearance.

  9. TMVOC, simulator for multiple volatile organic chemicals

    SciTech Connect (OSTI)

    Pruess, Karsten; Battistelli, Alfredo

    2003-03-25T23:59:59.000Z

    TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under ''natural'' environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation. TMVOC is upwards compatible with T2VOC (Falta et al., 1995) and can be initialized from T2VOC-style initial conditions. The main enhancements in TMVOC relative to T2VOC are as follows: a multicomponent mixture of volatile organic chemicals can be modeled; any and all combinations of the three phases water-oil-gas are treated; several non-condensible gases may be present; diffusion is treated in all phases in a manner that is fully coupled with phase partitioning. This paper gives a brief summary of the methodology used in TMVOC as well as highlighting some implementation issues. Simulation of a NAPL spill and subsequent remediation is discussed for a 2-D vertical section of a saturated-unsaturated flow problem.

  10. Intercalation compounds and electrodes for batteries

    DOE Patents [OSTI]

    Chiang, Yet-Ming; Sadoway, Donald R.; Jang, Young-Il; Huang, Biyan

    2004-09-07T23:59:59.000Z

    This invention concerns intercalation compounds and in particular lithium intercalation compounds which have improved properties for use in batteries. Compositions of the invention include particulate metal oxide material having particles of multicomponent metal oxide, each including an oxide core of at least first and second metals in a first ratio, and each including a surface coating of metal oxide or hydroxide that does not include the first and second metals in the first ratio formed by segregation of at least one of the first and second metals from the core. The core may preferably comprise Li.sub.x M.sub.y N.sub.z O.sub.2 wherein M and N are metal atom or main group elements, x, y and z are numbers from about 0 to about 1 and y and z are such that a formal charge on M.sub.y N.sub.z portion of the compound is (4-x), and having a charging voltage of at least about 2.5V. The invention may also be characterized as a multicomponent oxide microstructure usable as a lithium intercalation material including a multiphase oxide core and a surface layer of one material, which is a component of the multiphase oxide core, that protects the underlying intercalation material from chemical dissolution or reaction. In a particular preferred example the multicomponent oxide may be an aluminum-doped lithium manganese oxide composition. Such aluminum-doped lithium manganese oxide compositions, having an orthorhombic structure, also form a part of the invention. In addition, the invention includes articles, particularly electrodes, for batteries formed from the compositions of the invention, and batteries including such electrodes. The invention further relates to a composite intercalation material comprising at least two compounds in which at least one compound has an orthorhombic structure Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2, where y is nonzero, or a mixture of orthorhombic and monoclinic Li.sub.x Al.sub.y Mn.sub.1-y O.sub.2.

  11. Fluozirconate glass with low improper scattering on the phase microimpurities

    SciTech Connect (OSTI)

    Grishin, I.A.; Mityugova, V.N.; Tyutyaev, I.N.; Tseloval`nova, T.V.

    1995-10-10T23:59:59.000Z

    Multicomponent fluozirconate glass is transparent in the 0.5-5.5 {mu}m range, the transparency maximum being at 2.55 {mu}m. It is used as an active medium of solid state lasers, fiber lasers, and amplifiers in the visible and IR region of transformers of IR-radiation into visible radiation (green, red, etc.). The Faraday rotation was found in fluoride glasses containing rare-earth elements, lead, manganese, etc.. Fluoride light guides are used in devices for medical diagnostics, in surgery, anesthesia, etc.. A fluozirconate glass of the 52ZrF{sub 4}{center_dot}20BaF{sub 2}{center_dot}4LaF{sub 3}{center_dot}4AlF{sub 3}{center_dot}20NaF (mole %) composition with a calculated improper scattering of 5{center_dot}10{sup -6} dB/km at 2.6 {mu}m was synthesized.

  12. THE IMPACT OF PARTIAL CRYSTALLIZATION ON THE PERMEATION PROPERTIES BULK AMORPHOUS GLASS HYDROGEN SEPARATION MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K; Paul Korinko, P; Thad Adams, T; Elise Fox, E; Arthur Jurgensen, A

    2008-11-25T23:59:59.000Z

    It is recognized that hydrogen separation membranes are a key component of the emerging hydrogen economy. A potentially exciting material for membrane separations are bulk metallic glass materials due to their low cost, high elastic toughness and resistance to hydrogen 'embrittlement' as compared to crystalline Pd-based membrane systems. However, at elevated temperatures and extended operation times structural changes including partial crystallinity may appear in these amorphous metallic systems. A systematic evaluation of the impact of partial crystallinity/devitrification on the diffusion and solubility behavior in multi-component Metallic Glass materials would provide great insight into the potential of these materials for hydrogen applications. This study will report on the development of time and temperature crystallization mapping and their use for interpretation of 'in-situ' hydrogen permeation at elevated temperatures.

  13. Nonequilibrium transport through quantum-wire junctions and boundary defects for free massless bosonic fields

    E-Print Network [OSTI]

    Gaw?dzki, Krzysztof

    2015-01-01T23:59:59.000Z

    We consider a model of quantum-wire junctions where the latter are described by conformal-invariant boundary conditions of the simplest type in the multicomponent compactified massless scalar free field theory representing the bosonized Luttinger liquids in the bulk of wires. The boundary conditions result in the scattering of charges across the junction with nontrivial reflection and transmission amplitudes. The equilibrium state of such a system, corresponding to inverse temperature $\\beta$ and electric potential $V$, is explicitly constructed both for finite and for semi-infinite wires. In the latter case, a stationary nonequilibrium state describing the wires kept at different temperatures and potentials may be also constructed. The main result of the present paper is the calculation of the full counting statistics (FCS) of the charge and energy transfers through the junction in a nonequilibrium situation. Explicit expressions are worked out for the generating function of FCS and its large-deviations asym...

  14. Validation of reduced kinetic models for simulations of non-steady combustion processes

    E-Print Network [OSTI]

    Ivanov, M F; Liberman, M A; Smygalina, A E

    2013-01-01T23:59:59.000Z

    In the present work we compare reliability of several most widely used reduced detailed chemical kinetic schemes for hydrogen-air and hydrogen-oxygen combustible mixtures. The validation of the schemes includes detailed analysis of 0D and 1D calculations and comparison with experimental databases containing data on induction time, equilibrium temperature, composition of the combustion products, laminar flame speed and the flame front thickness at different pressures. 1D calculations are carried out using the full gasdynamical system for compressible viscous thermal conductive multicomponent mixture. The proper choice of chemical kinetics models is essential for obtaining reliable quantitative and qualitative insight into combustion phenomena such as flame acceleration and stability, ignition, transition from deflagration-to-detonation (DDT) using a multiscale numerical modeling.

  15. Mesoscopic lattice Boltzmann modeling of soft-glassy systems: theory and simulations

    E-Print Network [OSTI]

    R. Benzi; M. Sbragaglia; S. Succi; M. Bernaschi; S. Chibbaro

    2009-07-30T23:59:59.000Z

    A multi-component lattice Boltzmann model recently introduced (R. Benzi et al. Phys. Rev. Lett 102, 026002 (2009)) to describe some dynamical behaviors of soft-flowing materials is theoretically analyzed. Equilibrium and transport properties are derived within the framework of a continuum free-energy formulation, and checked against numerical simulations. Due to the competition between short-range inter-species repulsion and mid-range intra-species attraction, the model is shown to give rise to a very rich configurational dynamics of the density field, exhibiting numerous features of soft-flowing materials, such as long-time relaxation due to caging effects, enhanced viscosity and structural arrest, ageing under moderate shear and shear-thinning flow above a critical shear threshold.

  16. Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, April 1--June 30, 1995

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1995-06-01T23:59:59.000Z

    The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; Design estimates for nearly miscible displacements; Design of miscible floods for fractured reservoirs; Compositional flow visualization experiments; Simulation of near-miscible flow in heterogeneous systems The status of the research effort in each area is reviewed briefly in the following section.

  17. Scale-up of miscible flood processes for heterogeneous reservoirs. Quarterly report, July 1, 1995--September 30, 1995

    SciTech Connect (OSTI)

    Orr, F.M. Jr.

    1995-10-01T23:59:59.000Z

    The current project is a systematic research effort aimed at quantifying relationships between process mechanisms that can lead to improved recovery from gas injection processes performed in heterogeneous Class 1 and Class 2 reservoirs. It will provide a rational basis for the design of displacement processes that take advantage of crossflow due to capillary, gravity and viscous forces to offset partially the adverse effects of heterogeneity. In effect, the high permeability zones are used to deliver fluid by crossflow to zones that would otherwise be flooded only very slowly. Thus, the research effort is divided into five areas: Development of miscibility in multicomponent systems; Design estimates for nearly miscible displacements; Design of miscible floods for fractured reservoirs; Compositional flow visualization experiments; and Simulation of near-miscible flow in heterogeneous systems. The status of the research effort in each area is reviewed briefly in the following section.

  18. Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide

    SciTech Connect (OSTI)

    Coutsikos, P.; Magoulas, K.; Tassios, D. [National Technical Univ. of Athens (Greece)] [National Technical Univ. of Athens (Greece)

    1997-05-01T23:59:59.000Z

    Equilibrium solubilities of p-quinone (1,4-benzoquinone) and 9,10-anthraquinone at 35 C and 45 C in supercritical carbon dioxide over a pressure range of about (85--300) bar have been measured using a supercritical fluid extractor coupled with a high-pressure liquid chromatography apparatus. The solubility results, along with those reported in the literature for 1,4-naphthoquinone, are correlated with a modified Peng-Robinson equation of state. The ability of a supercritical fluid to separate a multicomponent mixture is unique, since it utilizes the salient features of both distillation and liquid extraction. The solubility of a solute in a supercritical fluid is the most important thermophysical property that has to be determined and modeled for an efficient design of any extraction based on supercritical solvents.

  19. Theoretical prediction of free-energy landscapes for complex self-assembly

    E-Print Network [OSTI]

    William M. Jacobs; Aleks Reinhardt; Daan Frenkel

    2015-01-09T23:59:59.000Z

    We present a technique for calculating free-energy profiles for the nucleation of multicomponent structures that contain as many species as building blocks. We find that a key factor is the topology of the graph describing the connectivity of the target assembly. By considering the designed interactions separately from weaker, incidental interactions, our approach yields predictions for the equilibrium yield and nucleation barriers. These predictions are in good agreement with corresponding Monte Carlo simulations. We show that a few fundamental properties of the connectivity graph determine the most prominent features of the assembly thermodynamics. Surprisingly, we find that polydispersity in the strengths of the designed interactions stabilizes intermediate structures and can be used to sculpt the free-energy landscape for self-assembly. Finally, we demonstrate that weak incidental interactions can preclude assembly at equilibrium due to the combinatorial possibilities for incorrect association.

  20. Generation of energy

    DOE Patents [OSTI]

    Kalina, Alexander I. (12214 Clear Fork, Houston, TX 77077)

    1984-01-01T23:59:59.000Z

    A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

  1. Progress toward bridging from atomistic to continuum modeling to predict nuclear waste glass dissolution.

    SciTech Connect (OSTI)

    Zapol, Peter (Argonne National Laboratory, Argonne, IL); Bourg, Ian (Lawrence Berkeley National Laboratories, Berkeley, CA); Criscenti, Louise Jacqueline; Steefel, Carl I. (Lawrence Berkeley National Laboratories, Berkeley, CA); Schultz, Peter Andrew

    2011-10-01T23:59:59.000Z

    This report summarizes research performed for the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Subcontinuum and Upscaling Task. The work conducted focused on developing a roadmap to include molecular scale, mechanistic information in continuum-scale models of nuclear waste glass dissolution. This information is derived from molecular-scale modeling efforts that are validated through comparison with experimental data. In addition to developing a master plan to incorporate a subcontinuum mechanistic understanding of glass dissolution into continuum models, methods were developed to generate constitutive dissolution rate expressions from quantum calculations, force field models were selected to generate multicomponent glass structures and gel layers, classical molecular modeling was used to study diffusion through nanopores analogous to those in the interfacial gel layer, and a micro-continuum model (K{mu}C) was developed to study coupled diffusion and reaction at the glass-gel-solution interface.

  2. Gaseous insulators for high voltage electrical equipment

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); James, David R. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Pai, Robert Y. (Concord, TN)

    1981-01-01T23:59:59.000Z

    Gaseous insulators comprise compounds having high attachment cross sections for electrons having energies in the 0-1.3 electron volt range. Multi-component gaseous insulators comprise compounds and mixtures having overall high electron attachment cross sections in the 0-1.3 electron volt range and moderating gases having high cross sections for inelastic interactions with electrons of energies 1-4 electron volts. Suitable electron attachment components include hexafluorobutyne, perfluorobutene-2, perfluorocyclobutane, perfluorodimethylcyclobutane, perfluorocyclohexene, perfluoromethylcyclohexane, hexafluorobutadiene, perfluoroheptene-1 and hexafluoroazomethane. Suitable moderating gases include N.sub.2, CO, CO.sub.2 and H.sub.2. The gaseous insulating mixture can also contain SF.sub.6, perfluoropropane and perfluorobenzene.

  3. Improved recovery demonstration for Williston Basin carbonates. Annual report, June 10, 1995--June 9, 1996

    SciTech Connect (OSTI)

    Carrell, L.A.; Sippel, M.A.

    1996-09-01T23:59:59.000Z

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  4. Theoretical investigation of the effect of hydrogen addition on the formation and properties of soliton in direct current argon plasma

    SciTech Connect (OSTI)

    Saikia, P., E-mail: partha.008@gmail.com; Goswami, K. S.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam-782 402 (India)] [Centre of Plasma Physics, Institute for Plasma Research, Nazirakhat, Sonapur, Kamrup, Assam-782 402 (India)

    2014-03-15T23:59:59.000Z

    In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases as concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.

  5. The positive ion temperature effect in magnetized electronegative plasma sheath with two species of positive ions

    SciTech Connect (OSTI)

    Shaw, A. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India); Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Kar, S. [Institute for Plasma Research, Bhat, Gandhinagar-382 428, Gujarat (India); Goswami, K. S. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur-782 402, Guwahati, Assam (India)

    2012-10-15T23:59:59.000Z

    The properties of a magnetized multi-component (two species of positive ions, negative ions and electrons) plasma sheath with finite positive ion temperature are studied. By using three fluid hydrodynamic model and some dimensionless variables, the ion (both lighter and heavier positive ions, and negative ions) densities, the ion (only for positive ions) velocities, and electric potential inside the sheath are investigated. In addition, the absence and presence of magnetic field and the orientation of magnetic field are considered. It is noticed that, with increase of positive ion temperature, the lighter positive ion density peaks increase only at the sheath edge and shift towards the sheath edge for both absence and presence of magnetic field. For heavier positive ions, in the absence of magnetic field, the density peaks increase at the sheath edge. But in the presence of magnetic field, the density fluctuations increase at the sheath edge. For both the cases, the density peaks shift towards the sheath edge.

  6. Thermochemistry of high-temperature corrosion

    SciTech Connect (OSTI)

    Natesan, K.

    1980-01-01T23:59:59.000Z

    Multicomponent gas environments are prevalent in a number of energy systems, especially in those that utilize fossil fuels. The gas environments in these processes contain sulfur-bearing components in addition to oxidants. These complex environments, coupled with the elevated temperatures present in these systems, generally cause significant corrosion of engineering materials. Thermodynamic aspects of high-temperature corrosion processes occuring in complex gas mixtures are discussed, with emphasis on the role of thermochemical diagrams. The interrelationships between the corrosion behavior of materials and gas composition, alloy chemistry, and temperatures are examined. A number of examples from studies on materials behavior in coal-gasification environments are used to elucidate the role of thermochemistry in the understanding of corrosion processes that occur in complex gas mixtures. 11 figures.

  7. Application of reactive transport modelling to growth and transport of microorganisms in the capillary fringe

    E-Print Network [OSTI]

    Hron, Pavel; Bastian, Peter; Gallert, Claudia; Winter, Josef; Ippisch, Olaf

    2014-01-01T23:59:59.000Z

    A multicomponent multiphase reactive transport simulator has been developed to facilitate the investigation of a large variety of phenomena in porous media including component transport, diffusion, microbiological growth and decay, cell attachment and detachment and phase exchange. The coupled problem is solved using operator splitting. This approach allows a flexible adaptation of the solution strategy to the concrete problem. Moreover, the individual submodels were optimised to be able to describe behaviour of Escherichia coli (HB101 K12 pGLO) in the capillary fringe in the presence or absence of dissolved organic carbon and oxygen under steady-state and flow conditions. Steady-state and flow through experiments in a Hele-Shaw cell, filled with quartz sand, were conducted to study eutrophic bacterial growth and transport in both saturated and unsaturated porous media. As E. coli cells can form the green fluorescent protein (GFP), the cell densities, calculated by evaluation of measured fluorescence intensit...

  8. ITOUGH2 user`s guide version 2.2

    SciTech Connect (OSTI)

    Finsterle, S.

    1993-08-01T23:59:59.000Z

    ITOUGH2 is a program to estimate hydrogeologic model parameters for the numerical simulator TOUGH2. TOUGH2 was developed by Karsten Pruess at Lawrence Berkeley Laboratory for simulating non-isothermal flows of multicomponent, multiphase fluids in porous and fractured media. ITOUGH2 solves the inverse problem by automatic model calibration based on an indirect approach, in which some function of the difference between observed and model-predicted system response and appropriately weighted prior information about the parameters is minimized using standard optimization techniques. ITOUGH2 also provides a detailed error analysis of the estimated parameter set, and employs some procedures to study error propagation for prediction runs. This report includes a review of the inverse modeling theory, and a detailed description of the program architecture, input language, and the various user features provided by ITOUGH2. A sample problem is given to illustrate code application.

  9. An Energy Savings Model for the Heat Treatment of Castings

    SciTech Connect (OSTI)

    Y. Rong; R. Sisson; J. Morral; H. Brody

    2006-12-31T23:59:59.000Z

    An integrated system of software, databases, and design rules have been developed, verified, and to be marketed to enable quantitative prediction and optimization of the heat treatment of aluminum castings to increase quality, increase productivity, reduce heat treatment cycle times and reduce energy consumption. The software predicts the thermal cycle in critical locations of individual components in a furnace, the evolution of microstructure, and the attainment of properties in heat treatable aluminum alloy castings. The model takes into account the prior casting process and the specific composition of the component. The heat treatment simulation modules can be used in conjunction with software packages for simulation of the casting process. The system is built upon a quantitative understanding of the kinetics of microstructure evolution in complex multicomponent alloys, on a quantitative understanding of the interdependence of microstructure and properties, on validated kinetic and thermodynamic databases, and validated quantitative models.

  10. Signal for the Quark-Hadron Phase Transition in Rotating Hybrid Stars

    E-Print Network [OSTI]

    Fridolin Weber; Norman K. Glendenning; Shouyong Pei

    1997-05-25T23:59:59.000Z

    For the past 20 years it had been thought that the coexistence phase of the confined hadronic and quark matter phases, assumed to be a first order transition, was strictly excluded from neutron stars. This, however, was due to a seemingly innocuous idealization which has approximated away important physics. The reason is that neutron stars constitute multi-component bodies rather than single-component ones formerly (and incorrectly) used to describe the deconfinement phase transition in neutron stars. So, contrary to earlier claims, `neutron' stars may very well contain quark matter in their cores surrounded by a mixed-phase region of quark and hadronic matter. Such objects are called hybrid stars. The structure of such stars as well as an observable signature that could signal the existence of quark matter in their cores are discussed in this paper.

  11. Fabrication of catalyzed ion transport membrane systems

    DOE Patents [OSTI]

    Carolan, Michael Francis; Kibby, Charles Leonard

    2013-06-04T23:59:59.000Z

    Process for fabricating a catalyzed ion transport membrane (ITM). In one embodiment, an uncatalyzed ITM is (a) contacted with a non-reducing gaseous stream while heating to a temperature and for a time period sufficient to provide an ITM possessing anion mobility; (b) contacted with a reducing gaseous stream for a time period sufficient to provide an ITM having anion mobility and essentially constant oxygen stoichiometry; (c) cooled while contacting the ITM with the reducing gaseous stream to provide an ITM having essentially constant oxygen stoichiometry and no anion mobility; and (d) treated by applying catalyst to at least one of (1) a porous mixed conducting multicomponent metallic oxide (MCMO) layer contiguous with a first side of a dense layer of MCMO and (2) a second side of the dense MCMO layer. In another embodiment, these steps are carried out in the alternative order of (a), (d), (b), and (c).

  12. Generic Off--Diagonal Solutions and Solitonic Hierarchies in Einstein and Modified Gravity

    E-Print Network [OSTI]

    Sergiu I. Vacaru

    2015-03-04T23:59:59.000Z

    We summarize some our recent results on encoding exact solutions of field equations in Einstein and modified gravity theories into solitonic hierarchies derived for nonholonomic curve flows with associated bi-Hamilton structure. We argue that there is a canonical distinguished connection for which the fundamental geometric/ physical equations decouple in general form. This allows us to construct very general classes of generic off-diagonal solutions determined by corresponding types of generating and integration functions depending on all (spacetime) coordinates. If the integral varieties are constrained to zero torsion configurations, we can extract solutions for the general relativity theory. We conclude that the geometric and physical data for various classes of effective/modified Einstein spaces can be encoded into multi-component versions of the sine-Gordon, or modified Korteweg - de Vries equations.

  13. Fields and fluids on curved non-relativistic spacetimes

    E-Print Network [OSTI]

    Geracie, Michael; Roberts, Matthew M

    2015-01-01T23:59:59.000Z

    We consider non-relativistic curved geometries and argue that the background structure should be generalized from that considered in previous works. In this approach the derivative operator is defined by a Galilean spin connection valued in the Lie algebra of the Galilean group. This includes the usual spin connection plus an additional "boost connection" which parameterizes the freedom in the derivative operator not fixed by torsion or metric compatibility. As an example of this approach we develop the theory of non-relativistic dissipative fluids and find significant differences in both equations of motion and allowed transport coefficients from those found previously. Our approach also immediately generalizes to systems with independent mass and charge currents as would arise in multicomponent fluids. Along the way we also discuss how to write general locally Galilean invariant non-relativistic actions for multiple particle species at any order in derivatives. A detailed review of the geometry and its rela...

  14. Integration of D-dimensional 2-factor spaces cosmological models by reducing to the generalized Emden-Fowler equation

    E-Print Network [OSTI]

    V. R. Gavrilov; V. N. Melnikov

    1998-01-13T23:59:59.000Z

    The D-dimensional cosmological model on the manifold $M = R \\times M_{1} \\times M_{2}$ describing the evolution of 2 Einsteinian factor spaces, $M_1$ and $M_2$, in the presence of multicomponent perfect fluid source is considered. The barotropic equation of state for mass-energy densities and the pressures of the components is assumed in each space. When the number of the non Ricci-flat factor spaces and the number of the perfect fluid components are both equal to 2, the Einstein equations for the model are reduced to the generalized Emden-Fowler (second-order ordinary differential) equation, which has been recently investigated by Zaitsev and Polyanin within discrete-group analysis. Using the integrable classes of this equation one generates the integrable cosmological models. The corresponding metrics are presented. The method is demonstrated for the special model with Ricci-flat spaces $M_1,M_2$ and the 2-component perfect fluid source.

  15. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect (OSTI)

    Prutskij, T.; Percino, J. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, 72050, Puebla, Pue. (Mexico); Orlova, T. [Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre Dame, IN (United States); Vavilova, L. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)

    2013-12-04T23:59:59.000Z

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  16. Pore scale modeling of reactive transport involved in geologic CO2 sequestration

    SciTech Connect (OSTI)

    Kang, Qinjin [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr I [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    We apply a multi-component reactive transport lattice Boltzmann model developed in previolls studies to modeling the injection of a C02 saturated brine into various porous media structures at temperature T=25 and 80 C. The porous media are originally consisted of calcite. A chemical system consisting of Na+, Ca2+, Mg2+, H+, CO2(aq), and CI-is considered. The fluid flow, advection and diHusion of aqueous species, homogeneous reactions occurring in the bulk fluid, as weB as the dissolution of calcite and precipitation of dolomite are simulated at the pore scale. The effects of porous media structure on reactive transport are investigated. The results are compared with continuum scale modeling and the agreement and discrepancy are discussed. This work may shed some light on the fundamental physics occurring at the pore scale for reactive transport involved in geologic C02 sequestration.

  17. Baryogenesis from dark matter in an inflationary universe

    E-Print Network [OSTI]

    Feng, Wan-Zhe; Nath, Pran

    2013-01-01T23:59:59.000Z

    We consider the possibility that in an inflationary universe, the inflaton field decays purely into the dark sector creating asymmetric dark matter at the end of inflation. This asymmetry is subsequently transmuted into leptons and baryons. We consider this possibility in the framework of a generic inflation model, and compute the amount of asymmetric dark matter created from the out of equilibrium decays of the inflaton with CP violating Yukawa couplings. The dark matter asymmetry is then transferred to the visible sector by the asymmetry transfer equation and generates an excess of $B-L$. Baryogenesis occurs via sphaleron processes which conserve $B-L$ but violate $B+L$. A mechanism for the annihilation of the symmetric component of dark matter is also discussed. The model leads to multi-component dark matter consisting of both bosonic and fermionic components.

  18. Process of forming compounds using reverse micelle or reverse microemulsion systems

    DOE Patents [OSTI]

    Linehan, John C. (Richland, WA); Fulton, John L. (Richland, WA); Bean, Roger M. (Richland, WA)

    1998-01-01T23:59:59.000Z

    The present invention is directed to a process for producing a nanometer-sized metal compound. The process comprises forming a reverse micelle or reverse microemulsion system comprising a polar fluid in a non-polar or low-polarity fluid. A first reactant comprising a multi-component, water-soluble metal compound is introduced into the polar fluid in a non-polar or low-polarity fluid. This first reactant can be introduced into the reverse micelle or reverse microemulsion system during formation thereof or subsequent to the formation of the reverse micelle or microemulsion system. The water-soluble metal compound is then reacted in the reverse micelle or reverse microemulsion system to form the nanometer-sized metal compound. The nanometer-sized metal compound is then precipitated from the reverse micelle or reverse microemulsion system.

  19. Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition

    SciTech Connect (OSTI)

    Vaughan, K.H.

    1993-06-01T23:59:59.000Z

    The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermal energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.

  20. Nanoscale study of reactive transport in catalyst layer of proton exchange membrane fuel cells with precious and non-precious catalysts using lattice Boltzmann method

    E-Print Network [OSTI]

    Chen, Li; Kang, Qinjun; Holby, Edward F; Tao, Wen-Quan

    2014-01-01T23:59:59.000Z

    High-resolution porous structures of catalyst layer (CL) with multicomponent in proton exchange membrane fuel cells are reconstructed using a reconstruction method called quartet structure generation set. Characterization analyses of nanoscale structures are implemented including pore size distribution, specific area and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed and used to predict the macroscopic transport properties including effective diffusivity and proton conductivity. Nonuniform distributions of ionomer in CL generates more tortuous pathway for reactant transport and greatly reduces the effective diffusivity. Tortuosity of CL is much higher than conventional Bruggeman equation adopted. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CL is also investigated. Although the reactive surface area of non-precious metal catalyst (NPMC) CL is much higher t...

  1. Method of forming biaxially textured alloy substrates and devices thereon

    DOE Patents [OSTI]

    Goyal, Amit (Knoxville, TN); Specht, Eliot D. (Knoxville, TN); Kroeger, Donald M. (Knoxville, TN); Paranthaman, Mariappan (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  2. Method of forming biaxially textured alloy substrates and devices thereon

    DOE Patents [OSTI]

    Goyal, Amit (300 Walker Springs Rd., #19E, Knoxville, TN 37923); Specht, Eliot D. (10639 Rivermist La., Knoxville, TN 37922); Kroeger, Donald M. (716 Villa Crest Dr., Knoxville, TN 37923); Paranthaman, Mariappan (1117 Oak Haven Rd., Knoxville, TN 37923)

    2000-01-01T23:59:59.000Z

    Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.

  3. Computer control and data acquisition system for the R. F. Test Facility

    SciTech Connect (OSTI)

    Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

    1986-01-01T23:59:59.000Z

    The Radio Frequency Test Facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller; (2) a VAX 11/780 computer; and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper.

  4. Computer control and data-acquisition system for the rf test facility

    SciTech Connect (OSTI)

    Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

    1986-08-01T23:59:59.000Z

    The radio frequency test facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data-acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller, (2) a VAX 11/780 computer, and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper.

  5. Geometric dynamics of Vlasov kinetic theory and its moments

    E-Print Network [OSTI]

    Tronci, Cesare

    2008-01-01T23:59:59.000Z

    The Vlasov equation of kinetic theory is introduced and the Hamiltonian structure of its moments is presented. Then we focus on the geodesic evolution of the Vlasov moments. As a first step, these moment equations generalize the Camassa-Holm equation to its multi-component version. Subsequently, adding electrostatic forces to the geodesic moment equations relates them to the Benney equations and to the equations for beam dynamics in particle accelerators. Next, we develop a kinetic theory for self assembly in nano-particles. Darcy's law is introduced as a general principle for aggregation dynamics in friction dominated systems (at different scales). Then, a kinetic equation is introduced for the dissipative motion of isotropic nano-particles. The zeroth-moment dynamics of this equation recovers the classical Darcy's law at the macroscopic level. A kinetic-theory description for oriented nano-particles is also presented. At the macroscopic level, the zeroth moments of this kinetic equation recover the magnetiz...

  6. MadDM v.1.0: Computation of Dark Matter Relic Abundance Using MadGraph5

    E-Print Network [OSTI]

    Mihailo Backovic; Kyoungchul Kong; Mathew McCaskey

    2014-04-24T23:59:59.000Z

    We present MadDM v.1.0, a numerical tool to compute dark matter relic abundance in a generic model. The code is based on the existing MadGraph 5 architecture and as such is easily integrable into any MadGraph collider study. A simple Python interface offers a level of user-friendliness characteristic of MadGraph 5 without sacrificing functionality. MadDM is able to calculate the dark matter relic abundance in models which include a multi-component dark sector, resonance annihilation channels and co-annihilations. We validate the code in a wide range of dark matter models by comparing the relic density results from MadDM to the existing tools and literature.

  7. Optical characteristics of a HgBr excilamp

    SciTech Connect (OSTI)

    Malinina, A A; Malinin, A N; Shuaibov, A K [Uzhgorod National University, Uzhgorod (Ukraine)

    2013-08-31T23:59:59.000Z

    Optical characteristics of a coaxial HgBr excilamp on multicomponent mercury dibromide vapour mixtures with helium, nitrogen and sulfur hexafluoride are investigated under pumping by a pulse-periodic barrier discharge. Stable excilamp operation was demonstrated at a pump pulse repetition rate of 3 – 9 kHz. The component composition of the working system was determined, which provides a maximal average and pulsed specific radiation power of 48.8 mW cm{sup -3} and 40.6 W cm{sup -3}, respectively, at the efficiency of 7.3 % in the blue-green spectral range with the maximal radiation intensity at the wavelength of 502 nm. The reduction in the radiation power after 2.5 × 10{sup 6} shots is 5 %. Interpretation is given for the results of optimisation of excilamp characteristics. (optical radiation sources)

  8. Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission electron microscopy and atom probe tomography

    SciTech Connect (OSTI)

    Devaraj, Arun; Nag, Soumya; Banerjee, Rajarshi

    2013-10-19T23:59:59.000Z

    The benefit of direct coupling of APT with TEM dark field imaging to investigate early stages of phase transformation in multicomponent alloys is demonstrated by analyzing alpha phase precipitated in a model Ti-10 at% Mo-10 at% Al alloy during annealing at 400oC. Through such a direct coupling approach a thermodynamically unexpected solute partitioning trend between beta matrix and alpha precipitate is observed in the early stages of precipitation, which is explained based on possible nucleation of alpha phase in the Ti rich (Mo and Al depleted regions) created as a result of phase separation in beta matrix. On further higher temperature annealing at 600oC for 1 hour, the alpha precipitates were shown to grow and get enriched in Al and further depleted in Mo reaching the thermodynamic equilibrium.

  9. Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

    1995-09-01T23:59:59.000Z

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  10. Three-dimensional nonlinear Schroedinger equation in electron-positron-ion magnetoplasmas

    SciTech Connect (OSTI)

    Sabry, R. [Department of Physics, College of Science and Humanitarian Studies, Alkharj University, Alkharj 11942 (Saudi Arabia); Department of Physics, Theoretical Physics Group, Faculty of Science, Mansoura University, Damietta-Branch, New Damietta, 34517 Damietta (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); El-Shamy, E. F. [Department of Physics, Theoretical Physics Group, Faculty of Science, Mansoura University, Damietta-Branch, New Damietta, 34517 Damietta (Egypt); Shukla, P. K. [RUB International Chair, Faculty of Physics and Astronomy, International Centre for Advanced Studies in Physical Sciences, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

    2011-03-15T23:59:59.000Z

    Three-dimensional ion-acoustic envelope soliton excitations in electron-positron-ion magnetoplasmas are interpreted. This is accomplished through the derivation of three-dimensional nonlinear Schroedinger equation, where the nonlinearity is balancing with the dispersive terms. The latter contains both an external magnetic field besides the usual plasma parameter effects. Based on the balance between the nonlinearity and the dispersion terms, the regions for possible envelope solitons are investigated indicating that new regimes for modulational instability of envelope ion-acoustic waves could be obtained, which cannot exist in the unmagnetized case. This will allow us to establish additional new regimes, different from the usual unmagnetized plasma, for envelope ion-acoustic waves to propagate in multicomponent plasma that may be observed in space or astrophysics.

  11. Ternary liquid mixture viscosities and densities

    SciTech Connect (OSTI)

    Wei, I.C.; Rowley, R.L.

    1984-01-01T23:59:59.000Z

    Liquid mixture viscosities and densities have been measured at 298.15 K and ambient pressure for 20 ternary systems. Twelve ternary compositions, encompassing the entire composition range, have been chosen for each system in an effort to test a newly proposed predictive equation based on local compositions. Viscosities calculated by using the local composition model agreed with the experimental data within an average absolute deviation of 6.4%. No adjustable parameters were used and only binary interactions in the form of NRTL constants were input. The results of these studies indicate that the local composition model predictions are generally as good for multicomponent systems as they are for the corresponding binaries. 24 references, 3 tables.

  12. Reliable computation of homogeneous azeotropes

    SciTech Connect (OSTI)

    Maier, R.W.; Brennecke, J.F.; Stadtherr, M.A. [Univ. of Notre Dame, IN (United States). Dept. of Chemical Engineering] [Univ. of Notre Dame, IN (United States). Dept. of Chemical Engineering

    1998-08-01T23:59:59.000Z

    It is important to determine the existence and composition of homogeneous azeotropes in the analysis of phase behavior and in the synthesis and design of separation systems, from both theoretical and practical standpoints. A new method for reliably locating any and all homogeneous azeotropes for multicomponent mixtures is presented. The method also verifies the nonexistence of homogeneous azeotropes if none are present. The method is based on interval analysis, in particular an interval-Newton/generalized-bisection-algorithm providing a mathematical and computational guarantee that all azeotropes are located. This general-purpose technique can be applied in connection with any thermodynamic models. The technique is illustrated in several example problems using the Wilson, NRTL, and UNIQUAC activity-coefficient models.

  13. Dose factor entry and display tool for BNCT radiotherapy

    DOE Patents [OSTI]

    Wessol, Daniel E. (Bozeman, MT); Wheeler, Floyd J. (Idaho Falls, ID); Cook, Jeremy L. (Greeley, CO)

    1999-01-01T23:59:59.000Z

    A system for use in Boron Neutron Capture Therapy (BNCT) radiotherapy planning where a biological distribution is calculated using a combination of conversion factors and a previously calculated physical distribution. Conversion factors are presented in a graphical spreadsheet so that a planner can easily view and modify the conversion factors. For radiotherapy in multi-component modalities, such as Fast-Neutron and BNCT, it is necessary to combine each conversion factor component to form an effective dose which is used in radiotherapy planning and evaluation. The Dose Factor Entry and Display System is designed to facilitate planner entry of appropriate conversion factors in a straightforward manner for each component. The effective isodose is then immediately computed and displayed over the appropriate background (e.g. digitized image).

  14. A C/sup +//sub 7/ characterization method for bitumen mixture phase behavior predictions

    SciTech Connect (OSTI)

    Yu, J.M.; Wu, R.S.; Batycky, J.P. (Research Dept., Esso Resources Canada Ltd. (CA))

    1988-01-01T23:59:59.000Z

    A procedure was developed to characterize the C/sub 7+/ fraction of bitumen for the Peng-Robinson (PR) equation-of-state (EOS) and to predict multicomponent diluent/bitumen mixture phase behavior. The results showed that the procedure can predict accurately not only the bubble-point pressures but also the atmospheric flash compositions at surface facilities and reservoir conditions. In this procedure, new correlations for the acentric factor and the PR EOS interaction coefficients for high molecular weight components were developed. The sensitivities of the EOS predictions to the number of pseudocomponents and the corresponding critical properties and acentric factors were analyzed. The results also indicated that the critical temperature and the acentric factor of the C/sub 7+/ fraction have a strong influence on the bubble-point pressure predictions. As for the prediction of the flash compositions, the number of pseudocomponents and the interaction coefficients have the strongest influence.

  15. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions

    SciTech Connect (OSTI)

    Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

    2010-01-11T23:59:59.000Z

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  16. Tuning the external optical feedback-sensitivity of a passively mode-locked quantum dot laser

    SciTech Connect (OSTI)

    Raghunathan, R., E-mail: raghunat@vt.edu; Kovanis, V.; Lester, L. F. [Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 302 Whittemore Hall, Blacksburg, Virginia 24061 (United States); Grillot, F. [Télécom ParisTech, Ecole Nationale Supérieure des Télécommunications, CNRS LTCI, 46 rue Barrault, 75634 Paris Cedex 13 (France); Mee, J. K.; Murrell, D. [Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)

    2014-07-28T23:59:59.000Z

    The external optical feedback-sensitivity of a two-section, passively mode-locked quantum dot laser operating at elevated temperature is experimentally investigated as a function of absorber bias voltage. Results show that the reverse-bias voltage on the absorber has a direct impact on the damping rate of the free-running relaxation oscillations of the optical signal output, thereby enabling interactive external control over the feedback-response of the device, even under the nearly resonant cavity configuration. The combination of high temperature operation and tunable feedback-sensitivity is highly promising from a technological standpoint, in particular, for applications requiring monolithic integration of multi-component architectures on a single chip in order to accomplish, for instance, the dual-objectives of stable pulse quality and isolation from parasitic reflections.

  17. TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow

    SciTech Connect (OSTI)

    Pruess, K.

    1991-05-01T23:59:59.000Z

    TOUGH2 is a numerical simulation program for nonisothermal flows of multicomponent, multiphase fluids in porous and fractured media. The chief applications for which TOUGH2 is designed are in geothermal reservoir engineering, nuclear waste disposal, and unsaturated zone hydrology. A successor to the TOUGH program, TOUGH2 offers added capabilities and user features, including the flexibility to handle different fluid mixtures, facilities for processing of geometric data (computational grids), and an internal version control system to ensure referenceability of code applications. This report includes a detailed description of governing equations, program architecture, and user features. Enhancements in data inputs relative to TOUGH are described, and a number of sample problems are given to illustrate code applications. 46 refs., 29 figs., 12 tabs.

  18. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31T23:59:59.000Z

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  19. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 1. Scandium Group (Sc, Y, La)

    SciTech Connect (OSTI)

    Mioduski, Tomasz [Institute of Nuclear Chemistry and Technology, 03195 Warsaw (Poland); Gumi?ski, Cezary, E-mail: cegie@chem.uw.edu.pl [Department of Chemistry, University of Warsaw, 02093 Warsaw (Poland); Zeng, Dewen, E-mail: dewen-zeng@hotmail.com [College of Chemistry and Chemical Engineering, Central South University, 410083 Changsha (China)

    2014-03-15T23:59:59.000Z

    This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) are treated as the input substances in this report. The literature has been covered through the end of 2013.

  20. Dissipative dark matter and the rotation curves of dwarf galaxies

    E-Print Network [OSTI]

    Foot, R

    2015-01-01T23:59:59.000Z

    There is ample evidence from rotation curves that dark matter halo's around disk galaxies have nontrivial dynamics. Of particular significance are: a) the cored dark matter profile of disk galaxies, b) correlations of the shape of rotation curves with baryonic properties, and c) the Tully-Fisher relation. Dark matter halo's around disk galaxies may have nontrivial dynamics if dark matter is strongly self interacting and dissipative. Multicomponent hidden sector dark matter featuring a massless `dark photon' (from an unbroken dark $U(1)$ gauge interaction) which kinetically mixes with the ordinary photon provides a concrete example of such dark matter. The kinetic mixing interaction facilitates halo heating by enabling ordinary supernovae to be a source of these `dark photons'. Dark matter halo's can expand and contract in response to the heating and cooling processes, but for a sufficiently isolated halo should have evolved to a steady state or `equilibrium' configuration where heating and cooling rates local...

  1. Structure of Bright 2MASS Galaxies: 2D Fits to the Ks-band Surface Brightness Profiles

    E-Print Network [OSTI]

    Daniel H. McIntosh; Ari H. Maller; Neal Katz; Martin D. Weinberg

    2002-09-01T23:59:59.000Z

    The unprecedented sky coverage and photometric uniformity of the Two Micron All Sky Survey (2MASS) provides a rich resource for obtaining a detailed understanding of the galaxies populating our local (z<0.1) Universe. A full characterization of the physical structure of nearby galaxies is essential for theoretical and observational studies of galaxy evolution and structure formation. We have begun a quantified description of the internal structure and morphology of 10,000 bright (10multi-component model fits to the 2D surface brightness profiles using GIM2D. From our initial Monte Carlo tests on 77 galaxies drawn at random from the RC3, we find that the model derived structural parameter errors due to sky uncertainies are typically less than 10%.

  2. ESM of Ionic and Electrochemical Phenomena on the Nanoscale

    SciTech Connect (OSTI)

    Kalinin, Sergei V [ORNL; Kumar, Amit [Pennsylvania State University; Balke, Nina [ORNL; McCorkle, Morgan L [ORNL; Guo, Senli [ORNL; Arruda, Thomas M [ORNL; Jesse, Stephen [ORNL

    2011-01-01T23:59:59.000Z

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

  3. Mixed conducting membranes for syngas production

    DOE Patents [OSTI]

    Dyer, Paul Nigel (Allentown, PA); Carolan, Michael Francis (Allentown, PA); Butt, Darryl (Gainesville, FL); Van Doorn, Rene Hendrick Elias (Neckarsulm, DE); Cutler, Raymond Ashton (Bountiful, UT)

    2002-01-01T23:59:59.000Z

    This invention presents a new class of multicomponent metallic oxides which are particularly suited toward use in fabricating components used in processes for producing syngas. The non-stoichiometric, A-site rich compositions of the present invention are represented by the formula (Ln.sub.x Ca.sub.1-x).sub.y FeO.sub.3-.delta. wherein Ln is La or a mixture of lanthanides comprising La, and wherein 1.0>x>0.5, 1.1.gtoreq.y>1.0 and .delta. is a number which renders the composition of matter charge neutral. Solid-state membranes formed from these compositions provide a favorable balance of oxygen permeance and resistance to degradation when employed in processes for producing syngas. This invention also presents a process for making syngas which utilizes such membranes.

  4. Astrophysics Simulations from the ASC/Alliances Center for Astrophysical Thermonuclear Flashes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The "Flash Center" works to solve the long-standing problem of thermonuclear flashes on the surfaces of compact stars such as neutron stars and white dwarfs, and in the interior of white dwarfs (i.e., Type I supernovae). The physical conditions, and many of the physical phenomena, are similar to those confronted by the Department of Energy Stockpile Stewardship program. The (fully ionized) plasmas are at very high temperatures and densities; and the physical problems of nuclear ignition, deflagration or detonation, turbulent mixing, and interface dynamics for complex multicomponent fluids are common to the weapons program. Because virtually every aspect of this problem represents a computational Grand Challenge, large-scale numerical simulations are at the heart of its resolution (Taken from Executive Summary page). More than 35 simulations and computer animations developed through research at the "Flash Center" are available here. Each .avi or .mov file also references the related research paper or presentation and provides a link.

  5. Apparatus and method for pulsed laser deposition of materials on wires and pipes

    DOE Patents [OSTI]

    Fernandez, Felix E. (Mayaguez, PR)

    2003-01-01T23:59:59.000Z

    Methods and apparatuses are disclosed which allow uniform coatings to be applied by pulsed laser deposition (PLD) on inner and outer surfaces of cylindrical objects, such as rods, pipes, tubes, and wires. The use of PLD makes this technique particularly suitable for complex multicomponent materials, such as superconducting ceramics. Rigid objects of any length, i.e., pipes up to a few meters, and with diameters from less than 1 centimeter to over 10 centimeters can be coated using this technique. Further, deposition is effected simultaneously onto an annular region of the pipe wall. This particular arrangement simplifies the apparatus, reduces film uniformity control difficulties, and can result in faster operation cycles. In addition, flexible wires of any length can be continuously coated using the disclosed invention.

  6. Alternative barrier layers for surface covers in dry climates

    SciTech Connect (OSTI)

    Stormont, J.C.

    1994-09-01T23:59:59.000Z

    Surface covers are one of the most widespread remediation and waste management options in all climates. Barrier layers to limit percolation through cover systems are principal features of engineered, multi-component cover designs. Conventional barrier layer components developed for humid climates have limitations in dry climates. One alternative barrier layer is a capillary barrier, which consists of a fine-over-coarse soil arrangement. The capacity of capillary barrier to laterally divert downward moving water is the key to their success. Another alternative is a dry barrier, in which atmospheric air is circulated through a coarse layer within the cover to remove water vapor. Incorporating a coarse layer which stores water for subsequent removal by air flow reduces the requirements for the air flow velocity and increases the applicability of the dry barrier.

  7. Applying Schwarzschild's orbit superposition method to barred or non-barred disc galaxies

    E-Print Network [OSTI]

    Vasiliev, Eugene

    2015-01-01T23:59:59.000Z

    We present an implementation of the Schwarzschild orbit superposition method which can be used for constructing self-consistent equilibrium models of barred or non-barred disc galaxies, or of elliptical galaxies with figure rotation. This is a further development of the publicly available code SMILE; its main improvements include a new efficient representation of an arbitrary gravitational potential using two-dimensional spline interpolation of Fourier coefficients in the meridional plane, as well as the ability to deal with rotation of the density profile and with multicomponent mass models. We compare several published methods for constructing composite axisymmetric disc--bulge--halo models and demonstrate that our code produces the models that are closest to equilibrium. We also apply it to create models of triaxial elliptical galaxies with cuspy density profiles and figure rotation, and find that such models can be found and are stable over many dynamical times in a wide range of pattern speeds and angula...

  8. Optical computing with soliton trains in Bose-Einstein condensates

    E-Print Network [OSTI]

    Florian Pinsker

    2014-11-18T23:59:59.000Z

    Optical computing devices can be implemented based on controlled generation of soliton trains in single and multicomponent Bose-Einstein condensates (BEC). Our concepts utilize the phenomenon that the frequency of soliton trains in BEC can be governed by changing interactions within the atom cloud. We use this property to store numbers in terms of those frequencies for a short time until observation. The properties of soliton trains can be changed in an intended way by other components of BEC occupying comparable states or via phase engineering. We elucidate in which sense such an additional degree of freedom can be regarded as a tool for controlled manipulation of data. Finally the outcome of any manipulation made is read out by observing the signature within the density profile.

  9. High-temperature corrosion and applications of nickel and iron aluminides in coal-conversion power systems

    SciTech Connect (OSTI)

    Natesan, K. [Argonne National Lab., IL (United States); Tortorelli, P.F. [Oak Ridge National Lab., TN (United States)

    1996-10-01T23:59:59.000Z

    Nickel and iron aluminide intermetallics are being developed for use as structural materials and/or as cladding for conventional engineering alloys. In addition to strength advantages, these materials exhibit excellent resistance to corrosion in single- and multioxidant environments at elevated temperatures by the formation of slow-growing, adherent alumina scales. Corrosion resistance in a given environment is strongly dependent on the composition of the alloy and on the nature of the corrosive species prevalent in the service environment. This paper presents a comprehensive review of the current status of the corrosion performance of these intermetallics in oxidizing, sulfidizing, and multicomponent gas environments of typical coal-conversion systems. Mechanisms of scale development/breakdown, performance envelopes for long-term usage of these materials, approaches to modifying the surfaces of engineering alloys by cladding or coating them with intermetallics, and in-service experience with these materials are emphasized.

  10. Handbook of gas hydrate properties and occurrence

    SciTech Connect (OSTI)

    Kuustraa, V.A.; Hammershaimb, E.C.

    1983-12-01T23:59:59.000Z

    This handbook provides data on the resource potential of naturally occurring hydrates, the properties that are needed to evaluate their recovery, and their production potential. The first two chapters give data on the naturally occurring hydrate potential by reviewing published resource estimates and the known and inferred occurrences. The third and fourth chapters review the physical and thermodynamic properties of hydrates, respectively. The thermodynamic properties of hydrates that are discussed include dissociation energies and a simplified method to calculate them; phase diagrams for simple and multi-component gases; the thermal conductivity; and the kinetics of hydrate dissociation. The final chapter evaluates the net energy balance of recovering hydrates and shows that a substantial positive energy balance can theoretically be achieved. The Appendices of the Handbook summarize physical and thermodynamic properties of gases, liquids and solids that can be used in designing and evaluating recovery processes of hydrates. 158 references, 67 figures, 47 tables.

  11. Synergetic effects of II-VI sensitization upon TiO{sub 2} for photoelectrochemical water splitting; a tri-layered structured scheme

    SciTech Connect (OSTI)

    Mumtaz, Asad, E-mail: asad-032@yahoo.com [Department of Fundamental and Applied Sciences, University Teknologi PETRONAS (Malaysia); Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24T23:59:59.000Z

    World's energy demands are growing on a higher scale increasing the need of more reliable and long term renewable energy resources. Efficient photo-electrochemical (PEC) devices based on novel nano-structured designs for solar-hydrogen generation need to be developed. This study provides an insight of the tri-layered-TiO2 based nanostructures. Observing the mechanism of hydrogen production, the comparison of the structural order during the synthesis is pronounced. The sequence in the tri-layered structure affects the photogenerated electron (e{sup ?}) and hole (h{sup +}) pair transfer and separation. It is also discussed that not only the semiconductors band gaps alignment is important with respect to the water redox potential but also the interfacial regions. Quasi-Fermi-level adjustment at the interfacial regions plays a key role in deciding the solar to hydrogen efficiency. More efficient multicomponent semiconductor nano-design (MCSN) could be developed with the approach given in this study.

  12. Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure

    SciTech Connect (OSTI)

    Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

    2009-10-27T23:59:59.000Z

    This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

  13. Final Technical Report

    SciTech Connect (OSTI)

    Joel Walls, Richard Uden, Scott Singleton, Rone Shu, Gary Mavko

    2005-04-12T23:59:59.000Z

    Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy. The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P and S-waves. Phase I specific technical objectives: • Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs • Create P-wave and S-wave Synthetic Seismic Modeling Algorithms with Q • Compute P-wave and S-wave Q Attributes from Multi-component Seismic Data All objectives defined in the Phase I proposal were accomplished. During the course of this project, a new class of seismic analysis was developed based on compressional and shear wave inelastic rock properties (attenuation). This method provides a better link between seismic data and the presence of hydrocarbons. The technique employs both P and S-wave data to better discriminate between attenuation due to hydrocarbons versus energy loss due to other factors such as scattering and geometric spreading. It was demonstrated that P and S attenuation can be computed from well log data and used to generate synthetic seismograms. Rock physics models for P and S attenuation were tested on a well from the Gulf of Mexico. The P and S-wave Q attributes were computed on multi-component 2D seismic data intersecting this well. These methods generated reasonable results, and most importantly, the Q attributes indicated gas saturation.

  14. An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation

    SciTech Connect (OSTI)

    Rafa, S. Molins; Trebotich, D.; Steefel, C. I.; Shen, C.

    2012-02-01T23:59:59.000Z

    The scale-dependence of geochemical reaction rates hinders their use in continuum scale models intended for the interpretation and prediction of chemical fate and transport in subsurface environments such as those considered for geologic sequestration of CO{sub 2}. Processes that take place at the pore scale, especially those involving mass transport limitations to reactive surfaces, may contribute to the discrepancy commonly observed between laboratory-determined and continuum-scale or field rates. Here, the dependence of mineral dissolution rates on the pore structure of the porous media is investigated by means of pore scale modeling of flow and multicomponent reactive transport. The pore scale model is comprised of high performance simulation tools and algorithms for incompressible flow and conservative transport combined with a general-purpose multicomponent geochemical reaction code. The model performs direct numerical simulation of reactive transport based on an operator-splitting approach to coupling transport and reactions. The approach is validated with a Poiseuille flow single-pore experiment and verified with an equivalent 1D continuum-scale model of a capillary tube packed with calcite spheres. Using the case of calcite dissolution as an example, the high resolution model is used to demonstrate that non-uniformity in the flow field at the pore scale has the effect of decreasing the overall reactivity of the system, even when systems with identical reactive surface area are considered. The effect becomes more pronounced as the heterogeneity of the reactive grain packing increases, particularly where the flow slows sufficiently such that the solution approaches equilibrium locally and the average rate becomes transport-limited.

  15. Higher jet prolongation Lie algebras and Backlund transformations for (1+1)-dimensional PDEs

    E-Print Network [OSTI]

    Sergey Igonin

    2013-05-30T23:59:59.000Z

    For any (1+1)-dimensional (multicomponent) evolution PDE, we define a sequence of Lie algebras $F^p$, $p=0,1,2,3,...$, which are responsible for all Lax pairs and zero-curvature representations (ZCRs) of this PDE. In our construction, jets of arbitrary order are allowed. In the case of lower order jets, the algebras $F^p$ generalize Wahlquist-Estabrook prolongation algebras. To achieve this, we find a normal form for (nonlinear) ZCRs with respect to the action of the group of gauge transformations. One shows that any ZCR is locally gauge equivalent to the ZCR arising from a vector field representation of the algebra $F^p$, where $p$ is the order of jets involved in the $x$-part of the ZCR. More precisely, we define a Lie algebra $F^p$ for each nonnegative integer $p$ and each point $a$ of the infinite prolongation $E$ of the evolution PDE. So the full notation for the algebra is $F^p(E,a)$. Using these algebras, one obtains a necessary condition for two given evolution PDEs to be connected by a Backlund transformation. In this paper, the algebras $F^p(E,a)$ are computed for some PDEs of KdV type. In a different paper with G. Manno, we compute $F^p(E,a)$ for multicomponent Landau-Lifshitz systems of Golubchik and Sokolov. Among the obtained Lie algebras, one encounters infinite-dimensional algebras of certain matrix-valued functions on some algebraic curves. Besides, some solvable ideals and semisimple Lie algebras appear in the description of $F^p(E,a)$. Applications to classification of KdV and Krichever-Novikov type equations with respect to Backlund transformations are also briefly discussed.

  16. Recent activities in the Aerosol Generation and Transport Program

    SciTech Connect (OSTI)

    Adams, R.E.

    1984-01-01T23:59:59.000Z

    General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and the mixed U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam.

  17. TOUGH2: A general-purpose numerical simulator for multiphase nonisothermal flows

    SciTech Connect (OSTI)

    Pruess, K. [Lawrence Berkeley Lab., CA (United States)

    1991-06-01T23:59:59.000Z

    Numerical simulators for multiphase fluid and heat flows in permeable media have been under development at Lawrence Berkeley Laboratory for more than 10 yr. Real geofluids contain noncondensible gases and dissolved solids in addition to water, and the desire to model such `compositional` systems led to the development of a flexible multicomponent, multiphase simulation architecture known as MULKOM. The design of MULKOM was based on the recognition that the mass-and energy-balance equations for multiphase fluid and heat flows in multicomponent systems have the same mathematical form, regardless of the number and nature of fluid components and phases present. Application of MULKOM to different fluid mixtures, such as water and air, or water, oil, and gas, is possible by means of appropriate `equation-of-state` (EOS) modules, which provide all thermophysical and transport parameters of the fluid mixture and the permeable medium as a function of a suitable set of primary thermodynamic variables. Investigations of thermal and hydrologic effects from emplacement of heat-generating nuclear wastes into partially water-saturated formations prompted the development and release of a specialized version of MULKOM for nonisothermal flow of water and air, named TOUGH. TOUGH is an acronym for `transport of unsaturated groundwater and heat` and is also an allusion to the tuff formations at Yucca Mountain, Nevada. The TOUGH2 code is intended to supersede TOUGH. It offers all the capabilities of TOUGH and includes a considerably more general subset of MULKOM modules with added capabilities. The paper briefly describes the simulation methodology and user features.

  18. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2002-09-01T23:59:59.000Z

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

  19. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    SciTech Connect (OSTI)

    Christopher Liner

    2012-05-31T23:59:59.000Z

    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. Specifically, our focus is fundamental research on (1) innovative narrow-band seismic data decomposition and interpretation, and (2) numerical simulation of advanced seismic data (multi-component, high density, full azimuth data) ideal for mapping of cap rock integrity and potential leakage pathways.

  20. Influence of Ga{sup 3+} ions on spectroscopic and dielectric features of multi component lithium lead boro bismuth silicate glasses doped with manganese ions

    SciTech Connect (OSTI)

    Ramesh Babu, P.; Vijay, R. [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510, A.P. (India); Nageswara Rao, P. [Department of Physics, University College of Engg. and Technology, Acharya Nagarjuna University, Nagarjunanagar 522510, A.P. (India); Veeraiah, N. [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510, A.P. (India); Krishna Rao, D., E-mail: krdhanekula@yahoo.co.in [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510, A.P. (India)

    2013-11-15T23:59:59.000Z

    Graphical abstract: The plots between ??(?)? vs. ??(?) and ??(?)/? vs. ??(?) yield straight lines with slope 1/? and ?, respectively. Considerable deviation from the straight line is observed in the high frequency region. Such deviation suggests spreading of relaxation times and this is attributed to the presence of multiple type of dipoles in the glass matrix. Variation of the parameters ???(?) and ??(?)/? with ??(?) of glass Li{sub 2}O–PbO–B{sub 2}O{sub 3}–SiO{sub 2}–Bi{sub 2}O{sub 3}–MnO multi-component glasses mixed with 2.0 mol% of Ga{sub 2}O{sub 3} measured at 373 K. - Highlights: • A series of Li{sub 2}O–PbO–B{sub 2}O{sub 3}–SiO{sub 2}–Bi{sub 2}O{sub 3}–MnO:Ga{sub 2}O{sub 3} glasses have been synthesized. • A variety of spectroscopic and dielectric properties have been investigated. • Analysis of the results indicated that glasses with below 3.0 mol% Ga{sub 2}O{sub 3} are good conducting materials. - Abstract: Multi-component glasses of the chemical composition 19.5Li{sub 2}O–20PbO–20B{sub 2}O{sub 3}–30SiO–(10 ? x)Bi{sub 2}O{sub 3}–0.5MnO:xGa{sub 2}O{sub 3} with 0 ? x ? 5.0 have been synthesized. Spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties were investigated. Optical absorption and ESR spectral studies have indicated that managanese ions do exist in Mn{sup 3+} state in addition to Mn{sup 2+} state in the samples containing low concentration of Ga{sub 2}O{sub 3}. The IR and Raman studies indicated increasing degree of disorder in the glass network with the concentration of Ga{sub 2}O{sub 3} up to 3.0 mol%. The dielectric constant, loss and ac conductivity are observed to increase with the concentration of Ga{sub 2}O{sub 3} up to 3.0 mol%. The quantitative analysis of the results of dielectric properties has indicated an increase in the insulating strength of the glasses as the concentration of Ga{sub 2}O{sub 3} is raised beyond 3.0 mol%. This has been attributed to adaption of gallium ions from octahedral to tetrahedral coordination.