National Library of Energy BETA

Sample records for geothermal systems applications

  1. Modeling of geothermal systems

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  2. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  3. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  4. Estimating Well Costs for Enhanced Geothermal System Applications

    SciTech Connect (OSTI)

    K. K. Bloomfield; P. T. Laney

    2005-08-01

    The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

  5. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) ...

  6. How an Enhanced Geothermal System Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems, offer great potential for dramatically expanding the use of geothermal energy. Present geothermal power generation comes from hydrothermal reservoirs, and is somewhat limited in geographic application to specific ideal places in the western U.S. This represents the 'low-hanging fruit' of geothermal energy potential. EGS

  7. Blind Geothermal System | Open Energy Information

    Open Energy Info (EERE)

    Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a...

  8. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  9. National Geothermal Data System (NGDS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of the National Geothermal Data System (NGDS), a platform for sharing geothermal technical data.

  10. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  11. Oregon Modification Application Geothermal Wells Form | Open...

    Open Energy Info (EERE)

    Modification Application Geothermal Wells Form Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon Modification Application Geothermal Wells Form Form...

  12. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  13. National Geothermal Data System (NGDS) Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Data System (NGDS) Initiative National Geothermal Data System (NGDS) Initiative Geothermal energy in the subsurface is better understood through data visualization, as ...

  14. track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal Technologies Office portfolio presented fifty three technical project presentations on enhanced geothermal systems

  15. Systems Engineering; 2010 Geothermal Technology Program Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies ...

  16. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National Geothermal Data...

  17. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  18. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energys Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  19. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an​d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  20. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration Activity...

  1. OIT geothermal system improvements

    SciTech Connect (OSTI)

    Lienau, P.J.

    1996-08-01

    Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

  2. National Geothermal Data System - DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation | Department of Energy - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngds_gdr_general_presentation.pdf (2.17 MB) More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" Guidelines for Provision and Interchange of

  3. Application of thermal depletion model to geothermal reservoirs...

    Open Energy Info (EERE)

    method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed. Authors...

  4. Integrated Chemical Geothermometry System for Geothermal Exploration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemical Geothermometry System for Geothermal Exploration Integrated Chemical Geothermometry System for Geothermal Exploration DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracers_spycher_integrated_chemical.pdf (272.32 KB) More Documents & Publications Integrated Chemical Geothermometry System for Geothermal Exploration

  5. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  6. Enhanced Geothermal Systems Roadmap Workshops | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshops Enhanced Geothermal Systems Roadmap Workshops June 21, 2011 - 2:50pm Addthis Enhanced Geothermal Systems (EGS) are engineered or enhanced reservoirs created to...

  7. National Geothermal Data System Architecture Design, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System Architecture Design, Testing and Maintenance Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and ...

  8. American Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Systems Place: Austin, Texas Sector: Geothermal energy Product: Installer of geothermal heating and cooling technologies, also has a patented water to air heat pump system....

  9. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect (OSTI)

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir ultimately leading to improvements in managing the resource.

  10. Enhanced Geothermal Systems (EGS)- the Future of Geothermal Energy

    Broader source: Energy.gov [DOE]

    While the amount of conventional hydrothermal power worldwide has reached nearly 12 gigawatts, exponentially more geothermal resources can be accessed through next-generation technologies known as enhanced geothermal systems (EGS).

  11. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  12. track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional drilling and pressurized water to capture energy from resources that were once considered unrecoverable. Collaborative projects in this program seek to improve innovative technologies and speed commercial-scale deployment. The Energy Department pursues research in transformative science and

  13. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect (OSTI)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  14. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  15. Cost Analysis of Environmental Control Systems applicable to Geothermal Energy Development

    SciTech Connect (OSTI)

    1982-08-01

    This report provides an engineering performance and cost correlations from which user could estimate costs of mitigating principal emissions from geothermal power systems. Hydrogen sulfide abatement describes four processes; Iron catalyst, Stretford, EIC, and Dow oxygenation process. Wastewater treatments include: Chemical precipitation, Evaporation ponds, Injection without pretreatment, and Injection with pretreatment. Process and cost estimates are given for Best Case, Most Probable Case, and Worst Case 50 MWe power plant. The cases may be confusing since the worst case has the lowest resource temperature, but the highest loads to mitigate. (DJE 2005)

  16. Enhanced Geothermal Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Enhanced Geothermal Systems Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects. Newberry Volcano EGS Demonstration, Susan Petty, AltaRock Energy, Inc. Southwest Alaska Regional Geothermal Energy Project, Gary Friedmann, Naknek Electric Association New York Canyon Simulation, Bernard Raemy, Terra-Gen Power, LLC

  17. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal System (EGS) Fact Sheet Overview of Enhanced Geothermal Systems. PDF icon egsbasics.pdf More Documents &...

  18. Enhanced Geothermal Systems Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Webinar Enhanced Geothermal Systems Webinar The following presentations are from a Webinar conducted on July 15, 2009, that was hosted by the Geothermal Resources Council (GRC) and sponsored by the American Public Power Association, National Rural Electric Cooperative Associate, Western Area Power Administration, and U.S. Department of Energy Geothermal Technologies Office. The Webinar covered topics including federal enhanced geothermal systems (EGS) activities and

  19. Computerized international geothermal information systems

    SciTech Connect (OSTI)

    Phillips, S.L.; Lawrence, J.D.; Lepman, S.R.

    1980-03-01

    The computerized international geothermal energy information system is reviewed. The review covers establishment of the Italy - United States linked data centers by the NATO Committee on Challenges of Modern Society, through a bilateral agreement, and up to the present time. The result of the information exchange project is given as the bibliographic and numerical data available from the data centers. Recommendations for the exchange of computerized geothermal information at the international level are discussed.

  20. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells ...

  1. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells ...

  2. New Applications Of Geothermal Gas Analysis To Exploration |...

    Open Energy Info (EERE)

    Applications Of Geothermal Gas Analysis To Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: New Applications Of Geothermal Gas...

  3. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced ...

  4. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 ...

  5. Geographic Information Systems- Tools For Geotherm Exploration...

    Open Energy Info (EERE)

    Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Abstract Geographic information...

  6. Resource assessment for geothermal direct use applications

    SciTech Connect (OSTI)

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  7. An Evaluation of Enhanced Geothermal Systems Technology

    SciTech Connect (OSTI)

    Jelacic, Allan; Fortuna, Raymond; LaSala, Raymond; Nathwani, Jay; Nix, Gerald; Visser, Charles; Green, Bruce; Renner, Joel; Blankenship, Douglas; Kennedy, Mack; Bruton, Carol

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  8. Geographic Information System At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Exploration Activity...

  9. Numerical Modeling Of Basin And Range Geothermal Systems | Open...

    Open Energy Info (EERE)

    for extensional geothermal systems that include structure, heat input, and permeability distribution have been established using numerical models. Extensional geothermal...

  10. Boise geothermal district heating system

    SciTech Connect (OSTI)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  11. Applications Being Accepted for National Geothermal Academy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Being Accepted for National Geothermal Academy Applications Being Accepted for National Geothermal Academy January 19, 2010 - 3:10pm Addthis The U.S. Department of Energy's Geothermal Technologies Program is pleased to announce that applications are now being accepted for The National Geothermal Academy. Funded by the Geothermal Technologies Program, this 8-week intensive summer course for undergraduate and graduate students covers all aspects of geothermal energy development from

  12. Applications Now Being Accepted for National Geothermal Academy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Now Being Accepted for National Geothermal Academy Applications Now Being Accepted for National Geothermal Academy January 19, 2011 - 4:46pm Addthis The U.S. Department of Energy's Geothermal Technologies Program is pleased to announce that applications are now being accepted for The National Geothermal Academy. Funded by the Geothermal Technologies Program, this 8-week intensive summer course for undergraduate and graduate students covers all aspects of geothermal

  13. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  14. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  15. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    SciTech Connect (OSTI)

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor

    2012-05-31

    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  16. Conceptual Models of Geothermal Systems - Introduction | Open...

    Open Energy Info (EERE)

    of any type of geothermal system is a clear definition and understanding of the nature and characteristics of the system in question. This is best achieved through the...

  17. National Geothermal Data System Design and Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System Design and Testing Principal Investigator Harold Blackman ... Other NGDS projects deal with system data development and population Our Project ...

  18. Application of seismic tomographic techniques in the investigation of geothermal systems

    SciTech Connect (OSTI)

    Romero, A.E. Jr.

    1995-05-01

    The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

  19. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  20. track 1: systems analysis | geothermal 2015 peer review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy systems analysis | geothermal 2015 peer review track 1: systems analysis | geothermal 2015 peer review At the 2015 Peer Review in May, the Energy Department's Geothermal Technologies Office (GTO) introduced nine Energy Department-funded Systems Analysis projects for review. Research teams pursue and evaluate vital geothermal technical data that can help to locate geothermal reservoirs, target drilling, and tap geothermal systems for energy production. Innovative geothermal tools and

  1. Geothermal Resources Council's ...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) applications recommend lifting 300C geothermal water ... Therefore artificial lift techniques must be employed to return the high temperature water ...

  2. Enhanced Geothermal Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The AltaRock Energy EGS demonstration project at Newberry Volcano, Oregon, leverages DOE funds to demonstrate engineered geothermal systems in a green field setting. Source:...

  3. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg Dictionary.png Enhanced Geothermal...

  4. Bibliography: injection technology applicable to geothermal utilization

    SciTech Connect (OSTI)

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  5. New Studies Aid in Optimizing Water Use in Geothermal Applications...

    Energy Savers [EERE]

    Studies Aid in Optimizing Water Use in Geothermal Applications New Studies Aid in Optimizing Water Use in Geothermal Applications July 31, 2014 - 4:31pm Addthis The Energy ...

  6. Studies Aid in Optimizing Water Use in Geothermal Applications...

    Office of Environmental Management (EM)

    Studies Aid in Optimizing Water Use in Geothermal Applications Studies Aid in Optimizing Water Use in Geothermal Applications July 31, 2014 - 4:31pm Addthis The Energy Department ...

  7. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water ...

  8. Numerical Modelling of Geothermal Systems a Short Introduction...

    Open Energy Info (EERE)

    Modelling of Geothermal Systems a Short Introduction Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Numerical Modelling of Geothermal Systems a Short...

  9. DOE and Partners Test Enhanced Geothermal Systems Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a ...

  10. Active Geothermal Systems And Associated Gold Deposits In The...

    Open Energy Info (EERE)

    Geothermal Systems And Associated Gold Deposits In The Great Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Active Geothermal Systems...

  11. Engineered Geothermal Systems Energy Return On Energy Investment...

    Office of Scientific and Technical Information (OSTI)

    Engineered Geothermal Systems Energy Return On Energy Investment Citation Details In-Document Search Title: Engineered Geothermal Systems Energy Return On Energy Investment You ...

  12. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report | Department of Energy California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_010_walters.pdf (182.53 KB) More Documents & Publications Concept Testing and Development at the Raft

  13. Systems Engineering; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_004_lowry.pdf (192.71 KB) More Documents & Publications Geothermal Electricity Technology Evaluation Model (GETEM) Development; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer

  14. Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal wells in order to install a closed-loop geothermal heating and cooling system. ... The district geothermal system is designed to be scalable, so that more buildings can be ...

  15. Summer 2012 National Geothermal Academy: Applications Due February 15 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summer 2012 National Geothermal Academy: Applications Due February 15 Summer 2012 National Geothermal Academy: Applications Due February 15 January 23, 2012 - 4:02pm Addthis Course modules run from June 18 to August 10. (Download Application) The National Geothermal Academy is proud to present an intensive summer course in all aspects of geothermal energy development and utilization, held at the University of Nevada, Reno campus. The eight-week course is offered for

  16. Enhanced Geothermal Systems Subprogram Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Subprogram Overview Enhanced Geothermal Systems Subprogram Overview This overview of GTP's Enhanced Geothermal Systems subprogram was given at the GTP Program Peer Review on May 18, 2010. overview_egs.pdf (681.23 KB) More Documents & Publications Stanford Geothermal Workshop - Geothermal Technologies Office Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  17. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced ...

  18. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  19. Classification of Geothermal Systems: A Possible Scheme | Open...

    Open Energy Info (EERE)

    of Geothermal Systems: A Possible Scheme Abstract Abstract unavailable. Author Subir K. Sanyal Conference Thirtieth Workshop on Geothermal Reservoir Engineering; Stanford,...

  20. Development of a plan to implement enhanced geothermal system...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end,...

  1. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Dixie Valley Geothermal Area (Nash & D., 1997)...

  2. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, ... of Research The Northwest Geysers EGS Demonstration Project has the goal of enhancing the ...

  3. Application Of Geothermal Energy To The Supply Of Electricity...

    Open Energy Info (EERE)

    Geothermal Energy To The Supply Of Electricity In Rural Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geothermal Energy...

  4. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    Convert a Geothermal Injection Well - Form 4003-3 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal...

  5. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_022_queen.pdf (195.2 KB) More Documents & Publications Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer

  6. Creation of an Enhanced Geothermal System through Hydraulic and Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_009_rose.pdf (190.77 KB) More Documents & Publications Concept Testing and

  7. National Geothermal Data System: Transforming the Discovery, Access, and

    Office of Scientific and Technical Information (OSTI)

    Analytics of Data for Geothermal Exploration (Conference) | SciTech Connect Conference: National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Citation Details In-Document Search Title: National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California

  8. Enhanced Geothermal Systems Subprogram Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Baker Hughes Oilfield Operations Inc. Texas Engineering Experiment Station Impact ... NakNek Electric Association ARRA NakNek, Alaska Raft River, ID Source: US Geothermal ...

  9. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984

    SciTech Connect (OSTI)

    Smith, K.

    1984-09-01

    This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

  10. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  11. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect (OSTI)

    Allison, Lee; Richard, Stephen; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  12. AASG Geothermal Data submissions tracking application and site.

    Energy Science and Technology Software Center (OSTI)

    2011-08-12

    Django app for tracking individual state’s progress in their contributions to the National Geothermal Data System.

  13. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review reservoir_031_horne.pdf (209.56 KB) More Documents & Publications Three-dimensional Modeling of Fracture Clusters in Geothermal

  14. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  15. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal Systems (EGS) are engineered reservoirs created to produce energy from geothermal resources that are otherwise not economical due to lack of water and/or permeability. EGS technology has the potential for accessing the earth's vast resources of heat located at depth to help meet the energy needs of the United States. Learn more about EGS from the Enhanced Geothermal Systems Fact Sheet below. Enhanced Geothermal Systems Fact Sheet

  16. Development of Enhanced Geothermal Systems Technologies Workshops |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Development of Enhanced Geothermal Systems Technologies Workshops Development of Enhanced Geothermal Systems Technologies Workshops The following documents are from a series of four workshops held in 2007 that were intended to motivate facilitated discussion on technology gaps related to reservoir management and operations. The first presentation evaluated the assumptions set forth in the report by the Massachusetts Institute of Technology (MIT) titled The Future of

  17. Enhanced Geothermal Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Enhanced Geothermal Systems EGS-2-pager8-1 1.17.28 PM.jpg Steps to Develop Power Production at an EGS Site Step 1: Identify/Characterize a Site Develop a geologic model of a potential site via surface, geologic, geophysical, and remote sensing exploration. Assess the temperature gradient, permeability, in-situ stress directions of the resource, rock mechanical properties, and whether fluid is present. Determine if the necessary characteristics to create an EGS

  18. Energy Returned On Investment of Engineered Geothermal Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy Returned On Investment of Engineered Geothermal Systems Energy Returned On Investment of Engineered Geothermal Systems Project objective: Determine the Energy Returned on Investment (EROI) for electric power production of Engineered Geothermal Systems (EGS). analysis_mansure_eroi_egs.pdf (414.64 KB) More Documents & Publications GEOTHERMAL POWER GENERATION PLANT Development of an Improved Cement for Geothermal Wells Carbonation Mechanism of Reservoir Rock by

  19. Integrated Enhanced Geothermal Systems (EGS) research and development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Enhanced Geothermal Systems (EGS) research and development Integrated Enhanced Geothermal Systems (EGS) research and development February 21, 2014 - 2:59pm Addthis Open Date: 02/21/2014 Close Date: 04/30/2014 Funding Organization: Department of Energy Geothermal Technologies Office Funding Number: DE-FOA-0000842 Summary: Through this Funding Opportunity Announcement (FOA), the Geothermal Technologies Office's (GTO) Enhanced Geothermal Systems (EGS) Subprogram

  20. Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development

    Broader source: Energy.gov [DOE]

    The National Geothermal Data System is online open-source platform that facilitates the discovery and use of geothermal data. It will help address one of the greatest barriers to development and deployment of this promising clean energy source.

  1. Water Resource Assessment of Geothermal Resources and Water Use in Geopressured Geothermal Systems

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Troppe, W. A.

    2011-09-01

    This technical report from Argonne National Laboratory presents an assessment of fresh water demand for future growth in utility-scale geothermal power generation and an analysis of fresh water use in low-temperature geopressured geothermal power generation systems.

  2. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  3. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A ...

  4. Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report | Department of Energy Systems for EGS; 2010 Geothermal Technology Program Peer Review Report Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review seismic_026_normann.pdf (193.57 KB) More Documents & Publications Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report

  5. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect (OSTI)

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  6. Town of Pagosa Springs geothermal heating system

    SciTech Connect (OSTI)

    Garcia, M.B.

    1997-08-01

    The Town of Pagosa Springs has owned and operated a geothermal heating system since December 1982 to provide geothermal heating during the fall, winter and spring to customers in this small mountain town. Pagosa Springs is located in Archuleta County, Colorado in the southwestern corner of the State. The Town, nestled in majestic mountains, including the Continental Divide to the north and east, has an elevation of 7,150 feet. The use of geothermal water in the immediate area, however, dates back to the 1800`s, with the use of Ute Bands and the Navajo Nation and later by the U.S. Calvery in the 1880`s (Lieutenant McCauley, 1878). The Pagosa area geothermal water has been reported to have healing and therapeutic qualities.

  7. Summer 2012 National Geothermal Academy: Applications Due February...

    Broader source: Energy.gov (indexed) [DOE]

    energy development and utilization, held at the University of Nevada, Reno campus. ... National Geothermal Academy Underway at University of Nevada, Reno Applications Now Being ...

  8. Application Of Geochemical Methods In The Search For Geothermal...

    Open Energy Info (EERE)

    Geochemical Methods In The Search For Geothermal Fields Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geochemical Methods In...

  9. Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications

    Broader source: Energy.gov [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle® mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

  11. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    SciTech Connect (OSTI)

    Allison, Lee; Richard, Stephen; Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  12. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  13. Mathematical modeling of the behavior of geothermal systems under exploitation

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    1982-01-01

    Analytical and numerical methods have been used in this investigation to model the behavior of geothermal systems under exploitation. The work is divided into three parts: (1) development of a numerical code, (2) theoretical studies of geothermal systems, and (3) field applications. A new single-phase three-dimensional simulator, capable of solving heat and mass flow problems in a saturated, heterogeneous porous or fractured medium has been developed. The simulator uses the integrated finite difference method for formulating the governing equations and an efficient sparse solver for the solution of the linearized equations. In the theoretical studies, various reservoir engineering problems have been examined. These include (a) well-test analysis, (b) exploitation strategies, (c) injection into fractured rocks, and (d) fault-charged geothermal reservoirs.

  14. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  15. National Geothermal Data System Architecture Design, Testing and Maintenance

    Broader source: Energy.gov [DOE]

    Project objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for acquisition, management, maintenance, and dissemination of geothermal and related data.

  16. GTP Adds Meeting on the National Geothermal Data System Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adds Meeting on the National Geothermal Data System Project to Peer Review GTP Adds Meeting on the National Geothermal Data System Project to Peer Review May 10, 2010 - 2:41pm...

  17. National Geothermal Data System Design and Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Testing National Geothermal Data System Design and Testing National Geothermal Data System Design and Testing presentation at the April 2013 peer review meeting held in Denver, Colorado. ngds_peer2013.pdf (1.58 MB) More Documents & Publications AASG State Geological Survey How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" National Geothermal Data Systems Data Acquisition and Access

  18. EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions in Rural Community | Department of Energy Geothermal System Creates Jobs, Reduces Emissions in Rural Community EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community November 6, 2013 - 12:00am Addthis Utilizing funding from EERE and cost shares from other federal agencies, the City of West Union, Iowa, drilled geothermal wells in order to install a closed-loop geothermal heating and cooling system. The system is designed to serve 330,000

  19. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Massachusetts Institute of Technology (MIT). 2006. The future of geothermal energy. Cambridge, Massachusetts. Available: http:geothermal.inel.govpublications...

  20. Overview of the National Geothermal Data System (NGDS) and DOEs Geothermal Data Repository (GDR) node on the NGDS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Arlene F. Anderson Technology Manager Geothermal Technologies Office Overview of the National Geothermal Data System (NGDS) & Department of Energy's Geothermal Data Repository (GDR) node on the NGDS National Geothermal Data System (NGDS) User Interface NGDS is a catalog of documents and datasets that provide information about geothermal resources within the United States, including information from other parts of the world, used to:  Determine geothermal potential;  Guide exploration

  1. Ball State building massive geothermal system

    Broader source: Energy.gov [DOE]

    Ball State University is building America’s largest ground source district geothermal heating and cooling system. The new operation will save the school millions of dollars, slash greenhouse gases and create jobs. The project will also “expand how America will define the use of geothermal technology on a district-wide scale,” and provide health benefits such as reducing asthma rates for Indiana residents, says Philip Sachtleben, Ball State’s associate vice president of governmental relations. The system will cool and heat nearly 50 buildings on Ball State’s Muncie, Ind., campus, replace four coal-burning boilers and span more than 600 acres. The switch to geothermal will save the university $2.2 million in fuel costs and cut its carbon footprint in half.

  2. Geothermal Energy Association Recognizes the National Geothermal Data System

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) announced today the winners of their 2014 GEA Honors, which recognizes companies, projects, and individuals who have demonstrated outstanding achievement in...

  3. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson ., Steingrmsson B., Sigmundsson F., Axelsson G., rmannsson H.,...

  4. DOE and Partners Test Enhanced Geothermal Systems Technologies | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada. EGS technology enhances the permeability of underground strata, typically by injecting water into the strata at high pressure. The concept was initially

  5. What is the National Geothermal Data System (NGDS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-03

    Overview of the National Geothermal Data System, a distributed, interoperable network of data repositories and state geological service providers from across the U.S. and the nation's leading academic geothermal centers.

  6. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the

  7. IEA-GIA ExCo - National Geothermal Data System and Online Tools

    Broader source: Energy.gov (indexed) [DOE]

    ... To advance remote temperature prediction ... Induced Seismicity in Enhanced Geothermal Systems Array Information Technology ... Geothermal Energy Conference * US Draft Induced ...

  8. National Geothermal Data System & Online Tools Presentation (IEA-GIA event)

    SciTech Connect (OSTI)

    Jay Nathwani

    2011-09-30

    Geothermal Technologies Program presentation by Jay Nathwani on the National Geothermal Data System, 9-30-2011.

  9. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Enhanced Geothermal Systems. egs_calpine_peer2013.pdf (3.1 MB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California EA-1733: Final Environmental Assessment Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

  10. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  11. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  12. Potential power sources for high-temperature geothermal applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Dobranich, D

    1996-05-01

    The thermal response under geothermal-borehole conditions of a conventional thermal battery was evaluated for various designs by numerical simulations using a finite-element thermal model. This technology, which is based on molten salts, may be suitable as a power source for geothermal borehole applications for data logging. Several promising candidate electrolytes were identified for further study.

  13. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal DevelopmentThe Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  14. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  15. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    Fluid Project Type Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type Topic 2 Supercritical...

  16. Residential Geothermal Systems Credit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Low Income Residential Savings Category Geothermal Heat Pumps Geothermal Direct-Use Maximum Rebate 1,500 Program Info Sector Name State Administrator Montana...

  17. Sedimentary Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States...

  18. A Transient Model of the Geothermal System of the Long Valley...

    Open Energy Info (EERE)

    flow of hot water in a confined aquifer. The results give information on the transient nature of the geothermal system operating in the Long Valley caldera and on the application...

  19. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal Geothermal Tara Camacho-Lopez 2016-03-16T19:31:15+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  20. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: A novel 2D VSP imaging technology and patented processing techniques will be used to create accurate, high-resolution reflection images of a classic Basin and Range fault system in a fraction of previous compute times.

  1. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  2. Geothermal Heating and Cooling Systems Featured on NBC Nightly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York. Demand for these systems is growing; nationally, shipments of geothermal...

  3. Blind Geothermal System Exploration in Active Volcanic Environments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui Blind...

  4. National Geothermal Data Systems Data Acquisition and Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and legacy data from ...

  5. Advisory Group On The Application Of Nuclear Techniques To Geothermal...

    Open Energy Info (EERE)

    Group On The Application Of Nuclear Techniques To Geothermal Studies-Meeting In Pisa 8-12 Sep 1975 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  6. Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California

    Broader source: Energy.gov [DOE]

    Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field California by Mark Walters of Calpine and Patrick Dobson of Lawrence Berkeley National Laboratory for Engineered Geothermal Systems Demonstration Projects Track. Objective to create an Enhanced Geothermal System (EGS) by directly and systematically injecting low volumes of coldŽ water into NW Geysers high temperature zone (HTZ), similar to inadvertentlyŽ created EGS in the oldest Geysers production area to the southeast of the EGS demonstration area. Other objectives are to investigate how cold-water injection mechanically and chemically affects fractured high temperature rock systems; demonstrate the technology to monitor and validate stimulation and sustainability of such an EGS; and develop an EGS research field laboratory that can be used for testing EGS stimulation and monitoring technologies including new high temperature tools developed by others.

  7. National Geothermal Data Systems Data Acquisition and Access | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and legacy data from DOE-funded demonstration projects, the US Geological Survey, and other sources. analysis_snyder_ngds_data_acquisition.pdf (1.77 MB) More Documents & Publications National Geothermal Data System Architecture Design, Testing and Maintenance State Geological Survey Contributions to the National Geothermal Data

  8. Design and Implementation of Geothermal Energy Systems at West Chester

    Office of Scientific and Technical Information (OSTI)

    University (Technical Report) | SciTech Connect Design and Implementation of Geothermal Energy Systems at West Chester University Citation Details In-Document Search Title: Design and Implementation of Geothermal Energy Systems at West Chester University West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve

  9. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Large Scale Geothermal Exchange System for Residential, Office...

    Open Energy Info (EERE)

    cool the project. To develop the geothermal exchange system, engineers at Madison-based Sustainable Engineering Group (SEG), collaborated with architects at Milwaukee-based...

  11. Reconnaissance geophysical studies of the geothermal system in...

    Open Energy Info (EERE)

    Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  12. Helium isotopes in geothermal systems- Iceland, The Geysers,...

    Open Energy Info (EERE)

    isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Helium...

  13. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Broader source: Energy.gov [DOE]

    Project Will Take Advantage of Abundant Water in Shallow Aquifer. Demonstrate Low Temperature GSHP System Design. Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits.

  14. Blind Geothermal System Exploration in Active Volcanic Environments...

    Open Energy Info (EERE)

    Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical...

  15. Identification of a New Blind Geothermal System with Hyperspectral...

    Open Energy Info (EERE)

    a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada Jump to: navigation, search...

  16. Long Valley Caldera Geothermal and Magmatic Systems | Open Energy...

    Open Energy Info (EERE)

    Magmatic Systems Abstract Long Valley Caldera in eastern California has been explored for geothermal resources since the 1960s. Early shallow exploration wells (<300m) were located...

  17. Geographic Information System At Chena Geothermal Area (Holdmann...

    Open Energy Info (EERE)

    Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

  18. Creation of an Engineered Geothermal System through Hydraulic...

    Broader source: Energy.gov (indexed) [DOE]

    Project objectives: To create an Enhanced Geothermal System on the margin of the Cosofield through the hydraulic, thermal, andor chemical stimulation of one or more tight ...

  19. Understanding The Chena Hot Springs, Alaska, Geothermal System...

    Open Energy Info (EERE)

    The Chena Hot Springs, Alaska, Geothermal System Using Temperature And Pressure Data From Exploration Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. National Geothermal Data System Deployed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployed National Geothermal Data System Deployed In support of the Obama Administration's Open Data Policy, on May 28, 2014, the United States Department of Energy (DOE) announced ...

  1. Experience with the Development of Advanced Materials for Geothermal Systems

    SciTech Connect (OSTI)

    Sugama, T.; Butcher, T.; Ecker, L.

    2011-01-01

    This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

  2. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Project Summary. To study the transport and recovery of injected SiO2 nanoparticles ...

  3. A Brief Classification of Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library General: A Brief Classification of Geothermal Systems Author Paul Brophy Published GRC Annual Meeting, 2007 DOI Not Provided Check for DOI availability:...

  4. Structure of The Dixie Valley Geothermal System, a "Typical"...

    Open Energy Info (EERE)

    geothermal system have been debated for some time. The primary structural model ahs been a single fault with 54 dip. New data including a detailed gravity survey,...

  5. Final Report: Enhanced Geothermal Systems Technology Phase II...

    Open Energy Info (EERE)

    Systems Technology Phase II: Animas Valley, New Mexico Authors R.A. Cunniff and R.L. Bowers Published Lightning Dock Geothermal, Inc. Technical Report, 2003 DOI Not...

  6. Water Use in Enhanced Geothermal Systems (EGS): Geology of U...

    Office of Scientific and Technical Information (OSTI)

    Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies Citation Details In-Document Search Title: ...

  7. Enthalpy restoration in geothermal energy processing system

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  8. IEA-GIA ExCo - National Geothermal Data System and Online Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay...

  9. IEA-GIA ExCo - National Geothermal Data System and Online Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IEA-GIA ExCo - National Geothermal Data System and Online Tools IEA-GIA ExCo - National Geothermal Data System and Online Tools National Geothermal Data System presentation by Jay ...

  10. Use of Tracers to Characterize Fractures in Engineered Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Use of Tracers to Characterize Fractures in Engineered Geothermal Systems Use of Tracers to Characterize Fractures in Engineered Geothermal Systems Project Objectives: Measure interwell fracture surface area and fracture spacing using sorbing tracers; measure fracture surface areas adjacent to a single geothermal well using tracers and injection/backflow techniques; design, fabricate and test a downhole instrument for measuring fracture flow following a hydraulic

  11. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems by Ernie Majer, James Nelson, Ann Robertson-Tait, Jean Savy, and Ivan Wong January 2012 | DOE/EE-0662 Cover Image Courtesy of Katie L. Boyle, Lawrence Berkeley National Laboratory i i Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems Preface In June 2009, the New York Times published an article about the public fear of geothermal development causing earthquakes. The article

  12. Geothermal energy control system and method

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  13. AASG State Geothermal Data Repository for the National Geothermal Data System.

    Energy Science and Technology Software Center (OSTI)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  14. United States geothermal technology: Equipment and services for worldwide applications

    SciTech Connect (OSTI)

    1995-05-01

    This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

  15. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" "The Future of Geothermal Energy" 3.0 3.1 3.2 "US DOE EERE Geothermal Technologies Program, Enhanced...

  16. An evaluation of enhanced geothermal systems technology

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    A review of the assumptions and conclusions of the DOE-sponsored 2006 MIT study on "The Future of Geothermal Energy" and an evaluation of relevant technology from the commercial geothermal industry.

  17. New Geothermal Data System Could Open Up Clean-Energy Reserves...

    Energy Savers [EERE]

    New Geothermal Data System Could Open Up Clean-Energy Reserves New Geothermal Data System Could Open Up Clean-Energy Reserves February 25, 2013 - 2:28pm Addthis New geothermal data...

  18. Pinpointing America's Geothermal Resources with Open Source Data...

    Energy Savers [EERE]

    The National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and direct-use through an open source data ...

  19. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the

  20. National Geothermal Data System Deployed to Serve Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    This data visualization shows how industry can model geologic features from free, open-source data through the National Geothermal Data System. In this fence diagram, Schlumberger utilized bottom hole temperatures from the National Geothermal Data Systems (NDGS) on-line platform to supplement subscription data temperatures used to create basin-wide 3D temperature models in Petrel Exploration and Production software.

  1. Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System

    SciTech Connect (OSTI)

    Ellis, Richard K.

    2013-01-01

    The Humboldt House-Rye Patch geothermal resource area (HH-RP) comprises approximately 12,000 acres along and west of the Humboldt Range, adjacent to the Rye Patch Reservoir (Figure 1). A Federal Geothermal Unit covers essentially all of the known shallow thermal anomaly at the site, and the Operator, Presco Energy, is in the process of completing wellfield development adjacent to the Rye Patch binary plant, a nominal 17-megawatt system in the southern Unit area (Figure 1). DOE award EE0002840, made under the auspices of the Geothermal Technologies Program, was originally approved in January of 2010, and used a VSP profiling technology to improve seismic imaging in the Basin and Range. Phase I field activities were conducted in the 3rd quarter of 2010, and both the Phase I report and a supplemental report were completed in March and April of 2011. Two targets were identified for tests of upflow structures, both using existing wellbores, originally the 51-21 and 52-28, in the Rye Patch wellfield. The Phase II validation was approved by DOE in May of 2011.

  2. Geothermal energy control system and method

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  3. Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research

    SciTech Connect (OSTI)

    McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

    2000-09-29

    This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

  4. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  5. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  6. Completion Design Considerations for a Horizontal Enhanced Geothermal System

    SciTech Connect (OSTI)

    Olson, Jeffrey; Eustes, Alfred; Fleckenstein, William; Eker, Erdinc; Baker, Reed; Augustine, Chad

    2015-09-02

    isolation. The packer and port completion approach utilizes an open horizontal hole that zonally isolates areas through the use of external packers and a liner. A review of technologies used in these systems was performed to determine if commercially available equipment from the petroleum industry could be used at the temperatures, pressures, and sizes encountered in geothermal settings. The study found no major technical barriers to employing shale gas multi-zonal completion techniques in a horizontal well in a geothermal setting for EGS development. For all techniques considered, temperature limitations of equipment are a concern. Commercially available equipment designed to operate at the high temperatures encountered in geothermal systems are available, but is generally unproven for geothermal applications. Based on the study, further evaluation of adapting oil and gas completion techniques to EGS is warranted.

  7. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While advanced EGS technologies are young and still under development, EGS has been ... of Technology (MIT). 2006. The future of geothermal energy. Cambridge, Massachusetts. ...

  8. National Geothermal Data System Architecture Design, Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    related information. * Partners - GeoHeat Center (Oregon Institute of Technology); Stanford Geothermal Program (Stanford Univ.); U.S. Geological Survey, Great Basin Center for...

  9. National Geothermal Data System (NGDS) Initiative | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Determine geothermal potential * Guide exploration and development * Make data-driven ... In addition, all DOE-funded projects are required to register their data in the NGDS, ...

  10. Geothermal system saving money at fire station | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    A geothermal heating and cooling system has enabled the substation to save taxpayers 15,000 annually when compared to a traditional system. The high temperature of the treatment...

  11. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne ...

  12. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect (OSTI)

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  13. Design, construction and evaluation of a simulated geothermal flow system

    SciTech Connect (OSTI)

    Mackanic, J.C.

    1980-07-28

    A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

  14. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren; Jelacic, Allan; Stillman, Greg; Hass, Eric

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  15. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  16. Geothermal Heating and Cooling Systems Featured on NBC Nightly News

    Broader source: Energy.gov [DOE]

    NBC Nightly News recently featured a story on geothermal heating and cooling systems that are providing 30%-70% energy and cost savings for homeowners in Jordan, New York.

  17. Geochemical characterization of geothermal systems in the Great...

    Open Energy Info (EERE)

    Basin. Development of this database is one of the first steps in understanding the nature of geothermal systems in the Great Basin. Of particular importance in the Great Basin...

  18. Co-Produced Geothermal Systems | Open Energy Information

    Open Energy Info (EERE)

    Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature...

  19. Enhanced Geothermal Systems: Comparing Water and CO2 as Heat...

    Office of Scientific and Technical Information (OSTI)

    ENHANCED GEOTHERMAL SYSTEMS (EGS): COMPARING WATER AND CO 2 AS HEAT TRANSMISSION FLUIDS ... with supercritical CO 2 instead of water as heat transmission fluid (D.W. Brown, 2000). ...

  20. Google.org Invests $10 Million in Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Google.org, the philanthropic arm of the search engine company, announced on August 19 that it is investing $10.25 million in Enhanced Geothermal Systems (EGS) technology.

  1. Geothermal System Saves Dollars, Makes Sense for Maryland Family

    Broader source: Energy.gov [DOE]

    Derwood, Maryland resident Chris Gearon shares how he used a tax credit from the Recovery Act to help upgrade the heating and cooling system in his home to a geothermal one helping him save money and energy.

  2. Evolution of a Mineralized Geothermal System, Valles Caldera...

    Open Energy Info (EERE)

    Journal Article: Evolution of a Mineralized Geothermal System, Valles Caldera, New Mexico Abstract The 20-km-diam Valles caldera formed at 1.13 Ma and had continuous...

  3. How to Utilize the National Geothermal Data System (NGDS) and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network with "Node-In-A-Box" How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" ngds-niab-webinar.pdf ...

  4. EERE Success Story-Iowa: Geothermal System Creates Jobs, Reduces...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These grant funds will be used to close up their buildings-making them more energy efficient, as well as to offset the costs of hooking up to the geothermal system. All mini-grant ...

  5. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  6. Characterization of a geothermal system in the Upper Arkansas...

    Open Energy Info (EERE)

    of a geothermal system in the Upper Arkansas Valley Authors T. Blum, K. van Wijk, L. Liberty, M. Batzle, R. Krahenbuhl, A. Revil and R. Reynolds Conference Society of...

  7. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect (OSTI)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang; Serajian, Vahid; Elkhoury, Jean; Diessl, Julia; White, Nicky

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advanced horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.

  8. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic Work in Geothermal Areas; Characterize Fractures/Faults. seismic_queen_seismic_fracture.pdf (1.38 MB) More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model Imaging,

  9. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  10. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, M.; Maghiar, T.

    1996-12-31

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  11. DOE Announces Webinars on the National Geothermal Data System, Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency and Renewable Energy Benefits for Tribal Communities, and More | Department of Energy the National Geothermal Data System, Energy Efficiency and Renewable Energy Benefits for Tribal Communities, and More DOE Announces Webinars on the National Geothermal Data System, Energy Efficiency and Renewable Energy Benefits for Tribal Communities, and More January 24, 2014 - 10:01am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency

  12. Further Developments on the Geothermal System Scoping Model: Preprint

    SciTech Connect (OSTI)

    Antkowiak, M.; Sargent, R.; Geiger, J. W.

    2010-07-01

    This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

  13. State Geological Survey Contributions to the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Geological Survey Contributions to the National Geothermal Data System Principal Investigator M. Lee Allison Arizona Geological Survey Analysis, Data System and Education May 18, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. States providing data to NGDS 2 | US DOE Geothermal Program eere.energy.gov Overview RDC & QA Vision Data Compilation, Checking, Automation Review SOW Establish Regional Technical Centers PHASE 1: Data

  14. Resource engineering and economic studies for direct application of geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurations and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.

  15. EA-1893: Canby Cascaded Geothermal Development System, Canby, California

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: This EA has been cancelled.

  16. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect (OSTI)

    Anderson, Arlene; Allison, Lee; Richard, Steve; Caudill-Daugherty, Christy; Patten, Kim

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  17. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect (OSTI)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and

  18. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems PI: Dr. Roland Gritto (Array IT) Presenter: Prof. Douglas Dreger (UC Berkeley) Project Officer: Lauren Boyd Total Project Funding: $1,455,251 April 23, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov * EGS operations rely on small-scale seismicity to delineate fracture extent, fracture type and pathways for water *

  19. The Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety of applications. NGDS is an interoperable networked system of distributed data repositories, accessed through federated catalog nodes and built upon an open architecture using open source software practices. The system provides access to geo- thermal data from providers across the U.S., including all 50 state geological

  20. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    drilling and pressurized water to capture energy from ... science and engineering that the private sector ... (1.86 MB) Track3EGS3.6DeepSedimentarySystemsMoore-Al...

  1. Application Of Airborne Thermal Infrared Imagery To Geothermal...

    Open Energy Info (EERE)

    Infrared Imagery To Geothermal Exploration Abstract Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in...

  2. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper

  3. Geothermal Exploration Policy Mechanisms: Lessons for the United States from International Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy News Geothermal Energy News RSS August 31, 2016 Energy Department Announces $29 Million Investment in Enhanced Geothermal Systems Efforts FORGE Funding Will Accelerate Development of Clean Energy from Geothermal Sources August 18, 2016 Energy Department Awards 43 new Business-Laboratory Collaborations under Small Business Vouchers Pilot Today, the Energy Department announced 43 small businesses will participate in the second round of the Small Business Vouchers (SBV) pilot.

  4. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting

    Broader source: Energy.gov [DOE]

    Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting presentation at the April 2013 peer review meeting held in Denver, Colorado.

  5. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  6. Calc-silicate mineralization in active geothermal systems

    SciTech Connect (OSTI)

    Bird, D.K.; Schiffman, P.; Elders, W.A.; Williams, A.E.; McDowell, S.D.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+} rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.

  7. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  8. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect (OSTI)

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  9. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  10. Ball State Completes Largest U.S. Ground-Source Geothermal System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ball State Completes Largest U.S. Ground-Source Geothermal System Ball State Completes Largest U.S. Ground-Source Geothermal System April 4, 2012 - 3:19pm Addthis Ball State ...

  11. National Geothermal Data System Demo 01-28-14 | Department of...

    Office of Environmental Management (EM)

    National Geothermal Data System Demo 01-28-14 ngds-webinar-azgs.pdf (3.02 MB) More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create ...

  12. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories Drilling Systems Project ...

  13. First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy

    Broader source: Energy.gov [DOE]

    The Obama Administration's all-of-the-above energy strategy took a leap forward today with the Energy Department's announcement recognizing the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. This landmark accomplishment follows two other major DOE-funded technical achievements focused on demonstrating the commercial viability of EGS: The Calpine EGS demonstration at The Geysers in Middletown, California and the AltaRock project at Newberry Volcano near Bend, Oregon.

  14. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect (OSTI)

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  15. Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States

    SciTech Connect (OSTI)

    Green, B. D.; Nix, R. G.

    2006-11-01

    On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

  16. NATIONAL GEOTHERMAL DATA SYSTEM: AN EXEMPLAR OF OPEN ACCESS TO DATA

    SciTech Connect (OSTI)

    Blackman, Harold; Blackman, Harold M.; Blackman, Harold M.; Blackman, Harold; Blackman, Harold; Blackman, Harold

    2013-10-01

    The formal launch of National Geothermal Data System (NGDS www.geothermaldata.org) in 2014 will provide open access to technical geothermal-relevant data from all of the Department of Energy- sponsored geothermal development and research projects and geologic data from all 50 states. By making data easily discoverable and accessible this system will open new exploration opportunities and shorten project development. The prototype data system currently includes multiple data nodes, and nationwide data online and available to the public, indexed through a single catalog under construction at http://search.geothermaldata.org. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Additional data record is being added by companion projects run by Boise State University, Southern Methodist University, and the USGS. The National Renewable Energy Laboratory is managing the Geothermal Data Repository, an NGDS node that will be a clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational system sustainable after the original implementation will

  17. GTP Adds Meeting on the National Geothermal Data System Project to Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE)

    The design of the National Geothermal Data System (NGDS) was initiated in early fiscal year 2010 to address capturing and providing geothermal data to users -- researchers, industry, state and federal agencies, and the public.

  18. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  19. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect (OSTI)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

  20. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent

  1. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    2013-01-31

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent

  2. Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hunt, Jonathan

    In enhanced geothermal systems (EGS) the reservoir permeability is often enhanced or created using hydraulic fracturing. In hydraulic fracturing, high fluid pressures are applied to confined zones in the subsurface usually using packers to fracture the host rock. This enhances rock permeability and therefore conductive heat transfer to the circulating geothermal fluid (e.g. water or supercritical carbon dioxide). The ultimate goal is to increase or improve the thermal energy production from the subsurface by either optimal designs of injection and production wells or by altering the fracture permeability to create different zones of circulation that can be exploited in geothermal heat extraction. Moreover, hydraulic fracturing can lead to the creation of undesirable short-circuits or fast flow-paths between the injection and extraction wells leading to a short thermal residence time, low heat recovery, and thus a short-life of the EGS. A potential remedy to these problems is to deploy a cementing (blocking, diverting) agent to minimize short-cuts and/or create new circulation cells for heat extraction. A potential diverting agent is the colloidal silica by-product that can be co-produced from geothermal fluids. Silica gels are abundant in various surface and subsurface applications, yet they have not been evaluated for EGS applications. In this study we are investigating the benefits of silica gel deployment on thermal response of an EGS, either by blocking short-circuiting undesirable pathways as a result of diverting the geofluid to other fractures; or creating, within fractures, new circulation cells for harvesting heat through newly active surface area contact. A significant advantage of colloidal silica is that it can be co-produced from geothermal fluids using an inexpensive membrane-based separation technology that was developed previously using DOE-GTP funding. This co-produced silica has properties that potentially make it useful as a fluid diversion agent

  3. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mansure, Chip

    2012-01-01

    The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  4. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    SciTech Connect (OSTI)

    Richard,

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno, Nevada Publication Date: 2012 Title: Structural Data Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology Spatial Domain: Extent: Top: 4491528.924999 m Left: 207137.983196 m Right: 432462.310324 m Bottom: 4117211.772001 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  5. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect (OSTI)

    William A. Challener

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its

  6. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  7. New Geothermal Data System Could Open Up Clean-Energy Reserves

    Broader source: Energy.gov [DOE]

    New geothermal data could open up clean energy reserves nationwide. Scientific American reported that the National Geothermal Data System is helping to isolate geothermal prospects, with the goal of fully profiling geologic and geophysical aspects of these deep energy reserves, which will reduce costly investment by better targeting wells.

  8. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Type of Activity 2008 2009 Geothermal Heat Pump or System Design 17 17 Prototype Geothermal Heat Pump Development 12 13 Prototype Systems Geothermal Development 5 7 Wholesale ...

  9. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect (OSTI)

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  10. Community Geothermal Technology Program: Bottom heating system using geothermal power for propagation. Final report, Phases 1 and 2

    SciTech Connect (OSTI)

    Downing, J.C.

    1990-01-01

    The objective is to develop and study a bottom-heating system in a greenhouse utilizing geothermal energy to aid germination and speed growth of palms. Source of heat was geothermal brine from HGP-A well. The project was successful; the heat made a dramatic difference with certain varieties, such as Areca catechu (betelnut) with 82% germination with heat, zero without. For other varieties, germination rates were much closer. Quality of seed is important. Tabs, figs.