Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Technologies Legacy Collection Data Service | Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Technologies Legacy Collection Data Service Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov Communities ...

2

Geothermal: Sponsored by OSTI -- Sustainable technologies for...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Sustainable technologies for the building construction industry Geothermal Technologies Legacy Collection HelpFAQ...

3

Geothermal: Sponsored by OSTI -- GeoEnergy technology  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- GeoEnergy technology Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

4

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

5

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy...

6

The Department of Energy Geothermal Legacy Reports Collection  

Office of Scientific and Technical Information (OSTI)

Accelerator Find DOE Collections Enter Search Terms GO The Department of Energy Geothermal Legacy Reports Collection The Department of Energy Geothermal Legacy Reports...

7

Geothermal: Sponsored by OSTI -- Seismic Technology Adapted to...  

Office of Scientific and Technical Information (OSTI)

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report Geothermal Technologies Legacy Collection HelpFAQ...

8

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

9

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

10

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

11

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

12

Geothermal: Sponsored by OSTI -- Hybrid Cooling for Geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report Geothermal Technologies Legacy Collection...

13

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

14

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

15

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

16

Geothermal: Promotional Video  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

17

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

18

Geothermal: Bibliographic Citation  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

19

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

20

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal: Contact Us  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

22

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

23

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

24

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

25

Geothermal: Sponsored by OSTI -- Performance test of a bladeless...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Performance test of a bladeless turbine for geothermal applications Geothermal Technologies Legacy Collection Help...

26

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

27

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

28

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

29

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

30

Geothermal: Sponsored by OSTI -- Multicomponent Equilibrium Models...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Multicomponent Equilibrium Models for Testing Geot Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

31

Geothermal: Sponsored by OSTI -- Preliminary investigations of...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Preliminary investigations of the thermal energy grid concept Geothermal Technologies Legacy Collection HelpFAQ |...

32

Geothermal: Website Policies and Important Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Website Policies and Important Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

33

Geothermal: Sponsored by OSTI -- Final Technical Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Final Technical Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

34

Geothermal: Sponsored by OSTI -- Two-phase flow in geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Two-phase flow in geothermal energy sources. Annual report, June 1, 1975--May 31, 1976 Geothermal Technologies...

35

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

36

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

37

Argonne's Nuclear Science and Technology Legacy  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Argonne's Nuclear Science and Technology Legacy About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia...

38

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

39

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

40

Geothermal: Sponsored by OSTI -- Modeling Thermally Induced Failure...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Modeling Thermally Induced Failure of Brittle Geomaterials Geothermal Technologies Legacy Collection HelpFAQ |...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal: Sponsored by OSTI -- Chapter 11. Heat Exchangers  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Chapter 11. Heat Exchangers Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

42

Geothermal: Sponsored by OSTI -- Chapter 17. Engineering cost...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Chapter 17. Engineering cost analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

43

Geothermal: Sponsored by OSTI -- Programs in Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Programs in Renewable Energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

44

Geothermal: Sponsored by OSTI -- Chapter 13. Absorption Refrigeration  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Chapter 13. Absorption Refrigeration Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

45

Geothermal: Sponsored by OSTI -- Consensus forecast of U. S....  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Consensus forecast of U. S. energy supply and demand to the year 2000 Geothermal Technologies Legacy Collection...

46

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

47

DOE - Office of Legacy Management -- Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Test Facility, California A Oakland Operations Office site geothermalmap The Geothermal Test Facility site was a research laboratory formerly operated under the DOE...

48

DOE - Office of Legacy Management -- Geothermal  

Office of Legacy Management (LM)

Office, California. After remediation, the site transferred to the Office of Legacy Management in 2005. The site requires records management and stakeholder support. For...

49

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

50

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

51

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

52

An accelerator technology legacy  

Science Conference Proceedings (OSTI)

Accelerator technology has been a major beneficiary of the investment made over the last decade. It is the intention of this paper to provide the reader with a glimpse of the broad nature of those advances. Development has been on a broad front and this paper can highlight only a few of those. Two spin-off applications will be outlined -- a concept for a compact, active, beam probe for solar body exploration and the concept for an accelerator-driven transmutation system for energy production.

Heighway, E.A.

1994-11-01T23:59:59.000Z

53

Geothermal drilling technology update  

DOE Green Energy (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

54

DOE - Office of Legacy Management -- Geothermal  

Office of Legacy Management (LM)

Geothermal Test Facility, California Geothermal Test Facility, California This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon Fact Sheet Other Documents Fact Sheet Geothermal Test Facility, California, Site Fact Sheet December 12, 2011 Other Documents Geothermal Test Facility (GTF) Closure and Records Transfer (DOE/National Nuclear Security Administration memorandum) April 23, 2004 Closure Report East Mesa Geothermal Test Facility July 31, 1998 Recission of Waste Discharge Requirements for U.S. Department of Energy, Geothermal Test Facility, East Mesa - El Centro, Imperial County (California Regional Water Quality Control Board letter) January 4, 1997

55

Geothermal Energy Technology Guide  

Science Conference Proceedings (OSTI)

Geothermal power production is a renewable technology with a worldwide operating capacity of more than 11,000 MW. Geothermal reservoirs have been a commercial reality in Italy, Japan, the United States, Iceland, New Zealand, and Mexico for many decades. According to the Energy Information Administration, the United States is the world leader in electricity production from geothermal resources with approximately 16,791 GWh of net production in 2012. Future geothermal power generation will depend on ...

2013-12-23T23:59:59.000Z

56

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

57

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

58

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

59

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

60

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

62

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

DOE Green Energy (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

63

Geothermal: Sponsored by OSTI -- Daemen Alternative Energy/Geothermal...  

Office of Scientific and Technical Information (OSTI)

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

64

Geothermal Well Technology Program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. An overview of the program is presented. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies encountered when current rotary drilling techniques are used for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.

1978-01-01T23:59:59.000Z

65

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

66

NREL: Geothermal Technologies - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Research Staff...

67

Geothermal: Sponsored by OSTI -- Economics of geothermal, solar...  

Office of Scientific and Technical Information (OSTI)

Economics of geothermal, solar, and conventional space heating Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

68

Geothermal: Sponsored by OSTI -- Beowawe Geothermal Area evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beowawe Geothermal Area evaluation program. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

69

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

70

Geothermal: Sponsored by OSTI -- STATUS OF PLOWSHARE GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

STATUS OF PLOWSHARE GEOTHERMAL POWER. Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

71

Geothermal: Sponsored by OSTI -- Multi-Fluid Geothermal Energy...  

Office of Scientific and Technical Information (OSTI)

Multi-Fluid Geothermal Energy Production and Storage in Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

72

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

73

Geothermal: Sponsored by OSTI -- Twenty-first workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twenty-first workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

74

Geothermal: Sponsored by OSTI -- Seventeenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Seventeenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

75

Geothermal: Sponsored by OSTI -- Twentieth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twentieth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

76

Geothermal: Sponsored by OSTI -- Nineteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Nineteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

77

Geothermal: Sponsored by OSTI -- Eighteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Eighteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

78

Geothermal: Sponsored by OSTI -- Feasibility of geothermal application...  

Office of Scientific and Technical Information (OSTI)

of geothermal applications for greenhousing and space heating on the Pine Ridge Indian Reservation, South Dakota Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

79

Geothermal Technologies Office: Hydrothermal and Resource Confirmation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

80

EERE: Geothermal Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

82

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

83

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

84

Geothermal: Sponsored by OSTI -- Recovery Act: Finite Volume...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Recovery Act: Finite Volume Based Computer Program for Ground Source Heat Pump Systems Geothermal Technologies...

85

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

86

Geothermal: Sponsored by OSTI -- Investigation of Stimulation...  

Office of Scientific and Technical Information (OSTI)

Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

87

Geothermal: Sponsored by OSTI -- Laboratory investigation of...  

Office of Scientific and Technical Information (OSTI)

Laboratory investigation of steam adsorption in geothermal reservoir rocks Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

88

Geothermal: Sponsored by OSTI -- Reconnaissance evaluation of...  

Office of Scientific and Technical Information (OSTI)

Reconnaissance evaluation of Honduran geothermal sites. Una evaluacion por medio de reconocimiento de seis areas geotermicas en Honduras Geothermal Technologies Legacy Collection...

89

Geothermal: Sponsored by OSTI -- Thermodynamic properties of...  

Office of Scientific and Technical Information (OSTI)

Thermodynamic properties of a geothermal working fluid; 90% isobutane-10% isopentane: Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

90

Geothermal: Sponsored by OSTI -- Regional operation research...  

Office of Scientific and Technical Information (OSTI)

operation research program for development of geothermal energy in the southwest United States. Final technical report, June 1977--August 1978 Geothermal Technologies Legacy...

91

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

92

The Geothermal Technologies Office Congratulates this Year's ...  

The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees. December 11, 2013. On December 10, the Geothermal Energy Association ...

93

Geothermal innovative technologies catalog  

DOE Green Energy (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

94

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

95

2008 Geothermal Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

the Middle East and Africa Asian and Oceanic Countries 2008 Geothermal Technologies Market Report | July 2009 9 The information shown in Figure 3 comes from industry surveys...

96

2008 Geothermal Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

JULY 2009 2008 GEOTHERMAL TECHNOLOGIES MARKET REPORT Energy Efficiency & Renewable Energy (This page intentionally left blank) TOC Table of Contents Executive Summary . . . . . . ....

97

Geothermal Technologies - Energy Innovation Portal  

Electricity Transmission Geothermal Industrial Technologies Fiber-Optic Long-Line Position Sensor Sandia National ... Using only one line, instead of ...

98

Geothermal: Sponsored by OSTI -- Geothermal pump program  

Office of Scientific and Technical Information (OSTI)

pump program Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

99

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

100

2008 Geothermal Technologies Market Report  

Science Conference Proceedings (OSTI)

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Cross, J.; Freeman, J.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal Technologies Office Annual Report 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

YEAR IN REVIEW Annual Report 2012 GEOTHERMAL TECHNOLOGIES OFFICE Energy Efficiency & Renewable Energy For more information about the Geothermal Technologies Office, visit www....

102

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration...  

Open Energy Info (EERE)

researchers trying to understand the geothermal system over the long Author(s): B. Martin, E. Silver, W. Pickles, P. Cocks Published: Geothermal Technologies Legacy Collection,...

103

Geothermal: Sponsored by OSTI -- Climatology of air quality of...  

Office of Scientific and Technical Information (OSTI)

Climatology of air quality of Long Valley Geothermal Resource Area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

104

Geothermal: Sponsored by OSTI -- Analysis of the application...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Analysis of the application of thermogalvanic cells to the conversion of low grade heat to electricity Geothermal...

105

Geothermal: Sponsored by OSTI -- Control of hydrogen sulfide...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Control of hydrogen sulfide emission from geothermal power plants. Volume I. Summary of results. Final report...

106

Geothermal: Sponsored by OSTI -- Control of hydrogen sulfide...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Control of hydrogen sulfide emission from geothermal power plants. Volume II. Laboratory results and process...

107

Geothermal: Sponsored by OSTI -- Study of core chips from the...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Study of core chips from the State of California, Well No. 1 in the Salton Sea Geothermal Field using petrographic,...

108

Geothermal: Sponsored by OSTI -- Full moment tensor and source...  

Office of Scientific and Technical Information (OSTI)

Full moment tensor and source location inversion based on full waveform adjoint inversion: application at the Geysers geothermal field Geothermal Technologies Legacy Collection...

109

Geothermal: Sponsored by OSTI -- Air-Cooled Condensers for Next...  

Office of Scientific and Technical Information (OSTI)

Air-Cooled Condensers for Next Generation Geotherm Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

110

Geothermal: Sponsored by OSTI -- Extracting and Applying SV-SV...  

Office of Scientific and Technical Information (OSTI)

Extracting and Applying SV-SV Shear Modes from Vertical Vibrator Data Across Geothermal Prospects Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

111

Geothermal: Sponsored by OSTI -- Sampling and analysis methods...  

Office of Scientific and Technical Information (OSTI)

Sampling and analysis methods for geothermal fluids and gases Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

112

Geothermal: Sponsored by OSTI -- High-potential Working Fluids...  

Office of Scientific and Technical Information (OSTI)

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

113

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2004-05-01T23:59:59.000Z

114

NREL: Geothermal Technologies - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

115

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

116

NREL: Energy Analysis - Geothermal Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program...

117

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

118

Geothermal Technologies Program: Direct Use  

DOE Green Energy (OSTI)

This general publication describes geothermal direct use systems, and how they have been effectively used throughout the country. It also describes the DOE program R&D efforts in this area, and summarizes several projects using direct use technology.

Not Available

2004-08-01T23:59:59.000Z

119

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Print PDF Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal energy. It is possible for a resource to be technically capable of both electricity production and heating purposes, but the basic classifications

120

NREL: Geothermal Technologies - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Data and...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version News Archives -...

122

Geothermal: Sponsored by OSTI -- Geothermal resources of the...  

Office of Scientific and Technical Information (OSTI)

resources of the Washakie and Great Divide basins, Wyoming Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

123

Geothermal: Sponsored by OSTI -- Selected bibliography: cost...  

Office of Scientific and Technical Information (OSTI)

Selected bibliography: cost and energy savings of conservation and renewable energy technologies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

124

DOE - Office of Legacy Management -- Geothermal Test Facility...  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

125

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

126

Geothermal Technologies Office: Financial Opps Details NewsDetail  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

127

Geothermal Technologies Available for Licensing - Energy ...  

Geothermal Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating institutions research and develop ...

128

Geothermal technology development at Sandia  

DOE Green Energy (OSTI)

Geothermal technology development at Sandia consists of work in two major project areas - Hard Rock Penetration and Magma Energy Extraction. The Hard Rock Penetration Program is directed at reducing drilling costs for geothermal wells. Current activities are focused in three areas: borehole mechanics, rock penetration mechanics, and industry cost-shared research. The Magma Energy Extraction Program is investigating the engineering feasibility of utilizing crustal magma bodies as a source of energy. Work is divided into four major areas: geophysics, geochemistry/materials, drilling, and energy extraction.

Dunn, J.C.

1987-04-01T23:59:59.000Z

129

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

130

Geothermal: Sponsored by OSTI -- Geologic flow characterization...  

Office of Scientific and Technical Information (OSTI)

Geologic flow characterization using tracer techniques Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

131

Geothermal: Sponsored by OSTI -- Pacific Northwest Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Pacific Northwest Laboratory Annual Report for 1979 to the DOE Assistant Secretary for Environment Part 4 Physical...

132

Geothermal: Sponsored by OSTI -- Injection through fractures  

Office of Scientific and Technical Information (OSTI)

Injection through fractures Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

133

Geothermal: Sponsored by OSTI -- Generalized displacement correlation...  

Office of Scientific and Technical Information (OSTI)

Generalized displacement correlation method for estimating stress intensity factors Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

134

Geothermal: Sponsored by OSTI -- Hydraulic fracturing: insights...  

Office of Scientific and Technical Information (OSTI)

Hydraulic fracturing: insights from field, lab, and numerical studies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

135

Geothermal: Sponsored by OSTI -- Regional issue identification...  

Office of Scientific and Technical Information (OSTI)

issue identification and assessment (RIIA). Volume I. An analysis of the TRENDLONG MID-MID Scenario for Federal Region 10 Geothermal Technologies Legacy Collection HelpFAQ | Site...

136

Geothermal: Sponsored by OSTI -- Improving Convection Parameterization...  

Office of Scientific and Technical Information (OSTI)

Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

137

Geothermal Technologies Office Annual Report 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho State Wins National Student Competition Students at Idaho State University display their poster at the annual meeting of the Geothermal Resources Council in Reno, Nevada this year, as one of 3 top finalists in the National Geothermal Student Competition hosted by the Energy Department's Geothermal Technologies Office. The group won the competition with their study on Development of an Integrated, Testable Conceptual Model of Blind Geothermal Resources in the Eastern

138

NREL: Energy Analysis - Geothermal Technology Analysis Models...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis Models and Tools The following is a list of models and tools...

139

Geothermal Technologies Available for Licensing - Energy ...  

Site Map; Printable Version; Share this resource. Send a link to Geothermal Technologies Available for Licensing - Energy Innovation Portalto someone by E-mail

140

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) assembled a panel of geothermal experts to identify the obstacles to geothermal energy growth and more. May 9, 2011 Department of Energy to Issue Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S. In early June 2011, the U.S. Department of Energy's Geothermal Technologies

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

142

The LBL geothermal reservoir technology program  

DOE Green Energy (OSTI)

The main objective of the DOE/GD-funded Geothermal Reservoir Technology Program at Lawrence Berkeley Laboratory is the development and testing of new and improved methods and tools needed by industry in its effort to delineate, characterize, evaluate, and exploit hydrothermal systems for geothermal energy. This paper summarizes the recent and ongoing field, laboratory, and theoretical research activities being conducted as part of the Geothermal Reservoir Technology Program. 28 refs., 4 figs.

Lippmann, M.J.

1991-03-01T23:59:59.000Z

143

Recovery Act - Geothermal Technologies Program:Ground Source...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

144

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

145

Geothermal: Sponsored by OSTI -- Noise-control needs in the developing...  

Office of Scientific and Technical Information (OSTI)

Noise-control needs in the developing energy technologies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

146

Geothermal: Sponsored by OSTI -- Control of hydrogen sulfide...  

Office of Scientific and Technical Information (OSTI)

III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

147

Geothermal: Sponsored by OSTI -- Caldwell Ranch Exploration and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

148

Geothermal: Sponsored by OSTI -- GRED STUDIES AND DRILLING OF...  

NLE Websites -- All DOE Office Websites (Extended Search)

STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

149

Geothermal: Sponsored by OSTI -- Chapter 17. Engineering cost...  

Office of Scientific and Technical Information (OSTI)

7. Engineering cost analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

150

Geothermal: Sponsored by OSTI -- Investigation of the thermal...  

Office of Scientific and Technical Information (OSTI)

the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range Geothermal Technologies Legacy Collection...

151

Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...  

Office of Scientific and Technical Information (OSTI)

Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

152

Geothermal: Sponsored by OSTI -- The energy situation in five...  

Office of Scientific and Technical Information (OSTI)

energy situation in five Central American countries Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

153

Geothermal: Sponsored by OSTI -- Hydrogeochemical data for thermal...  

Office of Scientific and Technical Information (OSTI)

Hydrogeochemical data for thermal and nonthermal waters and gases of the Valles Caldera- southern Jemez Mountains region, New Mexico Geothermal Technologies Legacy Collection Help...

154

Geothermal: Sponsored by OSTI -- Annual outlook for US electric...  

Office of Scientific and Technical Information (OSTI)

Annual outlook for US electric power, 1986 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

155

Geothermal: Sponsored by OSTI -- Geological occurrence of gas...  

Office of Scientific and Technical Information (OSTI)

Geological occurrence of gas hydrates at the Blake Outer Ridge, western North Atlantic Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

156

Geothermal: Sponsored by OSTI -- Wulanchabu UCG site data-status...  

Office of Scientific and Technical Information (OSTI)

Wulanchabu UCG site data-status report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

157

Geothermal: Sponsored by OSTI -- Analyses of operational times...  

Office of Scientific and Technical Information (OSTI)

Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report) Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

158

Geothermal: Sponsored by OSTI -- Overview of the Quality and...  

Office of Scientific and Technical Information (OSTI)

Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

159

Geothermal: Sponsored by OSTI -- Identification of energy and...  

Office of Scientific and Technical Information (OSTI)

Identification of energy and environmental issues in the South: views of officials from selected state agencies Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

160

Geothermal: Sponsored by OSTI -- Energy availabilities for state...  

Office of Scientific and Technical Information (OSTI)

Energy availabilities for state and local development: 1975 data volume Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal: Sponsored by OSTI -- Solar energy technical training...  

Office of Scientific and Technical Information (OSTI)

technical training directory Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

162

Geothermal: Sponsored by OSTI -- 2012 Renewable Energy Data Book...  

Office of Scientific and Technical Information (OSTI)

2012 Renewable Energy Data Book (Book) Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

163

Geothermal: Sponsored by OSTI -- Final Scientific/Technical Report  

Office of Scientific and Technical Information (OSTI)

Final ScientificTechnical Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

164

Geothermal: Sponsored by OSTI -- Using fully coupled hydro-geomechanic...  

Office of Scientific and Technical Information (OSTI)

Using fully coupled hydro-geomechanical numerical test bed to study reservoir stimulation with low hydraulic pressure Geothermal Technologies Legacy Collection HelpFAQ | Site Map...

165

Geothermal: Sponsored by OSTI -- COLLABORATIVE RESEARCH:USING...  

Office of Scientific and Technical Information (OSTI)

COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION Geothermal Technologies Legacy...

166

Geothermal: Sponsored by OSTI -- Internal Technical Report, Safety...  

Office of Scientific and Technical Information (OSTI)

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

167

Geothermal: Sponsored by OSTI -- Earth Sciences Division annual...  

Office of Scientific and Technical Information (OSTI)

Earth Sciences Division annual report, 1976. Research programs in Earth sciences Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

168

Geothermal: Sponsored by OSTI -- Solar energy task force report...  

Office of Scientific and Technical Information (OSTI)

task force report technical training guidelines Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

169

Geothermal: Sponsored by OSTI -- Leading trends in environmental...  

Office of Scientific and Technical Information (OSTI)

Leading trends in environmental regulation that affect energy development. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

170

MDHA Geothermal Technologies Program Geothermal Project | Open...  

Open Energy Info (EERE)

Website http:www.nashville-mdha.org Partner 1 Siemens Building Technologies Partner 2 Oak Ridge National Laboratories Partner 3 Nashville Electric Service Funding Opportunity...

171

Technology assessment of geothermal energy resource development  

DOE Green Energy (OSTI)

Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

Not Available

1975-04-15T23:59:59.000Z

172

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

173

Geothermal Technologies FY14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Geothermal Technologies accelerates the development technologies in pre-commercial stages of development. and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce both the risks and costs of bringing geothermal power online. As a key component of our clean energy mix, geothermal is a renewable energy that generates power around the clock. What We Do The EERE geothermal technologies portfolio consists of a three-pronged investment approach to facilitate the growth of installed electrical capacity:  Research and Development invests in innovative technologies and techniques to improve the process of identifying, accessing, and developing geothermal

174

Geothermal: Sponsored by OSTI -- Data Acquisition for Low-Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

175

Geothermal: Sponsored by OSTI -- CO2-Rock Interactions in EGS...  

Office of Scientific and Technical Information (OSTI)

CO2-Rock Interactions in EGS-CO2: New Zealand TVZ Geothermal Systems as a Natural Analog Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

176

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Covers Highlights from 2002)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2002. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2003-09-01T23:59:59.000Z

177

Geothermal: Sponsored by OSTI -- Study of falling-jet flash evaporator...  

Office of Scientific and Technical Information (OSTI)

Study of falling-jet flash evaporators Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

178

Geothermal: Sponsored by OSTI -- Geothermal R and D project report...  

Office of Scientific and Technical Information (OSTI)

R and D project report, January 1, 1976--march 31, 1976 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

179

Geothermal Energy Technology: a current-awareness bulletin  

DOE Green Energy (OSTI)

This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

Smith, L.B. (ed.)

1983-01-15T23:59:59.000Z

180

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal: Distributed Search Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

182

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

183

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

184

Direct-Use of Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Direct-Use of Geothermal Technologies Direct-Use of Geothermal Technologies August 14, 2013 - 1:46pm Addthis Hot water near the surface of the Earth can be used for heat for a...

185

NREL: Geothermal Technologies Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Geothermal energy taps the heat from beneath the earth's surface to generate electricity. Existing reservoirs of steam or hot water are brought to the surface to power electrical generators throughout the Western United States. In the future, the intense heat deep below the surface will accessed for electricity generation by the advanced engineering of reservoirs all across the country. In addition to electricity production, lower temperature geothermal resources are used for direct heating applications and the constant temperature that exists at shallow depths can be used as an energy-efficient method of heating and cooling, called ground-source heat

186

Geothermal: Sponsored by OSTI -- A Study of the Large Block Test...  

Office of Scientific and Technical Information (OSTI)

A Study of the Large Block Test as an Analog for Geothermal Site Characterization Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

187

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

To assess the stimulation technology developed in the oil and gas industry as to its applicability to the problems of geothermal well stimulation, a literature search was performed through on-line computer systems. Also, field records of well stimulation programs that have worked successfully were obtained from oil and gas operators and service companies. The results of these surveys are presented. (MHR)

Not Available

1980-05-01T23:59:59.000Z

188

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

189

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

190

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

191

Geothermal Energy Program Technology Overview  

DOE Green Energy (OSTI)

New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

Not Available

2001-11-01T23:59:59.000Z

192

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Details Activities (7) Areas (6) Regions (0) Abstract: To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal

193

Stanford Geothermal Program, reservoir and injection technology  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

194

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

NLE Websites -- All DOE Office Websites (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

195

Geothermal Technologies FY14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

196

Geothermal Technologies Program 2010 Peer Review | Open Energy...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Technologies Program 2010 Peer Review Citation Joe Iovenitti....

197

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type ...

198

Geothermal reservoir technology research at the DOE Idaho Operations Office  

SciTech Connect

Geothermal reservoir technology research projects managed at the Department of Energy Idaho Falls Operations office (DOE-ID) account for a large portion of the Department of Energy funding for reservoir technology research (approximately 7 million dollars in FY-95). DOE-ID managed projects include industry coupled geothermal exploration drilling, cooperative research projects initiated through the Geothermal Technology Organization (GTO), and other geothermal reservoir technology research projects. A solicitation for cost-shared industry coupled drilling has been completed and one zward has been made in FY-95. Another solicitation for industry coupled drilling may be conducted in the spring of 1996. A separate geothermal research technology research, development and demonstration solicitation will result in multiple year awards over the next 2 years. The goals of these solicitations are to ensure competition for federal money and to get the Government and the geothermal industry the most useful information for their research dollars.

Creed, Bob

1996-01-24T23:59:59.000Z

199

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

200

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal Resource Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Geothermal Resource Technologies Place Asheville, North Carolina Zip 28806 4229 Sector Services Product String representation "GRTI has evolve ... ign assistance." is too long. Coordinates 35.59846°, -82.553144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.59846,"lon":-82.553144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

203

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries  

SciTech Connect

The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

Creed, Robert John; Laney, Patrick Thomas

2002-06-01T23:59:59.000Z

204

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries  

DOE Green Energy (OSTI)

The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

Creed, R.J.; Laney, P.T.

2002-05-14T23:59:59.000Z

205

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

206

Geothermal: Sponsored by OSTI -- Selected data fron continental...  

Office of Scientific and Technical Information (OSTI)

Selected data fron continental scientific drilling core holes VC-1 and VC-2a, Valles Caldera, New Mexico Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us...

207

Geothermal: Sponsored by OSTI -- International energy R and D...  

Office of Scientific and Technical Information (OSTI)

International energy R and D: a picture compiled from open sources Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

208

Geothermal: Sponsored by OSTI -- Feasibility study for a 10-MM...  

NLE Websites -- All DOE Office Websites (Extended Search)

study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

209

Geothermal: Sponsored by OSTI -- Simulation of Air-Cooled Organic...  

Office of Scientific and Technical Information (OSTI)

Simulation of Air-Cooled Organic Rankine Cycle Geo Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

210

Geothermal: Sponsored by OSTI -- Chapter 11. Heat Exchangers  

Office of Scientific and Technical Information (OSTI)

1. Heat Exchangers Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

211

Geothermal: Sponsored by OSTI -- User's Manual for the FEHM Applicatio...  

Office of Scientific and Technical Information (OSTI)

User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

212

Geothermal: Sponsored by OSTI -- A numerical model ofhydro-thermo...  

NLE Websites -- All DOE Office Websites (Extended Search)

A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

213

Bibliography: injection technology applicable to geothermal utilization  

DOE Green Energy (OSTI)

This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

Darnell, A.J.; Eichelberger, R.L.

1982-03-19T23:59:59.000Z

214

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 December 31, 2012 NREL Leads Wind Farm Modeling Research Researchers study the atmosphere surrounding large turbines to optimize performance. Archives Current News | 2011 | | 2010 | | 2009 | | 2008 Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

215

DOE Geothermal Technologies Office | Open Energy Information  

Open Energy Info (EERE)

Office Office Jump to: navigation, search Name Department of Energy - Energy Efficiency and Renewable Energy - Geothermal Technologies Office Short Name DOE GTO Place Washington, District of Columbia Coordinates 38.8869784°, -77.0252967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8869784,"lon":-77.0252967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

United States geothermal technology: Equipment and services for worldwide applications  

DOE Green Energy (OSTI)

This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

NONE

1995-05-01T23:59:59.000Z

217

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

218

Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids  

DOE Green Energy (OSTI)

A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

Not Available

1981-01-01T23:59:59.000Z

219

Geothermal: Distributed Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

220

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Direct-Use of Geothermal Technologies Hot water near the surface of the Earth can be used for heat for a variety of commercial and industrial uses. Direct-use...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Office of Legacy Management -- Pittsburgh Energy Technology...  

Office of Legacy Management (LM)

(NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Pittsburgh Energy Technology Center...

222

Community Geothermal Technology Program: Electrodeposition of minerals in geothermal brine  

DOE Green Energy (OSTI)

Objective was to study the materials electrodeposited from geothermal brine, from the HGP-A well in Puna, Hawaii. Due to limitations, only one good set of electrodeposited material was obtained; crystallography indicates that vaterite forms first, followed by calcite and then perhaps aragonite as current density is increased. While the cost to weight ratio is reasonable, the deposition rate is very slow. More research is needed, such as reducing the brittleness. The electrodeposited material possibly could be used as building blocks, tables, benches, etc. 49 figs, 4 tabs, 7 refs.

Not Available

1990-12-31T23:59:59.000Z

223

A Technology Breakthrough for Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal April 25, 2012 - 4:08pm Addthis The Energy Department's Oak Ridge National Laboratory, in partnership with ClimateMaster, has developed a highly efficient ground-source heat pump appliance for heating and cooling interior spaces. Learn more about this clean energy technology by watching the video above. | Video by the U.S. Department of Energy. Alexis Abramson Acting Emerging Technologies Supervisor, Building Technologies Program What does this project do? Oak Ridge National Laboratory and ClimateMaster have developed a more efficient process for using ground-source heat pumps to heat and cool homes. Instead of just pushing or pulling heat around to cool or heat your house, the ClimateMaster integrated heat pump also uses that heat to

224

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

Not Available

1980-05-01T23:59:59.000Z

225

Geothermal exploration technology. Annual report, 1978  

DOE Green Energy (OSTI)

Progress is reported on the following programs: electrical and electromagnetic computer modeling techniques; minicomputer for in-field processing of magnetotelluric data; superconducting thin-film gradiometer and magnetometers for geophysical applications; magnetotellurics with SQUID magnetometers; controlled-source electromagnetic system; geothermal seismic field system development; Klamath Basin geothermal resource and exploration technique evaluation; Mt. Hood geothermal resource evaluation; East Mesa seismic study; seismological studies at Cerro Prieto; self-potential studies at Cerro Prieto; resistivity studies at Cerro Prieto; magnetotelluric survey at Cerro Prieto; and precision gravity studies at Cerro Prieto. (MHR)

Not Available

1978-01-01T23:59:59.000Z

226

Oregon Institute of Technology District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

227

Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Snowmelt Low Temperature Geothermal Facility Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type Snowmelt Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

228

Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties  

DOE Green Energy (OSTI)

These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

229

DOE - Office of Legacy Management -- Energy Technology Engineering Center -  

Office of Legacy Management (LM)

Energy Technology Engineering Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Energy Technology Engineering Center (ETEC) is a former Department of Energy research laboratory that tested components and systems for liquid metal cooled nuclear reactors. ETEC occupies 90 acres of the Santa Susana Field Laboratory (2700 acres) which is located in the Simi Hills of Ventura County, California. The Rocketdyne Propulsion and Power Division of Boeing owns and operates the Santa Susana Field Laboratory (SSFL). The Department

230

Geothermal: Sponsored by OSTI -- Flow tests of the Gladys McCall...  

Office of Scientific and Technical Information (OSTI)

Flow tests of the Gladys McCall well Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

231

Geothermal Technology Evolution Rationale for the National Energy Strategy  

DOE Green Energy (OSTI)

The DOE developed ''Technology Evolution Rationale'' documents for many of its technology development programs, at this time (report is dated October 1, 1990). This is a very significant description of the status of resources, technology, and industry in 1990, and the thinking that guided the DOE Geothermal Research Program at this time. The report describes: Geothermal energy conversion and use technologies, Resources and land use, Stakeholder and users, Industry status, and Market acceptance and experience in the U.S. The Economic status chapter covers Figures of Merit for assessing geothermal energy systems, and trends in geothermal development. The chapter on Cost/performance projections provides much detail on estimates of system costs, and projections for how DOE R&D would likely affect those costs. The Rationale chapter provides much detail on how subsystems are linked together to provide system performance and cost estimates, and details of technology improvements being worked on that are likely to reduce the cost of power from geothermal. Includes references (citations) to the background studies used to develop the details here. (DJE 2005)

None

1990-10-01T23:59:59.000Z

232

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

233

DOE - Office of Legacy Management -- California Institute of Technology -  

Office of Legacy Management (LM)

California Institute of Technology California Institute of Technology - CA 04 FUSRAP Considered Sites Site: California Institute of Technology (CA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pasadena , California CA.04-1 Evaluation Year: 1989 CA.04-1 Site Operations: Research and development. CA.04-3 Site Disposition: Eliminated - NRC licensed facility CA.04-1 CA.04-3 Radioactive Materials Handled: None indicated Primary Radioactive Materials Handled: No Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to California Institute of Technology CA.04-1 - DOE Letter; Wallo to Carwell; Subject: List of California Sites; May 17, 1989 CA.04-3 - Aerospace Letter; Young to Wallo; Subject: Elimination

234

Geothermal Reservoir Well Stimulation Program: technology transfer  

Science Conference Proceedings (OSTI)

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

Not Available

1980-05-01T23:59:59.000Z

235

DOE - Office of Legacy Management -- Massachusetts Institute of Technology  

Office of Legacy Management (LM)

Massachusetts Institute of Massachusetts Institute of Technology Hood Building - MA 01 FUSRAP Considered Sites Site: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, HOOD BUILDING (MA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Cambridge , Massachusetts MA.01-1 Evaluation Year: 1986 MA.01-2 Site Operations: Facility was acquired by the AEC and engaged in research and development activities involving research quantities of uranium, thorium and beryllium and other rare metals. Operations ceased by 1958, and the Hood Building decontaminated and demolished by August 1963. MA.01-2 MA.01-1 Site Disposition: Eliminated - Potential for contamination considered remote due to limited scope of activities and results of previous decontamination efforts MA.01-3

236

A Technology Breakthrough for Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal April 25, 2012 - 4:08pm Addthis The Energy Department's Oak Ridge National Laboratory, in partnership with ClimateMaster, has developed a highly efficient ground-source heat pump appliance for heating and cooling interior spaces. Learn more about this clean energy technology by watching the video above. | Video by the U.S. Department of Energy. Alexis Abramson Acting Emerging Technologies Supervisor, Building Technologies Program What does this project do? Oak Ridge National Laboratory and ClimateMaster have developed a more efficient process for using ground-source heat pumps to heat and cool homes. Instead of just pushing or pulling heat around to cool or heat your

237

Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources  

DOE Green Energy (OSTI)

Technology transfer to the industrial sector for geopressured-geothermal technology has included diverse strategies, with successes and obstacles or roadblocks. Numerical data are tabulated in terms of response to the various strategies. Strategy categories include the following: feasibility studies and reports, consortium activities and proceedings, the Geothermal Resource Council, national and international meetings of the American Association of Petroleum Geologists, other societal and organizational meetings, and conferences, Department of Energy solicitation of interest in the Commerce Business Daily, industry peer review panels, and the Secretary's Technology Initiative. Additionally, the potential of a 12-page color brochure on the geopressured-geothermal resource, workshops, and cooperative research and development agreement (CRADA) is discussed. In conclusion, what is the best way to reach the market and what is the winning combination? All of the above strategies contribute to technology transfer and are needed in some combination for the desired success. The most successful strategy activities for bringing in the interest of the largest number of industries and the independents are the consortium meetings, one-on-one telephone calling, and consortium proceedings with information service followup. the most successful strategy activities for bringing in the interest and participation of ''majors'' are national and international peer reviewed papers at internationally recognized industry-related society meetings, and on-call presentations to specific companies. Why? Because quality is insured, major filtering has already taken place, and the integrity of the showcase is established. Thus, the focused strategy is reduced to a target of numbers (general public/minors/independents) versus quality (majors). The numerical results of the activities reflecting four years of technology transfer following the 15 year lead in the early phases of geopressured-geothermal program under the leadership of Dr. Myron Dorfman, reflect a dynamic surveying of what works in technology transfer with industry in the area of geopressured-geothermal resources. The identified obstacles can be removed and future efforts can benefit by this cataloging and discussion of results.

Wys, J. Negus-de

1992-03-24T23:59:59.000Z

238

Geothermal Injection Technology Program: Annual progress report, Fiscal Year 1986  

DOE Green Energy (OSTI)

This report summarizes the Geothermal Injection Technology Program major activities in fiscal year 1986. The Idaho Engineering Laboratory (INEL) and the University of Utah Research Institute (UURI) have been conducting injection research and testing for this program, which was initiated in 1983. Activities at the INEL, representative element nodeling of fracture systems based on stochastic analysis, dual permeability modeling of flow in a fractured geothermal reservoir, and dual permeability model - laboratory and FRACSL-validation studies, are presented first, followed by the University of Utah Research Institute tracer development - experimental studies, which includes a brief description of activities planned for FY-1987.

Not Available

1987-07-01T23:59:59.000Z

239

The National Energy Strategy - The role of geothermal technology development: Proceedings  

DOE Green Energy (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

Not Available

1990-01-01T23:59:59.000Z

240

The National Energy Strategy - The role of geothermal technology development: Proceedings  

SciTech Connect

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

242

Stanford Geothermal Program, reservoir and injection technology. Fourth annual report  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

243

Geopressured geothermal drilling and completions technology development needs  

DOE Green Energy (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

244

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

245

Aspects of the Kalina technology applied to geothermal power production  

DOE Green Energy (OSTI)

This report contains the results of studies conducted at the Idaho National Engineering Laboratory (INEL) concerning the applicability of the Kalina technology to geothermal (hydrothermal) power production. This report represents a correction and addition to that report. The Heat Cycle Research Program (HCRP) has as its primary goal the cost-effective production of electric power from moderate temperature hydrothermal resources. Recent work has included the study of supercritical cycles with counterflow condensation which utilize mixtures as working fluids. These advanced concepts are projected to give a 20 to 30% improvement in power produced per unit geofluid flow rate (geofluid effectiveness, w hr/lb). The original Kalina cycle is a system which is similar to the cycles being studied in the Heat Cycle Research program and it was felt that this new cycle should be studied in the geothermal context. 15 refs., 9 figs., 2 tabs.

Bliem, C.J.

1989-09-21T23:59:59.000Z

246

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

SciTech Connect

The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings?¢????quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.

Robert C. Beiswanger, Jr.

2010-05-20T23:59:59.000Z

247

Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab  

Open Energy Info (EERE)

Technologies and Tools for Supercritical Reservoirs Geothermal Lab Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and Tools for Supercritical Reservoirs Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 High-Temperature Downhole Tools Project Description Development of downhole tools capable of reliable operation in supercritical environments is a significant challenge with a number of technical and operational hurdles related to both the hardware and electronics design. Hardware designs require the elimination of all elastomer seals and the use of advanced materials. Electronics must be hardened to the extent practicable since no electronics system can survive supercritical temperatures. To develop systems capable of logging in these environments will require a number of developments. More robust packaging of electronics is needed. Sandia will design and develop innovated, highly integrated, high-temperature (HT) data loggers. These data loggers will be designed and developed using silicon-on-insulator/silicon carbide (SOI/SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and decreasing the size of the electronics package. Tools employing these electronics will be capable of operating continuously at temperatures up to 240 °C and by using advanced Dewar flasks, will operate in a supercritical reservoir with temperatures over 450 °C and pressures above 70 MPa. Dewar flasks are needed to protect the electronic components, but those currently available are only reliable in temperature regimes in the range of 350 °C; promising advances in materials will be investigated to improve Dewar technologies. HT wireline currently used for logging operations is compromised at temperatures above 300 °C; along with exploring the development of a HT wireline for logging purposes, alternative approaches that employ HT batteries (e.g., those awarded a recent R&D 100) will also be investigated, and if available will enable deployment using slickline, which is not subject to the same temperature limitations as wireline. To demonstrate the capability provided by these improvements, tools will be developed and fielded. The developed base technologies and working tool designs will be available to industry throughout the project period. The developed techniques and subsystems will help to further the advancement of HT tools needed in the geothermal industry.

248

Program in geothermal well technology directed toward achieving DOE/DGE power-on-line goals  

DOE Green Energy (OSTI)

This document presents the material used in an oral presentation to the DOE/Division of Geothermal Energy, which was designed to illustrate the importance of well technology development in reducing geothermal well costs, and to achieve geothermal power-on-line goals. Examination of recent studies of the economics of geothermal energy leads to the conclusion that the overall sensitivity of geothermal power-on-line to well cost is in the range of one to two. Current data suggest that a vigorous R and D program in rotary drilling technology can reduce geothermal drilling costs by about 20%, but a reduction of 40 to 50% is needed to achieve DOE/DGE goals. Research in advanced drilling systems is needed to satisfy this more stringent requirement. Some critical technological deficiencies that occur when current rotary drilling techniques are used for geothermal drilling are discussed. A broadly based development program directed at correcting these deficiencies is defined.

Polito, J.; Varnado, S.G.

1978-10-01T23:59:59.000Z

249

NREL: Geothermal Technologies - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us NREL offers industry, academia, and other government agencies opportunities to work with us and leverage our research expertise. Our technology partnership agreements help you gain access to our capabilities and facilities. There are several ways for your organization to get involved with us: Work collaboratively with NREL through Cooperative Research and Development Agreements- the most widely used means of industrial collaboration. Pay NREL to conduct research without your collaboration through Work for Others Research-an effective way for industry to use NREL's expertise. Commercialize NREL-developed energy technologies and products through our licensing agreements. Partner with NREL to use the lab's state-of-the-art research facilities.

250

Geothermal technology publications and related reports: a bibliography, January-December 1981  

DOE Green Energy (OSTI)

Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology, Magma and General Geoscience Studies with cross references listed by author.

Hudson, S.R. (ed.)

1982-05-01T23:59:59.000Z

251

Geothermal technology development program. Annual progress report, October 1981-September 1982  

DOE Green Energy (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

252

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...  

Open Energy Info (EERE)

exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal production. Knowledge of the gas contents in...

253

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

254

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

DOE Green Energy (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

255

The U.S. Department of Energy's Geothermal Reservoir Technology Program  

Science Conference Proceedings (OSTI)

Geothermal reservoir engineering is an important aspect f the Department of Energys Geothermal Technology Division, geothermal research and development program. Reservoir engineering-related research, a component of all geosciences activities, is of particular importance in the context of Hydrothermal Reservoir Research. Three closely related research activities (Brine Injection, Reservoir Definition, and Caldera Reservoir Investigations) are now combined under the more general heading of Reservoir Technology. Scientific investigations, as part of the Salton Sea Scientific Drilling Program, also contribute greatly to the understanding of the behavior of high-temperature hydrothermal convection systems. With the creation of the Geothermal Technology Organization, where geothermal research will be cost-shard with industry, it is anticipated that a number of research topics will be brought to the point where the geothermal industry can rapidly put new technology into use. 2 tabs., 2 figs.

Mock, John E.; Blackett, Robert E.

1987-01-20T23:59:59.000Z

256

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

257

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

Science Conference Proceedings (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

258

Geothermal technology publications and related reports: A bibliography, January 1986 through December 1987  

DOE Green Energy (OSTI)

Sandia publications resulting from DOE programs in Geothermal Technologies, Magma Energy and Continental Scientific Drilling are listed for reference. The RandD includes borehole-related technologies, in situ processes, and wellbore diagnostics.

Tolendino, C.D. (ed.)

1988-08-01T23:59:59.000Z

259

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

260

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

DOE Green Energy (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal and geopressure blowout control. Phase I. Study of existing technology. Phase II. Program plan for geothermal and geopressure blowout control  

DOE Green Energy (OSTI)

Four papers on existing technology and program planning for blowout control in geothermal and geopressured systems are included. Separate abstracts were prepared for each. (MHR)

Rehm, W.A.; Goins, W.C. Jr.

1978-11-01T23:59:59.000Z

262

Puna Geothermal Research Facility technology transfer program. Final report, August 23, 1985--August 23, 1989  

DOE Green Energy (OSTI)

The funds were used in a series of small grants to entrepreneurs demonstrating the direct use of geothermal heat supplied by Hawaii`s HGP-A well; this effort was known as the Community Geothermal Technology Program. Summaries are presented of the nine completed projects: fruit dehydration, greenhouse bottom heating, lumber kiln, glass making, cloth dyeing, aquaculture (incomplete), nursery growing media pasteurization, bronze casting, and electrodeposition from geothermal brine.

Takahashi, P.

1989-12-31T23:59:59.000Z

263

Technology assessment of geothermal pumping equipment. final report, July 1978  

DOE Green Energy (OSTI)

Twenty-eight separate interviews were conducted with DOE personnel, DOE contractors doing geothermal research, persons associated with geothermal installations, companies engaged in the drilling and completion of geothermal well, and pump manufactures. The reports of these interviews are presented and summarized and conclusions are drawn.

Nichols, K.E.; Malgieri, A.J.

1978-09-01T23:59:59.000Z

264

Office of Renewable Energy Technology Geothermal and Hydropower Technologies Division, FY 1983 Annual Operating Plan  

DOE Green Energy (OSTI)

There are between 700 and 3400 guads of recoverable geothermal energy in the US. Hydrothermal, geopressure and hot dry rock are the three principal types of geothermal resources (in order of technological readiness) which can supply large amounts of energy for electric power production and direct heat applications. Hydrothermal resources include water and steam trapped in fractured or porous rocks. A hydrothermal system is classified as either hot-water or vapor-dominated (steam), according to the principal physical state of the fluid. Geopressured resources consist of water at moderately high temperatures at pressures higher than normal hydrostatic pressure. This water contains dissolved methane. Geopressured sources in sedimentary formations along the Texas and Louisiana Gulf Coast are believed to be quite large. Geopressured formations also exist in sedimentary basins elsewhere in the US. Hot dry rock resources consist of relatively unfractured and unusually hot rocks at accessible depths that contain little or no water. To extract usable power from hot dry rock, the rock must be fractured and a confined fluid circulation system created. A heat transfer fluid is introduced, circulated, and withdrawn. The overall goal of the Geothermal Program is to build a technology base that will be used by the private sector to exploit geothermal resources which can supply large amounts of energy for electric power production and direct-heat applications.

None

1983-01-01T23:59:59.000Z

265

Geothermal: Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

266

Preliminary Technical Risk Analysis for the Geothermal Technologies Program  

DOE Green Energy (OSTI)

This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

2007-03-01T23:59:59.000Z

267

Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.27.10] -- Geothermal Stores, Graphene Loops, Nozzle 8.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño August 27, 2010 - 5:21pm Addthis Blue flame generated by natural gas. Blue flame generated by natural gas. Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs With the opening of a new IKEA in suburban Denver slated for fall 2011, Coloradans can expect more than affordable home furnishings: the Centennial store will be the first IKEA to be built with geothermal heating and cooling. The retailers have partnered with the National Renewable Energy Laboratory to study and demonstrate the advantages of a geothermal heating system. By

268

Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño August 27, 2010 - 5:21pm Addthis Blue flame generated by natural gas. Blue flame generated by natural gas. Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs With the opening of a new IKEA in suburban Denver slated for fall 2011, Coloradans can expect more than affordable home furnishings: the Centennial store will be the first IKEA to be built with geothermal heating and cooling. The retailers have partnered with the National Renewable Energy Laboratory to study and demonstrate the advantages of a geothermal heating system. By

269

Next Generation Waste Tracking: Linking Legacy Systems with Modern Networking Technologies  

SciTech Connect

This report describes results from a preliminary analysis to satisfy the Department of Energy (DOE) objective to ensure the safe, secure, efficient packaging and transportation of materials both hazardous and non hazardous [1, 2]. The DOE Office of Environmental Management (OEM) through Oak Ridge National Laboratory (ORNL) has embarked on a project to further this objective. OEM and ORNL have agreed to develop, demonstrate and make available modern day cost effective technologies for characterization, identification, tracking, monitoring and disposal of radioactive waste when transported by, or between, motor, air, rail, and water modes. During the past 8 years ORNL has investigated and deployed Web 2.0 compliant sensors into the transportation segment of the supply chain. ORNL has recently demonstrated operational experience with DOE Oak Ridge Operations Office (ORO) and others in national test beds and applications within this domain of the supply chain. Furthermore, in addition to DOE, these hazardous materials supply chain partners included Federal and State enforcement agencies, international ports, and commercial sector shipping operations in a hazardous/radioactive materials tracking and monitoring program called IntelligentFreight. IntelligentFreight is an ORNL initiative encompassing 5 years of research effort associated with the supply chain. The ongoing ORNL SmartFreight programs include RadSTraM [3], GRadSTraM , Trusted Corridors, SensorPedia [4], SensorNet, Southeastern Transportation Corridor Pilot (SETCP) and Trade Data Exchange [5]. The integration of multiple technologies aimed at safer more secure conveyance has been investigated with the core research question being focused on testing distinctly different distributed supply chain information sharing systems. ORNL with support from ORO have demonstrated capabilities when transporting Environmental Management (EM) waste materials for disposal over an onsite haul road. ORNL has unified the operations of existing legacy hazardous, radioactive and related informational databases and systems using emerging Web 2.0 technologies. These capabilities were used to interoperate ORNL s waste generating, packaging, transportation and disposal with other DOE ORO waste management contractors. Importantly, the DOE EM objectives were accomplished in a cost effective manner without altering existing information systems. A path forward is to demonstrate and share these technologies with DOE EM, contractors and stakeholders. This approach will not alter existing DOE assets, i.e. Automated Traffic Management Systems (ATMS), Transportation Tracking and Communications System (TRANSCOM), the Argonne National Laboratory (ANL) demonstrated package tracking system, etc

Walker, Randy M [ORNL; Resseguie, David R [ORNL; Shankar, Mallikarjun [ORNL; Gorman, Bryan L [ORNL; Smith, Cyrus M [ORNL; Hill, David E [ORNL

2010-01-01T23:59:59.000Z

270

Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-05-01T23:59:59.000Z

271

Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-04-01T23:59:59.000Z

272

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

DOE Green Energy (OSTI)

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

273

Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-11-01T23:59:59.000Z

274

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

275

Geothermal drilling and completion technology development program. Semi-annual progress report, October 1978-March 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drill bits, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1979-09-01T23:59:59.000Z

276

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

DOE Green Energy (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

277

Programmatic Objectives of the Geothermal Technology Division: Volume 1  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

Meridian Corporation, Alexandria, VA

1989-05-01T23:59:59.000Z

278

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

279

Geothermal technology publications and related reports: a bibliography, January-December 1982  

DOE Green Energy (OSTI)

This bibliography extends the past listings to work reported in the 1982 calendar year. Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology and Magma with cross references listed by author.

Hudson, S.R. (ed.)

1983-03-01T23:59:59.000Z

280

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Prospects for improvement in geothermal well technology and their expected benefits  

DOE Green Energy (OSTI)

Performance restrictions on current geothermal drilling technology and their impact on drilling costs are reviewed, with the impact on electric power costs. Sensitivities of drilling costs to changes in drilling performance are analyzed. A programmatic goal for improving drilling performance is offered. The likely cost savings to the nation if the goal is attained are estimated though the use of a geothermal well drilling scenario for the 1978 to 1990 period, which was derived from DOE's geothermal power on-line scenario. The present worth of the expectd savings stream (benefit) is offered as a point of departure for justifying programmatic costs for improving drilling technology.

Not Available

1978-06-01T23:59:59.000Z

282

Gas Analysis of Geothermal Fluid Inclusions: A New Technology For Geothermal Exploration  

DOE Green Energy (OSTI)

To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal production. Knowledge of the gas contents in reservoir fluids can be applied to fluid inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the initial phase and lower drill hole completion costs. Commercial costs for fluid inclusion analysis done on at 20 feet intervals on chip samples for 10,000 ft oil wells is about $6,000, and the turn around time is a few weeks.

David I. Norman; Joseph Moore

2004-03-09T23:59:59.000Z

283

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

DOE Green Energy (OSTI)

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

284

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network (OSTI)

geothermal power plants. US DOE EERE Geothermal Technologieswas made for the US DOE EERE Geothermal Technologies

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

285

Logging technology for high-temperature geothermal boreholes  

DOE Green Energy (OSTI)

Research in materials, equipment, and instrument development was required in the Hot Dry Rock Energy Extraction Demonstration at Fenton Hill located in northern New Mexico. Results of this extensive development advanced the logging technology in geothermal boreholes to present state-of-the art. The new Phase II Energy Extraction System at the Fenton Hill Test Site will consist of two wellbores drilled to a depth of about 4570 m (15,000 ft) and then connected by a series of hydraulic-induced fractures. The first borehole (EE-2) was completed in May of 1980 at a depth of 4633 m (15,200 ft) of which approximately 3960 m (13,000 ft) is in Precambrian granitic rock. Starting at a depth of approximately 2930 m (9600 ft), the borehole was inclined up to 35/sup 0/ from vertical. Bottom-hole temperature in EE-2 is 320/sup 0/C. The EE-3 borehole was then drilled to a depth of 4236 m (13,900 ft). Its inclined part is positioned directly over the EE-2 wellbore with a vertical separation of about 450 m (1500 ft) between them. Many of the geophysical measurements needed to develop the hot dry rock concept are unique. Most of the routine instruments used in petroleum drilling fail in the hot and abrasive environment. New equipment developed includes not only the downhole sonde that houses the transducer and associated line driving electronics, but modifications also were needed on the entire data retrieval systems and associated data analysis technology. Successful performance of wellbore surveys in the EE-2 and EE-3 boreholes depended upon the capacity of the sensors, instrument sonde, cablehead, and armored logging cable to work in this severe environment. The major areas of materials development for surveying the boreholes in the high-temperature environment were on elastomeric seals, electrical insulation for logging cables, downhole sensors, and associated downhole electronic and electro-mechanical components.

Dennis, B.R.

1984-05-01T23:59:59.000Z

286

Program Review - Geothermal Exploration and Assessment Technology Program; Including a Report of the Reservoir Engineering Technical Advisory Group  

DOE Green Energy (OSTI)

In 1978, The Division of Geothermal Energy of the Department of Energy established the Geothermal Exploration and Assessment Technology Program. The purpose of this program is to ''provide assistance to the Nation's industrial community by helping to remove technical and associated economic barriers which presently inhibit efforts to bring geothermal electric power production and direct heat application on line''. In the near term this involves the adaptation of exploration and assessment techniques from the mineral and petroleum industry to geothermal applications. In the near to far term it involves the development of new technology which will improve the cost effectiveness of geothermal exploration.

Nielson, Dennis L., ed.

1979-12-01T23:59:59.000Z

287

Geothermal injection technology program. Annual progress report, FY-85  

DOE Green Energy (OSTI)

This report summarizes injection research conducted during FY-1985. The objective was to develop a better understanding of the migration and impact of fluids injected in geothermal reservoirs. Separate abstracts have been prepared for individual project summaries. (ACR)

Not Available

1986-02-01T23:59:59.000Z

288

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

289

Geothermal Heat Pumps Deliver Big Savings for Federal Facilities - Technology Focus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EE-0291 EE-0291 Internet: www.eere.energy.gov/femp/ No portion of this publication may be altered in any form without prior written consent from the U.S. Department of Energy, Energy Efficiency and Renewable Energy, and the authoring national laboratory. Geothermal heat pump surface water loops. Geothermal Heat Pumps Deliver Big Savings for Federal Facilities An update on geothermal heat pump technologies and the Super ESPC Energy-efficiency improvements at federal facilities must enhance support for the agency's critical missions while also saving energy and money. Geothermal heat pumps (GHPs, also known as ground-source heat pumps or GeoExchange systems) can do both, and can help meet energy-conservation, emissions-reduction, and renewable-energy goals. GHP technology is now well known as a proven, reliable, efficient, and

290

Program on Technology Innovation: Modeling of Single-Well Closed-Loop Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

Conventional enhanced geothermal systems (EGSs) include one production well and one injection well to use hydrothermal resources to generate electricity. However, the high initial cost of drilling EGS wells is one of the main factors that hurt its competitiveness with other energy sources. The single-well closed-loop EGS (SWCLEGS) is a new type of geothermal power generation technology that aims to eliminate the need for natural hydrothermal resources with a relatively low drilling cost. The objective of...

2012-02-28T23:59:59.000Z

291

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

DOE Green Energy (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

292

Geothermal energy technology: issues, R and D needs, and cooperative arrangements  

SciTech Connect

In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

1987-01-01T23:59:59.000Z

293

Geothermal energy technology: issues, R and D needs, and cooperative arrangements  

DOE Green Energy (OSTI)

In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

Not Available

1987-01-01T23:59:59.000Z

294

An assessment of leadership in geothermal energy technology research and development  

DOE Green Energy (OSTI)

Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).

Bruch, V.L.

1994-03-01T23:59:59.000Z

295

Community Geothermal Technology Program: Experimental lumber drying kiln. Final report  

DOE Green Energy (OSTI)

Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

Leaman, D.; Irwin, B.

1989-10-01T23:59:59.000Z

296

Impact of geothermal technology improvements on royalty collections on Federal lands: Volume 1  

Science Conference Proceedings (OSTI)

The purpose of this study was to predict the value of increased royalties that could be accrued through the year 2010 by the federal government as a result of the accomplishments of the US Department of Energy (DOE) geothermal research and development (RandD) program. The technology improvements considered in this study coincide with the major goals and objectives of the DOE program as set forth in Section 3.0 and will: allow the geothermal industry to maintain a long-term competitive posture in the more favorable fields; and permit it to become competitive where the resource is of lower quality. The study was confined to power generation from liquid-dominated hydrothermal geothermal reservoirs. The technologies for exploiting the liquid-dominated, or hot water, fields for power generation are relatively new and still under development. Thus, each technology enhancement that permits greater economic use of the resource will potentially enhance royalty revenues. Potential royalty revenue from dry steam power production at The Geysers, direct use of geothermal fluids, and use of advanced geothermal technologies (i.e., hot dry rock, magma, and geopressured) has not been considered in this assessment. 12 refs.

Not Available

1988-10-01T23:59:59.000Z

297

Community Geothermal Technology Program: Silica bronze project. Final report  

DOE Green Energy (OSTI)

Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

Bianchini, H.

1989-10-01T23:59:59.000Z

298

Community Geothermal Technology Program: Hawaii glass project. Final report  

DOE Green Energy (OSTI)

Objective was to develop a glass utilizing the silica waste material from geothermal energy production, and to supply local artists with this glass to make artistic objects. A glass composed of 93% indigenous Hawaiian materials was developed; 24 artists made 110 objects from this glass. A market was found for art objects made from this material.

Miller, N. [comp.; Irwin, B.

1988-01-20T23:59:59.000Z

299

Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment  

DOE Green Energy (OSTI)

Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

Usibelli, A.; Deibler, P.; Sathaye, J.

1980-12-01T23:59:59.000Z

300

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

DOE Green Energy (OSTI)

In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

Lippmann, M.J.; Antunez, E.

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

Science Conference Proceedings (OSTI)

In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

Lippmann, Marcelo J.; Antunez, Emilio u.

1996-01-24T23:59:59.000Z

302

Recent advances in biochemical technology for the processing of geothermal byproducts  

SciTech Connect

Laboratory studies has shown the biochemical technology for treating brines/sludges generated in geothermal electric powerproduction to be promising, cost-efficient, and environmentally acceptable. For scaled-up field use, the new technology depends on the chemistry of the geothermal resources which influences choice of plant design and operating strategy. Latter has to be adaptable to high/low salinity, temperatures, quantity to be processed, and chemistry of brines and byproducts. These variables are of critical and economic importance in areas such as the Geysers and Salton Sea. The brines/sludges can also be converted into useful products. In a joint effort between industrial collaborators and BNL, several engineered processes for treating secondary and other byproducts from geothermal power production are being tested. In terms of field applications, there are several options. Some of these options are presented and discussed.

Premuzic, E.T.; Lin, M.S.; Lian, L.

1996-04-01T23:59:59.000Z

303

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis  

DOE Green Energy (OSTI)

NREL conducted an annual program risk analysis on behalf of the U.S. Department of Energy Geothermal Technologies Program (GTP). NREL implemented a probabilistic risk analysis of GTP-sponsored research, development, and demonstration (RD&D) work, primarily for enhanced geothermal systems (EGS). The analysis examined estimates of improvement potential derived from program RD&D work for two types of technology performance metric (TPM): EGS-enabling technologies potential and EGS cost improvement potential. Four risk teams (exploration, wells/pumps/tools, reservoir engineering, and power conversion) comprised of industry experts, DOE laboratory researchers, academic researchers, and laboratory subcontractors estimated the RD&D impacts and TPM-improvement probability distributions. The assessment employed a risk analysis spreadsheet add-in that uses Monte Carlo simulation to drive the Geothermal Electric Technology Evaluation Model (GETEM). The GETEM-based risk analysis used baseline data from the experts' discussion of multiple reports and data sources. Risk results are expressed in terms of each metric's units and/or the program's top-level metric: levelized costs of electricity (LCOE). Results--both qualitative comments and quantitative improvement potential--are thorough and cohesive in three of the four expert groups. This conference paper summarizes the industry's current thinking on various metrics and potential for research improvement in geothermal technologies.

Young, K. R.; Augustine, C.; Anderson, A.

2010-02-01T23:59:59.000Z

304

Renewable energy technologies for federal facilities: Geothermal heat pump  

DOE Green Energy (OSTI)

This sheet summarizes information on geothermal heat pumps (GHPs), which extracts heat from the ground in the winter and transfers heat to the ground in the summer. More than 200,000 GHPs are operating in US; they can reduce energy consumption and related emissions by 23 to 44% compared to air-source heat pumps. Opportunities for use of GHPs, requirements, and cost are described. Important terms are defined.

NONE

1996-05-01T23:59:59.000Z

305

Geothermal Heat Pump Systems: Applications and Technology Development  

Science Conference Proceedings (OSTI)

This report discusses a hybrid geothermal heat pump system, an efficient, all-electric heating and cooling option for small and large commercial buildings. In this system, the ground loop heat exchanger is sized for winter heating and supplemented by auxiliary heat rejection devices (such as fluid coolers or cooling towers) for summer operation that prevent performance-impeding heat buildup in the earth surrounding the ground loop.

2003-11-03T23:59:59.000Z

306

A national strategy for the export of US geothermal technology  

DOE Green Energy (OSTI)

This document presents a proposal for an explicit US strategy to focus this still diffuse interest into a coordinated effort by the public and private sectors to increase exports of US geothermal goods and services over the next five to ten years. This document summarizes the background and need for an explicit US strategy, the factors influencing the development of this strategy, strategy options, and a recommended strategy.

Not Available

1989-03-01T23:59:59.000Z

307

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

DOE Green Energy (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

308

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

309

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

310

In situ experiments of geothermal well stimulation using gas fracturing technology  

DOE Green Energy (OSTI)

The results of an experimental study of gas fracturing technology for geothermal well stimulation demonstrated that multiple fractures could be created to link water-filled boreholes with existing fractures. The resulting fracture network and fracture interconnections were characterized by mineback as well as flow tests. Commercial oil field fracturing tools were used successfully in these experiments. Simple scaling laws for gas fracturing and a brief discussion of the application of this technique to actual geothermal well stimulation are presented. 10 refs., 42 figs., 4 tabs.

Chu, T.Y.; Warpinski, N.; Jacobson, R.D.

1988-07-01T23:59:59.000Z

311

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Details Activities (6) Areas (1) Regions (0) Abstract: This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE. Author(s): William R. Henkle, Joel Ronne Published: Geothermal Technologies Legacy Collection, 2008 Document Number: Unavailable DOI: Unavailable Source: View Original Report Compound and Elemental Analysis At Reese River Area (Henkle & Ronne, 2008)

312

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

313

Reservoir and injection technology: Geothermal reservoir engineering research at Stanford: Third annual report for the period October 1, 1986 through September 30, 1987: (Final report)  

DOE Green Energy (OSTI)

This paper discusses different aspects of geothermal reservoir engineering. General topics covered are: reinjection technology, reservoir technology, and heat extraction. (LSP)

Ramey, H.J. Jr.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1988-02-01T23:59:59.000Z

314

Detection, diagnosis, and prognosis in geothermal well technology  

DOE Green Energy (OSTI)

For successful and safe operation of a geothermal well, the condition of the casing and cement must be accurately determined. Measurements on casing wall thickness, corrosion damage, holes, cracks, splits, etc., are needed to assess casing integrity. Cement bond logs are needed to detect channels or water pockets in cement behind pipe and to determine the state of the cement bond to the pipe and formation. Instrumentation for making such measurements is limited by the temperature capabilities (<175/sup 0/C) of existing logging equipment developed for the oil and gas industry. The instruments that are needed for geothermal casing and cementing inspection are reviewed; the principle deficiencies in their high temperature use are identified; and Sandia's upgrade research program on multi-arm caliper and acoustic cement bond logging tool is described. The key electronic section in a multi-arm caliper will consist of 275/sup 0/C circuits. In an acoustic cement bond logging tool, a simple circuit with possibilities of using commercially available components for high temperature operation is being developed. These new tools will be field tested for operation at a minimum temperature of 275/sup 0/C and pressure of 7000 psi for up to 1000 hours.

Veneruso, A.F.; Chang, H.T.

1980-01-01T23:59:59.000Z

315

Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985  

DOE Green Energy (OSTI)

The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1985-09-01T23:59:59.000Z

316

Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology  

DOE Green Energy (OSTI)

Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

Morris, W.; Hill, J. (eds.)

1980-07-01T23:59:59.000Z

317

Biochemical technology for the detoxification of geothermal brines and the recovery of trace metals  

DOE Green Energy (OSTI)

Studies conducted at BNL, have shown that a cost-efficient and environmentally acceptable biochemical technology for detoxification of geothermal sludges is most satisfactory, as well as technically achievable. This technology is based on biochemical reactions by which certain extremophilic microorganisms interact with inorganic matrices of geothermal origin. The biochemical treatment of wastes generated by power plants using geothermal energy is a versatile technology adaptable to several applications beyond that of rendering hazardous and/or mixed wastes to non-hazardous by products, which meet regulatory requirements. This technology may be used for solubilization or recovery of a few metals to the isolation of many metals including radionuclides. In the metal recovery mode, an aqueous phase is generated which meets regulatory standards. The resulting concentrate contains valuable trace metals and salts which can be further converted into income generating products which can off-set the initial investment costs associated with the new biotechnology. In this paper, recent developments in this emerging technology will be discussed.

Premuzic, E.T.; Lin, M.S.; Lian, Hsienjen

1995-05-01T23:59:59.000Z

318

Geothermal materials project input for conversion technology task  

DOE Green Energy (OSTI)

This ongoing laboratory-based high risk/high payoff R D program has already yielded several durable cost-effective materials of construction which are being used by the geothermal energy industry. In FY 1992, R D in the following areas will be performed: (1) advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive composites for heat exchange applications, (4) corrosion mitigation at the Geysers, and (5) high-temperature chemical coupling materials to bond elastomers to steel substrates. Work to address other materials problems will commence in FY 1993, as their needs are verified. All of the activities will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. 3 figs., 2 tabs.

Kukacka, L.E.

1991-04-01T23:59:59.000Z

319

Fracture detection and mapping for geothermal reservoir definition: an assessment of current technology, research, and research needs  

DOE Green Energy (OSTI)

The detection and mapping of fractures and other zones of high permeability, whether natural or manmade, has been a subject of considerable economic and scientific interest to the pertroleum industry and to the geothermal community. Research related to fractured geothermal reservoirs has been conducted under several past DOE geothermal energy development programs. In this paper we review the present state of technology in fracture detection and mapping. We outline the major problems and limitations of the ''conventional'' techniques, and current research in new technologies. We also present research needs.

Goldstein, N.E.

1984-11-01T23:59:59.000Z

320

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

322

Geothermal Electricity Technologies Evaluation Model DOE Tool for Assessing Impact of Research on Cost of Power  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) has developed a spreadsheet model to provide insight as to how its research activities can impact of cost of producing power from geothermal energy. This model is referred to as GETEM, which stands for Geothermal Electricity Technologies Evaluation Model. Based on user input, the model develops estimates of costs associated with exploration, well field development, and power plant construction that are used along with estimated operating costs to provide a predicted power generation cost. The model allows the user to evaluate how reductions in cost, or increases in performance or productivity will impact the predicted power generation cost. This feature provides a means of determining how specific technology improvements can impact generation costs, and as such assists DOE in both prioritizing research areas and identifying where research is needed.

Greg Mines

2008-01-01T23:59:59.000Z

323

Geothermal Elastomeric Materials Technology Application (GEM-TA) Program. Final report, August 1981-August 1983  

DOE Green Energy (OSTI)

In 1979, L'Garde, Inc. completed the development of several geothermal elastomer compounds. Major advances in the state of the art were achieved with successes at extreme conditions such as temperatures up to and exeeeding 320/sup 0/C (608/sup 0/F), pressures up to and exceeding 138 MPa (20,000 psi), and fluids ranging from brines to hydrocarbons. Because various geothermal projects had many elastomers problems and their solutions were critical to the project success, the DOE sponsored this effort to help provide the advantages of the earlier developed technology described above. The technology applications supported are as follows: pump lineshaft bearings; seals for Freon 114, synthetic hydrocarbon, and brine service; electrically insulative seals for logging tools; seals for nitrate salt explosive and steam service; and cementing wiper plugs. In addition there were minor efforts to further disseminate information associated with the elastomer development and case history experiences.

Hirasuna, A.R.; Davis, D.L.; Friese, G.J.; Trailer, J.W.

1984-08-01T23:59:59.000Z

324

Geothermal materials project input for conversion technology task  

DOE Green Energy (OSTI)

This ongoing laboratory-based high risk/high payoff R and D program has already yielded several durable cost-effective materials of construction for geothermal energy processes. In FY 1991, R and D in the following areas will be performed: (1) development and downhole testing of advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight (1.1 g/cc) well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive scale-resistant composites for heat-exchanger tubing, (4) high-temperature chemical coupling materials which can be used to bond elastomers to steel substrates, and (5) high-temperature elastomers for use in downhole drill motors. Contingent upon the results, work on heat-exchanger tubing and lost-circulation control materials will be completed FY 1991 and the other activities will be continued in FY 1992. Work on other materials needs will commence in FY 1992. These include the in situ conversion of drilling fluids into well-completion materials and ceramic-type well casing. All of the subtasks will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. Results to date are discussed. 2 refs., 2 figs., 2 tabs.

Kukacka, L.E.

1990-08-01T23:59:59.000Z

325

Perspective and trends: Future of geothermal exploration technology  

DOE Green Energy (OSTI)

Some examples are given of where current research in seismic and electromagnetic imaging may eventually lead to practical technologies for exploration. These are technologies that will provide a relatively high resolution, 2-D and 3-D parameterized picture of the earth to depths of two to three km. Parameters discussed include P- and S-wave velocities and electrical resistivity.

Goldstein, N.E.

1986-11-01T23:59:59.000Z

326

Geothermal: Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Search Advanced Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links You may need to turn on Javascript in your browser to use the Find Subject and Find Author features. Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Enter search criteria into as few or as many fields as desired. Search In For Term(s) (Place phrase in "double quotes") All Fields: Bibliographic Data: Full Text: Creator/Author Select : Title: Subject Select : Identifier Numbers: Journal Info.: Conference Info.: Patent Info.: Research Org.: Sponsoring Org.:

327

Geothermal exploration and assessment technology program plan. Final report  

DOE Green Energy (OSTI)

The following program plan elements are described: barriers to commercialization, cost/benefit analysis for exploration assessment technology (hydrothermal systems), goals, objectives, technical plan, management plan, budget, and procurement plan. (MHR)

Not Available

1978-10-30T23:59:59.000Z

328

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

388 388 February 2010 Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis Katherine R. Young and Chad Augustine National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy Presented at Stanford Geothermal Workshop Stanford, California February 1, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

329

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

330

Geoscience-related research needs for geothermal energy technology. Final report  

DOE Green Energy (OSTI)

A project to identify and prioritize geoscience-related research needs that would be of significant benefit in the assessment, exploration, and development of US geothermal energy resources is described. The federal research needs as identified by the Panel are summarized. The research needs are organized into specific research needs for four technology areas and a group of generic research needs which relate to all of the technology areas. Arranged in order of overall need for research, these technology areas are: reservoir engineering; resource exploration and reservoir definition; well drilling, completion, and stimulation; and environmental monitoring and control. The generic research needs are: geoscience case studies, scientific drilling, information and technology transfer, and improved research coordination. (MHR)

Crane, C. H.; Markiewicz, J. J. Jr.

1983-09-30T23:59:59.000Z

331

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

332

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

333

Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2  

DOE Green Energy (OSTI)

The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

Downing, J.C.

1990-01-01T23:59:59.000Z

334

Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices  

DOE Green Energy (OSTI)

This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

Not Available

1988-10-01T23:59:59.000Z

335

Identification of environmental control technologies for geothermal development in the Imperial Valley of California  

DOE Green Energy (OSTI)

Control technologies to manage environmental impacts from geothermal developments in California's Imperial Valley from development to 1985 are discussed. Included are descriptions of methods for managing land subsidence by fluid injection; for preventing undesirable induced seismicity or mitigating the effects of seismic events; for managing liquid wastes through pretreatment or subsurface injection; for controlling H/sub 2/S by dispersal, reinjection, and chemical treatment of effluents; and for minimizing the impact of noise from power plants by setting up buffer zones and exclusion areas.

Snoeberger, D.F.; Hill, J.H.

1978-10-05T23:59:59.000Z

336

Benefit/Cost Analysis of Geothermal Technology R&D. Volume III: Energy Extraction and Utilization Technology  

DOE Green Energy (OSTI)

This document describes the benefit/cost relationship for 44 research and development (R and D) projects being funded by the Utilization Technology Branch (UTB) of the Division of Geothermal Energy (DGE), Department of Energy (DOE) as a part of its Energy Extraction and Conversion Technology program. The benefits were computed in terms of the savings resulting from the reduction in the cost of electricity projected to be generated at 27 hydrothermal prospects in the US between 1978 and 2000, due to technological improvements brought about by successful R and D. The costs of various projects were estimated by referring to the actual expenditures already incurred and the projected future budgets for these projects. In certain cases, the expected future expenditures had to be estimated on the basis of the work which would need to be done to carry a project to the commercialization stage.

Dhillon, Harpal S.; Nguyen, Van Thanh; Pfundstein, Richard T.; Entingh, Daniel J.

1979-05-01T23:59:59.000Z

337

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network (OSTI)

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

338

Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

Elizabeth Battocletti

2006-04-06T23:59:59.000Z

339

Evaluation of H/sub 2/S control technology for geothermal energy sources  

DOE Green Energy (OSTI)

This study was conducted to identify processes that are most applicable for control of H/sub 2/S from geothermal sources. Both vapor-dominated and liquid-dominated sources were considered within the electric power generation category. The source characteristics, H/sub 2/S control requirements, and applicable technologies are discussed for the two geothermal sources. An evaluation of the applicable control technology indicates that there are three major approaches for H/sub 2/S removal. These are (a) upstream cleaning (ahead of the power plant), (b) removal of H/sub 2/S from condenser vent emissions, and (c) H/sub 2/S removal from cooling water, including condensate. The most promising processes for these emission points, based on current information, are as follows: the EIC process for upstream cleaning of liquid-dominated sources. For condenser vent emissions, the Stretford process appears to be most applicable; for cooling tower emissions, the iron catalyst process, followed by the H/sub 2/O/sub 2/ process, seems most appropriate.

Not Available

1978-11-21T23:59:59.000Z

340

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

342

Session: Geopressured-Geothermal  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

343

Risk Methodologies for Technological Legacies : Proceedings of the NATO Advanced Study Institute, Bourgas, Bulgaria from 2 to 11 May 2000  

Science Conference Proceedings (OSTI)

The Cold War Era left the major participants, the United States and the former Soviet Union (FSU), with large environmental legacies in terms of facility contamination and environmental degradation. Although the countries face similar issues from similar activities, important differences in waste management practices make the potential environmental and health risks of more immediate concern in the FSU and Eastern Europe. In the West, most nuclear and chemical waste is stored in known contained locations, while in the East much of the equivalent material is unconfined, contaminating the environment. The knowledge and experiences of the U.S. in these initial cleanup efforts are seen as important information in many North Atlantic Treaty Organization (NATO) Partner countries, where the environmental problems are more severe and the cleanup budgets more limited. An Advanced Study Institute (ASI) on ''Risk Assessment Activities for the Cold War Facilities and Environmental Legacies'' was held in Bourgas, Bulgaria, May 2-11, 2000. The objective of the ASI was to provide information to facilitate and enable decision-making activities affecting the environment and human populations in the NATO and Partner countries. Specifically, the ASI provided a forum to communicate the current status of risk analysis and management methodologies and their appropriate application. It addressed scientific approaches and application experiences from the initial U.S. risk assessment activities. This book is the product of the ASI. The power of the text lies in linking information on legacies with an integrated view of controlling the risk of those legacies. Risk can only be effectively controlled by proper balance of three central concepts: risk analysis, risk perception, and risk management. The editors were drawn together by the joint recognition that risk analysis methods had matured over the past 30 years in several fields, relatively independent of each other. It was time to integrate all these forms of risk analysis under one framework, identifying the reasons for the seemingly disparate approaches and the gains to be reaped by bringing them together. Part I of this book gives detailed information on the three central concepts and gives further definition to facility-centered and human-centered approaches to risk analysis and risk management. Part II of this book gives extensive information on the legacies, our perception of the risk associated with them, and, in some cases, tools for analyzing that risk. Part III of the book relies heavily on applications as a means of presenting detailed information on risk assessment programs and methodologies. Finally, Part IV provides details on future activities. Applications were selected for this text that illustrate the strengths and limitations of different risk methodologies for assessments of military and Cold War legacy facilities in NATO and Partner countries. The textbook shows how specific needs have been met by the various risk methodologies and stress the need for an integrated view that uses the various risk methodologies in a complementary rather than competitive manner.

Bley, Dennis C.; Droppo, James G.; Eremenko, Vitaly A.

2003-05-01T23:59:59.000Z

344

Geothermal: Sponsored by OSTI -- Geothermal resource assessment...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

345

Geothermal: Sponsored by OSTI -- Assessing geothermal energy...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

346

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

347

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

348

Geothermal completion technology life cycle cost model (GEOCOM). Volume I. Final report. Volume II. User instruction manual  

DOE Green Energy (OSTI)

Just as with petroleum wells, drilling and completing a geothermal well at minimum original cost may not be the most cost-effective way to exploit the resource. The impacts of the original completion activities on production and costs later in the life of the well must also be considered. In order to evaluate alternate completion and workover technologies, a simple computer model has been developed to compare total life-cycle costs for a geothermal well to total production or injection. Volume I discusses the mechanics of the model and then presents detailed results from its application to different completion and workover questions. Volume II is the user instruction manual.

Anderson, E.R.; Hoessel, W.C.; Mansure, A.J.; McKissen, P.

1982-07-01T23:59:59.000Z

349

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

350

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

351

NEPA COMPLIANCE SURVEY Project Information Project TitJe: Geothermal Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Information Project TitJe: Geothermal Technologies Program Date: 12-11-()9 DOE Code: 6730.020.61041 Contractor Code: Project Lead: Project Overview This NEPA is for the laying of a 2,975 foot, 8" welded plastic water line from Little Teapot Creek near in the 1. What are the environmental impacts? intersection with Teapot Creek to the North Waterflood Facility (NWF) building. The entire project area is within Section 21 T39N R78W (map attached) and will not impact any wet land areas but will cross one 2. What is the legal location? intermittent stream. The stream is presently dry. The project will include the clearing of vegetation from a 12 3. What is the duration of the project? foot wide construction corridor along the route, digging a 5 foot deep trench, welding and placing the plastic

352

Community Geothermal Technology Program: Media steam pasteurization using geothermal fluid at NELHA, Noi`i O Puna laboratory; Final report  

DOE Green Energy (OSTI)

The project was successful in confirming the suitability of shredded coconut husks in potting mix and the acceptability of untreated geothermal steam to pasteurize the mix. The pots were exposed to the steam; the average media temperature was maintained at 160 F for 30 min. The pH levels, which were slightly elevated in virgin media, rose only slightly (< 0.5) after steaming. Salt levels doubled (still safe). Mg solubility increased but not to toxic levels. Test plantings showed no significant differences after 8 months, indicating that coconut fiber can be pasteurized and used to replace imported peat moss. 6 refs, 4 tabs.

NONE

1990-10-01T23:59:59.000Z

353

Guidebook to Geothermal Finance  

Science Conference Proceedings (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

354

Geothermal direct-heat utilization assistance  

DOE Green Energy (OSTI)

Progress on technical assistance, R D activities, technology transfer, and geothermal progress monitoring is summarized.

Not Available

1992-12-01T23:59:59.000Z

355

FINAL REPORT ENHANCED GEOTHERMAL SYSTEMS TECHNOLOGY PHASE II ANIMAS VALLEY, NEW MEXICO  

Science Conference Proceedings (OSTI)

Final Technical Report covering siting, permitting, and drilling two geothermal temperature gradient holes. This report provides a summary of geotechnical and geophysical data that led to the siting, drilling, and completion of 2 temperature gradient holes in the geothermal anomaly at Lightning Dock Known Geothermal Resource Area in the Animas Valley of New Mexico. Included in this report is a summary of institutional factors and data defining the well drilling process and acquiring drilling permits. Data covering the results of the drilling and temperature logging of these two holes are provided. The two gradient holes were sited on federal geothermal leases owned by Lightning Dock Geothermal, Inc. and both holes were drilled into lakebed sediments some distance from the intense shallow geothermal anomaly located in the eastern half of Section 7, Township 25 South, Range 19 West.

Roy A.Cunniff; Roger L. Bowers

2003-12-29T23:59:59.000Z

356

Economic assessment of geothermal direct heat technology: A review of five DOE demonstration projects  

DOE Green Energy (OSTI)

In this report the cost of using low temperature geothermal energy resources for direct heating applications is compared to the costs associated with conventional heating fuels. The projects compared all involved replacing conventional fuels (e.g., natural gas and fuel oils) with geothermal energy in existing heating systems. The cost of using geothermal energy in existing systems was also compared with the cost of new coal-fired equipment.

Hederman, William F. Jr.; Cohen, Laura A.

1981-06-01T23:59:59.000Z

357

Promethean Boldness - Argonne's Nuclear Science and Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy...

358

Geothermal resources and technology in the United States. Supporting Paper No. 4  

DOE Green Energy (OSTI)

The types of geothermal resources and their energy contents and producibility are reviewed. The production method and costs, production rates, and prerequisites of development are discussed. (MHR)

Not Available

1979-01-01T23:59:59.000Z

359

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

360

NREL Geothermal Policymakers' Guidebooks Web site (Fact Sheet)  

Science Conference Proceedings (OSTI)

This document highlights the NREL Geothermal Policymakers' Guidebooks Web site, including the five steps to effective geothermal policy development for geothermal electricity generation and geothermal heating and cooling technologies.

Not Available

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

362

A Legacy of Benefit  

Energy.gov (U.S. Department of Energy (DOE))

Over more than three decades, FE research and development has established a legacy of significant achievement and return of value and benefits for the public funds invested.

363

Assessment of H/sub 2/S control technologies for geothermal power plants  

DOE Green Energy (OSTI)

Techniques for controlling hydrogen sulfide (H/sub 2/S) from geothermal development are analyzed. Several technologies for controlling H/sub 2/S emissions from power plants are examined. The Hydrogen Peroxide Combination System, Stretford System and possibly EIC or Coury upstream controls appear capable of compliance with the emission limitations of 100 grams per hour per gross megawatt in 1980 (and 50 q/hr/(g) MW in 1985 or 1990) at the Geysers Dry stream field in Northern California. Unresolved problems still plague all these options. Well field operations result in H/sub 2/S releases from well drilling, well venting and steam stacking. Hydrogen peroxide reduces H/sub 2/S emissions during drilling and venting can be controlled with vent gathering (condensation/reinjection) systems. Steam stacking during power plant outages emit more H/sub 2/S over shorter periods than other field operations. Potential controls for stacking are: (1) upstream abatement, (2) automated well operation, (3) computerized wellfield operation (as of PG and E's Geysers Unit No. 15), and (4) further steamfield interconnection (cross-overs).

Not Available

1980-02-01T23:59:59.000Z

364

National Earth Comfort Program, Geothermal Heat Pump Market Mobilization and Technology Demonstration  

DOE Green Energy (OSTI)

Late 1994, the Geothermal Heat Pump Consortium (GHPC) was launched as a non-profit collaborative effort between the United States Department of Energy, US electric utilities and the GeoExchange (geothermal heat pump) industry to make ''geothermal heat pumps'' a significant component of the HVAC industry and avoid 1.5 million metric tons of carbon equivalent per year. The goal was to create a self-sustainable GeoExchange market. This report offers a summary of some of the lessons learned and an overview of some of the programs major accomplishments.

Wael M. El-Sharif

2001-04-30T23:59:59.000Z

365

Program on Technology Innovation: Geothermal Energy Harvesting from a Closed-Loop Single-Well Heat Exchanger Technology  

Science Conference Proceedings (OSTI)

From the perspective of reducing the cost of an enhanced geothermal system (EGS) that requires injection and productions wells, a single-wellbore configuration could be a cost-efficient solution for larger geothermal plants that are constrained by water demand. The applicability of a single-wellbore configuration depends on the ability to have high thermal conductivity with the heat exchange from the rock system surrounding it. The result of the Polaris award work suggests that a numerical model is neede...

2010-11-30T23:59:59.000Z

366

The National Energy Strategy- The Role of Geothermal Technology Development: Abstracts  

SciTech Connect

These are the abstracts for DOE Geothermal Program Review VIII, San Francisco, April 1990. The full Proceedings of this Review are also available in the OSTI ECD. (DJE 2005)

1990-04-01T23:59:59.000Z

367

Development of Active Seismic Vector-Wavefield Imaging Technology for Geothermal Applications  

DOE Green Energy (OSTI)

This report describes the development and testing of vector-wavefield seismic sources that can generate shear (S) waves that may be valuable in geothermal exploration and reservoir characterization. Also described is a 3-D seismic data-processing effort to create images of Rye Patch geothermal reservoir from 3-D sign-bit data recorded over the geothermal prospect. Two seismic sources were developed and tested in this study that can be used to illuminate geothermal reservoirs with S-waves. The first was an explosive package that generates a strong, azimuth-oriented, horizontal force vector when deployed in a conventional shot hole. This vector-explosive source has never been available to industry before. The second source was a dipole formed by operating two vertical vibrators in either a force or phase imbalance. Field data are shown that document the strong S-wave modes generated by these sources.

B. A. Hardage; J. L. Simmons, Jr.; M. DeAngelo

1999-10-01T23:59:59.000Z

368

Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market  

SciTech Connect

We are assembled today to discuss the opportunities and challenges for expanding the sales of geothermally-generated electric power in a competitive utility market. First, however, I would like to note that growth in geothermal sales might not be a germane topic were it not for the early participation in the development of the geothermal industry by utilities themselves. Without their contributions to research and development, environmental breakthroughs, and, perhaps, above all, their early use of geothermal power and continuing investment in the industry, we might still be at ''Square One''--confronting inhibiting doubts of the energy utilization industry. I feel certain that utility involvement has served to inspire far greater confidence in the reliability of the resource on the part of other utilities and other investors than could have been generated by federal programs and/or the resource developer arm of the geothermal community. While acknowledging that we have not completely resolved all problems which geothermal energy faced 20 years ago--confidence, institutional restraints, environmental compliance, and technical and economic uncertainties--this audience and our predecessors have addressed them, individually and collectively, and, to a large extent, we have surmounted them. But it took generation or contracted purchase of geothermal power by utilities--whatever their discrete reasons for doing so--to demonstrate to the public and government regulators that there is a place for geothermal power in the service areas of large utilities. In addition, in using an alternative fuel, the participating utilities have already exposed themselves to changing concepts and practices in their industry.

Mock, John E.

1992-03-24T23:59:59.000Z

369

Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market  

DOE Green Energy (OSTI)

We are assembled today to discuss the opportunities and challenges for expanding the sales of geothermally-generated electric power in a competitive utility market. First, however, I would like to note that growth in geothermal sales might not be a germane topic were it not for the early participation in the development of the geothermal industry by utilities themselves. Without their contributions to research and development, environmental breakthroughs, and, perhaps, above all, their early use of geothermal power and continuing investment in the industry, we might still be at ''Square One''--confronting inhibiting doubts of the energy utilization industry. I feel certain that utility involvement has served to inspire far greater confidence in the reliability of the resource on the part of other utilities and other investors than could have been generated by federal programs and/or the resource developer arm of the geothermal community. While acknowledging that we have not completely resolved all problems which geothermal energy faced 20 years ago--confidence, institutional restraints, environmental compliance, and technical and economic uncertainties--this audience and our predecessors have addressed them, individually and collectively, and, to a large extent, we have surmounted them. But it took generation or contracted purchase of geothermal power by utilities--whatever their discrete reasons for doing so--to demonstrate to the public and government regulators that there is a place for geothermal power in the service areas of large utilities. In addition, in using an alternative fuel, the participating utilities have already exposed themselves to changing concepts and practices in their industry.

Mock, John E.

1992-03-24T23:59:59.000Z

370

Development of Optical Technologies for Monitoring Moisture and Particulate in Geothermal Steam  

SciTech Connect

The results of an investigation directed at evaluating the feasibility of using optical measurements for the real-time monitoring moisture and particulate in geothermal steam is described. The measurements exploit new technologies that have been developed for the telecommunications industry and includes new solid state laser devices, large-bandwidth, high-sensitivity detectors and low loss optical fiber compo-nents. In particular, the design, fabrication, and in-plant testing of an optical steam monitor for the detection of moisture is presented. The measurement principle is based upon the selective absorption of infrared energy in response to the presence of moisture. Typically, two wavelengths are used in the measurements: a wavelength that is strongly absorbed by water and a reference wavelength that is minimally influenced by water and steam which serves as a reference to correct for particulate or droplet scattering. The two wavelengths are chosen to be as close as possible in order to more effectively correct for scattering effects. The basic instrumentation platform developed for the in-situ monitoring of steam moisture can be modified and used to perform other measurements of interest to plant operators. An upgrade that will allow the instrument to be used for the sensitive detection of particulate in process streams has been investigated. The new monitor design involves the use of laser diodes that are much less sensitive to water and water vapor and more sensitive to scattering phenomena, as well as new processing techniques to recover these signals. The design reduces the averaging time and sampling volume, while increasing the laser probe power, enhancing particulate detection sensitivity. The design concept and initial laboratory experiments with this system are also reported.

J. K. Partin

2006-08-01T23:59:59.000Z

371

Geothermal energy program summary  

DOE Green Energy (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

372

Three dimensional interpretations of single-well electromagnetic data for geothermal applications  

E-Print Network (OSTI)

Energy, Office of Wind and Geothermal Technologies of theTwenty-Ninth Workshop on Geothermal Reservoir EngineeringELECTROMAGNETIC DATA FOR GEOTHERMAL APPLICATIONS Hung-Wen

Tseng, Hung-Wen; Lee, Ki Ha

2004-01-01T23:59:59.000Z

373

Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA  

E-Print Network (OSTI)

Energy Sciences and Office of Geothermal Technologies underconcentrations in Long Valley geothermal waters discriminateand wells from the geothermal field and a nearby exploratory

Brown, Shaun

2010-01-01T23:59:59.000Z

374

Geothermal energy: 1992 program overview  

DOE Green Energy (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

375

APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS  

Science Conference Proceedings (OSTI)

Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for the distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.

Pierce, R.; Peters, T.

2011-11-01T23:59:59.000Z

376

Geothermal fracture stimulation technology. Volume II. High-temperature proppant testing  

DOE Green Energy (OSTI)

Data were obtained from a newly built proppant tester, operated at actual geothermal temperatures. The short term test results show that most proppants are temperature sensitive, particularly at the higher closure stresses. Many materials have been tested using a standard short-term test, i.e., fracture-free sand, bauxite, and a resin-coated sand retained good permeability at the high fluid temperatures in brine over a range of closure stresses. The tests were designed to simulate normal closure stress ranges for geothermal wells which are estimated to be from 2000 to 6000 psi. Although the ultra high closure stresses in oil and gas wells need not be considered with present geothermal resources, there is a definite need for chemically inert proppants that will retain high permeability for long time periods in the high temperature formations.

Not Available

1980-07-01T23:59:59.000Z

377

Geothermal Exploration and Assessment Technology Program (review), including a report of the Reservoir Engineering Technical Advisory Group  

DOE Green Energy (OSTI)

The FY 1979 Program, recommended seismic surveys in conjunction with DOE/DGE's industry coupled program in the Northern Basin and Range Province, and the objectives of the Marina del Rey conference are presented. Final reports of six committees which met to define the state-of-the-art in geothermal exploration and to recommend exploration technology development are included. These committees are: structure, stratigraphy, and igneous processes; exploration architecture; electrical methods; seismic methods; thermal methods; water/rock interaction; and reservoir engineering. (MHR)

Nielson, D.L. (ed.)

1979-12-01T23:59:59.000Z

378

COMPREHENSIVE LEGACY MANAGEMENT  

Office of Legacy Management (LM)

Revision 7.0 Final This page intentionally left blank LMSFERS03496-7.0 Comprehensive Legacy Management and Institutional Controls Plan Volumes I and II Fernald Preserve Fernald,...

379

Geothermal Drilling Organization  

DOE Green Energy (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

380

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

Science Conference Proceedings (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal well technology and potential applications of Subterrene devices: a status review  

DOE Green Energy (OSTI)

The past, present, and some future aspects of the geothermal energy (GTE) industry have been reviewed with special attention given to geothermal well-drilling problems. Geothermal wells can be produced with present equipment and methods, mostly derived from the oil and gas industry, but costs are relatively high. Short-term improvements are needed in drilling rigs and auxiliary surface equipment, drill bits, bit-bearing lubrication systems, tubular goods, high-temperature muds and cements, logging and downhole sampling equipment, directional control equipment applicable to geothermal conditions,and in the use of a data bank for GTE wells to help optimize drilling programs. Two types of wells are needed: (1) small-diameter wells for exploration, reinjection, and disposal purposes, and (2) larger-diameter wells for production. To develop and greatly expand the use of GTE in the future, new methods and equipment are needed to penetrate hard abrasive rocks and to provide hole stabilization and support at the very high temperatures and other extreme conditions which can be encountered in GTE wells. New Los Alamos Scientific Laboratory concepts for penetrating rocks by use of rock-melting processes (called Subterrene concepts) offer potential solutions to some difficult GTE well-production problems.

Altseimer, J.H.

1974-07-01T23:59:59.000Z

382

The legacy of Cf-252 operations at Savannah River Technology Center: Continuous releases of radioiodine to the atmosphere  

Science Conference Proceedings (OSTI)

The iodine isotopes I-132, 1-133, I-134, and I-135, which have half-lives ranging from 53 minutes to 21 hours, are measured in the atmospheric effluent from the Savannah River Technology Center (SRTC) at the Savannah River Site (SRS) near Aiken, South Carolina. SRS is operated by Westinghouse Savannah River Company for the US Department of Energy (DOE). The isotopes` release rates range from 10 to 300 microcuries per week compared to the rate. The resulting annual dose from all iodine isotopes is minor; it comprises 0.01 percent of the total offsite dose due to atmospheric releases from SRS in 1990. Circumstantial evidence indicates the radioiodine originates from traces of unencapsulated Cf-252. The determination that spontaneous fission of Cf-252 is the source of the radioiodine has several ramifications. Radioactive fission-product isotopes of the noble gas elements krypton and xenon must also be released. Noble gases are more volatile and mobile than iodine. Also, the released iodine isotopes decay to xenon isotopes. The noble gases decay to non-gaseous elements that are transported along with radioiodine to the terrestrial environment by deposition from the SRTC plume. Only Sr-89 is believed to accumulate sufficiently in the environment to approach detectable levels. Given similar conditions in earlier years, releases of short-lived radioiodine have occurred undetected in routine monitoring since the early 1970s. Release rates 20 years ago would have been 200 times greater than current release rates. This report documents preliminary experiments conducted by SRTC and Environmental Monitoring Section (EMS) scientists. The release process and the environmental impact of fission products from Cf-252 should be thoroughly researched.

Kantelo, M.V.; Crandall, B.S.

1992-12-31T23:59:59.000Z

383

The legacy of Cf-252 operations at Savannah River Technology Center: Continuous releases of radioiodine to the atmosphere  

Science Conference Proceedings (OSTI)

The iodine isotopes I-132, 1-133, I-134, and I-135, which have half-lives ranging from 53 minutes to 21 hours, are measured in the atmospheric effluent from the Savannah River Technology Center (SRTC) at the Savannah River Site (SRS) near Aiken, South Carolina. SRS is operated by Westinghouse Savannah River Company for the US Department of Energy (DOE). The isotopes' release rates range from 10 to 300 microcuries per week compared to the rate. The resulting annual dose from all iodine isotopes is minor; it comprises 0.01 percent of the total offsite dose due to atmospheric releases from SRS in 1990. Circumstantial evidence indicates the radioiodine originates from traces of unencapsulated Cf-252. The determination that spontaneous fission of Cf-252 is the source of the radioiodine has several ramifications. Radioactive fission-product isotopes of the noble gas elements krypton and xenon must also be released. Noble gases are more volatile and mobile than iodine. Also, the released iodine isotopes decay to xenon isotopes. The noble gases decay to non-gaseous elements that are transported along with radioiodine to the terrestrial environment by deposition from the SRTC plume. Only Sr-89 is believed to accumulate sufficiently in the environment to approach detectable levels. Given similar conditions in earlier years, releases of short-lived radioiodine have occurred undetected in routine monitoring since the early 1970s. Release rates 20 years ago would have been 200 times greater than current release rates. This report documents preliminary experiments conducted by SRTC and Environmental Monitoring Section (EMS) scientists. The release process and the environmental impact of fission products from Cf-252 should be thoroughly researched.

Kantelo, M.V.; Crandall, B.S.

1992-01-01T23:59:59.000Z

384

Geothermal induced seismicity program plan  

DOE Green Energy (OSTI)

A plan for a National Geothermal Induced Seismicity Program has been prepared in consultation with a panel of experts from industry, academia, and government. The program calls for baseline seismic monitoring in regions of known future geothermal development, continued seismic monitoring and characterization of earthquakes in zones of geothermal fluid production and injection, modeling of the earthquake-inducing mechanism, and in situ measurement of stresses in the geothermal development. The Geothermal Induced Seismicity Program (GISP) will have as its objectives the evaluation of the seismic hazard, if any, associated with geothermal resource exploitation and the devising of a technology which, when properly utilized, will control or mitigate such hazards.

Not Available

1981-03-01T23:59:59.000Z

385

Office of Legacy Management | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Bluewater, New Mexico, Disposal Site Read more Central Nevada Test Area, Nevada Read more Rocky Flats, Colorado, Site Read more Abandoned Uranium Mines Report to Congress Read more Tuba City, Arizona, Disposal Site Read more Announcements DOE has launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and a highly skilled workforce. The U.S. Department of Energy Office of Legacy Management has prepared the July-September 2013 Program Update newsletter. Registration is now open for the 2014 National Environmental Justice Conference &Training Program. For more information see our English or

386

Office of Legacy Management | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Legacy Management Office of Legacy Management Bluewater, New Mexico, Disposal Site Read more Central Nevada Test Area, Nevada Read more Rocky Flats, Colorado, Site Read more Abandoned Uranium Mines Report to Congress Read more Tuba City, Arizona, Disposal Site Read more Announcements DOE has launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and a highly skilled workforce. The U.S. Department of Energy Office of Legacy Management has prepared the October-December 2013 Program Update newsletter. Registration is now open for the 2014 National Environmental Justice Conference &Training Program. For more information see our English or

387

Geothermal: Sponsored by OSTI -- Materials selection for geothermal...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

388

Geothermal: Sponsored by OSTI -- Low-temperature geothermal resources...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

389

Geothermal: Sponsored by OSTI -- Tenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

390

Geothermal: Sponsored by OSTI -- Geothermal direct-heat utilization...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

391

Geothermal: Sponsored by OSTI -- Nevada low-temperaure geothermal...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

392

Geothermal: Sponsored by OSTI -- EVALUATION OF A GEOTHERMAL PROSPECT...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

393

Overview: A Legacy of Uranium Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

A Legacy of Uranium Enrichment Depleted Uranium is a Legacy of Uranium Enrichment Cylinders Photo Next Screen Management Responsibilities...

394

Postgraduate Certificate in Geothermal Energy  

E-Print Network (OSTI)

Postgraduate Certificate in Geothermal Energy Technology Department of Engineering Science to study for the PGCertGeothermTech will require a visa. Details about how to obtain a visa to study in New your visa. Geothermal Training in New Zealand New Zealand is a beautiful country in the South Pacific

Auckland, University of

395

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report  

Science Conference Proceedings (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

396

Technology Commercialization Showcase - EERE Commercialization Office  

Geothermal Energy Program; Hydrogen, Fuel Cells and Infrastructure Technologies Program; Industrial Technology Program; Vehicle Technologies Program;

397

On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent  

E-Print Network (OSTI)

Twenty- Ninth Workshop on Geothermal Reservoir Engineering,media: Applications to geothermal injectivity and CO 2Renewable Energy, Office of Geothermal Technologies, of the

Xu, T.

2009-01-01T23:59:59.000Z

398

Geothermal technology development program. Quarterly progress report, April-June 1981  

Science Conference Proceedings (OSTI)

The status of ongoing research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology is reported. (MHR)

Kelsey, J.R. (ed.)

1981-10-01T23:59:59.000Z

399

Geothermal Technology Development Program annual progress report, October 1982-September 1983  

DOE Green Energy (OSTI)

The program emphasizes research in rock penetration mechanics, fluid technology, borehold mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1984-05-01T23:59:59.000Z

400

Chemical Impact of Elevated CO2 on Geothermal Energy Production...  

Open Energy Info (EERE)

a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Organisational scenarios and legacy systems  

Science Conference Proceedings (OSTI)

A legacy system is made up of technical components and social factors (such as software, people, skills, business processes) which no longer meet the needs of the business environment. The study of legacy systems has tended to be biased towards a software ... Keywords: Business process, Legacy system, Scenario, Software

Carole Brooke; Magnus Ramage

2001-10-01T23:59:59.000Z

402

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

403

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

404

Geothermal fracture stimulation technology. Volume 1. Fracturing proppants and their properties  

DOE Green Energy (OSTI)

A review of previously published literature on proppant permeability is presented. This data will be used in the subsequent phases of the geothermal stimulation project. Much information comes from the oil and gas industry which has tested various proppants during the past thirty years over a range of different closure stresses at the lower temperatures found in oil reservoirs. The historical development of proppants is summarized and reviewed and a variety of data on proppants found in today's literature is presented. Also included are several standard test procedures and equipment setups used in measuring proppant properties and in proppant testing.

Not Available

1980-07-01T23:59:59.000Z

405

DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)  

DOE Green Energy (OSTI)

This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

Anderson, E. R.

2010-12-14T23:59:59.000Z

406

Geothermal Energy: Current abstracts  

DOE Green Energy (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

407

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

408

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

409

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

410

Geothermal News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » News & Blog » Geothermal News and Blog About Us » News & Blog » Geothermal News and Blog Geothermal News and Blog Blog This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 1:31 PM This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. Read The Full Story Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

411

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

412

NREL: Financing Geothermal Power Projects - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

413

GROW1: a crop growth model for assessing impacts of gaseous pollutants from geothermal technologies  

DOE Green Energy (OSTI)

A preliminary model of photosynthesis and growth of field crops was developed to assess the effects of gaseous pollutants, particularly airborne sulfur compounds, resulting from energy production from geothermal resources. The model simulates photosynthesis as a function of such variables as irradiance, CO/sub 2/ diffusion resistances, and internal biochemical processes. The model allocates the products of photosynthesis to structural (leaf, stem, root, and fruit) and storage compartments of the plant. The simulations encompass the entire growing season from germination to senescence. The model is described conceptually and mathematically and examples of model output are provided for various levels of pollutant stress. Also, future developments that would improve this preliminary model are outlined and its applications are discussed.

Kercher, J.R.

1977-03-17T23:59:59.000Z

414

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

415

Geothermal technology publications and related reports: a bibliography, January-December 1983  

DOE Green Energy (OSTI)

This annotated bibliography covers the work of Sandia National Laboratories in the following areas: rock penetration mechanics, fluid technology, borehole mechanics, diagnostic technology, and systems analysis/program summaries. (MHR)

Cooper, D.L. (ed.)

1984-09-01T23:59:59.000Z

416

Geothermal Energy Development annual report 1979  

DOE Green Energy (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

417

Geothermal development in Thailand  

SciTech Connect

San Kampaeng and Fang geothermal areas are considered areas of interest for exploitation of geothermal energy. The technologies of exploration and development have been studied by Thai scientists and engineers during the past four years. The first geothermal deep exploration well was drilled, in cooperation with Japan International Cooperation Agency (JICA), in the San Kampaeng geothermal area. In 1985, supplementary work is planned to define the deep structural setting in greater detail before starting to drill the next deep exploration well. In Fang geothermal area some shallow exploitation wells have been drilled to obtain fluid to feed a demonstration binary system of 120 kWe, with the technical cooperation of BRGM and GEOWATT, France.

Praserdvigai, S.

1986-01-01T23:59:59.000Z

418

Geothermal Loan Guaranty Program  

DOE Green Energy (OSTI)

Presently the US imports a large proportion of its petroleum requirements. This dependence on foreign petroleum has had a major impact on our economy. As a result, the Federal government is sponsoring programs to offset this foreign reliance by conservation of oil and gas, conversion of petroleum using facilities to coal and nuclear energy and the development of alternate sources of energy. One of the most acceptable alternate resources is geothermal. It offers an environmentally sound energy resource, can be developed at reasonable cost in comparison to other forms of energy and has a long term production capacity. On September 3, 1974, the Geothermal Energy Research Development and Demonstration Act was enacted to further the research, development and demonstration of geothermal energy technologies. This Act also established the Geothermal Loan Guaranty Program to assist in the financing of geothermal resource development, both electrical and non-electrical. The highlights of that Guaranty Program are detailed in this report.

None

1977-11-17T23:59:59.000Z

419

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

420

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

Pruess, Karsten

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Energy Program Overview: Fiscal Year 1991  

DOE Green Energy (OSTI)

In FY 1990-1991, the Geothermal Energy Program made significant strides in hydrothermal, geopressured brine, hot dry rock, and magma research, continuing a 20-year tradition of advances in geothermal technology.

Not Available

1991-12-01T23:59:59.000Z

422

Geothermal Information Dissemination and Outreach  

SciTech Connect

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

423

Utah/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Geothermal < Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Utah Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Utah Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Cove Fort Geothermal Project Oski Energy LLC 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Phase II - Resource Exploration and Confirmation Cove Fort Geothermal Area Northern Basin and Range Geothermal Region Drum Mountain Geothermal Project Raser Technologies Inc Delta, Utah 0 MW0 kW

424

Geothermal Elastomeric Materials Technology-Transfer (GEM-TT) Program. Final report  

DOE Green Energy (OSTI)

The primary objective, to promote broad use of the earlier developed elastomers technology appears to have been successfully accomplished. The expertise was transferred to three rubber products manufacturers, and is currently commercially available. Significant substantiation of the viability of the technology was fostered through supporting and tracking numerous test efforts in various industry laboratories and out in the field. Numerous papers were presented on the technology and information was also disseminated verbally and by providing data packages. The formal and informal technology transfer effort are described. Several secondary spin-offs also resulted. Steps toward a better understanding of the complex technology transfer process were achieved. The experience provides a data point illustrating one way that technology transfer can be accomplished and a data point which can be used to evaluate its effectiveness. And finally studies were made assessing the potential of elastomers to perform at even higher temperatures.

Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.

1982-12-01T23:59:59.000Z

425

Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981  

SciTech Connect

Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

426

Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report  

DOE Green Energy (OSTI)

Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

Not Available

1983-09-01T23:59:59.000Z

427

Geothermal technology publications and related reports: a bibliography, January 1977-December 1980  

DOE Green Energy (OSTI)

This bibliograhy lists titles, authors, abstracts, and reference information for publications which have been published in the areas of drilling technology, logging instrumentation, and magma energy during the period 1977-1980. These publications are the results of work carried on at Sandia National Laboratories and their subcontractors. Some work was also done in conjunction with the Morgantown, Bartlesville, and Pittsburgh Energy Technology Centers.

Hudson, S.R. (ed.)

1981-04-01T23:59:59.000Z

428

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

429

Geothermal program review 16: Proceedings. A strategic plan for geothermal research  

DOE Green Energy (OSTI)

The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

NONE

1998-12-31T23:59:59.000Z

430

Legacy Management Sites | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Legacy Management Sites Legacy Management Sites Alaska Puerto Rico Continental US Click on a site for more information. The Energy Department is committed to managing its...

431

Advanced Geothermal Turbodrill  

DOE Green Energy (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

432

Federal assistance program. Geothermal technology transfer. Project status report, May 1986  

DOE Green Energy (OSTI)

Progress for the month of May, 1986, is described. Projects include evaluation of direct heating of greenhouses and other businesses, technology transfer to consultants, developers and users, and program monitor activities. (ACR)

Lienau, P.J.; Culver, G.

1986-05-01T23:59:59.000Z

433

Early growth technology analysis : case studies in solar energy and geothermal energy  

E-Print Network (OSTI)

Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, ...

Kaya Firat, Ayse

2010-01-01T23:59:59.000Z

434

Geothermal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Geothermal News RSS April 12, 2013 Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. September 8, 2011 Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and

435

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Heating and Cooling Technologies Geothermal Heating and Cooling Technologies The Policymakers' Guidebook for Geothermal Heating and Cooling Technologies outlines fives steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal heating and cooling technologies such as ground source heat pumps and direct-use geothermal applications. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential Step 1: Assess the Local Industry and Resource Potential for Geothermal Heating and Cooling Increasing technology deployment requires a baseline level of knowledge

436

Geothermal Energy Program overview  

SciTech Connect

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

1991-12-01T23:59:59.000Z

437

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

438

Geothermal Energy; (USA)  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

439

Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR) Geothermal Energy Technology  

DOE Green Energy (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components. The economic models reviewed include the following studies sponsored by Electric Power Research Institute (EPRI)-Cummings and Morris (1979), Los Alamos National Laboratory (LANL)-Murphy, et al. (1982), United Kingdom (UK)-Shock (1986), Japan-Hori, et al. (1986), Meridian-Entingh (1987) and Bechtel (1988). A general evaluation of the technical feasibility of HDR technology components was also conducted in view of their importance in establishing drilling and reservoir performance parameters required for any economic assessment. In this review, only economic projections for base load electricity produced from HDR systems were considered. Bases of 1989 collars ($) were selected to normalize costs. Following the evaluation of drilling and reservoir performance, power plant choices and cost estimates are discussed in section 6 of the report. In Section 7, the six economics studies cited above are reviewed and compared in terms of their key resource, reservoir and plant performance, and cost assumptions. Based on these comparisons, the report estimates parameters for three composite cases. Important parameters include: (1) resource quality-average geothermal gradient (C/km) and well depth, (2) reservoir performance-effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components-drilling, reservoir formation, and power plant costs and (4) economic factors-discount and interest rates, taxes, etc. In Section 8, composite case conditions were used to reassess economic projections for HDR-produced electricity. In Section 9, a generalized economic model for HDR-produced electricity is presented to show the effects of resource grade, reservoir performance parameters, and other important factors on projected costs. A sensitivity and uncertainty analysis using this model is given in Section 10. Section 11 treats a modification of the economic model for predicting costs for direct, non-electric applications. HDR economic projections for the U.S. are broken down by region in Section 12. In Section 13, the report provides recommendations for continued research and development to reduce technical and economic uncertainties relevant to the commercialization of HDR. [DJE-2005

Tester, Jefferson W.; Herzog, Howard J.

1990-07-01T23:59:59.000Z

440

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Digital artifacts as legacy: exploring the lifespan and value of digital data  

Science Conference Proceedings (OSTI)

Legacy is the meaningful and complex way in which information, values, and possessions are passed on to others. As digital systems and information become meaningfully parts of people's everyday and social relationships, it is essential to develop new ... Keywords: design, digital artifacts, inheritance, interviews, legacy, reflective design, speculative design, technology probes

Rebecca Gulotta; William Odom; Jodi Forlizzi; Haakon Faste

2013-04-01T23:59:59.000Z

442

Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan  

Science Conference Proceedings (OSTI)

Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

Not Available

1994-12-31T23:59:59.000Z

443

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

444

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Environment Geothermal/Environment < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

445

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

446

Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment  

DOE Green Energy (OSTI)

This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

Nancy Moller Weare

2006-07-25T23:59:59.000Z

447

Geothermal energy. A national proposal for geothermal resources research  

DOE Green Energy (OSTI)

Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

Denton, J.C. (ed.)

1972-01-01T23:59:59.000Z

448

Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology  

E-Print Network (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

Tester, Jefferson W.

1990-01-01T23:59:59.000Z

449

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

450

Strategic plan for the geothermal energy program  

SciTech Connect

Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

1998-06-01T23:59:59.000Z

451

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

452

Property:Geothermal/Partner1Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Geothermal/Partner1Website Property Type URL Description Partner 1 Website (URL) Pages using the property "Geothermal/Partner1Website" Showing 25 pages using this property. (previous 25) (next 25) A Alum Innovative Exploration Project Geothermal Project + http://www.spectir.com/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.fpl.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.apexhipoint.com/ + Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project + http://www.unr.edu/Geothermal/ +

453

Unearthing Geothermal's Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unearthing Geothermal's Potential Unearthing Geothermal's Potential Unearthing Geothermal's Potential September 16, 2010 - 12:33pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Our latest geothermal technologies awards are for those who think outside of the box (and below the surface). Secretary of Energy Steven Chu announced $20 million towards the research and development of non-conventional geothermal energy technologies in three areas: low temperatures fluids, geothermal fluids recovered from oil and gas wells and highly pressurized geothermal fluids. As the Secretary said, these innovative projects have the potential to expand the use of geothermal energy to more areas around the country. Low temperature resources are widely available across the country and offer

454

Geothermal: Sponsored by OSTI -- Chlorite Dissolution Kinetics...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

455

Geothermal: Sponsored by OSTI -- Coordinating Permit Offices...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

456

Well descriptions for geothermal drilling  

DOE Green Energy (OSTI)

Generic well models have been constructed for eight major geothermal resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. They were made for and have been used to evaluate the impacts of potential new technologies. Their nature, their construction, and their validation are discussed.

Carson, C.C.; Livesay, B.J.

1981-01-01T23:59:59.000Z

457

Advanced Condenser Boosts Geothermal Power Plant Output (Fact ...  

... Indonesia, and Turkey. Promising greater efficiency and reduced costs ADCC technology holds great promise for geothermal power plants seeking ...

458

Geothermal Heat Pumps: Market Status, Barriers to Adoption, and...  

Open Energy Info (EERE)

Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Market analysis, Technology characterizations Resource Type: Guidemanual Website:...

459

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located several miles deep into the Earth.[2][3]

460

Office of Legacy Management Buildings Included on EMS Reports...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Buildings Included on EMS Reports Office of Legacy Management Buildings Included on EMS Reports Office of Legacy Management Buildings Included on EMS...

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Office of Legacy Management  

Office of Legacy Management (LM)

Energy Energy Office of Legacy Management JUL 1 0 2008 Alonso Ramirez, Scientific Director EI Verde Research Station Institute for Tropical Ecosystem Studies University of Puerto Rico P.o. Box 21910 San Juan, PR 00931 .Subject: Regulatory Status of Study Area 4 Dear Dr. Ramirez: I want to thank you and your staff, especially John Bithom for taking time to escort us to Study Area 4 several weeks ago. While planning the visit to the EI Verde Research Station, we mentioned that the radioactive materials license for the tree in Study Area 4 was terminated. Termination was based on radiological conditions meeting criteria for protectiveness. At that time, we sent by email the application to amend the University of Puerto Rico radioactive materials license, which we

462

Baseline System Costs for 50.0 MW Enhanced Geothermal System...  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

463

Electricity Transmission and Distribution Technologies ...  

Energy Analysis; Energy Storage; Geothermal; ... For more information about these technologies, ... Marketing Summaries: TAG CLOUD:

464

GEOTHERMAL ENERGY PROGRAM - Home - Energy Innovation Portal  

28 geothermal energy program allan jelacic program manager allan.jelacic@ee.doe.gov (202) 586-6054 venture capital technology showcase aug 21 and 22, 2007

465

The Legacy of Oil Spills  

E-Print Network (OSTI)

010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

466

Geothermal resource data base: Arizona  

DOE Green Energy (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

467

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

468

Federal Geothermal Research Program Update Fiscal Year 1999  

DOE Green Energy (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

Not Available

2004-02-01T23:59:59.000Z

469

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

470

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

471

Geothermal hydrogen sulfide removal  

DOE Green Energy (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

472

Geothermal energy program summary  

DOE Green Energy (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

473

Geothermal energy program summary  

SciTech Connect

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

1990-01-01T23:59:59.000Z

474

Geothermal Program Review IV: proceedings  

DOE Green Energy (OSTI)

The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

Not Available

1985-01-01T23:59:59.000Z

475

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

476

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

477

Property:Geothermal/Awardees | Open Energy Information  

Open Energy Info (EERE)

Awardees Awardees Jump to: navigation, search Property Name Geothermal/Awardees Property Type String Description Awardees (Company / Institution) Pages using the property "Geothermal/Awardees" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Montana Tech of The University of Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + New Mexico Institute of Mining and Technology +

478

American Legacy Foundation, The relationship between Cigarette Use and Other Tobacco Products. Results from The 2000 National Tobacco Survey  

E-Print Network (OSTI)

Legacy staff and colleagues from RTI, Legacys Research andon Smoking and Health. *RTI American Legacy Foundation RAND

Jeanne S Ringel, PhD; Jeffrey Wasserman, PhD; Rosalie Liccardo Pacula, PhD

2003-01-01T23:59:59.000Z

479

Pinpointing America's Geothermal Resources with Open Source Data |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

480

Pinpointing America's Geothermal Resources with Open Source Data |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

Note: This page contains sample records for the topic "geothermal technologies legacy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network (OSTI)

costs. #12;15 Pre-feasibility investigation of water and energy options utilising geothermal energy program to investigate and encourage the use of geothermal and waste heat resources for heat-driven pre with an economic, technical and market analysis of various scales of technology application where geothermal energy

Scheel, David

482

Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

McLarty, Lynn; Entingh, Daniel

2000-09-29T23:59:59.000Z

483

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

484

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

485

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

486

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

487

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

488

Federal Geothermal Research Program Update - Fiscal Year 2001  

DOE Green Energy (OSTI)

This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

Laney, P.T.

2002-08-31T23:59:59.000Z

489

Development of geothermal-well-completion systems. Final report  

DOE Green Energy (OSTI)

Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

Nelson, E.B.

1979-01-01T23:59:59.000Z

490

Geothermal industry assessment  

DOE Green Energy (OSTI)

An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

Not Available

1980-07-01T23:59:59.000Z

491

Federal Geothermal Research Program Update - Fiscal Year 2004  

DOE Green Energy (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Patrick Laney

2005-03-01T23:59:59.000Z

492

Federal Geothermal Research Program Update Fiscal Year 2004  

DOE Green Energy (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Not Available

2005-03-01T23:59:59.000Z

493

Colorado State Capitol Building Geothermal Program Geothermal Project |  

Open Energy Info (EERE)

State Capitol Building Geothermal Program Geothermal Project State Capitol Building Geothermal Program Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Colorado State Capitol Building Geothermal Program Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This building is approximately 100 years old, and much of the building is heated with expensive district steam and lacks sufficient central cooling. The requested funding pertains to Topic Area 1 Technology Demonstration Projects. Funding would be used for Phase I - Feasibility Study and Engineering Design, Phase II - Installation and Commissioning of Equipment, and Phase III - Operation, Data Collection, and Marketing. Geothermal energy provided by an open-loop ground source heat pump system and upgrades to the building HVAC systems will reduce consumption of electricity and utility steam created with natural gas. Additionally, comfort, operations and maintenance, and air quality will be improved as a result. It is anticipated that the open loop GHP system will require a 500-650 gpm water flow rate.

494

Comprehensive Evaluation of the Geothermal Resource Potential within the  

Open Energy Info (EERE)

Comprehensive Evaluation of the Geothermal Resource Potential within the Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed project will provide state-of-the-art characterization information and a detailed analysis of the geothermal resource potential at the Astor Pass site. The information gained during this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new technologies and geothermal data to the geothermal industry and to create and preserve nearly three dozen jobs that will serve to stimulate the economy in accordance with the American Recovery and Reinvestment Act of 2009.

495

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

496

Economic Impact Analysis for EGS Geothermal Project | Open Energy  

Open Energy Info (EERE)

Impact Analysis for EGS Geothermal Project Impact Analysis for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Economic Impact Analysis for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This proposed study will involve studying the impacts associated with jobs, energy and environment (as a result of investments in geothermal industry and specific EGS technologies) through the creation of a Geothermal Economic Calculator tool (GEC). The study will cover Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. The GEC created will be capable of helping end users (public and the industry) perform region specific economic impact analyses using a web platform that will be hosted by EGI for different geothermal technologies under EGS that will be used for electric power production.

497

Geothermal programs at Lawrence Livermore National Laboratory  

DOE Green Energy (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

498

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

499

DOE - Office of Legacy Management --  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

500

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic