Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

2

Modeling of geothermal systems  

DOE Green Energy (OSTI)

During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1985-03-01T23:59:59.000Z

3

Geothermal Heat Pump Systems: Applications and Technology Development  

Science Conference Proceedings (OSTI)

This report discusses a hybrid geothermal heat pump system, an efficient, all-electric heating and cooling option for small and large commercial buildings. In this system, the ground loop heat exchanger is sized for winter heating and supplemented by auxiliary heat rejection devices (such as fluid coolers or cooling towers) for summer operation that prevent performance-impeding heat buildup in the earth surrounding the ground loop.

2003-11-03T23:59:59.000Z

4

Estimating Well Costs for Enhanced Geothermal System Applications  

SciTech Connect

The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

K. K. Bloomfield; P. T. Laney

2005-08-01T23:59:59.000Z

5

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

6

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

7

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

8

Numerical modeling of geothermal systems with applications to Krafla, Iceland and Olkaria, Kenya  

SciTech Connect

The use of numerical models for the evaluation of the generating potential of high temperature geothermal fields has increased rapidly in recent years. In the present paper a unified numerical approach to the modeling of geothermal systems is discussed and the results of recent modeling of the Krafla geothermal field in Iceland and the Olkaria, Kenya, are described. Emphasis is placed on describing the methodology using examples from the two geothermal fields.

Bodvarsson, G.S.

1987-08-01T23:59:59.000Z

9

Geothermal: Sponsored by OSTI -- Feasibility of geothermal application...  

Office of Scientific and Technical Information (OSTI)

of geothermal applications for greenhousing and space heating on the Pine Ridge Indian Reservation, South Dakota Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

10

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

11

Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid geothermal heat pump systems offer many of the benefits of full geothermal systems but at lower installed costs. A hybrid geothermal system combines elements of a conventional water loop heat pump system in order to reduce the geothermal loop heat exchanger costs, which are probably the largest cost element of a geothermal system. These hybrid systems have been used successfully where sufficient ground space to install large heat exchangers for full geothermal options was unavailable, or where the...

2009-12-21T23:59:59.000Z

12

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

13

Direct application of geothermal energy  

DOE Green Energy (OSTI)

An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

Reistad, G.M.

1980-01-01T23:59:59.000Z

14

Residential Geothermal Systems Credit  

Energy.gov (U.S. Department of Energy (DOE))

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

15

Flow measurement and characterization in shallow geothermal systems used for downhole heat exchanger applications  

DOE Green Energy (OSTI)

In the largest non-electrical application of geothermal energy presently occurring in the United States, over 400 relatively shallow wells are being used for extraction of energy with downhole heat exchangers. Despite this large amount of application, the exact nature of the flows in the wells has not before been characterized. Knowledge to date on the nature of flows in the systems is summarized, and an ongoing experimental program for making appropriate downhole measurements to determine flows is described in detail. Flow characterization was a principal object of this study. Horizontal cross-flows of geothermal fluid may occur at upper and/or lower levels in the well where perforations in the well casing are situated. In addition, natural convection may induce vertical flows within the well casing which would be influenced by the presence or absence of a heat exchanger. Three main aspects of the experimental program are reported on: (i) a review of potentially applicable methods for measuring vertical and horizontal flows in wells, (ii) the limitations and preliminary results of using a vane anemometer for measuring vertical flows, and (iii) the description of the selected hot-film probe, its associated pressurized calibration facility, and means of making well measurements.

Churchill, D.; Culver, G.G.; Reistad, G.M.

1977-01-01T23:59:59.000Z

16

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

17

Geothermal Technologies Program: Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

Not Available

2004-08-01T23:59:59.000Z

18

Multielement geochemistry of solid materials in geothermal systems and its applications. Part 1. Hot-water system at the Roosevelt Hot Springs KGRA, Utah  

DOE Green Energy (OSTI)

Geochemical studies of the geothermal system at Roosevelt Hot Springs, Utah, have led to development of chemical criteria for recognition of major features of the system and to a three-dimensional model for chemical zoning in the system. Based on this improved level of understanding several new or modified geochemical exploration and assessment techniques have been defined and are probably broadly applicable to evaluation of hot-water geothermal systems. The main purpose of this work was the development or adaptation of solids geochemical exploration techniques for use in the geothermal environment. (MHR)

Bamford, R.W.; Christensen, O.D.; Capuano, R.M.

1980-02-01T23:59:59.000Z

19

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

20

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

22

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

23

A Phase-Partitioning Model for CO2–Brine Mixtures at Elevated Temperatures and Pressures: Application to CO2-Enhanced Geothermal Systems  

E-Print Network (OSTI)

D.W. : A hot dry rock geothermal energy concept utilizingtwenty-?fth workshop on geothermal reservoir engineering,the development of enhanced geothermal systems? In: Paper

Spycher, Nicolas; Pruess, Karsten

2010-01-01T23:59:59.000Z

24

Geothermal Data from the National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

25

Geothermal direct applications hardware systems development and testing. 1979 summary report  

DOE Green Energy (OSTI)

Activities performed during calendar year 1979 for the hardware system development and testing task are presented. The fluidized bed technology was applied to the drying of potato by-products and to the exchange of heat to air in the space heating experiment. Geothermal water was flashed to steam and also used as the prime energy source in the steam distillation of peppermint oil. Geothermal water temperatures as low as 112.8/sup 0/C were utilized to distill alcohol from sugar beet juice, and lower temperature water provided air conditioning through an absorption air conditioning system. These experiments are discussed.

Keller, J.G.

1980-03-01T23:59:59.000Z

26

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

27

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

28

OIT geothermal system improvements  

Science Conference Proceedings (OSTI)

Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

Lienau, P.J. [Geo-Heat Center, Klamath Falls, OR (United States)

1996-08-01T23:59:59.000Z

29

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

30

Geothermal applications for highway rest areas  

SciTech Connect

A feasibility study, made for the South Dakota Department of Transportation, regarding geothermal applications for highway rest areas is described. This preliminary information indicated that the retrofit of the heating systems in the rest area structures was feasible. Specific design assumptions, equipment selections, costs, and other data are reported. This information is conceptual in nature.

Strawn, J.A.; Engen, I.A.

1982-02-01T23:59:59.000Z

31

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

32

Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems  

Science Conference Proceedings (OSTI)

Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

Stephen L. Karner, Ph.D

2006-06-01T23:59:59.000Z

33

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

34

Evaluation of C-14 as a natural tracer for injected fluids at the Aidlin sector of The Geysers geothermal system through modeling of mineral-water-gas Reactions  

E-Print Network (OSTI)

breakthrough observed in geothermal systems (e.g. , Shook,recharge project, Geysers geothermal field, California, USA,media: Applications to geothermal injectivity and CO 2

Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

2006-01-01T23:59:59.000Z

35

National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry. [Copied from http://www.geothermaldata.org/Home.aspx

36

Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

37

Mathematical Analysis of a Geothermal System.  

E-Print Network (OSTI)

??The issue being examined is to design a more economical and efficient therefore superior geothermal system than currently in use in industry. Current geothermal systems… (more)

Erceg, Ivan P.

2008-01-01T23:59:59.000Z

38

Potential geothermal energy applications for Idaho Elks Rehabilitation Hospital  

SciTech Connect

Several potential applications of geothermal energy for the Idaho Elks Rehabilitation Hospital are outlined. A brief background on the resource and distribution system, is provided; which hospital heating systems should be considered for potential geothermal retrofit is discussed; and technical and economic feasibility are addressed.

Austin, J.C.

1981-11-01T23:59:59.000Z

39

Materials selection guidelines for geothermal energy utilization systems  

DOE Green Energy (OSTI)

This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

Ellis, P.F. II; Conover, M.F.

1981-01-01T23:59:59.000Z

40

Economics of geothermal direct-heat applications  

DOE Green Energy (OSTI)

Cost and production data from five commercial-scale geothermal direct-heat application projects are reviewed. Unit costs of geothermal energy under a variety of assumptions about production levels, costs, tax treatment, financial structure, and cost of capital are calculated and compared to prices of conventional fuels which would be displaced over the life of a geothermal project. Geothermal energy is found to be less costly than distillate fuel oil for all cases examined and cheaper than natural gas in many cases.

Hederman, W.F. Jr.; Cohen, L.A.

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area...

42

Geothermal energy for industrial application  

DOE Green Energy (OSTI)

The types of geothermal resources are reviewed briefly. The uses of geothermal energy are covered under electrical generation and non-electric direct uses. (MHR)

Fulton, R.L.

1979-03-01T23:59:59.000Z

43

Geothermal applications on the Madison (Pahasapa) aquifer system in South Dakota. Final report, October 1, 1976--September 30, 1977  

DOE Green Energy (OSTI)

Pertinent geologic, hydrologic, and chemical data for the Madison Formation underlying western South Dakota are presented in text and in graphic form. A temperature anomaly in west central South Dakota makes 130 to 160/sup 0/F water available at depths of less than 3500 ft. A central geothermal space heating system designed for Midland, South Dakota indicates that by 1980 geothermal heat will be competitive with existing energy sources. Preliminary tests indicate the superiority of 304 or 316 stainless steel for fabrication of equipment to utilize the warm, corrosive Madison water. South Dakota has no statutes governing geothermal resources; under existing water law, geothermal water would be classified as a top priority domestic use. Suggestions are made for state legislation pertaining to the development of geothermal energy.

Gries, J.P.

1977-09-01T23:59:59.000Z

44

Changes related to "Application Of Geothermal Energy To The Supply...  

Open Energy Info (EERE)

icon Changes related to "Application Of Geothermal Energy To The Supply Of Electricity In Rural Areas" Application Of Geothermal Energy To The Supply Of Electricity...

45

Computerized international geothermal information systems  

DOE Green Energy (OSTI)

The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

1980-03-01T23:59:59.000Z

46

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

47

Multi-use geothermal energy system with augmentation for enhanced utilization. Non-electric application of geothermal energy in Susanville, California. Final report  

DOE Green Energy (OSTI)

Aeroject Energy Conversion Company has completed a site specific engineering and economic study of multi-use, augmented geothermal space/water heating and cooling systems in cooperation with the City of Susanville, California. The overall benefits to the City of Susanville, in both the public and private sectors, of using low temperature (150/sup 0/F to 240/sup 0/F) geothermal resources are explored. Options considered, alone and in combination, include heat pumps, fossil-fuel peaking, user load balancing, and cascading from the geothermal system serving the public buildings into a private Park of Commerce development. A range of well temperatures, depths, flow rates, and drilling costs are considered to provide system cost sensitivites and to make the study more widely useful to other sites. A planned development is emphasized for ease of financing and expansion. A preliminary design of Phase A of a Susanville Public Building Energy System and a conceptual design of an integrated park of Commerce, Phase I, are included. This system was designed for a 150/sup 0/F resource and can be used as a model for other communities with similar resource temperatures.

Olsonn, G.K.; Benner-Drury, D.L.; Cunnington, G.R.

1979-02-01T23:59:59.000Z

48

Multi-use geothermal-energy system with augmentation for enhanced utilization: a non-electric application of geothermal energy in Susanville, California. Final report  

DOE Green Energy (OSTI)

A site specific engineering and economic study of multi-use, augmented geothermal space/water heating and cooling systems was completed. The overall benefits to the City of Susanville, in both the public and private sectors, of using low temperature (150/sup 0/F to 240/sup 0/F) geothermal resources are explored. Options considered, alone and in combination, include heat pumps, fossil-fuel peaking, user load balancing, and cascading from the geothermal system serving the public buildings into a private Park of Commerce development. A range of well temperatures, depths, flow rates, and drilling costs are considered to provide system cost sensitivities and to make the study more widely useful to other sites. A planned development is emphasized for ease of financing of expansion. A preliminary design of Phase A of a Susanville Public Building Energy System and a conceptual design of an integrated Park of Commerce, Phase I, are included. This system was designed for a 150/sup 0/F resource and can be used as a model for other communities with similar resource temperatures.

Olson, G.K.; Benner-Drury, D.L.; Cunnington, G.R.

1979-02-01T23:59:59.000Z

49

Groundwater and geothermal: urban district heating applications  

DOE Green Energy (OSTI)

This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

1982-01-01T23:59:59.000Z

50

Resource assessment for geothermal direct use applications  

DOE Green Energy (OSTI)

This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

1984-04-01T23:59:59.000Z

51

Geothermal: Sponsored by OSTI -- Analysis of the application...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Analysis of the application of thermogalvanic cells to the conversion of low grade heat to electricity Geothermal...

52

Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal...  

Open Energy Info (EERE)

Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Active...

53

Conceptual design of a geothermal site development forecasting system  

DOE Green Energy (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

54

Economic assessment of nine geothermal direct use applications. Final report  

DOE Green Energy (OSTI)

This report provides an economic analysis of nine federally-supported geothermal direct heat applications which were part of DOE's Program Opportunity Notice (PON) program. Three of the projects analyzed were user-owned systems, and six were district heating systems. Five of the nine projects are successful from an economic standpoint and the majority of these projects are in areas where geothermal energy has long been used for heating. The results of this analysis indicate that geothermal energy projects can be economic under certain conditions, but these conditions may not be very widespread.

Gordon, L.C.; Breton, T.R.

1983-12-01T23:59:59.000Z

55

Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January 1984-September 1984  

DOE Green Energy (OSTI)

Progress is reported on a project to use the 130/sup 0/F geothermal resource in central Texas. The system for cascading geothermal energy through aquaculture and greenhouse systems was completed and the first shrimp harvest was held. (MHR)

Smith, K.

1984-09-01T23:59:59.000Z

56

New Applications Of Geothermal Gas Analysis To Exploration | Open Energy  

Open Energy Info (EERE)

New Applications Of Geothermal Gas Analysis To Exploration New Applications Of Geothermal Gas Analysis To Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: New Applications Of Geothermal Gas Analysis To Exploration Details Activities (4) Areas (4) Regions (0) Abstract: Gas analysis is applied to exploration at the Lightn~gD ock geothe~aflie ld, which has no surface manifestations, to exploration by drilling, and to monitoring Cerro Prieto - a producing field. It is assumed that reservoir fluids have a different gas chemistry than local groundwater, and that gas chemistry can be interpreted as a three source system, magmatic, crustal, and meteoric, modified by processes of boiling, mixing, and condensation. We show that gas analyses can delineate the location of major structures that serve as fluid conduits, map fluid flow

57

Advanced Electric Submersible Pump Design Tool for Geothermal Applications  

DOE Green Energy (OSTI)

Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

Xuele Qi; Norman Turnquist; Farshad Ghasripoor

2012-05-31T23:59:59.000Z

58

Application of seismic tomographic techniques in the investigation of geothermal systems  

DOE Green Energy (OSTI)

The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

Romero, A.E. Jr.

1995-05-01T23:59:59.000Z

59

Study of Hybrid Geothermal Heat Pump Systems  

Science Conference Proceedings (OSTI)

Hybrid Ground Source Heat Pump systems often combine a traditional geothermal system with either a cooling tower or fluid cooler for heat rejection and a boiler or solar heat collector for heat addition to the loop. These systems offer the same energy efficiency benefits as full geothermal systems to utilities and their customers but at a potentially lower first cost. Many hybrid systems have materialized to resolve heat buildup in full geothermal system loops where loop temperatures continue to rise as ...

2010-12-06T23:59:59.000Z

60

Bibliography: injection technology applicable to geothermal utilization  

DOE Green Energy (OSTI)

This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

Darnell, A.J.; Eichelberger, R.L.

1982-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal systems of northern Nevada  

DOE Green Energy (OSTI)

Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252/sup 0/C, although most are below 190/sup 0/C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64/sup 0/C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. It is suggested that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

Hose, R.K.; Taylor, B.E.

1974-01-01T23:59:59.000Z

62

Geothermal high temperature instrumentation applications  

DOE Green Energy (OSTI)

A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

1998-06-11T23:59:59.000Z

63

Development of drilling foams for geothermal applications  

DOE Green Energy (OSTI)

The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

1980-01-01T23:59:59.000Z

64

Calpine Enhanced Geothermal Systems Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calpine Enhanced Geothermal Systems Project Final Environmental Assessment June 2010 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: RMT...

65

Geographic Information Systems- Tools For Geotherm Exploration...  

Open Energy Info (EERE)

that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly...

66

Prediction of Scaling in Geothermal Systems  

Science Conference Proceedings (OSTI)

One of the main objectives of the DOE Geothermal Program is to improve the efficiency and reliability of geothermal operations so that this renewable form of energy can be integrated into the nation's energy system. Scale formation and other chemical problems associated with energy extraction from high temperature brines frequently inhibit the economical utilization of geothermal resources. In some cases, these chemical problems can be so severe that development of a site must be abandoned after considerable capital investment. The goal of our research efforts is to construct an accurate computer model for describing the chemical behavior of geothermal brines under a wide range of operating conditions. This technology will provide industry a cost-effective means of identifying scaling problems in production and reinjection wells as well as in surface equipment, and also devising and testing methods for well as other uses described in table (1) can contribute significantly to meeting the objectives of the Geothermal Program. The chemical model we have developed to date can simulate calcium carbonate scale formation and gas solubilities in concentrated brines containing sodium, potassium, calcium, chloride and sulfate ions as a function of temperature to 250 C and for variable partial pressure of CO{sub 2}. It can predict the solubility of other scale-forming minerals, such as amorphous silica, gypsum-anhydrite, halite and glasserite, as a function of brine composition to 250 C. The only required input for the model is the temperature, pressure and composition of the brine. Our modeling approach is based on semi-empirical thermodynamic descriptions of aqueous solutions. The model equations are parameterized by careful comparison to a variety of laboratory data. The ability of the resulting models to accurately predict the chemical behavior of even very concentrated high temperature brines is well demonstrated. This ability is an unusual feature of our models which is vital for applications to many important geothermal systems, such as those found in the Imperial Valley of California. In this report, the use of the present version of our model will be illustrated by an application to the prediction of the onset of two phase flow (breakout) in a brine confined by an external pressure. Calculations of this kind are important in assessing the production potential of a geothermal resource because the initiation of breakout in a well bore or power plant is usually simultaneous with the appearance of massive scale deposition. It is therefore necessary to predict breakout and also to assess the consequences of breakout in designing more efficient energy extraction processes. For the geothermal brine for which we have reliable composition and breakout data (East Mesa in California), the model gives results which are essentially identical to the measured values. Calculations also illustrate the importance of contributions of dissolved gases to the total pressure of the brines. Applications to other scale formation problems in Dixie Valley geothermal brines will also be discussed.

Weare, John H.; Moller, Nancy E.

1989-03-21T23:59:59.000Z

67

Nanoengineered surfaces for improvements in energy systems : application to concentrated solar and geothermal power plants  

E-Print Network (OSTI)

The main drawback to renewable energy systems is the higher cost of production compared to competitors such as fossil fuels. Thus, there is a need to increase the efficiency of renewable energy systems in an effort to make ...

Rehn, Alexander W. (Alexander William)

2012-01-01T23:59:59.000Z

68

Three dimensional interpretations of single-well electromagnetic data for geothermal applications  

E-Print Network (OSTI)

Energy, Office of Wind and Geothermal Technologies of theTwenty-Ninth Workshop on Geothermal Reservoir EngineeringELECTROMAGNETIC DATA FOR GEOTHERMAL APPLICATIONS Hung-Wen

Tseng, Hung-Wen; Lee, Ki Ha

2004-01-01T23:59:59.000Z

69

Enhanced Geothermal Systems (EGS) R&D Program, Status Report: Foreign Research on Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

This report reviews enhanced geothermal systems (EGS) research outside the United States. The term ''enhanced geothermal systems'' refers to the use of advanced technology to extract heat energy from underground in areas with higher than average heat flow but where the natural permeability or fluid content is limited. EGS covers the spectrum of geothermal resources from low permeability hydrothermal to hot dry rock.

McLarty, Lynn; Entingh, Daniel

2000-09-29T23:59:59.000Z

70

Application Of Electrical Resistivity And Gravimetry In Deep Geothermal  

Open Energy Info (EERE)

Resistivity And Gravimetry In Deep Geothermal Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The electrical resistivity method has been proven applicable to geothermal exploration because of the direct relationship between fluid and rock temperatures on the one hand electrical conductivity on the other. The problem of exploitation of a surface technique, such as resistivity, to the determination of geothermal gradients or 'hot spots' is complicated by the other geological parameters which affect resistivity: porosity, fluid salinity, cementation factor and clay content. However, by rational

71

Geothermal direct heat applications program summary  

DOE Green Energy (OSTI)

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

72

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

73

Borehole survey instrumentation development for geothermal applications  

DOE Green Energy (OSTI)

The creation and subsequent study of hot dry rock geothermal reservoirs requires sophisticated tools and instruments that can function for relatively long periods of time in the hostile downhole environment. Detection of fracture dimensions and orientation of the geothermal reservoir is critical for the successful completion of the hot dry rock energy extraction system. The development of downhole instrumentation capable of characterizing the hydraulic-fracture systems must emphasize reliability of measuring devices and electro-mechanical components to function properly at borehole temperature exceeding 275/sup 0/C and pressures of 69 MPa (10,000 psi).

Dennis, B.R.

1980-01-01T23:59:59.000Z

74

Geothermal system saving money at fire station | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

75

Long Term Geothermal Heat Pump System Ground Loop Heat Exchanger Performance: Field Data from a Quick Service Restaurant Application  

Science Conference Proceedings (OSTI)

This report summarizes measured long-term performance of the ground loop heat exchanger in a geothermal heat pump system in a McDonald's Quick Service Restaurant located in Westland near Detroit, Michigan. Heat build-up in the soil around the heat exchanger over a long period of time has always been a concern, but only limited data has been available in the past. The gradual increase in the return loop temperature over a period of five years is evidence of the heat built up in the ground loop field, whic...

2003-01-22T23:59:59.000Z

76

Experimentally determined rock-fluid interactions applicable to a natural hot-dry-rock geothermal system  

DOE Green Energy (OSTI)

The field program cnsists of experiments in which hot rock of low permeability is hydraulically fractured between two wellbores. Water is circulated from one well to the other through the fractured hot rock. Our field experiments are designed to test reservoir engineering parameters such as heat-extraction rates, water-loss rates, flow characteristics including impedance and buoyancy, seismic activity, and fluid chemistry. Laboratory experiments were designed to provide information on the mineral-water reactivity encountered during the field program. Two experimental circulation systems tested the rates of dissolution and alteration during dynamic flow. Solubility of rock in agitated systems was studied. Moreover, pure minerals, samples of the granodiorite from the actual reservoir, and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to the observations made in field experiments done within the hot dry rock reservoir at a depth of approximately 3 km where the initial rock temperature was 150 to 200/sup 0/C.

Charles, R.W.; Grigsby, C.O.; Holley, C.E. Jr.; Tester, J.W.; Blatz, L.A.

1981-01-01T23:59:59.000Z

77

Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984  

DOE Green Energy (OSTI)

This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

Smith, K.

1984-09-01T23:59:59.000Z

78

Philip, South Dakota geothermal district heating systems  

SciTech Connect

The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

Lund, J.W.

1997-12-01T23:59:59.000Z

79

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

Lippmann, M.J.

2010-01-01T23:59:59.000Z

80

Strategies To Detect Hidden Geothermal Systems Based On Monitoring...  

Open Energy Info (EERE)

Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article:...

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Assessment of Hybrid Geothermal Heat Pump Systems - Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

cool- ing needs of the building and offers general guidelines Assessment of Hybrid Geothermal Heat Pump Systems Geothermal heat pumps offer attractive choice for space...

82

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING...

83

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

84

Reconnaissance geophysical studies of the geothermal system in...  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance...

85

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-09-01T23:59:59.000Z

86

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-01-01T23:59:59.000Z

87

Neutron imaging for geothermal energy systems  

Science Conference Proceedings (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

88

Geothermal direct heat applications program summary  

DOE Green Energy (OSTI)

In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of geothermal direct use applications.

None

1982-08-01T23:59:59.000Z

89

Cavitation descaling techniques for geothermal applications  

SciTech Connect

A simple and more efficient technique for descaling hard silica scales is urgently needed in order to exploit geothermal energy resources economically. With this objective in mind, DAEDALEAN ASSOCIATES, Incorporated is engaged in a research and development program utilizing the phenomenon of cavitation for cleaning and descaling under the sponsorship of ERDA, Division of Geothermal Research. The highlights of the research carried out so far under this program is reviewed in this presentation. Various effects of the phenomenon of cavitation erosion are presented. The intensity of cavitation erosion and its use in descaling applications are explained. The parameters governing the intensity of erosion are discussed. The overall objectives of the program are to demonstrate the engineering feasibility of utilizing cavitation and to generate engineering design data for its application in geothermal technology. The test facility used for this research consists of flow equipment, test chamber, and associated instrumentation. The performance of cavitating nozzles have been evaluated over a range of sizes. The intensity of erosion for one specific nozzle has been measured. The cleaning rates, the quality of cleaned surface and the intensity margin available so as not to damage the pipe wall have been determined for this specific design. Further work is under progress.

Thiruvengadam, Alagu P.

1976-01-01T23:59:59.000Z

90

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

91

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

92

Definition: Enhanced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Definition Also Known As EGS, Engineered Geothermal Systems References http:www1.eere.energy.govgeothermalenhancedsystems.html Ret LikeLike UnlikeLike You like this.Sign...

93

Geothermal applications for a tannery  

DOE Green Energy (OSTI)

The tanning process and associated energy requirements are summarized. It appears that a significant economic impact may be possible if a shallow hydrothermal resource of approximately 150 to 170/sup 0/F (66 to 77/sup 0/C) were found, and the fluids were cascaded to produce the temperatures necessary for the various tanning operations. The hydrothermal energy would have to be cost competitive with the rapidly escalating fossil energy costs. Although one would need to thoroughly analyze the technical, environmental, and economic issues of such an application, this initial review indicates a good match between the process and potential hydrothermal resources.

DiBello, E.G.

1982-02-01T23:59:59.000Z

94

Geothermal Direct Heat Applications Program Summary  

DOE Green Energy (OSTI)

Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for district heating, space heating, grain drying and aquaculture.

None

1981-09-25T23:59:59.000Z

95

Geothermal Direct Heat Applications Program Summary  

SciTech Connect

Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for district heating, space heating, grain drying and aquaculture.

1981-09-25T23:59:59.000Z

96

Evaluation of geothermal cooling systems for Arizona  

DOE Green Energy (OSTI)

Arizona consumes nearly 50 percent more electricity during the peak summer season of May through part of October, due to the high cooling load met by electrical-driven air conditioning units. This study evaluates two geothermal-driven cooling systems that consume less electricity, namely, absorption cooling and heat pumps. Adsorption cooling requires a geothermal resource above 105{sup 0}C (220{sup 0}F) in order to operate at a reasonable efficiency and capacity. Geothermal resources at these temperatures or above are believed existing in the Phoenix and Tucson areas, but at such depths that geothermal-driven absorption systems have high capital investments. Such capital investments are uneconomical when paid out over only five months of operation each year, but become economical when cascaded with other geothermal uses. There may be other regions of the state, where geothermal resources exist at 105{sup 0}C (220{sup 0}F) or higher at much less depth, such as the Casa Grande/Coolidge or Hyder areas, which might be attractive locations for future plants of the high-technology industries. Geothermal assisted heat pumps have been shown in this study to be economical for nearly all areas of Arizona. They are more economical and reliable than air-to-air heat pumps. Such systems in Arizona depend upon a low-temperature geothermal resource in the narrow range of 15.5 to 26.6{sup 0}C (60 to 80{sup 0}F), and are widely available in Arizona. The state has over 3000 known (existing) thermal wells, out of a total of about 30,000 irrigation wells.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

97

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

98

Chemistry and materials in geothermal systems  

DOE Green Energy (OSTI)

The development of a geothermal fluid, from its origin as meteoric water precipitating on the earth's surface, as it flows through the soils and rocks of geological formations, to the point where it returns to the surface as a hot spring, geyser, well, etc. is traced. Water of magmatic origin is also included. The tendency of these hydrothermal fluids to form scales by precipitation of a portion of their dissolved solids is noted. A discussion is presented of types of information required for materials selection for energy systems utilizing geothermal fluids, including pH, temperature, the speciation of the particular geothermal fluid (particularly chloride, sulfide and carbon dioxide content) and various types of corrosive attack on common materials. Specific examplers of materials response to geothermal fluid are given.

Miller, R.L.

1979-05-01T23:59:59.000Z

99

Geothermal Heat Pump System for New Student Housing Geothermal...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

100

Geothermal Heat Pump System for Ice Arena Geothermal Project...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mathematical modeling of the behavior of geothermal systems under exploitation  

DOE Green Energy (OSTI)

Analytical and numerical methods have been used in this investigation to model the behavior of geothermal systems under exploitation. The work is divided into three parts: (1) development of a numerical code, (2) theoretical studies of geothermal systems, and (3) field applications. A new single-phase three-dimensional simulator, capable of solving heat and mass flow problems in a saturated, heterogeneous porous or fractured medium has been developed. The simulator uses the integrated finite difference method for formulating the governing equations and an efficient sparse solver for the solution of the linearized equations. In the theoretical studies, various reservoir engineering problems have been examined. These include (a) well-test analysis, (b) exploitation strategies, (c) injection into fractured rocks, and (d) fault-charged geothermal reservoirs.

Bodvarsson, G.S.

1982-01-01T23:59:59.000Z

102

Development of geothermal-well-completion systems. Final report  

DOE Green Energy (OSTI)

Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

Nelson, E.B.

1979-01-01T23:59:59.000Z

103

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

104

Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes  

DOE Green Energy (OSTI)

The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

Christiansen, C.C.

1978-07-01T23:59:59.000Z

105

Application Of High-Resolution Thermal Infrared Sensors For Geothermal  

Open Energy Info (EERE)

High-Resolution Thermal Infrared Sensors For Geothermal High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application Of High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Details Activities (2) Areas (1) Regions (0) Abstract: The Salton Sea geothermal field straddles the southeast margin of the Salton Sea in California, USA. This field includes approximately 20km2 of mud volcanoes and mud pots and centered on the Mullet Island thermal anomaly. The area has been previously exploited for geothermal power; there are currently seven power plants in the area that produce 1000 MW. The field itself is relatively un-vegetated, which provides for unfettered

106

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

107

Temporal changes in noble gas compositions within the Aidlin sector ofThe Geysers geothermal system  

E-Print Network (OSTI)

felsite unit), Geysers geothermal field, California: a 40California – A summary. ” Geothermal Resources Councilsystematics of a continental geothermal system: results from

Dobson, Patrick; Sonnenthal, Eric; Kennedy, Mack; van Soest, Thijs; Lewicki, Jennifer

2006-01-01T23:59:59.000Z

108

Advisory Group On The Application Of Nuclear Techniques To Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Advisory Group On The Application Of Nuclear Techniques To Geothermal Studies-Meeting In Pisa 8-12 Sep 1975 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Advisory Group On The Application Of Nuclear Techniques To Geothermal Studies-Meeting In Pisa 8-12 Sep 1975 Details Activities (1) Areas (1) Regions (0) Abstract: Meeting proceedings - large list of papers and presentations dealing mostly with various isotopic analyses and their applications to geothermal exploration and characterization. Author(s): Unknown Published: Geothermics, Date Unknown

109

Geochemical characterization of geothermal systems in the Great...  

Open Energy Info (EERE)

insights into the possible contributions of geothermal systems to groundwater chemistry and development of mitigation strategies for attendant environmental issues....

110

Baseline System Costs for 50.0 MW Enhanced Geothermal System...  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

111

Convective heat transport in geothermal systems  

DOE Green Energy (OSTI)

Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

Lippmann, M.J.; Bodvarsson, G.S.

1986-08-01T23:59:59.000Z

112

Induced seismicity associated with enhanced geothermal system  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

2006-09-26T23:59:59.000Z

113

Geothermal Progress Monitor. System status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) system was designed and implemented by MITRE for DOE's Division of Geothermal Energy (now the Division of Geothermal and Hydropower Technologies). This report summarizes MITRE's operational experience with the system during fiscal year 1983 and provides a qualitative assessment of its data sources.

Gerstein, R.E.; Medville, D.M.

1983-11-01T23:59:59.000Z

114

Modeling Studies of Geothermal Systems with a Free Water Surface  

DOE Green Energy (OSTI)

Numerical simulators developed for geothermal reservoir engineering applications generally only consider systems which are saturated with liquid water and/or steam. However, most geothermal fields are in hydraulic communicatino with shallow ground water aquifers having free surface (water level), so that production or injection operations will cause movement of the surface, and of the air in the pore spaces above the water level. In some geothermal fields the water level is located hundreds of meters below the surface (e.g. Olkaria, Kenya; Bjornsson, 1978), so that an extensive so that an extensive unsaturated zone is present. In other the caprock may be very leaky or nonexistent [e.g., Klamath Falls, oregon (Sammel, 1976)]; Cerro Prieto, Mexico; (Grant et al., 1984) in which case ther eis good hydraulic communication between the geothermal reservoir and the shallow unconfined aquifers. Thus, there is a need to explore the effect of shallow free-surface aquifers on reservoir behavior during production or injection operations. In a free-surface aquifer the water table moves depending upon the rate of recharge or discharge. This results in a high overall storativity; typically two orders of magnitude higher than that of compressed liquid systems, but one or two orders of magnitude lower than that for liquid-steam reservoirs. As a consequence, various data analysis methods developed for compressed liquid aquifers (such as conventional well test analysis methods) are not applicable to aquifer with a free surface.

Bodvarsson, Gudmundur S.; Pruess, K.

1983-12-15T23:59:59.000Z

115

Advisory Group On The Application Of Nuclear Techniques To Geothermal...  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Advisory Group On The Application Of Nuclear Techniques To Geothermal Studies-Meeting In Pisa 8-12 Sep 1975 Jump to: navigation,...

116

Geothermal grant program for local governments: revised grant application manual  

DOE Green Energy (OSTI)

This revised grant application manual describes the kinds of activities eligible for geothermal grants, who may apply, and how to apply. It also describes the criteria and procedures the California Energy Commission will use in selecting proposals for grant awards.

Not Available

1983-03-01T23:59:59.000Z

117

Monitoring well systems in geothermal areas  

DOE Green Energy (OSTI)

The ability to monitor the injection of spent geothermal fluids at reasonable cost might be greatly improved by use of multiple-completion techniques. Several such techniques, identified through contact with a broad range of experts from the groundwater and petroleum industries, are evaluated relative to application in the typical geologic and hydrologic conditions of the Basin and Range Province of the Western United States. Three basic monitor well designs are suggested for collection of pressure and temperature data: Single standpipe, multiple standpipe, and closed-system piezometers. A fourth design, monitor well/injection well dual completions, is determined to be inadvisable. Also, while it is recognized that water quality data is equally important, designs to allow water sampling greatly increase costs of construction, and so such designs are not included in this review. The single standpipe piezometer is recommended for use at depths less than 152 m (500 ft); several can be clustered in one area to provide information on vertical flow conditions. At depths greater than 152 m (500 ft), the multiple-completion standpipe and closed-system piezometers are likely to be more cost effective. Unique conditions at each monitor well site may necessitate consideration of the single standpipe piezometer even for deeper completions.

Lofgren, B.E.; O'Rourke, J.; Sterrett, R.; Thackston, J.; Fain, D.

1982-03-01T23:59:59.000Z

118

Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration  

Open Energy Info (EERE)

Thermal Infrared Imagery To Geothermal Exploration Thermal Infrared Imagery To Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in Washington, Montana and Wyoming because of this remote sensing tool's ability to detect variations in the heat emitted from the earth's surface. The surveys were flown at an average elevation of 5000 ft. above the ground surface which gave a spatial resolution of approximately 7 feet diameter. BN found thermal activity which had not been recognized previously in some prospects (e.g., Lester,

119

Economic incentive of geothermal resource development for direct applications  

DOE Green Energy (OSTI)

As part of a mission-oriented program for accelerating the commercialization of geothermal energy, research is sponsored which concerns the quantitative analysis of investment decisions by industries involved in the development of geothermal resources. The results of a quick-response study conducted during the course of this research are discussed. The report specifically compares the relative investment incentive offered by two categories of geothermal ventures: (a) geothermal electric power projects; and (b) geothermal direct application projects. The attributes of discounted cash flows for several typical projects within each of the two categories are compared and, by using statistically-strong industry decision models previously developed, the likelihood of a favorable investment decision is estimated for each project.

Cassel, T.A.V.; Amundsen, C.B.

1980-02-01T23:59:59.000Z

120

Industrial application of geothermal energy in Southeast Idaho  

DOE Green Energy (OSTI)

Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal Field  

Open Energy Info (EERE)

Audiomagnetotellurics (Aamt) In The Geothermal Field Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Details Activities (0) Areas (0) Regions (0) Abstract: In October 1981 the AAMT method was tested in the geothermal field of Travale. This method is based on the MT method, but uses artificial EM fields excited by a transmitter some kilometres from the receiving station. The transmitter consists of a switch mode amplifier for the lower frequency band (< 300 Hz) and six stacked linear amplifiers for the high frequency band. Maximum output is about 5 kW. For measurement of the very small EM field at the receiver the correlation technique is used

122

Geothermal energy systems plan for Boise City  

DOE Green Energy (OSTI)

This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

Not Available

1979-01-01T23:59:59.000Z

123

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

124

Environmental development plan: geothermal energy systems  

DOE Green Energy (OSTI)

To ensure that environmental, health, and safety (EH and S) considerations are addressed adequately in the technology decision making process, the Environmental Development Plan (EDP) identifies and evaluates EH and S concerns; defines EH and S research and related assessments to examine or resolve the concerns; provides a coordinated schedule with the technology program for required EH and S research and developement; and indicates the timing for Environmental Assessments, Environmental Impact Statements, Environmental Readiness Documents, and Safety Analysis Reports. This EDP for geothermal energy systems covers all current and planned activities of the DOE Geothermal Energy Systems. Hydrothermal convection systems, geopressured systems, and hot-dry-rock systems are covered. Environmental concerns and requirements for resolution of these concerns are discussed at length. (MHR)

Not Available

1979-08-01T23:59:59.000Z

125

Perforating System for Geothermal Applications Geothermal Project...  

Open Energy Info (EERE)

EGS Research, Development and Demonstration technical plan, this project will focus on developing technologies required for engineering wells to enable stimulation and ensuring...

126

Market penetration analysis for direct heat geothermal energy applications  

SciTech Connect

This study is concerned with the estimation of the National geothermal market potential and penetration in direct heat applications for residences and certain industry segments. An important aspect of this study is that the analysis considers both known and anticipated goethermal resources. This allows for an estimation of the longer-range potential for geothermal applications. Thus the approach and results of this study provide new insights and valuable information not obtained from more limited, site-specific types of analyses. Estimates made in this study track geothermal market potential and projected penetration from the present to the year 2020. Private sector commercialization of geothermal energy over this period requires assistance in the identification of markets and market sizes, potential users, and appropriate technical applications.

Thomas, R.J.; Nelson, R.A.

1981-06-01T23:59:59.000Z

127

Specific features of geothermal steam turbine control and emergency system  

SciTech Connect

There are significant construction as well as operational differences between geothermal and conventional steam turbines. These result in specific features associated with geothermal steam turbine control and emergency system. Several aspects of geothermal steam turbine control have been considered. Some proposals of geothermal steam turbine control have been presented. Among others the following operation modes have been considered: Driving turbine, driving well, turbine power and well steam pressure coupled control.

Domachowski, Z.; Gutierrez, A.

1986-01-01T23:59:59.000Z

128

Assessment of solar-geothermal hybrid system concepts  

SciTech Connect

Studies were conducted to assess the technical and economic merits and limitations of advanced solar-geothermal hybrid electric power plant concepts. Geothermal resource characteristics and technologies were reviewed to determine the best possible ways of combining solar and geothermal technologies into a hybrid operation. Potential hybrid system concepts are defined and their performance, resource usage, and economics are assessed relative to the individual solar and geothermal resource development techniques. Key results are presented.

Mathur, P.N.

1979-03-15T23:59:59.000Z

129

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Authors Ileana M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford University; 2013 Published PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University;, 2013 DOI Not Provided Check for DOI availability: http://crossref.org

130

Geothermal Systems of the Yellowstone Caldera Field Trip Guide  

Science Conference Proceedings (OSTI)

Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

1980-09-08T23:59:59.000Z

131

Mapping Fractures In The Medicine Lake Geothermal System | Open Energy  

Open Energy Info (EERE)

Fractures In The Medicine Lake Geothermal System Fractures In The Medicine Lake Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Fractures In The Medicine Lake Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: A major challenge to energy production in the region has been locating high-permability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades Author(s): Steven Clausen, Michal Nemcok, Joseph Moore, Jeffrey Hulen, John Bartley Published: GRC, 2006 Document Number: Unavailable DOI: Unavailable Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Medicine Lake Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Mapping_Fractures_In_The_Medicine_Lake_Geothermal_System&oldid=388927

132

High Temperature 300°C Directional Drilling System Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Directional Drilling Systems Project Description The development plan...

133

Investigation of percussion drills for geothermal applications  

DOE Green Energy (OSTI)

A series of tests was conducted to provide data for an economic evaluation of percussion drilling in geothermal reservoirs. Penetration rate, operation on aqueous foam, and high temperature vulnerabilities of downhole percussion tools are described.

Finger, J.T.

1981-01-01T23:59:59.000Z

134

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

135

Performance test of a bladeless turbine for geothermal applications  

DOE Green Energy (OSTI)

The Possell bladeless turbine was tested at the LLL Geothermal Test Facility to evaluate its potential for application in the total flow process. Test description and performance data are given for 3000, 3500, 4000, and 4500 rpm. The maximum engine efficiency observed was less than 7 percent. It is concluded that the Possell turbine is not a viable candidate machine for the conversion of geothermal fluids by the total flow process. (LBS)

Steidel, R.; Weiss, H.

1976-03-24T23:59:59.000Z

136

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2004-05-01T23:59:59.000Z

137

On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent  

E-Print Network (OSTI)

Twenty- Ninth Workshop on Geothermal Reservoir Engineering,media: Applications to geothermal injectivity and CO 2Renewable Energy, Office of Geothermal Technologies, of the

Xu, T.

2009-01-01T23:59:59.000Z

138

Aspects of forced convective heat transfer in geothermal systems  

DOE Green Energy (OSTI)

A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

Kilty, K.; Chapman, D.S.; Mase, C.

1978-07-01T23:59:59.000Z

139

Numerical Modelling of Geothermal Systems a Short Introduction | Open  

Open Energy Info (EERE)

Numerical Modelling of Geothermal Systems a Short Introduction Numerical Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short Introduction Authors Mauro Cacace, Björn Onno Kaiser and Yvonne Cherubini Published Helmholtz Association, The date "N/A" was not understood.The date "N/A" was not understood. DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Numerical Modelling of Geothermal Systems a Short Introduction Citation Mauro Cacace,Björn Onno Kaiser,Yvonne Cherubini. N/A. Numerical Modelling of Geothermal Systems a Short Introduction. N/A. Helmholtz Association. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=Numerical_Modelling_of_Geothermal_Systems_a_Short_Introduction&oldid=688986"

140

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ball State building massive geothermal system | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ball State building massive geothermal system Ball State building massive geothermal system Ball State building massive geothermal system March 19, 2010 - 5:47pm Addthis Workers drill boreholes for a geothermal heating and cooling system at Ball State University’s campus in Muncie, Ind. | Photo courtesy of Ball State University Workers drill boreholes for a geothermal heating and cooling system at Ball State University's campus in Muncie, Ind. | Photo courtesy of Ball State University Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Ball State University is building America's largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also "expand how America will define the use of

142

Numerical Modeling Of Basin And Range Geothermal Systems | Open Energy  

Open Energy Info (EERE)

Numerical Modeling Of Basin And Range Geothermal Systems Numerical Modeling Of Basin And Range Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Numerical Modeling Of Basin And Range Geothermal Systems Details Activities (3) Areas (3) Regions (0) Abstract: Basic qualitative relationships for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal systems, as described in this paper, rely on deep circulation of groundwater rather than on cooling igneous bodies for heat, and rely on extensional fracture systems to provide permeable upflow paths. A series of steady-state, two-dimensional simulation models is used to evaluate the effect of permeability and structural variations on an idealized, generic

143

United States geothermal technology: Equipment and services for worldwide applications  

DOE Green Energy (OSTI)

This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

NONE

1995-05-01T23:59:59.000Z

144

Geochemical characterization of geothermal systems in the Great Basin:  

Open Energy Info (EERE)

characterization of geothermal systems in the Great Basin: characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemical characterization of geothermal systems in the Great Basin: Implications for exploration, exploitation, and environmental issues Details Activities (0) Areas (0) Regions (0) Abstract: The objective of this ongoing project is the development of a representative geochemical database for a comprehensive range of elemental and isotopic parameters (i.e., beyond the typical data suite) for a range of geothermal systems in the Great Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin is utilizing

145

Geographic Information Systems- Tools For Geotherm Exploration, Tracers  

Open Energy Info (EERE)

Systems- Tools For Geotherm Exploration, Tracers Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geographic Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Details Activities (4) Areas (3) Regions (0) Abstract: Geographic information systems (GIS) are an underused resource that can help the geothermal industry in exploration, tracer analysis, infrastructure management, and the general distribution and use of data. GIS systems are highly customizable to specific user needs and can use entire corporate data sets through a visual interface. This paper briefly documents the use of GIS in specific examples of geothermal research at the

146

Innovations in the financing of geothermal energy for direct-use applications  

DOE Green Energy (OSTI)

The applications of direct use geothermal energy, its advantages, and its relative costs are examined. The following are discussed: capital needs for direct-use geothermal development, sources of geothermal financing, barriers to geothermal financing, and selected case studies of curent financing alternatives.

Kwass, P.

1981-10-01T23:59:59.000Z

147

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

dioxide flux at the Dixie Valley geothermal field, Nevada;volcanic system, USA Dixie Valley Geothermal Field, USAProvince system like the Dixie Valley (Nevada) geothermal

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

148

Stragegies to Detect Hidden Geothermal Systems Based on Monitoring and Analysis of CO2 in the Near-Surface Environment  

E-Print Network (OSTI)

in volcanic and geothermal areas. Appl. Geochem. , 13, 543–1977. Chemistry and Geothermal Systems. Academic Press, Newfor detecting hidden geothermal systems by near-surface gas

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2008-01-01T23:59:59.000Z

149

Geochemistry of the Wendel-Amedee Geothermal System-California | Open  

Open Energy Info (EERE)

Geochemistry of the Wendel-Amedee Geothermal System-California Geochemistry of the Wendel-Amedee Geothermal System-California Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geochemistry of the Wendel-Amedee Geothermal System-California Abstract The fluid chemistry of the geothermal system that feed Amedee and Wendel Hot Springs in eastern California is complex. Two thermal fluids have been identified based on the concentrations of the conservative elements C1 and B, fluid enthalpies, and the application of chemical geothermometers. One is characterized by temperatures above 120°C and a TDS content of 1300 ppm, and will be used by GeoProducts Corporation to produce electricity. The second did lower in temperature, 75°C, and has a TDS content of 650 ppm. This fluid may be used fore direct heat application at the Susanville

150

Experience with the Development of Advanced Materials for Geothermal Systems  

Science Conference Proceedings (OSTI)

This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

Sugama, T.; Butcher, T.; Ecker, L.

2011-01-01T23:59:59.000Z

151

36Cl/Cl ratios in geothermal systems- preliminary measurements...  

Open Energy Info (EERE)

(1) Areas (1) Regions (0) Abstract: The sub 36ClCl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic...

152

Identification of a New Blind Geothermal System with Hyperspectral...  

Open Energy Info (EERE)

a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search...

153

Behavior of Rare Earth Elements in Geothermal Systems- A New...  

Open Energy Info (EERE)

2001 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration...

154

Enthalpy restoration in geothermal energy processing system  

DOE Patents (OSTI)

A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

Matthews, Hugh B. (Boylston, MA)

1983-01-01T23:59:59.000Z

155

EA-1893: Canby Cascaded Geothermal Development System, Canby, California |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Canby Cascaded Geothermal Development System, Canby, 93: Canby Cascaded Geothermal Development System, Canby, California EA-1893: Canby Cascaded Geothermal Development System, Canby, California Summary This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: NOTE: This EA has been cancelled.

156

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

157

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

158

Residential space heating cost: geothermal vs conventional systems  

SciTech Connect

The operating characteristics and economies of several representative space heating systems are analyzed. The analysis techniques used may be applied to a larger variety of systems than considered herein, thereby making this document more useful to the residential developer, heating and ventilating contractor, or homeowner considering geothermal space heating. These analyses are based on the use of geothermal water at temperatures as low as 120/sup 0/F in forced air systems and 140/sup 0/F in baseboard convection and radiant floor panel systems. This investigation indicates the baseboard convection system is likely to be the most economical type of geothermal space heating system when geothermal water of at least 140/sup 0/F is available. Heat pumps utilizing water near 70/sup 0/F, with negligible water costs, are economically feasible and they are particularly attractive when space cooling is included in system designs. Generally, procurement and installation costs for similar geothermal and conventional space heating systems are about equal, so geothermal space heating is cost competitive when the unit cost of geothermal energy is less than or equal to the unit cost of conventional energy. Guides are provided for estimating the unit cost of geothermal energy for cases where a geothermal resource is known to exist but has not been developed for use in residential space heating.

Engen, I.A.

1978-02-01T23:59:59.000Z

159

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

for Detection of Hidden Geothermal Systems Figure 7.4.for Detection of Hidden Geothermal Systems Figure 7.5.for Detection of Hidden Geothermal Systems Figure 7.6.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

160

Numerical models for the evaluation of geothermal systems  

DOE Green Energy (OSTI)

We have carried out detailed simulations of various fields in the USA (Bada, New Mexico; Heber, California); Mexico (Cerro Prieto); Iceland (Krafla); and Kenya (Olkaria). These simulation studies have illustrated the usefulness of numerical models for the overall evaluation of geothermal systems. The methodology for modeling the behavior of geothermal systems, different approaches to geothermal reservoir modeling and how they can be applied in comprehensive evaluation work are discussed.

Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

1986-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Understanding The Chena Hot Springs, Alaska, Geothermal System Using  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Understanding The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Details Activities (7) Areas (1) Regions (0) Abstract: Chena Hot Springs is a small, moderate temperature, deep circulating geothermal system, apparently typical of those associated to hot springs of interior Alaska. Multi-stage drilling was used in some

162

Geochemistry Of The Lake City Geothermal System, California, Usa | Open  

Open Energy Info (EERE)

Geochemistry Of The Lake City Geothermal System, California, Usa Geochemistry Of The Lake City Geothermal System, California, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geochemistry Of The Lake City Geothermal System, California, Usa Details Activities (2) Areas (1) Regions (0) Abstract: Lake City hot springs and geothermal wells chemically fall into a narrow compositional group. This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs. Narrow ranges in plots of F, B and Li versus Cl, and _D to _18O values indicate minimal mixing. Because of this, the compositions of the natural hot spring waters are fairly representative of the parent geothermal water. The average

163

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

164

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

165

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

Matthews, Hugh B. (Acton, MA)

1977-01-01T23:59:59.000Z

166

Numerical modeling of liquid geothermal systems  

DOE Green Energy (OSTI)

A mathematical model describing the physical behavior of hot-water geothermal systems is presented. The model consists of a set of coupled partial differential equations for heat and mass transfer in porous media and an equation of state relating fluid density to temperature and pressure. The equations are solved numerically using an integrated finite difference method which can treat arbitrary nodal configurations in one, two, or three dimensions. The model is used to analyze cellular convection in permeable rock layers heated from below. Results for cases with constant fluid and rock properties are in good agreement with numerical and experimental results from other authors.

Sorey, M.L.

1978-01-01T23:59:59.000Z

167

Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid  

E-Print Network (OSTI)

Development of Enhanced Geothermal Systems,” paper presentedin the Deep Reservoir of the Mt. Amiata Geothermal Field,Italy,” Transactions, Geothermal Resources Council, 31, 153-

Xu, Tianfu; Pruess, Karsten; Apps, John

2008-01-01T23:59:59.000Z

168

Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems  

E-Print Network (OSTI)

stimulation of an enhanced geothermal system using a high pHTwenty-Ninth Workshop on Geothermal Reservoir Engineering,Calcite dissolution in geothermal reservoirs using chelants,

Xu, T.

2010-01-01T23:59:59.000Z

169

Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.2004b. Pruess, K. Enhanced Geothermal Systems (EGS) Using CO

Pruess, Karsten

2008-01-01T23:59:59.000Z

170

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

171

Geothermal system saving money at fire station | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal system saving money at fire station Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal heating and cooling system has enabled the substation to save taxpayers $15,000 annually when compared to a traditional system. The high temperature of the treatment building's water helps reduce the amount of energy needed to heat water in the substation. An environmentally friendly geothermal heating and cooling system in Pennsylvania will save taxpayers $15,000 a year as part of a new fire substation that will decrease emergency response times. The Alpha Fire Co. celebrated the opening of substation on the ground floor of the College Township municipal building earlier this year in State

172

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

173

Geothermal Environmental Impact Assessment: Subsurface Environmental Assessment for Four Geothermal Systems  

DOE Green Energy (OSTI)

Geothermal systems are described for Imperial Valley and The Geysers, California; Klamath Falls, Oregon; and the Rio Grande Rift Zone, New Mexico; including information on location, area, depth, temperature, fluid phase and composition, resource base and status of development. The subsurface environmental assessment evaluates potential groundwater degradation, seismicity and subsidence. A general discussion on geothermal systems, pollution potential, chemical characteristics of geothermal fluids and environmental effects of geothermal water pollutants is presented as background material. For the Imperial Valley, all publicly available water quality and location data for geothermal and nongeothermal wells in and near the East Mesa, Salton Sea, Heber, Brawley, Dunes and Glamis KGRAs have been compiled and plotted. The geothermal fluids which will be reinjected range in salinity from a few thousand to more than a quarter million ppm. Although Imperial Valley is a major agricultural center, groundwater use in and near most of these KGRAs is minimal. Extensive seismicity and subsidence monitoring networks have been established in this area of high natural seismicity and subsidence. The vapor-dominated Geysers geothermal field is the largest electricity producer in the world. Groundwater in this mountainous region flows with poor hydraulic continuity in fractured rock. Ground and surface water quality is generally good, but high boron concentrations in hot springs and geothermal effluents is of significant concern; however, spent condensate is reinjected. High microearthquake activity is noted around the geothermal reservoir and potential subsidence effects are considered minimal. In Klamath Falls, geothermal fluids up to 113 C (235 F) are used for space heating, mostly through downhole heat exchangers with only minor, relatively benign, geothermal fluid being produced at the surface. Seismicity is low and is not expected to increase. Subsidence is not recognized. Of all geothermal occurrences in the Rio Grande Rift, the Valles Caldera is currently of primary interest. injection of geothermal effluent from hydrothermal production wells should remove any hydrologic hazard due to some potentially noxious constituents. Waters circulating in the LASL Hot Dry Rock experiment are potable. Seismic effects are expected to be minimal. Subsidence effects could develop.

Sanyal, Subir; Weiss, Richard

1978-11-01T23:59:59.000Z

174

Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research  

DOE Green Energy (OSTI)

This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

2000-09-29T23:59:59.000Z

175

Strategies To Detect Hidden Geothermal Systems Based On Monitoring and  

Open Energy Info (EERE)

To Detect Hidden Geothermal Systems Based On Monitoring and To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Strategies To Detect Hidden Geothermal Systems Based On Monitoring and Analysis Of CO2 In The Near-Surface Environment Details Activities (5) Areas (1) Regions (0) Abstract: We investigate the potential for CO2 monitoring in thenear-surface environment as an approach to exploration for hiddengeothermal systems. Numerical simulations of CO2 migration from a modelhidden geothermal system show that CO2 concentrations can reach highlevels in the shallow subsurface even for relatively low CO2 fluxes.Therefore, subsurface measurements offer an advantage over above-groundmeasurements which are affected by winds that rapidly disperse

176

Behavior of Rare Earth Elements in Geothermal Systems- A New  

Open Energy Info (EERE)

Behavior of Rare Earth Elements in Geothermal Systems- A New Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Abstract N/A Author Department of Geology and Geological Engineering niversity of Idaho Published Publisher Not Provided, 2001 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool? Citation Department of Geology and Geological Engineering niversity of Idaho. 2001. Behavior of Rare Earth Elements in Geothermal Systems- A New Exploration/Exploitation Tool?. (!) : (!) . Retrieved from

177

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Development of Exploration Methods for Engineered Geothermal Systems Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Abstract N/A Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Citation U.S. Department of Energy. Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and

178

Assessment of Favorable Structural Settings of Geothermal Systems in the  

Open Energy Info (EERE)

Assessment of Favorable Structural Settings of Geothermal Systems in the Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Assessment of Favorable Structural Settings of Geothermal Systems in the Great Basin, Western USA Abstract We have undertaken a thorough inventory of the structural settings of known geothermal systems (>400 total) in the extensional to transtensional terrane of the Great Basin in the western USA. Of the more than 200 geothermal fields catalogued to date, we found that step-overs or relay ramps in normal fault zones served as the most favorable structural setting, hosting ~32% of the systems. Such areas are characterized by multiple, commonly overlapping fault strands, increased fracture density,

179

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

Matthews, Hugh B. (Acton, MA)

1976-01-01T23:59:59.000Z

180

Application of inverse modeling to geothermal reservoir simulation  

DOE Green Energy (OSTI)

The authors have developed inverse modeling capabilities for the non-isothermal, multiphase, multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during testing and exploitation of geothermal fields.The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding simulation output can be calculated. Furthermore, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. Automatic history matching using ITOUGH2 is robust and efficient so that model parameters affecting geothermal field performance can reliably be estimated based on a variety of field measurements such as pressures, temperatures, flow rates, and enthalpies. The paper describes the methodology of inverse modeling and provides a detailed discussion of sample problems to demonstrate the application of the method to data from geothermal reservoirs.

Finsterle, S.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Bullivant, D.P.; O`Sullivan, M.J. [Univ. of Auckland (New Zealand). Dept. of Engineering Science

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Krafla Geothermal System. A Review of Geothermal Research and Revision  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson Á., Steingrímsson B., Sigmundsson F., Axelsson G., Ármannsson H., Björnsson H., Ágústsson K., Saemundsson K., Ólafsson M., Karlsdóttir R., Halldórsdóttir S. and Hauksson T. Organization Iceland GeoSurvey Published Iceland GeoSurvey, 2009

182

Materials selection guidelines for geothermal power systems. First edition  

DOE Green Energy (OSTI)

Nine potential power cycles are defined and diagrammed for the generation of electricity from geothermal fluids. General fluid properties that influence the applicability of power cycles to a particular geothermal resource are discussed. The corrosivity of individual process streams in power cycles is described based on variations in chemical composition and temperature. Results of materials performance tests are analyzed based on the chemical composition of the corrosive medium and physical factors such as temperature, duration of exposure, and fluid velocity. The key chemical components in geothermal fluids that are significant in determining corrosivity are identified. Both summarized and detailed results of materials performance tests in U.S. liquid-dominated resources are given. Seven U.S. liquid-dominated KGRA's are classified according to relative corrosiveness and their key chemical components are defined. The various forms and mechanisms of corrosive attack that can occur in geothermal process streams are described. The application of nonmetallic materials in geothermal environments is discussed. The appendices contain information on (1) operating experience at geothermal power plants, (2) corrosion in desalination facilities, (3) reliability of geothermal plants, (4) elastomeric materials, (5) comparative alloy costs, and (6) geothermal equipment manufacturers. (MHR)

DeBerry, D.W.; Ellis, P.F.; Thomas, C.C.

1978-09-01T23:59:59.000Z

183

Isotope Transport and Exchange within the Coso Geothermal System | Open  

Open Energy Info (EERE)

Transport and Exchange within the Coso Geothermal System Transport and Exchange within the Coso Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Isotope Transport and Exchange within the Coso Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: We are investigating the plumbing of the Coso geothermal system and the nearby Coso Hot Springs using finite element models of single-phase, variable-density fluid flow, conductive- convective heat transfer, fluid-rock isotope exchange, and groundwater residence times. Using detailed seismic reflection data and geologic mapping, we constructed a regional crosssectional model that extends laterally from the Sierra Nevada to Wildhorse Mesa, west of the Argus Range. The base of the model terminates at the brittle-ductile transition zone. A sensitivity study was

184

Overview Of The Lake City, California Geothermal System | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Overview Of The Lake City, California Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Overview Of The Lake City, California Geothermal System Details Activities (1) Areas (1) Regions (0) Abstract: Following a spectacular mud volcano eruption in 1951, the Lake City geothermal system has been intermittently explored for 44 years. A discovery well was drilled 30 years ago. The geothermal system is associated with a two mile-long, north-south trending, abnormally complex section of the active Surprise Valley fault zone that has uplifted the

185

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

186

Geothermal Progress Monitor: system status and operational experience  

SciTech Connect

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

187

Geothermal Progress Monitor: system status and operational experience  

DOE Green Energy (OSTI)

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

188

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

189

Chemical Geothermometers And Mixing Models For Geothermal Systems | Open  

Open Energy Info (EERE)

Geothermometers And Mixing Models For Geothermal Systems Geothermometers And Mixing Models For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemical Geothermometers And Mixing Models For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum

190

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

191

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

192

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

193

Shape memory alloy seals for geothermal applications  

SciTech Connect

A shape memory radial seal was fabricated with a ''U'' cross section. Upon heating the seal recovered its original ''V'' shape and produced a high pressure seal. The sealing pressure which can be developed is approximately 41 MPa (60,000 psi), well in excess of the pressure which can be produced in conventional elastomeric seals. The low modulus martensite can conform readily to the sealing surface, and upon recovery produce a seal capable of high pressure fluid or gas confinement. The corrosion resistance of nickel-titanium in a broad range of aggressive fluids has been well established and, as such, there is little doubt that, had time permitted, a geothermal pump of flange fluid tried would have been successful.

1985-09-15T23:59:59.000Z

194

Application of stress corrosion to geothermal reservoirs  

DOE Green Energy (OSTI)

There are several alternative equations which describe slow crack growth by stress corrosion. Presently available data suggest that an alternative form may be preferable to the form which is most often used, but the issue cannot be clearly decided. Presently available stress corrosion data on glasses and ceramics suggest that rocks in a proposed geothermal reservoir will crack readily over long time periods, thus seriously limiting the operation of this type of power source. However, in situ hydrofracturing measurements together with a theoretical treatment suggest that such a reservoir will contain a relatively high pressure over a long period of time without further cracking. Further experimentation is desirable to measure directly the critical stresses for crack growth rates on the order of 10/sup -7/ m/sec.

Demarest, H.H. Jr.

1975-10-01T23:59:59.000Z

195

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

196

Conceptual Models of Geothermal Systems - Introduction | Open Energy  

Open Energy Info (EERE)

Conceptual Models of Geothermal Systems - Introduction Conceptual Models of Geothermal Systems - Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Conceptual Models of Geothermal Systems - Introduction Abstract The key to the successful exploration, development (incl. drilling) and utilization of any type of geothermal system is a clear definition and understanding of the nature and characteristics of the system in question. This is best achieved through the development of a conceptual model of the system, which is a descriptive or qualitative model incorporating, and unifying, the essential physical features of the system. Conceptual models are mainly based on analysis of geological and geophysical information, temperature and pressure data, information on reservoir properties as well

197

Resource engineering and economic studies for direct application of geothermal energy. Draft final report  

SciTech Connect

The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurations and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.

Not Available

1981-12-01T23:59:59.000Z

198

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

DOE Green Energy (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

199

Design, construction and evaluation of a simulated geothermal flow system  

Science Conference Proceedings (OSTI)

A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

Mackanic, J.C.

1980-07-28T23:59:59.000Z

200

Total Energy Recovery System for Agribusiness. [Geothermally heated]. Final Report  

DOE Green Energy (OSTI)

An engineering and economic study was made to determine a practical balance of selected agribusiness subsystems resulting in realistic estimated produce yields for a geothermally heated system known as the Total Energy Recovery System for Agribusiness. The subsystem cycles for an average application at an unspecified hydrothermal resources site in the western United States utilize waste and by-products from their companion cycles insofar as practicable. Based on conservative estimates of current controlled environment yields, produce wholesale market prices, production costs, and capital investment required, it appears that the family-operation-sized TERSA module presents the potential for marginal recovery of all capital investment costs. In addition to family- or small-cooperative-farming groups, TERSA has potential users in food-oriented corporations and large-cooperative-agribusiness operations. The following topics are considered in detail: greenhouse tomatoes and cucumbers; fish farming; mushroom culture; biogas generation; integration methodology; hydrothermal fluids and heat exchanger selection; and the system. 133 references. (MHR)

Fogleman, S.F.; Fisher, L.A.; Black, A.R.; Singh, D.P.

1977-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wine Valley Inn: A mineral water spa in Calistoga, California. Geothermal-energy-system conceptual design and economic feasibility  

DOE Green Energy (OSTI)

The purpose of this study is to determine the engineering and economic feasibility for utilizing geothermal energy for air conditioning and service water heating at the Wine Valley Inn, a mineral water spa in Calistoga, California. The study evaluates heating, ventilating, air conditioning and water heating systems suitable for direct heat geothermal application. Due to the excellent geothermal temperatures available at this site, the mechanics and economics of a geothermally powered chilled water cooling system are evaluated. The Wine Valley Inn has the resource potential to have one of the few totally geothermal powered air conditioning and water heating systems in the world. This total concept is completely developed. A water plan was prepared to determine the quantity of water required for fresh water well development based on the special requirements of the project. An economic evaluation of the system is included to justify the added capital investment needed to build the geothermally powered mineral spa. Energy payback calculations are presented. A thermal cascade system is proposed to direct the geothermal water through the energy system to first power the chiller, then the space heating system, domestic hot water, the two spas and finally to heat the swimming pool. The Energy Management strategy required to automatically control this cascade process using industrial quality micro-processor equipment is described. Energy Management controls are selected to keep equipment sizing at a minimum, pump only the amount of geothermal water needed and be self balancing.

Not Available

1981-10-26T23:59:59.000Z

202

The Moana geothermal system in Reno, Nevada: A hydrologic, geochemical, and thermal analysis  

DOE Green Energy (OSTI)

The Moana geothermal systems, located in Reno, Nevada, is a moderate-temperature geothermal resource used for space heating applications. Both historic and new hydrologic, thermal, and groundwater chemistry data were collected to evaluate the Moana system and to develop a calibrated numerical model of the geothermal aquifer for investigation of resource development scenarios. The new data collection consisted of static water level measurements and temperature with depth measurements for a 13-month period at 26 geothermal wells to investigate hydrologic and thermal changes with time. In addition, groundwater chemistry sampling at 10 wells was used to evaluate mixing of thermal and nonthermal waters. Collected information indicates that in the most heavily used portion of the geothermal aquifer, the hydraulic heads have declined. This decline may induce additional leakage of cooler water from the overlying unconfined aquifer and lead to decreased temperatures at well locations in the geothermal aquifer. The groundwater chemistry data show concentration changes with temperature for boron, chloride, fluoride, lithium, and bicarbonate that are a function of the degree of mixing of thermal and nonthermal waters. Temporal changes in these constituents may be used as an indication of relative temperature changes in the geothermal system caused by mixing at a given location. An attempt was made to use the hydraulic head and maximum temperature data to develop a calibrated numerical model for the Moana geothermal system. However, lack of information about the horizontal and vertical thermal and fluid fluxes made the development of a calibrated model not possible at this time. 25 refs., 54 figs., 6 tabs.

Jacobson, E.A.; Johnston, J.W.

1991-03-01T23:59:59.000Z

203

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

204

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

4 x 104 kg/day of water were produced and 3.2 x 104 kg/dayand water through a porous geothermal system, including the vertical deformations produced

Lippmann, M.J.

2010-01-01T23:59:59.000Z

205

Further Developments on the Geothermal System Scoping Model: Preprint  

Science Conference Proceedings (OSTI)

This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

Antkowiak, M.; Sargent, R.; Geiger, J. W.

2010-07-01T23:59:59.000Z

206

Heat pump assisted geothermal heating system for Felix Spa, Romania  

Science Conference Proceedings (OSTI)

The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

Rosca, Marcel; Maghiar, Teodor

1996-01-24T23:59:59.000Z

207

Engineered Geothermal Systems Energy Return On Energy Investment  

NLE Websites -- All DOE Office Websites (Extended Search)

EGS EROI - 1 EGS EROI - 1 Engineered Geothermal Systems Energy Return On Energy Investment A.J. Mansure, Geothermal Consultant, ajm@q.com Albuquerque, NM 12/10/2012 Key Words: energy, EROI, EGS, efficiency, energy investment, energy return, input energy, energy payback, and net energy. Abstract Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use "efficiency" when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS

208

Identification of a New Blind Geothermal System with Hyperspectral Remote  

Open Energy Info (EERE)

Identification of a New Blind Geothermal System with Hyperspectral Remote Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Abstract Hyperspectral remote sensing-derived mineral maps and follow-up shallow temperature measurements were used to identify a new blind geothermal target in the Columbus Salt Marsh playa, Esmeralda County, Nevada. The hyperspectral survey was conducted with the ProSpecTIR VS2 instrument and consists of 380 km2 of 4-meter spatial resolution data acquired on October

209

A Geochemical Model Of The Platanares Geothermal System, Honduras | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Geochemical Model Of The Platanares Geothermal System, Honduras Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geochemical Model Of The Platanares Geothermal System, Honduras Details Activities (0) Areas (0) Regions (0) Abstract: Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at

210

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

211

Development of geothermal logging systems in the United States  

DOE Green Energy (OSTI)

Logging technologies developed for hydrocarbon resource evaluation have not migrated into geothermal applications even though data so obtained would strengthen reservoir characterization efforts. Two causative issues have impeded progress: (1) there is a general lack of vetted, high-temperature instrumentation, and (2) the interpretation of log data generated in a geothermal formation is in its infancy. Memory-logging tools provide a path around the first obstacle by providing quality data at a low cost. These tools feature on-board computers that process and store data, and newer systems may be programmed to make decisions. Since memory tools are completely self-contained, they are readily deployed using the slick line found on most drilling locations. They have proven to be rugged, and a minimum training program is required for operator personnel. Present tools measure properties such as temperature and pressure, and the development of noise, deviation, and fluid conductivity logs based on existing hardware is relatively easy. A more complex geochemical tool aimed at a quantitative analysis of (potassium, uranium and thorium) is in the calibration phase, and it is expandable into all nuclear measurements common in the hydrocarbon industry. A fluid sampling tool is in the design phase. All tools are designed for operation at conditions exceeding 400 C, and for deployment in the slim holes produced by mining-coring operations. Partnerships are being formed between the geothermal industry and scientific drilling programs to define and develop inversion algorithms relating raw tool data to more pertinent information. These cooperative efforts depend upon quality guidelines such as those under development within the international Ocean Drilling Program.

Lysne, P.

1994-04-01T23:59:59.000Z

212

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings:...

213

Application Of High-Resolution Thermal Infrared Sensors For Geothermal...  

Open Energy Info (EERE)

Of High-Resolution Thermal Infrared Sensors For Geothermal Exploration At The Salton Sea, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

214

Development of inverse modeling techniques for geothermal applications  

DOE Green Energy (OSTI)

We have developed inverse modeling capabilities for the non-isothermal, multiphase, multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during testing and exploitation of geothermal fields. The TOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding simulation output can be calculated. In addition, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. One of the advantages of inverse modeling is that it overcomes the time and labor intensive tedium of trial- and error model calibration. Furthermore, the estimated parameters refer directly to the numerical model used for the subsequent predictions and optimization studies. This paper describes the methodology of inverse modeling and demonstrates an application of the method to data from a synthetic geothermal reservoir. We also illustrate its use for the optimization of fluid reinjection into a partly depleted reservoir.

Finsterle, S.; Pruess, K.

1997-03-01T23:59:59.000Z

215

Heat pumps for geothermal applications: availability and performance. Final report  

SciTech Connect

A study of the performance and availability of water-source heat pumps was carried out. The primary purposes were to obtain the necessary basic information required for proper evaluation of the role of water-source heat pumps in geothermal energy utilization and/or to identify the research needed to provide this information. The Search of Relevant Literature considers the historical background, applications, achieved and projected performance evaluations and performance improvement techniques. The commercial water-source heat pump industry is considered in regard to both the present and projected availability and performance of units. Performance evaluations are made for units that use standard components but are redesigned for use in geothermal heating.

Reistad, G.M.; Means, P.

1980-05-01T23:59:59.000Z

216

Application of (U-Th)/He Thermochronometry as a Geothermal Exploration...  

Open Energy Info (EERE)

Application of (U-Th)He Thermochronometry as a Geothermal Exploration Tool in Extensional Tectonic Settings: The Wassuk Range, Hawthorne, Nevada Jump to: navigation, search OpenEI...

217

Geothermal Today: 2003 Geothermal Technologies Program Highlights (Covers Highlights from 2002)  

DOE Green Energy (OSTI)

This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2002. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

Not Available

2003-09-01T23:59:59.000Z

218

Geothermal heating system and method of installing the same  

SciTech Connect

A geothermal system and method of installing the same comprises the steps successively driving a drive pipe structure vertically into the ground at a plurality of locations so that a major portion of the length of the drive pipe structure is located below the frost line. An elongate geothermal pipe having closed ends is inserted into the drive pipe structure and its lower end is interlocked with a drive point device located at the lower end of the drive pipe structure. Thereafter, when the drive pipe is removed, the geothermal pipe remains anchored to the drive point. The geothermal pipes are connected together by conduits and connected to a heat pump so that a heat exchange liquid will be circulated through the system.

Kees, E.J.; Steiger, D.W.

1981-09-01T23:59:59.000Z

219

Environmental Development Plan (EDP). Geothermal energy systems, 1977  

DOE Green Energy (OSTI)

The Geothermal Energy Systems Environmental Development Plan (EDP) identifies the environmental, health, safety, social, and economic issues which are associated with the development, demonstration, and commercialization of geothermal resources and conversion technology. The EDP also describes the actions and implementation strategy required to resolve the issues identified. These actions may include the initiation of R and D activities, operations monitoring, baseline characterization studies, or activities leading to the development of standards and criteria in concert with other responsible agencies.

Not Available

1978-03-01T23:59:59.000Z

220

High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems  

Open Energy Info (EERE)

Temperature-High-Volume Lifting For Enhanced Geothermal Systems Temperature-High-Volume Lifting For Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High-Temperature-High-Volume Lifting For Enhanced Geothermal Systems Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature-High-Volume Lifting Project Description The proposed scope of work is divided into three Phases. Overall system requirements will be established in Phase 1, along with an evaluation of existing lifting system capability, identification of technology limitations, and a conceptual design of an overall lifting system. In developing the system components in Phase 2, component-level tests will be conducted using GE facilities. Areas of development will include high-temperature drive system materials, journal and thrust bearings, and corrosion and erosion-resistant lifting pump components. Finally, in Phase 3, the overall lab-scale lifting system will be demonstrated in a flow loop that will be constructed at GE Global Research.

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Market survey of geothermal wellhead power generation systems. Final report, March 1978  

DOE Green Energy (OSTI)

The purpose of this study was to assess the market potential for a portable geothermal wellhead power conversion device (1-10 MW generating capacity). Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individuals in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.

Leeds, M.W.; Evensizer, J.

1979-04-01T23:59:59.000Z

222

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy...

223

The Newcastle geothermal system, Iron County, Utah  

DOE Green Energy (OSTI)

Geological, geophysical and geochemical studies contributed to conceptual hydrologic model of the blind'' (no surface expression), moderate-temperature (greater than 130{degree}C) Newcastle geothermal system, located in the Basin and Range-Colorado Plateau transition zone of southwestern Utah. Temperature gradient measurements define a thermal anomaly centered near the surface trace of the range-bounding Antelope Range fault with and elongate dissipative plume extending north into the adjacent Escalante Valley. Spontaneous potential and resistivity surveys sharply define the geometry of the dominant upflow zone (not yet explored), indicating that most of the thermal fluid issues form a short segment along the Antelope Range fault and discharges into a gently-dipping aquifer. Production wells show that this aquifer lies at a depth between 85 and 95 meter. Electrical surveys also show that some leakage of thermal fluid occurs over a 1.5 km (minimum) interval along the trace of the Antelope Range fault. Major element, oxygen and hydrogen isotopic analyses of water samples indicate that the thermal fluid is a mixture of meteoric water derived from recharge areas in the Pine Valley Mountains and cold, shallow groundwater. A northwest-southeast trending system of faults, encompassing a zone of increased fracture permeability, collects meteoric water from the recharge area, allows circulation to a depth of 3 to 5 kilometers, and intersects the northeast-striking Antelope Range fault. We postulate that mineral precipitates form a seal along the Antelope Range fault, preventing the discharge of thermal fluids into basin-fill sediments at depth, and allowing heated fluid to approach the surface. Eventually, continued mineral deposition could result in the development of hot springs at the ground surface.

Blackett, R.E.; Shubat, M.A.; Bishop, C.E. (Utah Geological and Mineral Survey, Salt Lake City, UT (USA)); Chapman, D.S.; Forster, C.B.; Schlinger, C.M. (Utah Univ., Salt Lake City, UT (USA). Dept. of Geology and Geophysics)

1990-03-01T23:59:59.000Z

224

Three dimensional interpretations of single-well electromagnetic data for geothermal applications  

SciTech Connect

An efficient 3-D electromagnetic (EM) inversion algorithm has been developed for geothermal applications and tested successfully using a set of single-hole EM logging data. The data was collected at an oil field undergoing CO{sub 2} injection in southern California using a single-hole EM tool, Geo-BILT, developed by Electromagnetic Instruments, Inc (EMI). The tool is equipped with a multi-component source, and multi-component receivers at different separations. The inversion result provides a reasonable electrical conductivity image to a distance of 10 m from the well, and illustrates several zones with lateral conductivity variations that could not be resolved with traditional induction logging tools. The successful case study demonstrates potential applications of the tool and software for characterizing fracture systems in geothermal reservoirs.

Tseng, Hung-Wen; Lee, Ki Ha

2004-01-09T23:59:59.000Z

225

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

226

Temporary Cementitious Sealers in Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper-try sealers. Two specific additives without sodium silicate as alkaline additive were developed in this project: One additive was the sodium carboxymethyl cellulose (CMC) as self-degradation promoting additive; the other was the hard-burned magnesium oxide (MgO) made from calcinating at 1,000-1,500 C as an expansive additive. The AASC and AASF cementitious sealers made by incorporating an appropriate amount of these additives met the following six criteria: 1) One dry mix component product; 2) plastic viscosity, 20 to 70 cp at 300 rpm; 3) maintenance of pumpability for at least 1 hour at 85 C; 4) compressive strength >2000 psi; 5) self-degradable by injection with water at a certain pressure; and 6) expandable and swelling properties; {ge}0.5% of total volume of the sealer.

Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

2011-12-31T23:59:59.000Z

227

Geothermal well technology and potential applications of Subterrene devices: a status review  

DOE Green Energy (OSTI)

The past, present, and some future aspects of the geothermal energy (GTE) industry have been reviewed with special attention given to geothermal well-drilling problems. Geothermal wells can be produced with present equipment and methods, mostly derived from the oil and gas industry, but costs are relatively high. Short-term improvements are needed in drilling rigs and auxiliary surface equipment, drill bits, bit-bearing lubrication systems, tubular goods, high-temperature muds and cements, logging and downhole sampling equipment, directional control equipment applicable to geothermal conditions,and in the use of a data bank for GTE wells to help optimize drilling programs. Two types of wells are needed: (1) small-diameter wells for exploration, reinjection, and disposal purposes, and (2) larger-diameter wells for production. To develop and greatly expand the use of GTE in the future, new methods and equipment are needed to penetrate hard abrasive rocks and to provide hole stabilization and support at the very high temperatures and other extreme conditions which can be encountered in GTE wells. New Los Alamos Scientific Laboratory concepts for penetrating rocks by use of rock-melting processes (called Subterrene concepts) offer potential solutions to some difficult GTE well-production problems.

Altseimer, J.H.

1974-07-01T23:59:59.000Z

228

Higher-order differencing for front propagation in geothermal systems  

E-Print Network (OSTI)

and Renewable Energy, Geothermal Division, U.S. Departmentorder differencing for geothermal reservoir simulation,Proc. 22nd Workshop on Geothermal Reservoir Engineering,

Oldenburg, Curtis; Pruess, Karsten

1998-01-01T23:59:59.000Z

229

MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION  

E-Print Network (OSTI)

and momentum transfer i n a geothermal reservoir, Summaries2nd Work- shop Geothermal Reservoir Engineering, StanfordSchroeder, W e l l tests, Geothermal Resource and Reservoir

Bodvarsson, G.S.

2010-01-01T23:59:59.000Z

230

Survey and preliminary evaluation of potential geothermal energy applications for Riverside, California  

DOE Green Energy (OSTI)

A preliminary assessment of the potential applications for geothermal energy in Riverside, California, was made. This assessment includes both potential electrical and non-electrical applications, and focuses on the following factors: the location of nearby geothermal resources; characteristics of these resources; types of applications suited to each resource; technical and economic feasibility of these applications; the potential impact on the energy demand of each application, and potential deterrents to the utilization of geothermal energy for the most promising application. It is concluded that geothermal energy has a promising potential to supply electricity, space heating and cooling, and process heat to Riverside. There are sufficient geothermal resources within 200 miles to supply the electrical requirements of Riverside for thousands of years. Depending on the particular reservoir involved, this electricity can probably be generated at costs ranging from 1 to 3 times the cost of conventional electric power generation. Over this distance, the additional unit cost for energy transmission should be comparatively small. The geothermal resource at nearby Arrowhead Hot Springs has the potential to supply space heating and cooling and process heat to Riverside for a hundred years. The technology for these non-electric uses is available. The cost of using geothermal energy for these applications is estimated at 1 to 2 times the cost of conventional fuels, depending on the population density of the service area. The most difficult problems in the possible use of geothermal energy in Riverside appear to be institutional difficulties in electric applications.

Bloomster, C.H.; Fassbender, L.L.; Schilling, A.H.; Lippek, H.E.

1978-03-01T23:59:59.000Z

231

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

232

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

233

Research and Development of Information on Geothermal Direct Heat Application Projects  

DOE Green Energy (OSTI)

This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

Hederman, William F., Jr.; Cohen, Laura A.

1981-10-01T23:59:59.000Z

234

Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:  

SciTech Connect

A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

Thornton, Jeff W. [Thermal Energy Systems Specialists, Inc.; McDowell, T. P. [Thermal Energy Systems Specialists, Inc.; Shonder, John A [ORNL; Hughes, Patrick [ORNL; Pahud, D. [University of Applied Sciences of Southern Switzerland; Hellstrom, G. [Lund University

1997-06-01T23:59:59.000Z

235

Environmental impact directory system: preliminary implementation for geothermal energy  

DOE Green Energy (OSTI)

An Environmental Impact Directory System (EIDS) was proposed as a method for a computerized search of the widely distributed data files and models pertaining to energy-related environmental effects. To define the scope and content of the system, an example was prepared for the case of geothermal energy. The resulting sub-directory is known as GEIDs (Geothermal Environmental Impact Directory System). In preparing or reviewing an Environmental Impact Statement (EIS), the user may employ GEIDS as an extensive checklist to make sure he has taken into account all predictable impacts at any level of severity.

Hess, F.D.; Hall, R.T.; Fullenwider, E.D.

1976-07-01T23:59:59.000Z

236

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

237

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

238

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network (OSTI)

Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

Pruess, K.

2010-01-01T23:59:59.000Z

239

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

E-Print Network (OSTI)

Propulsion Laboratory, National Rev. 1.2 Strategies for Detection of Hidden Geothermal Systems Aeronautics and Space

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-01-01T23:59:59.000Z

240

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Progress Toward an Advanced Geothermal Deep-Drilling System  

DOE Green Energy (OSTI)

A previously developed concept for an advanced geothermal drilling system (AGDS) has been extended toward a feasibility design stage. Hardware projects for two percussion, air and hydraulic, hammer drills are underway. Two drill string options and an unique nitrogen supply system are described.

Rowley, J.; Saito, S.; Long, R.

1995-01-01T23:59:59.000Z

242

Characterization of hot dry rock geothermal energy extraction systems  

DOE Green Energy (OSTI)

The engineering of heat exchange systems by which geothermal heat can be efficiently extracted from hot impermeable rocks is studied. The system currently under investigation at Fenton Hill, New Mexico consists of a network of large fractures created through the hydraulic pressurization of a well penetrating hot basement rocks and subsequently intersected by a second well drilled to form a flow-thru system. Cool water pumped into the fractures through one well, once heated in the reservoir, returns to the surface through the second well, is cooled, and then recirculated. While much is known about the performance parameters of the fracture network from short-term flow tests, little is understood concerning the spatial dimensions and geometrical relationship of individual fractures comprising the network. Ultimately, the success one has in estimating the long-term performance of such a system where commercialization is an issue, and in engineering future systems with optimal performance, depends on the success in characterizing the flow-thru fracture networks. To date only nonconventional application of oil field logging techniques and acoustic emissions studies have been used in the characterization of the fracture network.

Albright, J.N.; Newton, C.A.

1981-01-01T23:59:59.000Z

243

Recommendations of the workshop on advanced geothermal drilling systems  

DOE Green Energy (OSTI)

At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

Glowka, D.A.

1997-12-01T23:59:59.000Z

244

Property:Geothermal/Partner1Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Geothermal/Partner1Website Property Type URL Description Partner 1 Website (URL) Pages using the property "Geothermal/Partner1Website" Showing 25 pages using this property. (previous 25) (next 25) A Alum Innovative Exploration Project Geothermal Project + http://www.spectir.com/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.fpl.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.apexhipoint.com/ + Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project + http://www.unr.edu/Geothermal/ +

245

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

DOE Green Energy (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

246

Geothermal System Saves Dollars, Makes Sense for Maryland Family |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Saves Dollars, Makes Sense for Maryland Family System Saves Dollars, Makes Sense for Maryland Family Geothermal System Saves Dollars, Makes Sense for Maryland Family April 16, 2010 - 5:15pm Addthis A 36-foot-tall drill was needed to install the geothermal system at the Gearon’s house in Derwood, MD. | Photo courtesy of Chris Gearon | A 36-foot-tall drill was needed to install the geothermal system at the Gearon's house in Derwood, MD. | Photo courtesy of Chris Gearon | Lindsay Gsell "At the end of the day, it cost us about the same as if we just replaced our furnace and AC with another furnace and AC, but the big difference is that we're not spending $3,000 on oil bills anymore." Chris Gearon, Derwood, MD resident who recently installed a geothermal system to heal and cool his home Chris Gearon's 24-year old oil furnace was tired. What happened if the

247

Applications of geochemistry to problems in geothermal injection  

DOE Green Energy (OSTI)

Conventional reservoir engineering studies have, in the past, dealt mainly with interpretation of pressure transient effects in a reservoir. Present-day techniques can be used in many reservoirs to forecast with some reliability the probability, magnitude and timing of pressure interference among wells. However, forecasting fluid breakthrough from an injection well to a production well in geologically complex geothermal reservoirs is not presently possible with any reliability, and forecasting thermal breakthrough is even more difficult. In addition, the chemical effects of injection are poorly understood at present, and it is not possible to predict beforehand the full range of scaling and aquifer plugging problems that may be encountered. This report discusses development of chemical tracers specifically designed for geothermal applications so that breakthrough of injectate can be detected early, and field and laboratory studies on the chemical interactions among reservoir fluids, reservoir rocks and injected fluids so that these interactions can be quantified and models developed for predicting any degradation (or enhancement) of permeability.

Wright, P.M.

1985-02-01T23:59:59.000Z

248

Modeling of geothermal reservoirs: Fundamental processes, computer simulation, and field applications  

DOE Green Energy (OSTI)

This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. Then we examine applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation technology on geothermal energy development are pointed out. We conclude with considerations on possible future developments in the mathematical modeling of geothermal fields. 45 refs., 4 figs., 2 tabs.

Pruess, K.

1988-09-01T23:59:59.000Z

249

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

250

Dual-temperature Kalina cycle for geothermal-solar hybrid power systems  

E-Print Network (OSTI)

This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

Boghossian, John G

2011-01-01T23:59:59.000Z

251

Modeling and analysis of hybrid geothermal-solar thermal energy conversion systems  

E-Print Network (OSTI)

Innovative solar-geothermal hybrid energy conversion systems were developed for low enthalpy geothermal resources augmented with solar energy. The goal is to find cost-effective hybrid power cycles that take advantage of ...

Greenhut, Andrew David

2010-01-01T23:59:59.000Z

252

Use of geothermal heat for crop drying and related agricultural applications. Final report  

DOE Green Energy (OSTI)

Observations led to the selection of the alfalfa dehydration industry for in-depth analysis of the application of moderate-temperature geothermal heat. Six geothermal heat exchanger/dryer configurations were examined. A low-temperature conveyor dryer using geothermal water to supply all required heat was chosen for site-specific analysis, the retrofitting of a large alfalfa dehydration plant within the Heber KGRA in the Imperial Valley, California. Even in the most favorable scenario--sharing a geothermal pipeline with the neighboring fertilizer plant--geothermal retrofitting would increase the price of the alfalfa ''dehy'' about 40 percent. The geothermal brine is estimated to cost $2.58/million Btu's compared with a 1977 natural gas cost of $1.15. Capital cost for heat exchangers and the new dryers is estimated at $3.3 million. The Heber plant appeared to offer the only good opportunity for geothermal retrofitting of an existing alfalfa dehydration plant. Construction of new plants at geothermal resource sites cannot be justified due to the uncertain state of the ''dehy'' industry. Use of geothermal heat for drying other crops may be much more promising. The potato dehydration industry, which is concentrated in the geothermal-rich Snake River Valley of Idaho, appears to offer good potential for geothermal retrofitting; about 4.7 x 10{sup 12}Btu's are used annually by plants within 50 miles of resources. Drying together at the geothermal wellhead several crops that have interlocking processing seasons and drying-temperature requirements may be quite attractive. The best ''multicrop drying center'' site identified was at Power Ranch Wells, Arizona; 34 other sites were defined. Agricultural processing applications other than drying were investigated briefly.

Gordon, T.J.; Wright, T.C.; Fein, E.; Munson, T.R.; Richmond, R.C.

1978-03-01T23:59:59.000Z

253

Energy extraction characteristics of hot dry rock geothermal systems  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is investigating methods to extract energy at useful temperatures and rates from naturally heated crustal rock in locations where the rock does not spontaneously yield natural steam or hot water at a rate sufficient to support commercial utilization. Several concepts are discussed for application to low and high permeability formations. The method being investigated first is intended for use in formations of low initial permeability. It involves producing a circulation system within the hot rock by hydraulic fracturing to create a large crack connecting two drilled holes, then operating the system as a closed pressurized-water heat-extration loop. With the best input assumptions that present knowledge provides, the fluid-flow and heat-exchange calculations indicate that unpumped (buoyant) circulation through a large hydraulic fracture can maintain a commercially useful rate of heat extraction throughout a usefully long system life. With a power cycle designed for the temperature of the fluid produced, total capital investment and generating costs are estimated to be at least competitive with those of fossil-fuel-fired and nuclear electric plants. This paper discusses the potential of the hot dry rock resource, various heat extraction concepts, prediction of reservoir performance, and economic factors, and summarizes recent progress in the LASL field program.

Tester, J.W.; Smith, M.C.

1977-01-01T23:59:59.000Z

254

Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

2013-05-01T23:59:59.000Z

255

Energy analysis of geothermal-electric systems  

DOE Green Energy (OSTI)

Standard energy analysis was applied to 4 types of geothermal-electric technologies: liquid dominated, hot dry rock, geopressure, and vapor dominated. It was found that all are net energy producers. Expected uncertainties are not large enough to threaten this conclusion. Vapor dominated, the only technology in current commercial use to produce electricity in the US, has the highest energy ratio (13 +- 4). These results for energy ratio are equal to or less than some from other workers. In the case of liquid dominated, environmental control technology has a considerable energy requirement.

Herendeen, R.A.; Plant, R.

1979-12-01T23:59:59.000Z

256

Analysis of Power Cycles for Geothermal Wellhead Conversion Systems  

Science Conference Proceedings (OSTI)

Using the guidelines and data developed from 240 representative cases, utility engineers can make preliminary estimates of the performance of alternative energy conversion systems proposed for specific geothermal sites. This approach can reduce the cost and scope of initial engineering studies.

1985-06-14T23:59:59.000Z

257

Description and operation of Haakon School geothermal-heating system  

SciTech Connect

To encourage the development of hydrothermal energy, twenty-three demonstration projects were funded. The Haakon School project is one of twelve such projects. The geothermal direct-use heating system at the Haakon School complex in Philip, South Dakota is described and information gained during approximately three heating seasons of operation is presented.

Childs, F.W.; Kirol, L.D.; Sanders, R.D.; McLatchy, M.J.

1983-10-01T23:59:59.000Z

258

Direct heat applications of geothermal energy in The Geysers/Clear Lake region. Volume I. Geotechnical assessment, agribusiness applications, socioeconomic assessment, engineering assessment. Final report  

DOE Green Energy (OSTI)

Discussion is presented under the following section headings: background and some technical characteristics of geothermal resources; geology and geohydrology, geophysics, and, conclusions regarding availability of geothermal energy for nonelectric uses; agricultural assessment of Lake County, site assessment for potential agricultural development, analysis of potential agricultural applications, special application of low cost geothermal energy to algae harvesting, development of an integrated agribusiness, geothermal complex in Lake County, analysis of individual enterprises, and, recommendations for subsequent work; demographic characteristics, economic condition and perspective of Lake County, economic impact of geothermal in Lake County, social and economic factors related to geothermal resource development, socioeconomic impact of nonelectric uses of geothermal energy, and, identification of direct heat applications of geothermal energy for Lake County based on selected interviews; cost estimate procedure, example, justification of procedure, and, typical costs and conclusions; and, recommended prefeasibility and feasibility studies related to construction of facilities for nonelectric applications of geothermal resource utilization. (JGB)

Not Available

1976-08-01T23:59:59.000Z

259

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)  

E-Print Network (OSTI)

Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System Available online 12 June 2011 Keywords: Salton Sea Geothermal System hydrothermal seeps gas and water geochemistry flux measurements mantle The Salton Sea Geothermal System (California) is an easily accessible

Mazzini, Adriano

260

Low temperature geothermal energy applications in the Albuquerque area. Final report, July 1, 1978-August 18, 1979  

DOE Green Energy (OSTI)

A study was made of the engineering and economic feasibility of hot water geothermal energy applications in the Albuquerque area. A generalized system design was developed and used as the basis for a series of economic case studies. Reservoir and user siting considerations were studied in light of the economic findings. Several specific potential applications were identified, including university campuses, industrial and commercial facilities, and residential buildings. Specific key technical problems relating to Albuquerque area applications were studied. These included environmental impacts, corrosion, scaling, heat losses in wells and transmission lines, heat exchangers, control systems, and system utilization and reliability. It is concluded that geothermal energy could be competitive with other energy sources for space heating and limited industrial use for moderate to large (10 million Btu/hr or more) energy using systems.

Kauffman, D.; Houghton, A.V.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal application feasibility study for the New Mexico State University campus. Technical report  

DOE Green Energy (OSTI)

The following are covered: a geothermal prospect conceptual study for NMSU campus, geothermal resources on and near NMSU land, present campus heating and cooling system, conceptual design and preliminary cost estimates - alternative systems, economic analysis, and legal and environmental considerations. (MHR)

Gunaji, N.N.; Thode, E.F.; Chaturvedi, L.; Walvekar, A.; LaFrance, L.; Swanberg, C.A.; Jiracek, G.R.

1978-12-01T23:59:59.000Z

262

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

263

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

264

Economics and applications of geothermal energy in St. Lucia  

DOE Green Energy (OSTI)

The assessment reported here consisted of three major tasks: first, a field geologic assessment of the physical extent of the Qualibou caldera geothermal resource; second, an engineering evaluation of the potential development of the geothermal resource; and third, a study of the potential economic impact upon St. Lucia associated with the development of the geothermal resource. The first task, the geologic assessment, is not discussed in detail.

Altseimer, J.H.; Burris, A.E.; Edeskuty, F.J.; Trocki, L.K.; Williamson, K.D. Jr.

1984-01-01T23:59:59.000Z

265

Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems  

DOE Green Energy (OSTI)

The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ���±5���°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

William A. Challener

2014-12-04T23:59:59.000Z

266

36Cl/Cl ratios in geothermal systems- preliminary measurements from the  

Open Energy Info (EERE)

Cl/Cl ratios in geothermal systems- preliminary measurements from the Cl/Cl ratios in geothermal systems- preliminary measurements from the Coso Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 36Cl/Cl ratios in geothermal systems- preliminary measurements from the Coso Field Details Activities (1) Areas (1) Regions (0) Abstract: The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results

267

Technical and cost analysis of rock-melting systems for producing geothermal wells. [GEOWELL  

DOE Green Energy (OSTI)

The drilling of wells makes up a large fraction of the costs of geothermal energy-extraction plants, and billions of dollars for wells will be needed before geothermal energy is nationally significant. Technical and economic systems studies are summarized regarding the application of the Subterrene concept, i.e., excavating and penetrating rocks or soils by melting, to the production of deep wells such as may be used for dry hot rock or geopressurized geothermal energy-extraction systems. Technically, it was found that Subterrene features are compatible with those of current rotary drilling practices. In fact, some special features could lead to improved well production techniques. These include the buildup of a glass lining along the borehole wall which provides structural resistance to collapse; close control of hole geometry; the existence of a barrier between the drilling fluids and the formations being penetrated; nonrotation; potentially better bit life; and faster rates of penetration in deep, hard rock. A typical optimum-cost well would be rotary-drilled in the upper regions and then rock-melted to total depth. Indicated cost savings are significant: a 30 percent or 3.9 million dollar (1975 $) reduction from rotary-drilled well costs are estimated for a 10-km depth well with a bottom hole temperature of 673 K. Even for relatively cool normal geothermal gradient conditions, the savings for the 1..pi..-km well are estimated as 23 percent of 2.1 million dollars.

Altseimer, J.H.

1976-11-01T23:59:59.000Z

268

Seal/lubricant systems for geothermal drilling equipment  

DOE Green Energy (OSTI)

The development and testing of seals and lubricants for journal-type roller-cone rock bits for drilling into geothermal reservoirs at temperatures over 260/sup 0/C (500/sup 0/F) are described. The conditions experienced by seals and lubricants subjected to geothermal drilling are reviewed along with the basic design requirements for roller-cone bit seals and journal bearing lubricants. Two unique test facilities are described: a seal test machine which simulates pressures, temperatures, and mechanical eccentricities, and a lubricant tester capable of evaluating load-bearing ability at temperature and pressure. Three candidate elastomeric compounds demonstrated 288/sup 0/C (550/sup 0/F) capability and several others demonstrated 260/sup 0/C (500/sup 0/F) or greater capability. Successful elastomeric seal candidates were proprietary compounds based on EPDM, Kalrez, and/or Viton polymers. Three mechanical seals for reservoir temperatures over 288/sup 0/C (550/sup 0/F) are presented. Lubricant screening tests on more than 50 products are summarized, and several newly developed lubricants which meet both the compatibility and lubrication requirements are described. Several seal/lubricant systems are recommended for laboratory or field geothermal drilling tests in roller-cone drill bits. The future availability of drill bits for geothermal use is discussed, as well as the potential spinoffs of the program findings for nongeothermal roller-cone bits.

Hendrickson, R.R.; Winzenried, R.W.

1980-07-01T23:59:59.000Z

269

Introduction to electric energy conversion systems for geothermal energy resources  

SciTech Connect

The types of geothermal energy conversion systems in use are classified as follows: direct, dry steam; separated steam; single-flash steam; double-flash steam; multi-flash steam; brine/Freon binary cycle; and brine/isobutane binary cycle. The thermodynamics of each of these is discussed with reference to simplified flow diagrams. Typical existing power plants are identified for each type of system. (MHR)

DiPippo, R.

1978-06-01T23:59:59.000Z

270

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function  

Open Energy Info (EERE)

Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This effort will support the expansion of Enhanced Geothermal Systems (EGS), supporting DOE Strategic Themes of "energy security" and sub goal of "energy diversity"; reducing the Nation's dependence on foreign oil while improving our environment. A 50 MW has been chosen as a design point, so that the project may also assess how different machinery approaches will change the costing - it is a mid point in size where multiple solutions exist that will allow the team to effectively explore the options in the design space and understand the cost.

271

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

272

Engineered Geothermal Systems Energy Return On Energy Investment  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use â??efficiencyâ? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy â?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the â??minimumâ? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

273

Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2  

DOE Green Energy (OSTI)

The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.

Downing, J.C.

1990-01-01T23:59:59.000Z

274

Isotope hydrology of a basin and range geothermal system  

Science Conference Proceedings (OSTI)

If the geothermal resources in Dixie Valley are exploited, a complete understanding of the hydrologic system is essential in managing the geothermal system. As a reconnaissance study in an area of minimal hydrologic research, it is necessary to examine many facets of the local hydrologic cycle in Dixie Valley. To this end, this paper will discuss the isotopic composition of local precipitation, the age and origin of the hot spring waters and the type of water most important for recharge of both the thermal and nonthermal systems. This study was accomplished by using stable and radioactive environmental isotopes, and to a lesser extent, water chemistry. Dueterium and oxygen-18 were heavily relied upon in formulating conclusions, but some tritium and carbon-14 sampling were also performed.

Jacobson, R.L.; Ingraham, N.L.; Campana, M.E.

1983-08-01T23:59:59.000Z

275

Property:Geothermal/AboutArea | Open Energy Information  

Open Energy Info (EERE)

AboutArea AboutArea Jump to: navigation, search Property Name Geothermal/AboutArea Property Type Text Description About the Area Pages using the property "Geothermal/AboutArea" Showing 18 pages using this property. A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Churchill County, NV Alum Innovative Exploration Project Geothermal Project + Alum geothermal project is located in Nevada ~150 miles SE of Reno. It consists of federal geothermal leases that are 100% owned by SGP. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + Humboldt House-Rye Patch (HH-RP) geothermal resource area

276

Application of (U-Th)/He Thermochronometry as a Geothermal Exploration Tool  

Open Energy Info (EERE)

of (U-Th)/He Thermochronometry as a Geothermal Exploration Tool of (U-Th)/He Thermochronometry as a Geothermal Exploration Tool in Extensional Tectonic Settings: The Wassuk Range, Hawthorne, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application of (U-Th)/He Thermochronometry as a Geothermal Exploration Tool in Extensional Tectonic Settings: The Wassuk Range, Hawthorne, Nevada Abstract Geothermal exploration in the Basin and Range Province is often focused in extended terrains where heat has been transferred to the surface through advection in the footwall rocks of normal faults. Low temperature (U-Th)/He apatite ages of such footwall rocks can determine which areas have experienced the most recent, significant extension or have interacted with hot geothermal fluids. Apatite cooling ages from the footwall of the Wassuk

277

Reinjection Model Studies in Fractured and Homogeneous Geothermal Systems  

DOE Green Energy (OSTI)

Reinjection of geothermal waste waters has become an important topic of interest for industry as well as for research. The environmental concerns due to chemical composition of geothermal waste waters had urged the industry to dispose it underground. In several field applications no interference due to thermal front breakthrough was observed on the other hand some cases are reported where reinjection had caused severe declines in energy production due to unexpected breakthrough of injected water. Several analytical and numerical studies are available where the effect of fractures on the movement of thermal front are discussed. It was shown that when the conduction heat transfer from matrix to fracture dominates, retardation of the thermal front movement will be observed. Bodvarsson and Pruess considered the above problem in a five-spot well pattern. They observed as the amount of fluid injected reaches the amount produced, the long-term energy output of the system increases. Pruess in his study compares the behavior of porous medium and fractured medium in terms of pressure decline due to production. Temperature and pressure profiles are presented between an injector and a producer where heating of the injected water in porous medium and in fractured medium with small fracture spacing was high compared to a larger fracture spacing. Such observations from the numerical studies were checked against some limited field examples. However understanding of the injection effects in fractured reservoirs is limited. This work presents the results of laboratory experiments where effects of reinjection on temperature and pressure behavior of a porous medium and a fractured medium were investigated. The porous medium was a crushed limestone pack, with 10 mm average particle size, packed in a 3-D box model where injection and production ports are located on the diagonal ends simulating a five-spot pattern. The fractured medium was made from uniformly cut marble blocks packed in such a way to permit uniform fracture geometry. The pressure and temperature response of both models are analyzed as a function of (1) depth of injection and production; and (2) injection rate where 20 C injection water is injected into 110 C reservoir.

Okandan, E.; Hosca, H.

1986-01-21T23:59:59.000Z

278

Generic Guide Specification for Geothermal Heat Pump Systems  

SciTech Connect

The attached Geothermal (Ground-Source) Heat Pump (GHP) Guide Specifications have been developed by Oak Ridge National Laboratory (ORNL) with the intent to assist federal agency sites and engineers in the preparation of construction specifications for GHP projects. These specifications have been developed in the industry-standard Construction Specification Institute (CSI) format and cover several of the most popular members of the family of GHP systems. These guide specifications are applicable to projects whether the financing is with conventional appropriations, arranged by GHP specialty ESCOs under the U.S. Department of Energy's Technology-Specific GHP Super ESPCs, arranged by utilities under Utility Energy Service Contracts (UESCs) or arranged by generalist ESCOs under the various regional ESPCs. These specifications can provide several benefits to the end user that will help ensure successful GHP system installations. GHP guide specifications will help to streamline the specification development, review, and approval process because the architecture and engineering (AE) firm will be working from the familiar CSI format instead of developing the specifications from other sources. The guide specifications help to provide uniformity, standardization, and consistency in both the construction specifications and system installations across multiple federal sites. This standardization can provide future benefits to the federal sites in respect to both maintenance and operations. GHP guide specifications can help to ensure that the agency is getting its money's worth from the GHP system by preventing the use of marginal or inferior components and equipment. The agency and its AE do not have to start from scratch when developing specifications and can use the specification as a template and/or a checklist in developing both the design and the contract documents. The guide specifications can save project costs by reducing the engineering effort required during the design development phase. Use of this guide specification for any project is strictly optional and at the discretion of the responsible party in charge. If used as a construction specification master template for GHP systems, this guide specification must, in all cases, be edited to apply to the specific project in question and to reflect the site-specific conditions relevant to the project. There is no guarantee of accuracy or applicability with respect to any portion of this specification and the user assumes all risk associated with the application of the information contained in this document.

Thomas, WKT

2000-04-12T23:59:59.000Z

279

Development of polymer concrete liners and coatings for use in geothermal applications  

DOE Green Energy (OSTI)

The results of a research and field testing program conducted by Brookhaven National Laboratory for the Geothermal Division of the US Department of Energy to develop polymer concrete (PC) liners and coatings for use in geothermal applications are presented. Whenever possible, carbon steel is used in geothermal facilities for components such as piping, well casings, and containment vessels. However carbon steel is subject to severe corrosion when exposed to some geothermal fluids and brines, leading to the use, in some cases, of very expensive high alloy steels. Results of laboratory tests done in simulated geothermal environments (pH 2 hydrochloric acid steam at 200{degree}C) have shown that PC materials can be used as liners and coatings to protect carbon steel surfaces from corrosion. In situ field testing of 8-in. (203-mm) inside diameter (ID) by 12-in. (305-mm) long spool sections and 12in. ID (305-mm) wellhead tee sections in operational geothermal facilities is currently being done to verify the laboratory test data. Economic studies have shown that the capital cost of the vessels and piping in a typical geothermal facility can be significantly reduced through the use of protective PC linings and coatings. As a result PC lined components are currently being used commercially at two geothermal sites.

Webster, R.P.; Reams, W.; Kukacka, L.E.

1993-09-01T23:59:59.000Z

280

Thermally conductive cementitious grout for geothermal heat pump systems  

DOE Patents (OSTI)

A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

Allan, Marita (Old Field, NY)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Temperature Components of Magma-Related Geothermal Systems: An Experimental and Theoretical Approach  

DOE Green Energy (OSTI)

This summarizes select components of a multi-faceted study of high temperature magmatic fluid behavior in shallow, silicic, volcano-plutonic geothermal systems. This work built on a foundation provided by DOE-supported advances made in our lab in understanding the physics and chemistry of the addition of HCI and other chlorides into the high temperature regions of geothermal systems. The emphasis of this project was to produce a model of the bolatile contributions from felsic magmatic systems to geothermal systems

Philip A. Candela; Philip M. Piccoli

2004-03-15T23:59:59.000Z

282

Geothermal district heating system feasibility analysis, Thermopolis, Wyoming  

DOE Green Energy (OSTI)

The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

1982-04-26T23:59:59.000Z

283

Experience with the EM-60 electromagnetic system for geothermal exploration in Nevada  

DOE Green Energy (OSTI)

Lawrence Berkeley Laboratory (LBL) conducted controlled-source electromagnetic (EM) surveys at three geothermal prospects in northern Nevada. Over 40 soundings were made in Panther Canyon (Grass Valley), near Winnemucca; Soda Lakes, near Fallon; and McCoy, west of Austin, to test and demonstrate the applicability of LBL's EM-60 system to geothermal exploration. The EM-60 is a frequency-domain system using three-component magnetic detection. Typically, +-65 A is applied to an 100-m-diameter four-turn horizontal loop, generating a dipole moment >10/sup 6/ MKS over the frequency range 10/sup -3/ to 10/sup -3/ Hz. With such a source loop, soundings were made, at transmitter-receiver separations of up to 4 km, providing a maximum depth of penetration of 4 km.

Wilt, M.; Goldstein, N.E.; Stark, M.; Haught, J.R.; Morrison, H.F.

1981-09-01T23:59:59.000Z

284

Direct use geothermal applications for brazed plate heat exchangers  

DOE Green Energy (OSTI)

Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degrees} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

Rafferty, K.

1992-12-31T23:59:59.000Z

285

Direct use geothermal applications for brazed plate heat exchangers  

DOE Green Energy (OSTI)

Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H[sub 2]S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H[sub 2]S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10[degree] or greater. Size limitations restrict applications to 100 gpm and/or 200 ft[sup 2] heat transfer surface area.

Rafferty, K.

1993-02-01T23:59:59.000Z

286

Direct use geothermal applications for brazed plate heat exchangers  

DOE Green Energy (OSTI)

Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) in order to determine the effect of H{sub 2}S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H{sub 2}S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10{degree} or greater. Size limitations restrict applications to 100 gpm and/or 200 ft{sup 2} heat transfer surface area.

Rafferty, K.

1993-02-01T23:59:59.000Z

287

Direct use geothermal applications for brazed plate heat exchangers  

DOE Green Energy (OSTI)

Brazed plate heat exchanger were placed in three geothermal fluids (Klamath Falls, OR; Boise, ID; and Pagosa Springs, CO) to determine the effect of H[sub 2]S on braze material. Based on subsequent analysis, it appears that the rate of corrosion of the braze material is much slower than corrosion of copper tube materials in the same fluids. Minimum expected life of the heat exchangers based on these corrosion rates is reported to be 12 years in fluids of less than 1 ppm H[sub 2]S and 10 years in fluids of less than 5 ppm. Based on these expected lives, and using a 3% inflation rate and 8% discount rate, brazed plate heat exchangers are a clear economic choice in which the capital cost is 50% or less of the cost of a plate and frame heat exchanger for the same duty. Due to their single pass design, brazed plate heat exchangers are generally limited to approach temperatures of 10[degrees] or greater. Size limitations restrict applications to 100 gpm and/or 200 ft[sup 2] heat transfer surface area.

Rafferty, K.

1992-01-01T23:59:59.000Z

288

Methodology for ranking geothermal reservoirs in non-electric industrial applications  

DOE Green Energy (OSTI)

A large number of geothermal reservoirs exist and to perform a thorough study of each of these reservoirs to determine those most desirable for demonstration projects can be costly and time consuming. A methodology for assigning rankings to these reservoirs, given a limited amount of data, is presented. The top ranked reservoirs would then be studied more thoroughly. In addition, a methodology for ranking the large number of industries that could possibly utilize geothermal energy in nonelectric applications is given to determine those industries which will have the most impact on national energy demand if converted to geothermal use.

Farah, O.G.; Williams, F.

1976-05-01T23:59:59.000Z

289

Enthalpy transients in fractured two-phase geothermal systems  

DOE Green Energy (OSTI)

Numerical modeling techniques are used to study the changes in flowing enthalpy of fluids produced from a well completed in a fractured two-phase geothermal reservoir. Complex interactions between different fracture and porous matrix parameters control the enthalpy transients. The results show that the flowing enthalpy is most sensitive to the characteristics of the relative permeability curves, the magnitude of the matrix permeability and the effective fracture porosity. Other parameters such as the thermal conductivity and fracture spacing also significantly affect the flowing enthalpy. In spite of the complex phenomena associated with enthalpy transients in fractured two-phase systems, it is possible to infer useful information about the producing geothermal reservoirs from field data. 15 refs., 13 figs., 2 tabs.

Lippmann, M.J.; Bodvarsson, G.S.; Gaulke, S.W.

1985-03-01T23:59:59.000Z

290

APPLICATIONS OF GEOTHERMALLY- PRODUCED COLLOIDAL SILICA IN RESERVOIR...  

NLE Websites -- All DOE Office Websites (Extended Search)

under Contract DE-AC52-07NA27344. Acknowledgment This work was sponsored by the Geothermal Technologies Office in the Department of Energy. 4 TABLE OF CONTENTS 1. Project...

291

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

DOE Green Energy (OSTI)

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

292

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

293

Benchmark for Performance: Geothermal Applications in Lincoln Public Schools  

DOE Green Energy (OSTI)

Vertical-bore, geothermal heat pumps (GHPs) have been providing heating and cooling to four new elementary schools located in Lincoln, Nebraska since 1995. According to representatives of the local utility and school district, the systems are providing a comfortable, complaint-free environment with utility costs that are nearly half of that of other schools in the district. Performance data collected from on-site energy management systems and district billing and utility records for all fifty schools in the Lincoln district indicate that only five consume less energy than the best performing GHP school; however these five cool less than 10% of their total floor area, while the GHP schools cool 100% of their floor area. When compared to other new schools (with similar ventilation loads), the GHP schools used approximately 26% less source energy per square foot of floor area. Variations in annual energy performance are evident among the four GHP schools, however, together they still consume less source energy than 70% of all schools in the district. These variations are most likely due to operational differences rather than installed equipment, building orientation, or environmental (bore field) conditions.

Durfee, D.J.; Hughes, P.J.; Martin, M.A.; Sharp, A.T.; Shonder, J.A.

1999-06-19T23:59:59.000Z

294

Benchmark for performance: Geothermal applications in Lincoln public schools  

SciTech Connect

Vertical-bore, geothermal heat pumps (GHPs) have been providing heating and cooling to four new elementary schools located in Lincoln, Nebraska since 1995. According to representatives of the local utility and school district, the systems are providing a comfortable, complaint-free environment with utility costs that are nearly half of that of other schools in the district. Performance data collected from on-site energy management systems and district billing and utility records for all fifty schools in the Lincoln district indicate that only five consume less energy than the best performing GHP school; however, these five cool less than 10% of their total floor area, while the GHP schools cool 100% of their floor area. When compared to other new schools (with similar ventilation loads), the GHP schools used approximately 26% less source energy per square foot of floor area. Variations in annual energy performance are evident amongst the four GHP schools, however, together they still consume less source energy than 70% of all schools in the district. These variations are most likely due to operational differences rather than installed equipment, building orientation, or environmental (bore field) conditions.

Shonder, J.A.; Martin, M.A.; Sharp, T.R.; Durfee, D.J.; Hughes, P.J.

1999-07-01T23:59:59.000Z

295

Process applications for geothermal energy resources. Final report  

DOE Green Energy (OSTI)

The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

1981-08-01T23:59:59.000Z

296

Geothermal Heat Pump Systems in Schools: Construction, Maintenance and Operating Costs  

Science Conference Proceedings (OSTI)

Geothermal heat pumping and cooling systems are still not widely used to heat and cool buildings. They are an unknown to most architects and engineers. The electric utility industry has recognized them as being a very energy-efficient way to heat and cool buildings using electricity. The Tennessee Valley Authority (TVA) has assisted in design and installation of many geothermal systems, particularly in school buildings. With a number of geothermal heat pump systems in schools in operation in the TVA regi...

2000-12-13T23:59:59.000Z

297

An AHP approach for evaluating geothermal district energy systems[Analytical Hierarchy Process  

SciTech Connect

In the rating and design of the geothermal district energy (DE) systems the technology, cost, benefits, and environmental effects of the alternatives need to be carefully compared. This study deals with the evaluation of several alternatives of district energy systems for the city of Denizli. These alternatives vary from the existing geothermal plant to the hybrid cycle, totally integrated geothermal energy system. In the comparative evaluation of the alternative projects, Analytical Hierarchy Process (AHP) was utilized.

Eltez, A.; Kilkis, I.B.; Eltez, M.

1999-07-01T23:59:59.000Z

298

An Updated Numerical Model Of The Larderello-Travale Geothermal System,  

Open Energy Info (EERE)

Of The Larderello-Travale Geothermal System, Of The Larderello-Travale Geothermal System, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Numerical Model Of The Larderello-Travale Geothermal System, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Larderello-Travale is one of the few geothermal systems in the world that is characterized by a reservoir pressure much lower than hydrostatic. This is a consequence of its natural evolution from an initial liquid-dominated to the current steam-dominated system. Beneath a nearly impermeable cover, the geothermal reservoir consists of carbonate-anhydrite formations and, at greater depth, by metamorphic rocks. The shallow reservoir has temperatures in the range of 220-250°C, and pressures of about 20 bar at a depth of 1000 m, while the deep metamorphic reservoir has

299

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems  

Open Energy Info (EERE)

of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range province. Well 46A-19RD, located in the southwestern portion of this field is currently the focus of a DOE-funded Enhanced Geothermal Systems (EGS) project. Petrologic and petrographic investigations of the well show that quartz diorite and granodiorite are dominant lithologies. Dikes of granophyre, containing phenocrysts of plagioclase, potassium feldspar, and

300

Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact  

E-Print Network (OSTI)

rock interactions in enhanced geothermal systems (EGS).31 th Workshop on Geothermal Reservoir Engineering, 301998). Computer modeling for geothermal systems: predicting

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On the production behavior of enhanced geothermal systems with CO2 as working fluid  

E-Print Network (OSTI)

temperature pressure Production/Injection pattern area (Fig.injection pressure (downhole) production pressure (downhole)On the Production Behavior of Enhanced Geothermal Systems

Pruess, K.

2008-01-01T23:59:59.000Z

302

A New Gold Pan For The West- Discovering Blind Geothermal Systems...  

Open Energy Info (EERE)

blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies...

303

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

304

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

305

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

306

DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES | Open  

Open Energy Info (EERE)

REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Details Activities (6) Areas (6) Regions (0) Abstract: Lawrence Berkeley National Laboratory (LBNL) at the direction of the United States Department of Energy (DOE) Geothermal Technologies EGS Program is installing, operating, and/or interfacing seismic arrays at multiple Enhanced Geothermal Systems (EGS) sites. The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality

307

Active Geothermal Systems And Associated Gold Deposits In The Great Basin |  

Open Energy Info (EERE)

Geothermal Systems And Associated Gold Deposits In The Great Basin Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Geothermal Systems And Associated Gold Deposits In The Great Basin Details Activities (0) Areas (0) Regions (0) Abstract: In western North America, a number of geothermal systems derive their heat from magmas or cooling intrusions. The interior of the Great Basin however, is characterized by widespread amagmatic geothermal activity that owes its existence to high crustal heat flow and active extensional tectonics. Both the magmatically heated and extensional fluid types in the Great Basin have recently, or are currently, depositing gold. Quaternary to Pliocene-aged gold deposits with adjacent high-temperature (≤ 150°C)

308

Geothermal probabilistic cost model with an application to a geothermal reservoir at Heber, California  

DOE Green Energy (OSTI)

A financial accounting model that incorporates physical and institutional uncertainties has been developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.

Orren, L.H.; Ziman, G.M.; Jones, S.C.

1981-12-15T23:59:59.000Z

309

Compound hybrid geothermal-fossil power plants: thermodynamic analyses and site-specific applications  

DOE Green Energy (OSTI)

The analysis of hybrid fossil-geothermal power plants is extended to compound hybrid systems which combine the features of previously analyzed systems: the geothermal-preheat and the fossil-superheat systems. Compound systems of the one- and two-stage type are considered. A compilation of working formulae from earlier studies is included for completeness. Results are given for parametric analyses of compound hybrid plants. System performance was determined for wellhead conditions of 150, 200, and 250/sup 0/C, and for steam fractions of 10, 20, 30, and 40%. For two-stage systems an additional cycle variable, the hot water flash fraction, was varied from 0 to 100% in increments of 25%. From the viewpoint of thermodynamics, compound hybrid plants are superior to individual all-geothermal and all-fossil plants, and are shown to have certain advantages over basic geothermal-preheat and fossil-superheat hybrid plants. The flexibility of compound hybrid systems is illustrated by showing how such plants might be used at six geothermal sites in the western United States. The question of the optimum match between the energy resources and the power plant is addressed, and an analysis given for a hypothetical geothermal resource.

DiPippo, R.; Avelar, E.M.

1979-06-01T23:59:59.000Z

310

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network (OSTI)

geothermal power plants. US DOE EERE Geothermal Technologieswas made for the US DOE EERE Geothermal Technologies

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

311

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

312

Numerical simulation of reservoir compaction in liquid dominated geothermal systems  

DOE Green Energy (OSTI)

A numerical model is introduced which simulates the effects of fluid production as well as reinjection on the vertical deformation of water dominated geothermal reservoirs. This program, based on an Integrated Finite Difference technique and Terzaghi's one-dimensional consolidation model, computes the transport of heat and water through porous media, and resulting pore volume changes. Examples are presented to show the effects of reservoir heterogeneities on the compaction of these hot water systems, as well as the effects of different production-injection schemes. The use of isothermal models to simulate the deformation of non-isothermal systems was also investigated.

Lippmann, M.J.; Narasimhan, T.N.; Witherspoon, P.A.

1976-12-01T23:59:59.000Z

313

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

314

Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal  

Open Energy Info (EERE)

Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of 3D Inversion To Magnetotelluric Data In The Ogiri Geothermal Area, Japan Details Activities (0) Areas (0) Regions (0) Abstract: A stable inversion technique has been developed for threedimensional (3D) interpretation of magnetotelluric (MT) data. The inversion method is based on the Gauss-Newton (linearized least-squares) method with smoothness regularization. Static shifts are also treated as unknown parameters in the inversion. The forward modeling is done by using the staggered-grid finite difference method. A Bayesian criterion ABIC is applied to searching for the optimum trade-off among the minimization of

315

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network (OSTI)

and a corridor zone on floor 1 · Heating / cooling area for VRF ­ 18,226 sq. ft. ­ All zones on floor 1 (minus: 288.6 kBtu/hr · All zones on floor 2 and a corridor zone on floor 1 · Loads for VRF system ­ Heating,000.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Geo HP vs VRF 2010 System Power (kWh) Geo HP VRF #12

Oak Ridge National Laboratory

316

Engineered Geothermal Systems Energy Return On Energy Investment  

DOE Green Energy (OSTI)

Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy â?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the â??minimumâ? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

317

Assessment of a geothermal application at Tucson, Arizona  

DOE Green Energy (OSTI)

This study assessed the potential of using a geothermal energy source thought to underlie a large computer company's new facility near Tucson, Arizona. This energy source would be used with existing technology to meet the air conditioning and heating requirements of the proposed one million-square-foot expansion that would double the size of the facility. Cost data generated in this study could also be used to make economic determinations of retrofitting the existing, electrically driven centrifugal chillers with hot geothermal water-fired absorption chillers.

Keller, J.G.

1982-03-01T23:59:59.000Z

318

Geothermal pump down-hole energy regeneration system  

DOE Patents (OSTI)

Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

Matthews, Hugh B. (Boylston, MA)

1982-01-01T23:59:59.000Z

319

Precipitation and scaling in dynamic geothermal systems. [Titanium loop facility  

DOE Green Energy (OSTI)

A dynamic loop facility for studying scaling in simulated geothermal brines--under conditions such as will be encountered in engineering scale heat transfer equipment is being constructed. The first phase of the program consists of two principal efforts: (1) modification of an existing 100 gpm titanium loop to provide the engineering scaling test facility and (2) operation of an approximately 1 gph once-through (experimental) system to provide design data for titanium loop modifications to provide experience with scale formation and characterization. This experience is being used in planning the scaling studies to be conducted in the dynamic loop facility. The status of the project is described.

Bohlmann, E.G.; Shor, A.J.; Berlinski, P.

1976-10-01T23:59:59.000Z

320

Blind Geothermal System Exploration in Active Volcanic Environments...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

Brophy, P.

2012-01-01T23:59:59.000Z

322

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

323

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

324

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

325

Process applications for geothermal energy resources. Progress report  

SciTech Connect

Energy use characteristics of the major energy using industries in the US were examined. The pulp and paper industry was selected and a workshop held. Two analyses were performed of the potential for substituting geothermal energy for fossil fuel in specific pulp and paper plants. The lack of industry interest is discussed. (MHR)

1979-10-01T23:59:59.000Z

326

Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)  

SciTech Connect

Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

Augustine, C.

2013-10-01T23:59:59.000Z

327

Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report  

DOE Green Energy (OSTI)

The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

Kauffman, D.; Houghton, A.V.

1980-12-31T23:59:59.000Z

328

Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report  

DOE Green Energy (OSTI)

The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

1982-10-01T23:59:59.000Z

329

High-temperature batteries for geothermal and oil/gas borehole applications  

DOE Green Energy (OSTI)

A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.

GUIDOTTI,RONALD A.

2000-05-25T23:59:59.000Z

330

Enhanced Geothermal Systems (EGS) R&D Program  

DOE Green Energy (OSTI)

The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report the meat of the Workshop. Section 4.0 describes the nomination and clarification of technical thrusts, and Section 5.0 reports the results of prioritizing those thrusts via voting by the participants. Section 6.0 contains two discussions conducted after the work on research thrusts. The topics were ''Simulation'' and ''Stimulation''. A number of technical points that emerged here provide important guidance for both practical field work on EGS systems and for research.

Entingh, Daniel J.

1999-08-18T23:59:59.000Z

331

Mercury In Soils Of The Long Valley, California, Geothermal System | Open  

Open Energy Info (EERE)

In Soils Of The Long Valley, California, Geothermal System In Soils Of The Long Valley, California, Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Mercury In Soils Of The Long Valley, California, Geothermal System Details Activities (3) Areas (1) Regions (0) Abstract: An evaluation of the Hg distribution in soils of the Long Valley, California, geothermal area, was made. A1-horizon soil samples were collected utilizing a grid system from the resurgent dome area and the Long Valley area. In addition, samples were collected in five traverses across three fault systems and four traverses across east-west-oriented gullies to measure the importance of aspect. Additional samples were collected in an analysis of variance design to evaluate natural variability in soil composition with sampling interval distance. The primary objectives of this

332

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

333

Geothermal Systems are a Breath of Fresh Air for Illinois School District |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems are a Breath of Fresh Air for Illinois School Geothermal Systems are a Breath of Fresh Air for Illinois School District Geothermal Systems are a Breath of Fresh Air for Illinois School District May 24, 2010 - 11:01am Addthis Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don’t produce excess noise. | Photo Courtesy of Sterling Public Schools Each classroom has a geothermal unit installed. Although large, the units blend into surroundings and don't produce excess noise. | Photo Courtesy of Sterling Public Schools Lindsay Gsell Superintendent Tad Everett had two priorities when deciding on a new system to replace the aging oil-based boiler heating and cooling systems for the seven schools in his district: improving learning environments and saving

334

Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid  

Open Energy Info (EERE)

with CO2 as Heat Transmission Fluid with CO2 as Heat Transmission Fluid Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Previous and current attempts to develop EGS in the U.S., Japan, Europe and Australia have all employed water as a heat transmission fluid. Water has many properties that make it a favorable medium for heat extraction, but it also has serious drawbacks. The use of supercritical CO2 (scCO2) instead of water as heat extraction fluid was suggested by Donald Brown of Los Alamos National Laboratory as a "game changing" alternative that can avoid the problems of aqueous fluids, make heretofore inaccessible energy resources available for human use, and provide ancillary benefits by using and storing CO2.

335

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

Science Conference Proceedings (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

336

2nd Quarterly technical progress report for geothermal system temperature-depth database  

DOE Green Energy (OSTI)

At the Southern Methodist University Geothermal Laboratory in Dallas, Texas, the Earth`s surface and internal temperature are studied. With financial support from the U.S. Department of Energy, a data base containing geothermal temperature well information for the United States is being developed. During this calendar quarter, activity with this project has continued involving several different tasks: planning and development of the geothermal system thermal-well data base and temperature-depth data, development of the specifications for the data base, and completion of an initial inventory of the geothermal areas for which data are available.

Blackwell, D.D.

1997-07-30T23:59:59.000Z

337

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

338

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

DOE Green Energy (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

339

A New Gold Pan For The West- Discovering Blind Geothermal Systems With  

Open Energy Info (EERE)

Gold Pan For The West- Discovering Blind Geothermal Systems With Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Gold Pan For The West- Discovering Blind Geothermal Systems With Shallow Temperature Surveys Details Activities (6) Areas (4) Regions (0) Abstract: The use of rapidly deployable 2-meter-deep shallow temperature surveys has led to the discovery of at least two blind geothermal systems in Nevada, USA and has helped to define the spatial extent of thermal anomalies at two other locations. At Teels Marsh, two shallow temperature anomalies with a combined strike length of almost 4 km were identified adjacent to a Quaternary fault on the west side of the playa. At Rhodes Marsh, a thermal anomaly at least 5 km long was located adjacent to

340

Marketing the Klamath Falls Geothermal District Heating system  

DOE Green Energy (OSTI)

The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

Rafferty, K.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modeling studies of geothermal systems with a free water surface  

DOE Green Energy (OSTI)

A numerical simulator was developed for the modeling of air-steam-water systems. The simulator was applied to various problems involving injection into or production from a geothermal reservoir in hydraulic communication with a shallow free-surface aquifer. First, a one-dimensional column problem is considered and the water level movement during exploitation is studied using different capillary pressure functions. Second, a two-dimensional radial model is used to study and compare reservoir depletion for cases with and without a free-surface aquifer. Finally, the contamination of a shallow free-surface aquifer due to cold water injection is investigated. The primary aim of these studies is to obtain an understanding of the response of a reservoir in hydraulic communication with a unconfined aquifer during exploitation or injection and to determine under which circumstances conventional modeling techniques (fully saturated systems) can be applied to such systems.

Bodvarsson, G.S.; Pruess, K.

1983-12-01T23:59:59.000Z

342

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

343

Gravity and magnetic features and their relationship to the geothermal system in southwestern South Dakota  

SciTech Connect

An attempt is made to determine the sources that are responsible for producing geothermal anomalies observed within the southern Black Hills region. Lithologic and structural boundaries residing in the upper crust and their relationship to the geothermal system are discussed. A regional gravity survey was supplemented by a regional aeromagnetic survey.

Hildenbrand, T.G.; Kucks, R.P.

1981-01-01T23:59:59.000Z

344

Optimization of non-condensable gas removal system in geothermal power plant  

SciTech Connect

Optimization of non-condensable gas (hereinafter called N.C.G.) removal system in geothermal power station, in a special case that the geothermal steam contains large amount of noncondensable gas, is discussed. Four different alternative N.C.G. removal systems are studied, which are steam jet gas ejectors, centrifugal gas compressors, combined systems of steam ejectors and centrifugal compressors and back pressure turbine-without N.C.G. removal system. This report summarizes the results and gives recommendations as to the most suitable gas removal system and also as to optimum condenser pressure, in cases of large quantity N.C.G. content in geothermal steam.

Tajima, S.; Nomura, M.

1982-10-01T23:59:59.000Z

345

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

346

Optimization of design and control strategies for geothermal space heating systems. Final report  

DOE Green Energy (OSTI)

The efficient design and operation of geothermal space heating systems requires careful analysis and departure from normal design practices. Since geothermal source temperatures are much lower than either fossil fuel or electrical source temperatures, the temperature of the delivered energy becomes more critical. Also, since the geothermal water is rejected after heat exchange, it is necessary to extract all of the energy that is practical in one pass; there is no second change for energy recovery. The present work examines several heating system configurations and describes the desired design and control characteristics for operation on geothermal sources. Specific design methods are outlined as well as several generalized guidelines that should significantly improve the operation of any geothermally heated system.

Batdorf, J.A.; Simmons, G.M.

1984-07-01T23:59:59.000Z

347

Single-Well Enhanced Geothermal System Front-End Engineering and Design: Optimization of a Renewable Geothermal System for Harvesting Heat from Hot, Dry Rock  

Science Conference Proceedings (OSTI)

In 2009, GTherm and the Thayer School of Engineering at Dartmouth College, under an EPRI Polaris grant, evaluated the potential for a GTherm single-well enhanced geothermal system (SWEGS) and bottom-hole HeatNest to produce enough heat from deep geothermal wells to be an effective alternative for generating electric power. The research focused on the thermodynamic properties of the SWEGS design and the optimal geologic conditions. The results indicated that, given the right conditions, the SWEGS can extr...

2011-08-12T23:59:59.000Z

348

Property:Geothermal/Partner5Website | Open Energy Information  

Open Energy Info (EERE)

Partner5Website Partner5Website Jump to: navigation, search Property Name Geothermal/Partner5Website Property Type URL Description Partner 5 Website (URL) Pages using the property "Geothermal/Partner5Website" Showing 6 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.westerngeco.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.thermasource.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://- + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

349

A survey of geothermal process heat applications in Guatemala: An engineering survey  

SciTech Connect

This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

Altseimer, J.H.; Edeskuty, F.J.

1988-08-01T23:59:59.000Z

350

A survey of geothermal process heat applications in Guatemala: An engineering survey  

DOE Green Energy (OSTI)

This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

Altseimer, J.H.; Edeskuty, F.J.

1988-08-01T23:59:59.000Z

351

Direct application of east coast geothermal resources in a frozen food plant. Final report  

DOE Green Energy (OSTI)

The technical and economic viability of retrofitting an existing frozen food plant in Salisbury, Maryland to utilize the anticipated geothermal resources in that area was evaluated, via a budgetary level design and cost estimating analysis. Based on predicted reservoir data, a design concept was developed from production well through the plant to final brine disposal. A parametric analysis of capital and operating costs was performed which covered the range of geothermal design data developed. Relevant social, financial, environmental, legal, and regulatory institutional relationships were examined and ways to eliminate any barriers they presented against the proposed application were explored. Based on results from the other tasks, the existing DOE East Coast Geothermal Development Plan was evaluated and possible alterations were proposed. (MHR)

Ammerlaan, A.C.F.; Knebel, M.E.; Czarnecki, R.J.

1979-01-01T23:59:59.000Z

352

Application of the SP technique over Lagadas low enthalpy geothermal field, Greece  

Science Conference Proceedings (OSTI)

This paper reports that in order to verify the applicability of the SP gradient method as a tool for geothermal exploration, Lagadas low enthalpy geothermal field was used as a test site. A total of 63 lines km was surveyed using SP gradient method along 10 profiles covering the main geothermal field area. The complied SP map correlates in a satisfactory was with other geological and geophysical information available. Detected SP anomalies were inverted to causative polarized planes and their relationship with existing deep fractures in the basement is investigated. As a result, two main fracture zones were detected, which were electrically polarized, and coincide with already known similar tectonic features identified by other geological and geophysical methods. Circulation of hot water in deep permeable fracture zones is considered to be the originating mechanism of the observed SP anomalies.

Thanassoulas, C.; Lazou, A. (Inst. of Geology and Mineral Exploration, Dept. of Geophysical Research, 57 Messoghion Avenue, Athens 115-26 (GR))

1990-01-01T23:59:59.000Z

353

Rankine cycle energy conversion system design considerations for low and intermediate temperature sensible heat sources. Geothermal, waste heat, and solar thermal conversion  

DOE Green Energy (OSTI)

Design considerations are described for energy conversion systems for low and intermediate temperature sensible heat sources such as found in geothermal, waste heat, and solar-thermal applications. It is concluded that the most cost effective designs for the applications studied did not require the most efficient thermodynamic cycle, but that the efficiency of the energy conversion hardware can be a key factor.

Abbin, J.P. Jr.

1976-10-01T23:59:59.000Z

354

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

DOE Green Energy (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

355

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

356

Faults and gravity anomalies over the East Mesa hydrothermal-geothermal system  

DOE Green Energy (OSTI)

Detailed interpretations of gravity anomalies over geothermal systems may be extremely useful for mapping the fracture or fault systems that control the circulation of the thermal waters. This approach seems to be particularly applicable in areas like the Salton Trough where reactions between the thermal waters and the porous sediments produce authigenic-hydrothermal minerals in sufficient quantity to cause distinct gravity anomalies at the surface. A 3-D inversion of the residual Bouguer gravity anomaly over the East Mesa geothermal field was made to examine the densified volume of rock. We show that the data not only resolve a north-south and an intersecting northwest structure, but that it may be possible to distinguish between the active present-day hydrothermal system and an older and cooler part of the system. The densified region is compared spatially to self-potential, thermal and seismic results and we find a good concordance between the different geophysical data sets. Our results agree with previous studies that have indicated that the main feeder fault recharging the East Mesa reservoir dips steeply to the west.

Goldstein, N.E.; Carle, S.

1986-05-01T23:59:59.000Z

357

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

358

Helical-rotor expander applications for geothermal energy conversion  

DOE Green Energy (OSTI)

The helical-rotor expander is one of numerous candidates for the direct ''total flow'' expansion of geothermal fluids. The potential exists for expansion efficiencies as high as 70 percent. Engine efficiencies will generally be below 70 percent because of an expansion-ratio limitation of 15 and a maximum pressure differential of 110 psi. Single-stage expansion of self-pumped geothermal fluids from reservoirs at 350 to 752/sup 0/F gives engine efficiencies in the range from 57.3 to 43.1 percent. Calculated rotor diameters range from 10.5 to 41.6 ft for a range of outputs of 5 to 40 MW. Two-stage expansion of fluid from the 572/sup 0/F reservoir gives an engine efficiency of 62.3 percent and a 21 percent reduction in the diameter of the larger rotor. Rotor diameters can be held to more reasonable sizes by using the expander in combination with a vapor turbine.

House, P.A.

1976-04-01T23:59:59.000Z

359

GRR/Section 7-HI-a - Geothermal and Cable System Development Permit | Open  

Open Energy Info (EERE)

GRR/Section 7-HI-a - Geothermal and Cable System Development Permit GRR/Section 7-HI-a - Geothermal and Cable System Development Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 7-HI-a - Geothermal and Cable System Development Permit 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Land and Natural Resources Engineering Division Regulations & Policies Hawaii Revised Statute 196D Hawaii Administrative Rules 13-185 Hawaii Revised Statute 205-3.1 Revised Statute 205-5. Triggers None specified Click "Edit With Form" above to add content 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf 07HIAGeothermalAndCableSystemDevelopmentPermitting.pdf Error creating thumbnail: Page number not in range.

360

Sales and Use Tax Exemption for Solar and Geothermal Systems | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar and Geothermal Systems Solar and Geothermal Systems Sales and Use Tax Exemption for Solar and Geothermal Systems < Back Eligibility Commercial General Public/Consumer Installer/Contractor Residential Savings Category Energy Sources Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Program Info Start Date 7/1/2007 State Connecticut Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider Connecticut Department of Revenue Services Connecticut enacted legislation in June 2007 (H.B. 7432) that established a sales and use tax exemption for solar energy equipment and geothermal resource systems. H.B. 7432 added passive and active solar water-heating systems, passive and active solar space-heating systems, and solar-electric

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

System design verification of a hybrid geothermal/coal fired power plant  

DOE Green Energy (OSTI)

This hybrid plant utilizes geothermal fluid for feedwater heating. With respect to the extraction of available work from the geothermal fluids, this cycle is approximately two times as efficient as the all geothermal plant. The System Design Verification Study presented verifies the technical and economic feasibility of the hybrid plant. This report is comprised of a conceptual design, cost estimate, and economic analysis of a one-unit 715 MW hybrid geothermal/coal fired power plant. In addition to the use of geothermal fluid for feedwater heating, its use is also investigated for additional power generation, condensate and cooling tower makeup water, coal beneficiation, air preheating, flue gas reheating and plant space heating requirements. An engineering and construction schedule for the hybrid plant is also included.

Not Available

1978-09-01T23:59:59.000Z

362

Federal Geothermal Research Program Update - Fiscal Year 2004  

DOE Green Energy (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Patrick Laney

2005-03-01T23:59:59.000Z

363

Federal Geothermal Research Program Update Fiscal Year 2004  

DOE Green Energy (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Not Available

2005-03-01T23:59:59.000Z

364

Tough2/PC application simulation project for Heber geothermal field, California, a progress report  

SciTech Connect

A numerical simulation model for the Heber geothermal field in Southern California is being developed under a technology transfer agreement between the Department of Energy/Lawrence Berkeley National Laboratory (LBNL) and the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources (DOGGR). The main objectives of the cooperation are (1) to train DOGGR personnel in the use of the TOUGH2PC computer code; and (2) to develop a module compatible with TOUGH2 to investigate the effects of production/injection operations on the ground surface subsidence-rebound phenomenon observed in the Heber geothermal field. Initial-state calibration (undisturbed system) runs are being conducted to calibrate the model.

Boardman, Timothy S.; Khan, M. Ali; Antunez, Emilio

1996-01-24T23:59:59.000Z

365

Kinetics of fluorescein decay and its application as a geothermal tracer  

Science Conference Proceedings (OSTI)

This paper reports on fluorescent which is a dye used to trace the path of injected fluids through geothermal reservoirs. The authors have measured its thermal stability at temperatures up to 300{degrees} C in hydrothermal autoclaves at various fluid compositions, pHs, and oxygen concentrations. The results of these experiments indicate that fluorescein will decay less than 10% during a one month tracer test in geothermal reservoirs with temperatures below 210{degrees} C. For tracer test involving longer times and/or higher temperatures, the activation parameters presented in this study can be used to correct for thermal decay. These parameters were applied to a tracer test conducted at the Dixie Valley, Nevada geothermal system to correct for the thermal decay of fluorescein and to deduce the effective temperature of the injection-production flow path.

Adams, M.C.; Davis, J. (Univ. of Utah Research Inst., Salt Lake City, UT (US))

1991-01-01T23:59:59.000Z

366

Property:Geothermal/Partner4Website | Open Energy Information  

Open Energy Info (EERE)

Partner4Website Partner4Website Jump to: navigation, search Property Name Geothermal/Partner4Website Property Type URL Description Partner 4 Website (URL) Pages using the property "Geothermal/Partner4Website" Showing 7 pages using this property. A Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.smu.edu/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sandia.gov/ + D Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

367

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal...  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled...

368

COO-3904-1 I GEOTHERMAL SYSTEMS MATERIALS: A WO RKsHOPlSY MPOSl...  

NLE Websites -- All DOE Office Websites (Extended Search)

563 COO-3904-1 I GEOTHERMAL SYSTEMS MATERIALS: A WO RKsHOPlSY MPOSl U M . Proceedings, May 23-25, 1978 Work Performed Under Contract No. EG-774-04-3904 Radian Corporation Austin,...

369

Method for inhibiting silica precipitation and scaling in geothermal flow systems  

DOE Patents (OSTI)

A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

Harrar, Jackson E. (Castro Valley, CA); Lorensen, Lyman E. (Orinda, CA); Locke, Frank E. (Lafayette, CA)

1982-01-01T23:59:59.000Z

370

Method for inhibiting silica precipitation and scaling in geothermal flow systems  

DOE Patents (OSTI)

A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

1980-06-13T23:59:59.000Z

371

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

372

Geothermal HVAC System Performance in a Quick Service Restaurant: Field Experience From McDonald's Demonstration  

Science Conference Proceedings (OSTI)

This report summarizes the monitored results from a geothermal heat pump system installed at a new McDonald's restaurant in Westland, Michigan, a suburb 23 miles west of Detroit.

1999-12-15T23:59:59.000Z

373

Geothermal demonstration: Zunil food dehydration facility  

DOE Green Energy (OSTI)

A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

Maldonado, O. (Consultecnia, Guatemala City (Guatemala)); Altseimer, J.; Thayer, G.R. (Los Alamos National Lab., NM (United States)); Cooper, L. (Energy Associates International, Albuquerque, NM (United States)); Caicedo, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion)

1991-08-01T23:59:59.000Z

374

The origin of high-temperature zones in vapor-dominated geothermal systems  

DOE Green Energy (OSTI)

Vapor-dominated geothermal systems are proposed to originate by downward extension (by the ''heat pipe'' mechanism) into hot dry fractured rock above a large cooling igneous intrusion. High temperature zones found by drilling are shallow parts of the original hot dry rock where the penetration of the vapor reservoir was limited, and hot dry rock may extend under much of these reservoirs. An earlier hot water geothermal system may have formed during an early phase of the heating episode.

Truesdell, Alfred H.

1991-01-01T23:59:59.000Z

375

Geologic and hydrologic research on the Moana geothermal system, Washoe County, Nevada. Final report October 1, 1982-December 31, 1983  

DOE Green Energy (OSTI)

Combined geologic, geophysical, geochemical, and drilling exploration surveys were used to assess the Moana geothermal resource in Washoe County, Nevada, and to determine its relationship with nearby Steamboat Hot Springs. Moana is the largest single moderate-temperature resource in Nevada that supports geothermal space heating applications. Results show that the general geology and structure for the two systems is similar, but important differences exist with respect to reservoir rocks. Gravity data delineated the contact between important volcanic and sedimentary rocks in Moana, but contour trends did not correlate well with mapped faults. Fluid geochemistry data show major differences in bulk chemical composition, stable-light isotope ratios, and radiocarbon ages for Moana and Steamboat geothermal waters. Water level measurements in observation wells in Moana show simultaneous increasing and decreasing values in different sections of the geothermal area. Temperature-depth profiles changed little during the six-month monitoring period. Direct use of the resource is increasing and longer-lasting, more efficient down-hole heat exchangers are replacing previous equipment that was prone to scaling and corrosion. A computer program that calculates heat output for state-of-the-art heat exchangers is described. Recommendations for continued monitoring, heat exchanger design, and fluid reinjection studies are included. Data are available to government agencies responsible for regulation as well as local residents and potential developers to ensure prudent resource utilization.

Flynn, T.; Ghusn, G. Jr.

1984-01-01T23:59:59.000Z

376

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Details Activities (1) Areas (1) Regions (0) Abstract: Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

377

Torbett-Hutchings-Smith Memorial Hospital geothermal-system demonstration at Marlin, Texas. Final design report  

SciTech Connect

The final design and economics of the Torbett-Hutchings-Smith (THS) Memorial Hospital geothermal heating system at Marlin, Texas are outlined. A brief description of the existing heating system, an overview of the geothermal retrofit, and the results of an economic analysis are included. It is estimated that the geothermal heating system will displace approximately 84 percent of the hospital's average annual natural gas consumption. In summer conditions, approximately 45 gpm of geothermal fluid will be utilized at a wellhead temperature of 139/sup 0/F. In peak demand winter conditions, approximately 160 gpm will be utilized at a wellhead temperature of 148/sup 0/F. The geothermal fluid temperature drop across the system will range from about 5/sup 0/F in summer to over 45/sup 0/F during winter. Total capital costs for the system are estimated to be $673,000, including the production well, a geothermal equipment room, engineering and architectural costs, and all equipment. The average annual natural gas savings are expected to be $28,200 while average annual operating and maintenance costs are estimated to be $7750. A before tax life cycle economic analysis of the THS system shows the breakeven period (BEP) of 29 years falling slightly below the 30 year expected life. This BEP is significantly influenced by the developmental nature of this project and by its lack of tax incentives.

1980-09-17T23:59:59.000Z

378

Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley  

DOE Green Energy (OSTI)

Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

2001-03-02T23:59:59.000Z

379

Development of a Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation  

DOE Green Energy (OSTI)

Casing deformation in producing geothermal wells is a common problem in many geothermal fields, mainly due to the active geologic formations where these wells are typically located. Repairs to deformed well casings are necessary to keep the wells in production and to occasionally enter a well for approved plugging and abandonment procedures. The costly alternative to casing remediation is to drill a new well to maintain production and/or drill a well to intersect the old well casing below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsored research and development work at Sandia National Laboratories in an effort to reduce these casing remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, developed a low cost, bridge-plug-type, packer for use in casing remediation work in geothermal well environments. This report documents the development and testing of this commercially available petal-basket packer called the Special Application Coiled Tubing Applied Plug (SACTAP).

STALLER,GEORGE E.; KNUDSEN,STEVEN D.; SATTLER,ALLAN R.

1999-10-01T23:59:59.000Z

380

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

mathematical models of land subsidence in geothermal areas:2nd Int. Symp. Land Subsidence, Anaheim, Ca. , Dec. 13-17,Symposium on Land Subsidence, Anaheim, CA, December 10-17,

Lippmann, M.J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

DOE Green Energy (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

382

Application of oil-field well log interpretation techniques to the Cerro Prieto Geothermal Field  

DOE Green Energy (OSTI)

An example is presented of the application of oil-field techniques to the Cerro Prieto Field, Mexico. The lithology in this field (sand-shale lithology) is relatively similar to oil-field systems. The study was undertaken as a part of the first series of case studies supported by the Geothermal Log Interpretation Program (GLIP) of the US Department of Energy. The suites of logs for individual wells were far from complete. This was partly because of adverse borehole conditions but mostly because of unavailability of high-temperature tools. The most complete set of logs was a combination of Dual Induction Laterolog, Compensated Formation Density Gamma Ray, Compensated Neutron Log, and Saraband. Temperature data about the wells were sketchy, and the logs had been run under pre-cooled mud condition. A system of interpretation consisting of a combination of graphic and numerical studies was used to study the logs. From graphical studies, evidence of hydrothermal alteration may be established from the trend analysis of SP (self potential) and ILD (deep induction log). Furthermore, the cross plot techniques using data from density and neutron logs may help in establishing compaction as well as rock density profile with depth. In the numerical method, R/sub wa/ values from three different resistivity logs were computed and brought into agreement. From this approach, values of formation temperature and mud filtrate resistivity effective at the time of logging were established.

Ershaghi, I.; Phillips, L.B.; Dougherty, E.L.; Handy, L.L.

1979-10-01T23:59:59.000Z

383

Assessment of the State-Of-The-Art of Numerical Simulation of Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

The reservoir features of importance in the operation of enhanced geothermal systems are described first (Section 2). The report then reviews existing reservoir simulators developed for application to HDR reservoirs (Section 3), hydrothermal systems (Section 4), and nuclear waste isolation (Section 5), highlighting capabilities relevant to the evaluation and assessment of EGS. The report focuses on simulators that include some representation of flow in fractures, only mentioning other simulators, such as general-purpose programs or groundwater models (Section 6). Following these detailed descriptions, the report summarizes and comments on the simulators (Section 7), and recommends a course of action for further development (Section 8). The references are included in Section 9. Appendix A contains contractual information, including a description of the original and revised scope of work for this study. Appendix B presents comments on the draft report from DOE reviewer(s) and the replies of the authors to those comments. [DJE-2005

None

1999-11-01T23:59:59.000Z

384

Property:Geothermal/Impacts | Open Energy Information  

Open Energy Info (EERE)

Impacts Impacts Jump to: navigation, search Property Name Geothermal/Impacts Property Type Text Description Impacts Pages using the property "Geothermal/Impacts" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + If successful, this would mark a major advance in our ability to image potentially productive fluid pathways in fracture-dominated systems. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Successful application of techniques could allow replication to buildings across campus and in City of Butte, including county court house, the Federal court building, World Museum of Mining, and numerous privately owned historic buildings.

385

Preliminary Screening for Project Feasibility and Applications for Geothermal Heat Pump Retrofit Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Super ESPC Best Practices Super ESPC Best Practices Preliminary Screening for Project Feasibility and Applications for Geothermal Heat Pump Retrofit Projects GHPs Should Always be Considered for Federal Sites Geothermal or ground-source heat pumps (GHPs) are a highly efficient method of providing heating and cooling for buildings. The technology has been applied successfully in a wide variety of building types - single- and multi-family dwellings, schools, offices, department and convenience stores, hotels, post offices, and libraries among others - and in climates and geographical zones across the United States, from the deserts of Fort Irwin, California, to downtown Manhattan, and from South Texas to Northern Minnesota. Given their energy and cost savings potential, and their wide range of applicability, GHPs should always be considered as a

386

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

387

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

388

Property:Geothermal/Partner2Website | Open Energy Information  

Open Energy Info (EERE)

Partner2Website Partner2Website Jump to: navigation, search Property Name Geothermal/Partner2Website Property Type URL Description Partner 2 Website (URL) Pages using the property "Geothermal/Partner2Website" Showing 19 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.dri.edu/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.climatemaster.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://optimsoftware.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.altarockenergy.com/ +

389

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

390

Utilization of melting techniques for borehole wall stabilization. [Applied to geothermal well production systems  

DOE Green Energy (OSTI)

A research program on the Subterrene concept based on excavation by melting has been completed. Theoretical and experimental studies were made for a broad range of applications. Most recently, a study of Subterrene deep geothermal well production systems predicted that, compared to rotary-drilled wells, significant cost savings are possible, e.g., 2 and 4 million dollars for 10-km-deep wells and geothermal gradients of 25 and 40 K/km, respectively. It was also concluded that for most wells the rate of penetration of the melting bits should be increased several times over that attained in the Subterrene tests. Subterrene melting penetration tests showed that borehole glass liners can be formed in a wide variety of materials and structural characterization tests showed that tuff glass cylinders can be many times stronger in compression than the parent material. Also, the tests showed that the rock-glass liner permeability decreases rapidly with confining pressure. New melting devices are conceivable that could line rotary-drilled boreholes with rock glass or other materials with resultant improvements in well costs. With emphasis on borehole liners, an overview of Subterrene program results, data on rock-glass liners, and suggestions on how molten materials might be applied to the borehole wall as part of a rotary drilling operation are presented.

Altseimer, J.H.

1977-01-01T23:59:59.000Z

391

Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2010  

Science Conference Proceedings (OSTI)

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. EROI analyses of geothermal energy are either out of date or presented online with little supporting documentation. Often comparisons of energy systems inappropriately use 'efficiency' when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electric energy delivered to the consumer compared to the energy consumed to build, operate, and decommission the facility.

Mansure, A.J.

2010-12-31T23:59:59.000Z

392

Program on Technology Innovation: Modeling of Single-Well Closed-Loop Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

Conventional enhanced geothermal systems (EGSs) include one production well and one injection well to use hydrothermal resources to generate electricity. However, the high initial cost of drilling EGS wells is one of the main factors that hurt its competitiveness with other energy sources. The single-well closed-loop EGS (SWCLEGS) is a new type of geothermal power generation technology that aims to eliminate the need for natural hydrothermal resources with a relatively low drilling cost. The objective of...

2012-02-28T23:59:59.000Z

393

Wind energy/geothermic/solar heating system. Final report  

SciTech Connect

I've observed three distinct ''camps'' of renewable energy resources; WIND, Geothermic, and Solar. None of the three are completely adequate for the NE by themselves. I observe little effort to combine them to date. My objective has been to demonstrate that the three can be combined in a practical system. To mitagate the high cost and poor payback for individual residences, I believe neighborhoods of 4 to 5 homes, apartment complexes or condominiums could form an Energy Association alloting a piece of ground (could be a greenbelt) which would contain the well or wells, solar boosted underground water storage and the Solar banks. These are the high cost items which could be prorated and ammortized by the Association. Easements would permit each residence underground insulated water lines for individual heat pump conversions to existing forced air furnaces. Where regulations permit, an individual home could erect his own windmill to belt drive his freon compressor. With or without the optional windmill the water to freon heat pump with its solar boosts on the well water, will enjoy COP's (coefficient of Performances or times better than electric resistance heat) beyond anything on the market today. In a neighborhood energy association, all trenching could be done together all plumbing could be one contract and they could qualify for quantity discounts on heat pump units, chillers and components and installation.

Not Available

1981-01-01T23:59:59.000Z

394

Mountain Home Geothermal Project: geothermal energy applications in an integrated livestock meat and feed production facility at Mountain Home, Idaho. [Contains glossary  

DOE Green Energy (OSTI)

The Mountain Home Geothermal Project is an engineering and economic study of a vertically integrated livestock meat and feed production facility utilizing direct geothermal energy from the KGRA (Known Geothermal Resource Area) southeast of Mountain Home, Idaho. A system of feed production, swine raising, slaughter, potato processing and waste management was selected for study based upon market trends, regional practices, available technology, use of commercial hardware, resource characteristics, thermal cascade and mass flow considerations, and input from the Advisory Board. The complex covers 160 acres; utilizes 115 million Btu per hour (34 megawatts-thermal) of geothermal heat between 300/sup 0/F and 70/sup 0/F; has an installed capital of $35.5 million;produces 150,000 hogs per year, 28 million lbs. of processed potatoes per year, and on the order of 1000 continuous horsepower from methane. The total effluent is 200 gallons per minute (gpm) of irrigation water and 7300 tons per year of saleable high grade fertilizer. The entire facility utilizes 1000 gpm of 350/sup 0/F geothermal water. The economic analysis indicates that the complex should have a payout of owner-invested capital of just over three years. Total debt at 11% per year interest would be paid out in 12 (twelve) years.

Longyear, A.B.; Brink, W.R.; Fisher, L.A.; Matherson, R.H.; Neilson, J.A.; Sanyal, S.K.

1979-02-01T23:59:59.000Z

395

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

DOE Green Energy (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

396

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

DOE Green Energy (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

397

Final Environmental Assessment Small-Scale Geothermal Power Plant and Direct-Use Geothermal Application at AmeriCulture Inc., Cotton City, NM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado 80401-3393 Colorado 80401-3393 August 26, 2002 DOE/EA-1396 FINDING OF NO SIGNIFICANT IMPACT For the SMALL-SCALE POWER PLANT AND DIRECT-USE GEOTHERMAL APPLICATION At AMERICULTURE, INC., COTTON CITY, NEW MEXICO AGENCY: U.S. Department of Energy, Golden Field Office ACTION: Finding of No Significant impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) conducted an Environmental Assessment (EA) of the Small-Scale Power Plant and Direct-Use Application at AmeriCulture, Inc. to evaluate potential impacts of construction and operations that would be funded in part by DOE. Small geothermal power plants have the potential for widespread application, but achieving cost- effectiveness in small plant sizes presents a number of challenges. To address these challenges, DOE is supporting the small-scale field verification projects to (1) determine and validate the

398

Geothermal: Sponsored by OSTI -- Performance test of a bladeless...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Performance test of a bladeless turbine for geothermal applications Geothermal Technologies Legacy Collection Help...

399

Method for evaluating the potential of geothermal energy in industrial process heat applications  

DOE Green Energy (OSTI)

A method is presented for evaluating the technical and economic potential of geothermal energy for industrial process heat applications. The core of the method is a computer program which can be operated either as a design analysis tool to match energy supplies and demands, or as an economic analysis tool if a particular design for the facility has already been selected. Two examples are given to illustrate the functioning of the model and to demonstrate that results reached by use of the model closely parallel those that have been determined by more traditional techniques. Other features of interest in the model include: (1) use of decision analysis techniques as well as classical methods to deal with questions relating optimization; (2) a tax analysis of current regulations governing percentage depletion for geothermal deposits; and (3) development of simplified correlations for the thermodynamic properties of salt solutions in water.

Packer, M.B.; Mikic, B.B.; Meal, H.C., Guillamon-Duch, H.

1980-05-01T23:59:59.000Z

400

Geothermal Elastomeric Materials Technology Application (GEM-TA) Program. Final report, August 1981-August 1983  

DOE Green Energy (OSTI)

In 1979, L'Garde, Inc. completed the development of several geothermal elastomer compounds. Major advances in the state of the art were achieved with successes at extreme conditions such as temperatures up to and exeeeding 320/sup 0/C (608/sup 0/F), pressures up to and exceeding 138 MPa (20,000 psi), and fluids ranging from brines to hydrocarbons. Because various geothermal projects had many elastomers problems and their solutions were critical to the project success, the DOE sponsored this effort to help provide the advantages of the earlier developed technology described above. The technology applications supported are as follows: pump lineshaft bearings; seals for Freon 114, synthetic hydrocarbon, and brine service; electrically insulative seals for logging tools; seals for nitrate salt explosive and steam service; and cementing wiper plugs. In addition there were minor efforts to further disseminate information associated with the elastomer development and case history experiences.

Hirasuna, A.R.; Davis, D.L.; Friese, G.J.; Trailer, J.W.

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Assessment of the Geothermal System Near Stanley, Idaho  

SciTech Connect

The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possible local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.

Trent Armstrong; John Welhan; Mike McCurry

2012-06-01T23:59:59.000Z

402

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

403

Geothermal energy: a brief assessment  

DOE Green Energy (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

404

Geothermal energy: a brief assessment  

SciTech Connect

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

405

The Role of Boron-Chloride and Noble Gas Isotope Ratios in TVZ Geothermal Systems  

DOE Green Energy (OSTI)

The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO{sub 2} in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modeling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behavior of B may be needed. If these problems can be overcome this modeling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems.

Hulston, J.R.

1995-01-01T23:59:59.000Z

406

Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the subsurface and above ground in the near-surface environment to serve as a tool to discover hidden geothermal systems. We focus the investigation on CO2 due to (1) its abundance in geothermal systems, (2) its moderate solubility in water, and (3) the wide range of technologies available to monitor CO2 in the near-surface environment. However, monitoring in the near-surface environment for CO2 derived from hidden geothermal reservoirs is complicated by the large variation in CO2 fluxes and concentrations arising from natural biological and hydrologic processes. In the near-surface environment, the flow and transport of CO2 at high concentrations will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of CO2 migration show that CO2 concentrations can reach very high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are primarily controlled by CO2 uptake by photosynthesis, production by root respiration, and microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical subsurface gas sampling and chemical and isotopic analyses can be undertaken. Integrated analysis of all measurements will d

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2004-12-15T23:59:59.000Z

407

Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii  

DOE Green Energy (OSTI)

This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

Moreau, J.W.

1980-12-01T23:59:59.000Z

408

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

E-Print Network (OSTI)

flux at the Dixie Valley geothermal field, Nevada; relationssurface phenomena and the geothermal reservoir”, Chemicalapplication to volcanic- geothermal areas and landfills”,

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-01T23:59:59.000Z

409

On the production behavior of enhanced geothermal systems with CO2 as working fluid  

E-Print Network (OSTI)

Twenty-Fifth Workshop on Geothermal Reservoir Engineering,and clay swelling in a fractured geothermal reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.

Pruess, K.

2008-01-01T23:59:59.000Z

410

Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.the 5-km Deep Enhanced Geothermal Reservoir at Soultz-sous-

Pruess, Karsten

2007-01-01T23:59:59.000Z

411

Efficient Finite Element Modeling of Shallow Geothermal Systems  

Science Conference Proceedings (OSTI)

This paper presents a finite element modeling technique for double U-tube borehole heat exchangers (BHE) and the surrounding soil mass. Focus is placed on presenting numerical analyses describing the capability of a BHE model, previously introduced by ... Keywords: Geothermic, BHE, Heat transfer

Rafid Al-Khoury

2009-12-01T23:59:59.000Z

412

Geothermal Permeability Enhancement - Final Report  

Science Conference Proceedings (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

413

Development of a Distributed Control System (DCS) for Geothermal Steamfield Operations at Kawerau, NZ  

DOE Green Energy (OSTI)

A distributed control system (DCS) has been developed for operation of the Kawerau geothermal field. The DCS functions include steam pressure control, steam flow billing, flow and pressure monitoring, remote well flow control and auto paging field operators. The system has evolved over a number of years from paper chart recorders to dataloggers to a desktop PC system to an industrial DCS.

Koorey, K.J.

1995-01-01T23:59:59.000Z

414

Preliminary Screening for Project Feasibility and Applications for Geothermal Heat Pump Retrofit Projects  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes guidance on determining the feasibility of geothermal heat pump retrofit projects.

415

Sonoma State Hospital, Eldridge, California, geothermal-heating system: conceptual design and economic feasibility report  

DOE Green Energy (OSTI)

The Sonoma State Mental Hospital, located in Eldridge, California, is presently equipped with a central gas-fired steam system that meets the space heating, domestic hot water, and other heating needs of the hospital. This system is a major consumer of natural gas - estimated at 259,994,000 cubic feet per year under average conditions. At the 1981 unit gas rate of $0.4608 per therm, an average of $1,258,000 per year is required to operate the steam heating system. The hospital is located in an area with considerable geothermal resources as evidenced by a number of nearby hot springs resorts. A private developer is currently investigating the feasibility of utilizing geothermally heated steam to generate electricity for sale to the Pacific Gas and Electric Company. The developer has proposed to sell the byproduct condensed steam to the hospital, which would use the heat energy remaining in the condensate for its own heating needs and thereby reduce the fossil fuel energy demand of the existing steam heating system. The geothermal heating system developed is capable of displacing an estimated 70 percent of the existing natural gas consumption of the steam heating system. Construction of the geothermal fluid distribution and collection system and the retrofits required within the buildings are estimated to cost $1,777,000. Annual expenses (operation and maintenance, insurance, and geothermal fluid purchase) have been estimated to be $40,380 per year in 1981 dollars. The proposed geothermal heating system could then be completely paid for in 32 months by the savings in natural gas purchases that would result.

Not Available

1982-02-01T23:59:59.000Z

416

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

417

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

418

Alternate materials of construction for geothermal applications. Progress report No. 17, October--December 1978  

DOE Green Energy (OSTI)

A program to determine if non-metallic materials such as polymers, concrete polymer composites, and refractory cements can be utilized as materials of construction in geothermal processes is in progress. To date, several high temperature polymer concrete systems have been formulated, laboratory and field tests performed in brine, flashing brine, and steam at temperatures up to 260/sup 0/C (500{sup 0}F), and economic studies started. Laboratory data for exposure times > 2 years are available. Results are also available from field exposures of up to 24 months in four geothermal environments. Good durability is indicated. Work at five of these sites is continuing and plans to initiate other tests are being implemented.

Steinberg, M.; Kukacka, L.E.

1978-12-30T23:59:59.000Z

419

[Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report  

SciTech Connect

During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

Blackwell, D.D.

1998-04-25T23:59:59.000Z

420

Heat and mass transfer in the Klamath Falls, Oregon, geothermal system  

DOE Green Energy (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has perplexed researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Based on reevaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. A comprehensive 3-dimensional numerical model, based on the proposed conceptual model is also presented. This numerical model incorporates all of the main reservoir characteristics. Hot water recharge flows from depth, along a large normal fault, and flows into near surface permeable strata where it loses heat to surrounding beds and to mixing with cold regional groundwaters introduced from the north. By matching calculated and measured temperatures and pressures, hot and cold water recharge rates and the permeability distribution for the geothermal system are estimated. A semi-analytic solution and simple lumped parameter methods are also compared to the numerical analysis. Results suggest that the flow patterns within the geothermal system at Klamath Falls are complex and intimately associated with the permeability distribution and the pressures and temperatures at depth, within the faults.

Prucha, R.H.

1987-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal systems applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

DOE Green Energy (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

422

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

423

Seismic methods for resource exploration in enhanced geothermal systems  

DOE Green Energy (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

424

Vertical arrays for fracture mapping in geothermal systems  

DOE Green Energy (OSTI)

In collaboration with UNOCAL Geothermal Operations, Los Alamos National Laboratory assessed the feasibility of using vertical arrays of borehole seismic sensors for mapping of microseismicity in The Geysers geothermal field. Seismicity which arises from minute displacements along fracture or fault surfaces has been shown in studies of seismically active oil reservoirs to be useful in identifying fractures affected by and possibly contributing to production. Use of retrievable borehole seismic packages at The Geysers was found to reduce the threshold for detection of microearthquakes by an estimated 2--3 orders of magnitude in comparison to surface-based sensors. These studies led to the design, materials selection, fabrication, and installation of a permanent array of geophones intended for long term seismic monitoring and mapping of fractures in the vicinity of the array at The Geysers.

Albright, J.N. [Los Alamos National Lab., NM (United States); Rutledge, J.T.; Fairbanks, T.D. [Nambe Geophysics, Inc. (United States); Thomson, J.C. [Lithos Inc. (United States); Stevenson, M.A. [Petroleum Geo-Services (United States)

1998-12-01T23:59:59.000Z

425

A History Of Hot Dry Rock Geothermal Energy Systems | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A History Of Hot Dry Rock Geothermal Energy Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A History Of Hot Dry Rock Geothermal Energy Systems Details Activities (1) Areas (1) Regions (0) Abstract: This is a short history, so far as it can now be assembled, of early speculations and observations concerning the existence and origin of natural heat in the earth's crust; of some of the many methods proposed to extract and use it; and of recent investigations designed to develop and demonstrate such methods. It is probably only the preface to a much longer

426

Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

2010-06-01T23:59:59.000Z

427

Geothermal data | OpenEI  

Open Energy Info (EERE)

91 91 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278991 Varnish cache server Geothermal data Dataset Summary Description This dataset corresponds to the final report on a screening study to compare six methods of removing noncondensable gases from direct-use geo-thermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. Source NREL Date Released Unknown Date Updated Unknown Keywords geothermal Geothermal data NREL solar Data application/vnd.ms-excel icon Download data (xls, 1.4 MiB)

428

Property:Geothermal/Partner3Website | Open Energy Information  

Open Energy Info (EERE)

Partner3Website Partner3Website Jump to: navigation, search Property Name Geothermal/Partner3Website Property Type URL Description Partner 3 Website (URL) Pages using the property "Geothermal/Partner3Website" Showing 14 pages using this property. A Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://jobs.ornl.gov/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.unr.edu/home/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.tetramertechnologies.com/ +

429

Geothermal pilot study final report: creating an international geothermal energy community  

DOE Green Energy (OSTI)

The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

1978-06-01T23:59:59.000Z

430

Modern Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Modern Geothermal Features Modern Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Modern Geothermal Features Dictionary.png Modern Geothermal Features: Active geothermal manifestations such as hot springs, fumaroles, steaming ground, mud pots, mud pools, mud volcanoes, or geysers. Other definitions:Wikipedia Reegle When geothermal systems have conduits available to the surface, they cause surface manifestations (or geothermal features). These features may vary between steam seeps (fumaroles) or pure fluid manifestations (geysers and hot springs) causing spectacular mineral formations (e.g. sinter terraces, tufa mounds). These types of manifestations are clear indications of an underlying geothermal system. Geothermal systems with no modern surface

431

Near-Surface CO2 Monitoring And Analysis To Detect Hidden Geothermal Systems  

DOE Green Energy (OSTI)

''Hidden'' geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has moderate solubility in water. We carried out numerical simulations of a CO2 migration scenario to calculate the magnitude of expected fluxes and concentrations. Our results show that CO2 concentrations can reach high levels in the shallow subsurface even for relatively low geothermal source CO2 fluxes. However, once CO2 seeps out of the ground into the atmospheric surface layer, winds are effective at dispersing CO2 seepage. In natural ecological systems in the absence of geothermal gas emissions, near-surface CO2 fluxes and concentrations are predominantly controlled by CO2 uptake by photosynthesis, production by root respiration, microbial decomposition of soil/subsoil organic matter, groundwater degassing, and exchange with the atmosphere. Available technologies for monitoring CO2 in the near-surface environment include the infrared gas analyzer, the accumulation chamber method, the eddy covariance method, hyperspectral imaging, and light detection and ranging. To meet the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring techniques with statistical analysis and modeling strategies. The proposed monitoring plan initially focuses on rapid, economical, reliable measurements of CO2 subsurface concentrations and surface fluxes and statistical analysis of the collected data. Based on this analysis, are as with a high probability of containing geothermal CO2 anomalies can be further sampled and analyzed using more expensive chemical and isotopic methods. Integrated analysis of all measurements will determine definitively if CO2 derived from a deep geothermal source is present, and if so, the spatial extent of the anomaly. The suitability of further geophysical measurements, installation of deep wells, and geochemical analyses of deep fluids can then be determined based on the results of the near surface CO2 monitoring program.

Lewicki, Jennifer L.; Oldenburg, Curtis M.

2005-01-19T23:59:59.000Z

432

Application of automatic differentiation for the simulation of nonisothermal, multiphase flow in geothermal reservoirs  

DOE Green Energy (OSTI)

Simulation of nonisothermal, multiphase flow through fractured geothermal reservoirs involves the solution of a system of strongly nonlinear algebraic equations. The Newton-Raphson method used to solve such a nonlinear system of equations requires the evaluation of a Jacobian matrix. In this paper we discuss automatic differentiation (AD) as a method for analytically computing the Jacobian matrix of derivatives. Robustness and efficiency of the AD-generated derivative codes are compared with a conventional derivative computation approach based on first-order finite differences.

Kim, Jong G.; Finsterle, Stefan

2002-01-08T23:59:59.000Z

433

Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892  

DOE Green Energy (OSTI)

Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

1983-12-15T23:59:59.000Z

434

Geothermal Properties Measurement Tool | Open Energy Information  

Open Energy Info (EERE)

Geothermal Properties Measurement Tool Geothermal Properties Measurement Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Properties Measurement Tool Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Geothermal Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ornl.gov/sci/ees/etsd/btric/ground-source.shtml Cost: Free References: Geothermal Properties Measurement Tool [1] Logo: Geothermal Properties Measurement Tool The Geothermal Properties Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a certain location. The Geothermal Properties Measurement Excel tool was developed at Oak Ridge

435

Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems  

SciTech Connect

Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectiveness in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.

Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

2007-10-17T23:59:59.000Z

436

Geothermal-resource verification for Air Force bases  

DOE Green Energy (OSTI)

This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

Grant, P.R. Jr.

1981-06-01T23:59:59.000Z

437

A materials and equipment review of selected US geothermal district heating systems  

DOE Green Energy (OSTI)

This collection of information was assembled for the benefit of future geothermal system designers and existing system operators. It is intended to provide insight into the experience gained from the operation of 13 major geothermal systems over the past several years. Each chapter contains six or seven sections depending upon the type of system: introduction, production facilities, distribution, customer connections, metering and disposal. Some chapters, covering systems which incorporate a closed distribution design include a section on the central mechanical room. Each section details the original equipment and materials installed in that portion of the system. Following each section is a discussion of the subsequent problems, solutions and modifications relating to the equipment. The extent to which information was available varied from system to system. This is reflected in the length and level of detail of the chapters.

Rafferty, K.D.

1989-07-01T23:59:59.000Z

438

Economic impact of corrosion and scaling problems in geothermal energy systems  

SciTech Connect

Corrosion and scaling problems have a significant impact on geothermal plant economics. A power plant must amortize the capital investment over a 20-year period and achieve satisfactory operating efficiency to achieve financial success. Corrosion and scale incrustations have been encountered in all geothermal plants, and to various degrees, adversely affected plant life times and power output. Using published data this report analyzes known geothermal corrosion and scaling phenomena for significant cost impacts on plant design and operation. It has been necessary to speculate about causes and mechanisms in order to estimate impacts on conceptual geothermal plants. Silica is highly soluble in hot geothermal water and solubility decreases as water is cooled in a geothermal power plant. Calculations indicate as much as 30,000 tons/year could pass through a 100 MWe water cycle plant. The major cost impact will be on the reinjection well system where costs of 1 to 10 mills/kwhr of power produced could accrue to waste handling alone. On the other hand, steam cycle geothermal plants have a definite advantage in that significant silica problems will probably only occur in hot dry rock concepts, where steam above 250 C is produced. Calculation methods are given for estimating the required size and cost impact of a silica filtration plant and for sizing scrubbers. The choice of materials is significantly affected by the pH of the geothermal water, temperature, chloride, and H{sub s} contents. Plant concepts which attempt to handle acid waters above 180 C will be forced to use expensive corrosion resistant alloys or develop specialized materials. On the other hand, handling steam up to 500 C, and pH 9 water up to 180 C appears feasible using nominal cost steels, typical of today's geothermal plants. A number of factors affecting plant or component availability have been identified. The most significant is a corrosion fatigue problem in geothermal turbines at the Geyser's geothermal plant which is presently reducing plant output by about 10%. This is equivalent to over $3 million per year in increased oil consumption to replace the power. In the course of assessing the cost implications of corrosion and scaling problems, a number of areas of technological uncertainty were identified which should be considered in R and D planning in support of geothermal energy. Materials development with both laboratory and field testing will be necessary. The economic analysis on which this report is based was done in support of an AEC Division of Applied Technology program to assess the factors affecting geothermal plant economics. The results of this report are to be used to develop computer models of overall plant economics, of which corrosion and scaling problems are only a part. The translation of the economic analysis to the report