Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

2009 Geothermal, Co-Production, and GSHP Supply Curves  

Broader source: Energy.gov (indexed) [DOE]

curves estimate present and future costs of the geothermal resource - Used in market penetration models to predict future electricity landscape * Supply curve input used in...

2

Updated U.S. Geothermal Supply Curve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CP-6A2-47458 CP-6A2-47458 February 2010 Updated U.S. Geothermal Supply Curve Chad Augustine and Katherine R. Young National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy Presented at Stanford Geothermal Workshop Stanford, California February 1, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

3

DOE Updated U.S. Geothermal: Supply Curve (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov The Parker Ranch installation in Hawaii Geothermal Technologies Program (GTP) DOE Updated U.S. Geothermal Supply Curve Chad Augustine National Renewable Energy Laboratory Strategic Energy Analysis Center Chad.Augustine@nrel.gov February 1, 2010 Chad Augustine (NREL) Katherine R. Young (NREL) Arlene Anderson (DOE-GTP) NREL/PR-6A2-47527 Pacific Gas & Electric/PIX 00059 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 | 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov

4

Application Of Geothermal Energy To The Supply Of Electricity...  

Open Energy Info (EERE)

To The Supply Of Electricity In Rural Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geothermal Energy To The Supply Of...

5

Selected GHG Emission Supply Curves | Open Energy Information  

Open Energy Info (EERE)

Selected GHG Emission Supply Curves Selected GHG Emission Supply Curves Jump to: navigation, search Tool Summary Name: Selected GHG Emission Supply Curves Agency/Company /Organization: Northwest Power and Conservation Council Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Renewable Energy, Industry, Transportation, Forestry, Agriculture Topics: GHG inventory, Pathways analysis Resource Type: Dataset, Publications Website: www.nwcouncil.org/energy/grac/20090130_Supply%20Curves_NWPCC_FINAL.pdf Selected GHG Emission Supply Curves Screenshot References: Selected GHG Emission Supply Curves[1] Background "The ECL supply curve model includes data on potential emission reductions for approximately 60 separate technology options. It allows the examination of multiple scenarios involving the inclusion or exclusion of technology

6

National Geothermal Resource Assessment and Classification  

Broader source: Energy.gov [DOE]

This work will enable lower risk/cost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment data by geothermal region as input to GTP supply curves.

7

Motor System Energy Efficiency Supply Curves: A Methodology for Assessing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motor System Energy Efficiency Supply Curves: A Methodology for Assessing Motor System Energy Efficiency Supply Curves: A Methodology for Assessing the Energy Efficiency Potential of Industrial Motor Systems Speaker(s): Ali Hasanbeigi Date: February 8, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Aimee McKane Motor-driven equipment accounts for approximately 60% of manufacturing final electricity use worldwide. A major barrier to effective policymaking, and to more global acceptance of the energy efficiency potential in industrial motor systems, is the lack of a transparent methodology for quantifying the magnitude and cost-effectiveness of these energy savings. This paper presents the results of groundbreaking analyses conducted for five countries and one region to begin to address this barrier. Using a combination of expert opinion and available data from the United States,

8

McKinsey Carbon Supply Curves | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » McKinsey Carbon Supply Curves Jump to: navigation, search Tool Summary LAUNCH TOOL Name: McKinsey Carbon Supply Curves Agency/Company /Organization: McKinsey and Company Sector: Energy, Land Topics: GHG inventory, Resource assessment, Pathways analysis, Background analysis Website: www.mckinsey.com/clientservice/ccsi/ References: McKinsey Climate Change Special Initiative[1] "The transition to a low-carbon economy represents one of the key challenges facing leaders in the early 21st century. Our Climate Change Special Initiative is a cross-functional and cross-industry effort, which

9

Motor Systems Efficiency Supply Curves | Open Energy Information  

Open Energy Info (EERE)

Motor Systems Efficiency Supply Curves Motor Systems Efficiency Supply Curves Jump to: navigation, search Tool Summary Name: Motor Systems Efficiency Supply Curves Agency/Company /Organization: United Nations Industrial Development Organization Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Technology characterizations Resource Type: Publications, Case studies/examples Website: www.unido.org/fileadmin/user_media/Services/Energy_and_Climate_Change/ Country: United States, Canada, Thailand, Vietnam, Brazil UN Region: South-Eastern Asia, "Latin America and Caribbean" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property., Northern America, "Western & Eastern Europe" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

10

Estimating Carbon Supply Curves for Global Forests and Other Land Uses |  

Open Energy Info (EERE)

Estimating Carbon Supply Curves for Global Forests and Other Land Uses Estimating Carbon Supply Curves for Global Forests and Other Land Uses Jump to: navigation, search Tool Summary Name: Estimating Carbon Supply Curves for Global Forests and Other Land Uses Agency/Company /Organization: Resources for the Future Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory, Resource assessment Resource Type: Guide/manual Website: www.rff.org/documents/RFF-DP-01-19.pdf Estimating Carbon Supply Curves for Global Forests and Other Land Uses Screenshot References: Estimating Carbon Supply Curves for Global Forests and Other Land Uses[1] Abstract "This study develops cumulative carbon "supply curves" for global forests utilizing an dynamic timber supply model for sequestration of forest carbon. Because the period of concern is the next century, and

11

Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated U.S. Geothermal Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input C. Augustine Technical Report NREL/TP-6A20-47459 October 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input C. Augustine Prepared under Task No. GT09.3002 Technical Report NREL/TP-6A20-47459 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

12

Sixth Northwest Conservation and Electric Power Plan Appendix E: Conservation Supply Curve  

E-Print Network [OSTI]

Sixth Northwest Conservation and Electric Power Plan Appendix E: Conservation Supply Curve....................................................................................................... 11 Value of Energy Saved ............................................................................................................. 11 Value of Deferred Transmission and Distribution Capacity

13

Energy Department Announces $3 Million to Lower Cost of Geothermal Energy and Boost U.S. Supply of Critical Materials  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $3 million for research and development to help grow U.S. low-to-moderate-temperature geothermal resources and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements.

14

Comparison of two options for supplying geothermal energy to the Veterans Administration Medical Center at Marlin, Texas  

SciTech Connect (OSTI)

Two options for supplying geothermal energy to the Veterans Administration Medical Center (VAMC) at Marlin, Texas were compared. One option is to drill a new production well on the VAMC property, and the other is to construct a 6900-ft pipeline from an existing geothermal well to the VAMC. Technical, economic, regulatory, and institutional issues were examined during the comparison. It was concluded that neither option possesses any significant cost or regulatory advantage over the other. The new well option does involve a risk, probably small, of hitting the expected geothermal resource, whereas the pipeline option involves no similar risk. However, the pipeline option will require right-of-way negotiations and a contractual agreement between the VAMC and the owners of the existing geothermal well. Assuming that a new well is successful, that option appears to be in the best interest of the VAMC.

Green, T.F.

1982-04-01T23:59:59.000Z

15

Improved climate forecast accuracy: implications for the aggregate sorghum supply curve  

E-Print Network [OSTI]

for 19 sites, one in Australia (Jondaryan) and 18 in Texas, with and without SO information for five prices and three SO events. From these site yields expected aggregate supply curves weighted by hectares for Texas and Jondaryan are developed. Aggregated...

Hill, Harvey S. J.

2012-06-07T23:59:59.000Z

16

Customer system efficiency improvement assessment: Supply curves for transmission and distribution conservation options  

SciTech Connect (OSTI)

This report documents the results of Task 6 in the Customer System Efficiency Improvement (CSEI) Assessment Project. A principal objective of this project is to assess the potential for energy conservation in the transmission and distribution (TandD) systems of electric utilities in the BPA service area. The scope of this assessment covers BPA customers in the Pacific Northwest region and all non-federal TandD systems, including those that currently place no load on the BPA system. Supply curves were developed to describe the conservation resource potentially available from TandD-system efficiency improvements. These supply curves relate the levelized cost of upgrading existing equipment to the estimated amount of energy saved. Stated in this form, the resource represented by TandD loss reductions can be compared with other conservation options and regional electrical generation resources to determine the most cost-effective method of supplying power to the Pacific Northwest. The development of the supply curves required data acquisition and methodology development that are also described in this report. 11 refs., 11 figs., 16 tabs.

Tepel, R.C.; Callaway, J.W.; De Steese, J.G.

1987-11-01T23:59:59.000Z

17

Supply Curves for Rooftop Solar PV-Generated Electricity for the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A0-44073 A0-44073 November 2008 Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Prepared under Task No. PVB7.6301 Technical Report NREL/TP-6A0-44073 November 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

18

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Community’s supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

19

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

20

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

22

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

23

Supply of geothermal power from hydrothermal sources: A study of the cost of power in 20 and 40 years  

SciTech Connect (OSTI)

This study develops estimates for the amount of hydrothermal geothermal power that could be on line in 20 and 40 years. This study was intended to represent a snapshot'' in 20 and 40 years of the hydrothermal energy available for electric power production should a market exist for this power. This does not represent the total or maximum amount of hydrothermal power, but is instead an attempt to estimate the rate at which power could be on line constrained by the exploration, development and support infrastructure available to the geothermal industry, but not constrained by the potential market for power.

Petty, S. (Petty (Susan) Consulting, Solano Beach, CA (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States)); Long, W.P. (Carlin Gold Co., Inc., Grass Valley, CA (United States)); Geyer, J. (Geyer (John) and Associates, Vancouver, WA (United States))

1992-11-01T23:59:59.000Z

24

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements. February 7, 2014 The Energy Department's Geothermal Technologies Office...

25

South Dakota geothermal resources  

SciTech Connect (OSTI)

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

26

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

27

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

28

Jules Verne or Joint Venture? Investigation of a Novel Concept for Deep Geothermal Energy Extraction.  

E-Print Network [OSTI]

?? Geothermal energy is an energy source with potential to supply mankind with both heat and electricity in nearly unlimited amounts. Despite this potential geothermal… (more)

Wachtmeister, Henrik

2012-01-01T23:59:59.000Z

29

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

30

Favourability Map of British Columbia Geothermal Resources  

E-Print Network [OSTI]

Favourability Map of British Columbia Geothermal Resources by Sarah Kimball A THESIS SUBMITTED carbon economy stipulates that power supply must be from renewable and low emission sources. Geothermal energy offers significant benefits to British Columbia which hosts Canadas best geothermal resources

Pedersen, Tom

31

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

32

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

33

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

34

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

35

Geothermal News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News Geothermal News RSS April 12, 2013 Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. September 8, 2011 Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and

36

Geothermal energy systems: research perspective for domestic energy provision  

Science Journals Connector (OSTI)

This article is focused on research demand for the environmental and economic sustainable utilization of geothermal reservoirs for base load supply of heat and electricity by Enhanced Geothermal Sy...

Ernst Huenges; Thomas Kohl; Olaf Kolditz; Judith Bremer…

2013-12-01T23:59:59.000Z

37

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy—geo (earth) + thermal (heat)—is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

38

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

39

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... « The Geysers ». Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

40

Geothermal resource data base: Arizona  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Financing Relatively small size of the Industry + perceived risk project financing challenges Grid Integration Solutions to supply geothermal electricity to the grid...

42

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

43

Geothermal pipeline  

SciTech Connect (OSTI)

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

44

National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering  

SciTech Connect (OSTI)

To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

2013-10-01T23:59:59.000Z

45

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

46

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

47

Stanford Geothermal Workshop- Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

48

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

49

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

50

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

51

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

52

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

53

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

54

Geothermal News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

55

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

56

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

57

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

58

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

59

Geothermal development plan: Pima County  

SciTech Connect (OSTI)

The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

60

Geothermal: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

62

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

63

OIT geothermal system improvements  

SciTech Connect (OSTI)

Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

Lienau, P.J. [Geo-Heat Center, Klamath Falls, OR (United States)

1996-08-01T23:59:59.000Z

64

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

65

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

66

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

67

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europe’s future energy requirements is much sm...

1977-01-01T23:59:59.000Z

68

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

69

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

70

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

71

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

72

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

73

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

74

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

75

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

76

Geothermal development plan: Maricopa County  

SciTech Connect (OSTI)

The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

77

A study of geothermal drilling and the production of electricity from geothermal energy  

SciTech Connect (OSTI)

This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

1994-01-01T23:59:59.000Z

78

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

79

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

80

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect (OSTI)

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

82

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

83

Geothermal's hot prospects  

SciTech Connect (OSTI)

Magma Power and California Energy's ambitious plans to build geothermal capacity in the United States and abroad have captured Wall Street's attention. After acquiring three geothermal plants, a power contract and 11,000 acres of geothermal leaseholds, officials at Magma Power Co. can probably wipe their brows, take a deep breath and agree that is has been a big year. The San Diego-based company acquired the three projects in March. The leaseholds came from Unocal and are in the Imperial Valley of California, close to the four geothermal plants Magma operates near the Salton Sea. Overnight, Magma's generating capacity increased 50 percent, from 164 MW to 244 MW, and revenues, as measured on a pro forma basis, were boosted 60 percent to $174 million from $108 million in fiscal 1992. By most standards, that qualifies as a big year. No wonder, then, that Magma's stock (MGMA:NASDAQ) has been this year's best performing public, independent energy stock by far, soaring 17.8 percent to about $38 a share through August 31. That's way ahead of Standard Poor's 500 Index, which increased 5.7 percent during the same time. The industry's other major independent geothermal player, California Energy Co., based in Omaha, Neb., is a strong competitor with Magma for geothermal assets. Both companies are nearly even in terms of megawatt capacity, and both are pursuing an aggressive expansion strategy as they begin to reach global markets. California Energy has begun implementing its own plans for rapid growth. Its stock (CE:NYSE, PSE, LSE) has outperformed the S P 500, too, rising 6.7 percent through August 31 to trade at a little more than $18 a share. California Energy also acquired some Unocal assets, paying between $15 million and $19 million for 26,000 acres of reserves in the Glass Mountain area in Northern California. While Magma acquired three operating plants able to generate 80 MW and a power contract to supply 20 MW more, California Energy acquired leases and wells.

Mandelker, J.

1993-11-01T23:59:59.000Z

84

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

85

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

, through mud temperatures. In this study formation temperatures of the five geothermal wells in Germencik and analyze the formation temperatures at geothermal wells. For the methods Curve fitting, Horner plot

Stanford University

86

The United Nations' Approach To Geothermal Resource Assessment | Open  

Open Energy Info (EERE)

United Nations' Approach To Geothermal Resource Assessment United Nations' Approach To Geothermal Resource Assessment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The United Nations' Approach To Geothermal Resource Assessment Details Activities (2) Areas (1) Regions (0) Abstract: Although the emphasis of United Nations' assisted geothermal projects has been on demonstrating the feasibility of producing geothermal fluids, the potential capacity of individual fields has been estimated by both the energy in place and decline curve methods. The energy in place method has been applied to three geothermal fields resulting in total resource estimates ranging from 380 to 16,800 MW-yr. The results of these studies must be considered highly tentative, however, due to inadequate reservoir data and a poor knowledge of producing mechanisms. The decline

87

CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied curves as a basis for analysis of future well tests for geothermal reservoirs. c ii #12;TABLE OF CONTENTS

Stanford University

88

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

SciTech Connect (OSTI)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

89

Fundamentals of Geothermics  

Science Journals Connector (OSTI)

The expression ‘geothermics of the Earth’ is understood to be restricted to the solid Earth and is usually shortened to geothermics. Hence, the field of geothermics starts as soon as the solid Earth has been e...

R. Haenel; L. Rybach; L. Stegena

1988-01-01T23:59:59.000Z

90

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

91

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

92

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

93

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

94

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

95

HDR geothermal energy  

Science Journals Connector (OSTI)

HDR geothermal energy, petrothermal geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

96

petrothermal geothermal energy  

Science Journals Connector (OSTI)

petrothermal geothermal energy, HDR geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

97

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

98

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

99

Geothermal energy and district heating in Ny-Ålesund, Svalbard .  

E-Print Network [OSTI]

??This thesis presents the possibilities for using shallow geothermal energy for heating purposes in Ny-Ålesund. The current energy supply in Ny-Ålesund is a diesel generator,… (more)

Iversen, Julianne

2013-01-01T23:59:59.000Z

100

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

102

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

103

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

104

Geothermal Heat Pump Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Heat Pump Basics Heat Pump Basics Geothermal Heat Pump Basics August 19, 2013 - 11:12am Addthis Text Version Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes-from scorching heat in the summer to sub-zero cold in the winter-the ground a few feet below the earth's surface remains at a relatively constant temperature. Depending on the latitude, ground temperatures range from 45°F (7°C) to 75°F (21°C). So, like a cave's, the ground's temperature is warmer than the air above it during winter and cooler than the air above it in summer. Geothermal heat pumps take advantage of this by exchanging heat with the earth through a ground heat exchanger. Geothermal heat pumps are able to heat, cool, and, if so equipped, supply

105

Geothermal Resources Act (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Buying & Making Electricity Program Info State Texas Program Type Siting and Permitting Provider Railroad Commission of Texas The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide a dependable supply of energy in an efficient manner that avoids waste of the energy resources. Secondary considerations will be afforded to the protection of the environment, the protection of correlative rights, and the conservation of

106

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

107

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

108

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

109

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

110

OHm Geothermal | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

111

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

112

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

113

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

114

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

116

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

117

National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration  

SciTech Connect (OSTI)

Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, a

Patten, Kim [Arizona Geological Survey

2013-05-01T23:59:59.000Z

118

Geothermal: Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

119

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

120

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

122

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

123

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

124

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

125

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

126

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

127

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

128

Nevada Geothermal Area | Department of Energy  

Energy Savers [EERE]

Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately...

129

The Geysers Geothermal Area | Department of Energy  

Energy Savers [EERE]

The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field....

130

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

131

North Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Power Plants in North Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Dakota No areas listed....

132

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

133

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Operational Geothermal Power Plants in Wisconsin No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wisconsin No areas listed....

134

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

135

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

136

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

137

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

138

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

139

Applications of Geothermal Energy  

Science Journals Connector (OSTI)

The distinction between near surface and deep geothermal systems follows from the different depth levels of the geothermal reservoirs and different techniques of utilization (Fig ... smooth. Distinguishing the tw...

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

140

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal Energy on Mars  

Science Journals Connector (OSTI)

This contribution will concentrate on the implications of data from new studies of Mars during the past decade or so in terms of martian geothermal resources, and the potential differences in exploiting geothermal

Paul Morgan

2009-01-01T23:59:59.000Z

142

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

143

Geothermal Government Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

144

Other Geothermal Energy Publications  

Broader source: Energy.gov [DOE]

Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

145

Geothermal energy development  

SciTech Connect (OSTI)

This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

Butler, E.W.; Pick, J.B.

1983-01-01T23:59:59.000Z

146

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

147

South Dakota geothermal handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

148

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

149

Geothermal Photo Gallery  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

150

Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects.

151

Geothermal status report  

SciTech Connect (OSTI)

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

152

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

153

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

154

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

155

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

156

Overview of Geothermal Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

157

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

158

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers [EERE]

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

159

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

Majer, Ernest L.

2006-01-01T23:59:59.000Z

160

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

162

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

163

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

164

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

165

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

166

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

167

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

168

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

169

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

170

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

171

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

172

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

173

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

174

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

175

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

176

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

177

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

178

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

179

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

180

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

182

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

183

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

184

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

185

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

186

Realizing the geothermal electricity potential?water use and consequences  

Science Journals Connector (OSTI)

Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l?kWh ? 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8?100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

Gouri Shankar Mishra; William E Glassley; Sonia Yeh

2011-01-01T23:59:59.000Z

187

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

188

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal News Geothermal News RSS July 29, 2008 Tapping the Earth's geothermal energy During this oil crisis, we've been searching for alternatives like wind, solar and even...

189

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

190

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

191

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System (NGDS) Geothermal Data: Community Requirements and Information Engineering Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

192

Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...  

Office of Scientific and Technical Information (OSTI)

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

193

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

194

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

195

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

196

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

197

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

198

Geothermal: Sponsored by OSTI -- Two-Stage, Integrated, Geothermal...  

Office of Scientific and Technical Information (OSTI)

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk Geothermal...

199

Development of geothermal energy in México and its energetic potential for the future  

Science Journals Connector (OSTI)

The current contribution of 3.1 % of geothermal energy to México’s electricity supply is relatively elevated in comparison to a global offer of primary geothermal energy of 0.442 % (ISES 2002), or 0.8 % by ren...

Peter Birkle

2007-01-01T23:59:59.000Z

200

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains  with  geothermal  power.  Geothermal Resources gains  with  geothermal  power.  Geothermal Resources of Tables:  Table 1:  Geothermal Power Plants Operating at 

Brophy, P.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

202

Sandia National Laboratories: Geothermal Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

203

Sandia National Laboratories: Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

204

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

205

Geothermal FAQs | Department of Energy  

Office of Environmental Management (EM)

Back to Top 5. What is the visual impact of geothermal technologies? Answer: District heating systems and geothermal heat pumps are easily integrated into communities with almost...

206

Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other definitions:Wikipedia Reegle Geothermalpower.jpg Looking for the Geothermal...

207

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids...

208

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Systems Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable Energy eere.energy.gov Technology...

209

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

210

Geothermal Drilling Organization  

SciTech Connect (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

211

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

212

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

213

An analysis of geothermal resource development on Unalaska Island, Alaska  

SciTech Connect (OSTI)

A rapid expansion in the seafood industry and projected oil, gas and mining developments have resulted in a shortage of power on Unalaska Island. Currently, all power is supplied by small diesel generators at a cost of 340 mills/kwh for the local utility system. Available data indicate the potential for a significant high temperature geothermal resource on Makushin Volcano, west of the town of Unalaska. A summary of the considerations affecting the development of the Makushin resource to supply power to Unalaska is presented. A preliminary economic analysis of various resource and development assumptions indicated that geothermal power can be competitive with diesel power even though capital investment is high.

Spencer, S.G.; Chapman-Riggsbee, W.; Long, G.A.

1982-10-01T23:59:59.000Z

214

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian… (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

215

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

216

National Geothermal Student Competition  

Broader source: Energy.gov [DOE]

The Energy Department's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

217

Energy 101: Geothermal Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface, through geothermal heat pumps.

218

Geothermal Case Study Challenge  

Broader source: Energy.gov [DOE]

The Energy Department's Geothermal Technologies Office hosts an annual student competition in exploration research to engage students pursuing STEM careers and, ultimately, to aid in the next...

219

Geothermal: Related Links  

Office of Scientific and Technical Information (OSTI)

E-print Network Sign up for weekly E-print Alerts on a topic of interest Bonneville Power Administration California Energy Commission California Energy Commission (Geothermal...

220

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Stanford Geothermal Workshop  

Energy Savers [EERE]

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

222

Geothermal Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pressure, temperature, and directional measurement and telemetry. The rechargeable energy storage unit for geothermal applications can handle extreme, high-temperature downhole...

223

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

224

Geothermal Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Geothermal Success Stories en Iowa: West Union Green Transformation Project http:energy.goveeresuccess-storiesarticlesiowa-west-union-green-transformation-project

225

Tap Geothermal Heat  

Science Journals Connector (OSTI)

Central to the proposal is the detonation of an underground thermonuclear device to create a large subterranean cavity of crushed rock in an area of geothermal activity. ...

1969-12-15T23:59:59.000Z

226

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

227

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

228

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

229

Learning Curve  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

It is a fundamental human characteristic that a person engaged in a repetitive task will improve his performance over time. If data are gathered on this phenomenon, a curve representing a decrease in effort per unit for repetitive operations can be developed. This phenomenon is real and has a specific application in cost analysis, cost estimating, or profitability studies related to the examination of future costs and confidence levels in an analysis. This chapter discusses the development and application of the learning curve.

1997-03-28T23:59:59.000Z

230

Chapter 12 - Geothermal Energy  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses where the earth's thermal energy is sufficiently concentrated for economic use, the various types of geothermal systems, the production and utilization of the resource, and the environmental benefits and costs of geothermal production. Earth scientists quantify the energy and temperature in the earth in terms of heat flow and temperature gradient. The heat of the earth is derived from two components: the heat generated by the formation of the earth, and heat generated by radioactive decay of elements in the upper parts of the earth. The word “geothermal” comes from the combination of the Greek words gêo, meaning earth, and thérm, meaning heat. Geothermal resources are concentrations of the earth's heat, or geothermal energy, that can be extracted and used economically now or in the reasonable future. The earth contains an immense amount of heat but the heat generally is too diffuse or deep for economic use. Hence, the search for geothermal resources focuses on those areas of the earth's crust where geological processes have raised temperatures near enough to the surface that the heat contained can be utilized. Currently, only concentrations of heat associated with water in permeable rocks can be exploited economically. These systems are known as hydrothermal geothermal systems. All commercial geothermal production is currently restricted to geothermal systems that are sufficiently hot for the use and that contain a reservoir with sufficient available water and productivity for economic development. Geothermal energy is one of the cleaner forms of energy now available in commercial quantities. Use of geothermal energy avoids the problems of acid rain and greatly reduces greenhouse gas emissions and other forms of air pollution.

Joel L. Renner

2008-01-01T23:59:59.000Z

231

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

232

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

233

Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop  

Broader source: Energy.gov [DOE]

General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses.

234

Geothermal: Sponsored by OSTI -- DEVELOPING THE NATIONAL GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT...

235

Geothermal Energy Market in Southern California Past, Present and Future  

SciTech Connect (OSTI)

I'm pleased to be here as your keynote speaker from the utility industry. Today is fitting to discuss the role of an alternative/renewable energy resource such as geothermal. Three years ago today, the Exxon Valdez oil tanker spilled 11 million gallons of oil into Prince William Sound, Alaska. This ecological catastrophe was another of those periodic jolts that underscores the importance of lessening our nation's dependence on oil and increasing the use of cost-effective, environmentally benign alternative/renewable energy sources. Alternative/renewables have come a long way since the first oil crisis in 1973. Today, they provide 9 percent of electric power used in the United States. That's nearly double the figure of just two years ago. And since 1985, one-third of a new capacity has come from geothermal, solar, wind and biomass facilities. Nevertheless, geothermal supplies only about three-tenths of a percent of the country's electric power, or roughly 2,800 megawatts (MW). And most of that is in California. In fact, geothermal is California's second-largest source of renewable energy, supplying more than 5 percent of the power generated in the state. Today, I'd like to discuss the outlook for the geothermal industry, framing it within Southern California Edison's experience with geothermal and other alternative/renewable energy sources.

Budhraja, Vikram S.

1992-03-24T23:59:59.000Z

236

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

237

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

238

The transformative potential of geothermal heating in the U.S. energy market: A regional study of New York and Pennsylvania  

Science Journals Connector (OSTI)

Abstract Enhanced Geothermal Systems (EGS) could supply a significant fraction of the low-temperature (energy used in the United States through Geothermal District Heating (GDH). In this study we develop a regional model to evaluate the potential for EGS district heating in the states of New York and Pennsylvania by simulating an EGS district heating network at each population center within the study region and estimating the levelized cost of heat (LCOH) from GDH for each community. \\{LCOHs\\} were then compiled into a supply curve from which several conclusions could be drawn. Our evaluation revealed that EGS district heating has the potential to supply cost-effective energy for space and water heating in several New York and Pennsylvania communities in the near future. To realize wider deployment, modest improvements in EGS technology, escalation of natural gas prices, and/or government incentives will likely be required to enable GDH to compete with other heating alternatives today. EGS reservoir flow rates, drilling costs, system lifetimes, and fluid return temperatures have significant effects on the LCOH of GDH and thus will provide the highest return on R&D investment, while creative implementation strategies can help EGS district heating overcome initial cost barriers that exist today.

Timothy J. Reber; Koenraad F. Beckers; Jefferson W. Tester

2014-01-01T23:59:59.000Z

239

Geothermal Energy (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Geothermal energy is one of the components of the National Energy Policy: “Reliable, Affordable, and Environmentally Sound Energy for America’s Future.” This lesson includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity.

240

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal: Distributed Search Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

242

geothermal_test.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

243

geothermal2.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

244

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

245

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

246

Geothermal Exploration At Akutan, Alaska- Favorable Indications For A  

Open Energy Info (EERE)

Exploration At Akutan, Alaska- Favorable Indications For A Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Details Activities (6) Areas (1) Regions (0) Abstract: In summer 2009, the City of Akutan completed an exploration program to characterize the geothermal resource and assess the feasibility of geothermal development on Akutan Island. Akutan Island, Alaska is home to North America's largest seafood processing plant. The City of Akutan and the fishing industry have a combined peak demand of ~7-8 MWe which is currently supplied by diesel fuel. The exploration program included

247

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

248

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

249

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

250

Issue Paper Potential Water Availability Problems Associated with Geothermal Energy Operations  

SciTech Connect (OSTI)

The report is the first to study and discuss the effect of water supply problems of geothermal development. Geothermal energy resources have the potential of making a significant contribution to the U.S. energy supply situation, especially at the regional and local levels where the resources are located. A significant issue of concern is the availability and cost of water for use in a geothermal power operation primarily because geothermal power plants require large quantities of water for cooling, sludge handling and the operation of environmental control systems. On a per unit basis, geothermal power plants, because of their inherent high heat rejection rates, have cooling requirements several times greater than the conventional fossil fuel plants and therefore the supply of water is a critical factor in the planning, designing, and siting of geothermal power plants. However, no studies have been specifically performed to identify the water requirements of geothermal power plants, the underlying causes of water availability problems, and available techniques to alleviate some of these problems. There is no cost data included in the report. The report includes some descriptions of known geothermal areas. [DJE-2005

None

1982-02-19T23:59:59.000Z

251

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

252

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

253

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

254

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

255

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

256

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

257

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

258

Germany Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

259

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

260

Federal Interagency Geothermal Activities 2011 | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Federal Interagency Geothermal Activities 2011 Federal Interagency Geothermal Activities 2011 This document is the federal interagency geothermal activities document for 2011,...

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

262

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

Pope, W.L.

2011-01-01T23:59:59.000Z

263

Russia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Russia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

264

Andean Geothermal Power | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Andean Geothermal Power Place: Texas Sector: Geothermal energy Product: Texas-based geothermal project developer company. References: Andean...

265

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

266

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems Place: Austin, Texas Sector: Geothermal energy Product: Installer of geothermal heating and cooling technologies, also has a patented water to air heat pump...

267

Potential of geothermal energy in China .  

E-Print Network [OSTI]

??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in… (more)

Sung, Peter On

2010-01-01T23:59:59.000Z

268

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from "http:...

269

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

270

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

271

Geothermal Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Success Stories Geothermal Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in finding, accessing, and using U.S. geothermal...

272

Tribal Renewable Energy Foundational Course: Geothermal | Department...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Tribal Renewable Energy Foundational Course: Geothermal Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on geothermal renewable...

273

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Iceland Geothermal Region Energy Generation Facilities within the Iceland Geothermal Region...

274

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

275

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

276

GETEM - Geothermal Electricity Technology Evaluation Model |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GETEM - Geothermal Electricity Technology Evaluation Model GETEM - Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal...

277

Enhanced Geothermal Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

278

Geothermal Energy Photos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Geothermal Energy Photos Geothermal Energy Photos Image of the Week: Energy Department investments are exploring for geothermal power from abundant natural...

279

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Austria Geothermal Region Energy Generation Facilities within the Austria Geothermal Region...

280

2012 Geothermal Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Webinar 2012 Geothermal Webinar January 10, 2012 - 12:47pm Addthis This Office of Indian Energy webinar provides information on developing geothermal resources on tribal...

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

282

Geothermal Play Fairway Analysis | Department of Energy  

Energy Savers [EERE]

Analysis Geothermal Play Fairway Analysis pfw-webinar.pptx More Documents & Publications Geothermal Play Fairway Analysis LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 0211...

283

A Technical Databook for Geothermal Energy Utilization  

E-Print Network [OSTI]

A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

Phillips, S.L.

1981-01-01T23:59:59.000Z

284

Geothermal Technologies Office Annual Report 2012 | Department...  

Office of Environmental Management (EM)

Geothermal Technologies Office Annual Report 2012 Geothermal Technologies Office Annual Report 2012 This annual report for the U.S. Department of Energys Geothermal Technologies...

285

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

286

Energy Department Forecasts Geothermal Achievements in 2015 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in...

287

Sound Geothermal Corporation | Open Energy Information  

Open Energy Info (EERE)

energy Product: Sound Geothermal coporation helps provide information into geothermal pumps. References: Sound Geothermal Corporation1 This article is a stub. You can help...

288

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

faults and wells, Cerro Prieto geothermal field, Mexico (faults and wells, Cerro Prieto geothermal field, Mexico (geothermal system in Mexico and the Pleasant Bayou exploratory geopressured well

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

289

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

290

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

291

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

292

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

SciTech Connect (OSTI)

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

Not Available

1989-02-01T23:59:59.000Z

293

Status of US direct utilization of geothermal energy  

SciTech Connect (OSTI)

A table presents a summary by state of the status of geothermal direct heat projects of which Mitre was aware as of March 31, 1981. By the end of 1980, 211 direct use projects in 14 states were providing about 12,650 billion Btus annually. Of this total, 10,000 billion Btus/yr is associated with one water-flood oil-recovery project in Wyoming. Thus for all other geothermal direct heat installations, the annual heat use was about 2650 billion Btus at the end of 1980. Fifteen projects put into effect during 1980, supplying 277 billion Btus are known. This is about 10% of the previously installed total. It is anticipated that by the end of 1980 another 29 projects will be completed and be supplying an additional 5580 billion Btus annually. If so, the use of geothermal heat in the residential/commercial/industrial sectors will have tripled in two years.

Walker, B.A.; Entingh, D.J.

1981-10-01T23:59:59.000Z

294

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? Desert Peak 2 is the nation's first commercial enhanced geothermal system to supply electricity to the grid. Based in Churchill County, Nevada, the project has increased power

295

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) | Open  

Open Energy Info (EERE)

Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Steamboat Springs Geothermal Area (1982) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique Isotopic Analysis-Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Notes Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, Ra; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering

296

Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) | Open Energy  

Open Energy Info (EERE)

Analysis-Fluid At Raft River Geothermal Area Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not useful DOE-funding Unknown Exploration Basis Determine which reservoir model best matches the isotope data. Notes 1) Chemical and light-stable isotope data are presented for water samples from the Raft River geothermal area and nearby. On the basis of chemical character, as defined by a trilinear plot of per cent milliequivalents, and light-stable isotope data, the waters in the geothermal area can be divided into waters that have and have not mixed with cold water. 2) Helium isotope ratios have been measured in geothermal fluids. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic

297

First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy  

Broader source: Energy.gov [DOE]

The Obama Administration's all-of-the-above energy strategy took a leap forward today with the Energy Department's announcement recognizing the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. This landmark accomplishment follows two other major DOE-funded technical achievements focused on demonstrating the commercial viability of EGS: The Calpine EGS demonstration at The Geysers in Middletown, California and the AltaRock project at Newberry Volcano near Bend, Oregon.

298

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

299

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

300

Geothermal Noise Control  

Science Journals Connector (OSTI)

In these times of growing need for new energy sources geothermal has shown great promise. Geothermal is a green relatively nonpolluting energy source that can provide power on a scale large enough to make a significant contribution to our needs. One of the challenges of geothermal development is noise emission. This occurs after a well encounters steam and before a plant is constructed. It also arises from the necessity of shutting down a power plant for periodic maintenance. While the power plant is down the steam and noise is vented to the atmosphere.

Marshall Long

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

302

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

303

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

304

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

305

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

306

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

307

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

308

Rural Cooperative Geothermal Development Electric & Agriculture...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

309

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

f the Mesa Geothermal Anomaly, Imperial Valley, California.Pioneering Geothermal Test Work i n the Imperial Valley o f

Sudo!, G.A

2012-01-01T23:59:59.000Z

310

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

311

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

312

Indonesia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Indonesia Geothermal Region Retrieved from "http:en.openei.orgwindex.php?titleIndonesiaGeothermalRegion&oldid706190...

313

China Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

China Geothermal Region Retrieved from "http:en.openei.orgwindex.php?titleChinaGeothermalRegion&oldid70619...

314

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

315

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

316

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

317

Geothermal: Distributed Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

318

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

319

RMOTC - Testing - Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

320

Geothermal progress monitor  

SciTech Connect (OSTI)

The Geothermal Progress Monitor is sponsored by the Division of Geothermal Energy/Resource Applications, DOE, to assemble the important facts about geothermal development activities in the United States in order to assess the pace of the development of this alternative energy source. The initial emphasis for the monitoring effort has been placed on the detection and analysis of important and simple indicators of what the main participants in geothermal energy utilization - field developers, energy users, and governments - are doing to foster the discovery, confirmation, and especially the use of this resource. The major indicators currently considered to be both important and measurable, are leasing activites, drilling effort, feasibility studies, construction plans and progress, costs of installations, levels of investment, environmental study and regulatory and legislative status of events, and government monetary investments in projects and activities. Additional indicators may be pursued in the future, depending on specific needs for or opportunities to capture relevant data and facts.

Lopez, A.F.; Entingh, D.J.; Neham, E.A.

1980-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal Electricity Production  

Science Journals Connector (OSTI)

...georef;1974029979 development economics geothermal energy global production...space heating and cooling and water desalination, and (for the long term) to...produLced in thermiial stations. Economics and Rate of Developnment The National...

Geoffrey R. Robson

1974-04-19T23:59:59.000Z

322

OIT geothermal system improvements  

SciTech Connect (OSTI)

The Oregon Institute of Technology campus has been heated by the direct use of geothermal fluids since 1964. The 11 building campus uses geothermal energy for space heating/cooling, domestic water heating, the swimming pool and sidewalk snow melt. The hydronic system was designed to use the geothermal fluids directly in heating units. In the 1970s, problems were experienced with the design and operation of the well pumps, buried piping and heating equipment. Beginning in the early 1980`s, many improvements were made to the system due to equipment performance problems and resource management requirements. This paper discusses those improvements that included the distribution system, cooling, well pumps, cascading of geothermal fluids, installation of isolation plate heat exchangers in each building and drilling of two injection wells. Plans for future improvements include better controls to manage energy use and data monitoring systems for individual buildings, and instrumentation to monitor well pump performance.

Lienau, P.J.

1996-12-31T23:59:59.000Z

323

geothermal_test.cdr  

Office of Legacy Management (LM)

Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility....

324

Geothermal Energy Resources  

Science Journals Connector (OSTI)

Geothermal energy, the heat in the interior of the Earth is an energy that is not related to the solar energy but ultimately has been created by gravitational energy and radioactive decay of unstable atoms. It .....

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

325

Residential Geothermal Systems Credit  

Broader source: Energy.gov [DOE]

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

326

Geothermal Energy: Current abstracts  

SciTech Connect (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

327

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

328

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

329

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

330

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

331

Readily Available Data Help to Overcome Geothermal Deployment...  

Energy Savers [EERE]

Articles Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development The National Geothermal Data System deploys free,...

332

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

333

An Embarrassment Of Riches- Canada'S Energy Supply Resources | Open Energy  

Open Energy Info (EERE)

Embarrassment Of Riches- Canada'S Energy Supply Resources Embarrassment Of Riches- Canada'S Energy Supply Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Embarrassment Of Riches- Canada'S Energy Supply Resources Details Activities (0) Areas (0) Regions (0) Abstract: We review the size and availability of Canada's energy supply resources, both non-renewable and renewable. Following a brief discussion of the energy fuel-mix in Canada from 1870 to 1984, and the current provincial breakdown of energy production and use, we provide a source-by-source review of energy supply resources, including oil, natural gas, coal, uranium, peat, wood, agricultural and municipal waste, and also hydro-electric, tidal, geothermal, wind and solar energy. An attempt is made to assess these resources in terms of resource base (the physical

334

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

335

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

336

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

337

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

338

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefing on Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

339

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

340

Geothermal: Sponsored by OSTI -- Development of a Geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada...

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pinpointing America's Geothermal Resources with Open Source Data  

Broader source: Energy.gov [DOE]

National Geothermal Data System addresses barriers to geothermal deployment by aggregating millions of geoscience datapoints and legacy geothermal research into a nationwide system that serves the geothermal community.

342

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

induced seismicity and geothermal  energy.  Geothermal into  sustainable  geothermal  energy:  The  S.E.   Geysers into  sustainable  geothermal  energy:  The  S.E.   Geysers 

Brophy, P.

2012-01-01T23:59:59.000Z

343

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

344

DOE and Partners Demonstrate Mobile Geothermal Power System at...  

Broader source: Energy.gov (indexed) [DOE]

Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo...

345

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

Brophy, P.

2012-01-01T23:59:59.000Z

346

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

Energy Authority Ente Nazionale dell'Energia Elettrica, Geothermal Center International Institute for Geothermal Research Geological.Survey of Japan Department of Geothermic

Bresee, J. C.

2011-01-01T23:59:59.000Z

347

Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2012) Exploration Activity...

348

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Neal Hot...

349

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

350

Feasibility study of geothermal heating, Modoc Lassen housing project  

SciTech Connect (OSTI)

This study evaluates the feasibility of using geothermal water for space and domestic water heating systems at the elderly housing project now ready for construction at the Modoc Lassen Indian Reservation. For the six units considered, the space heating load is four times the domestic water heating load. Since the geothermal water temperature is uncertain, two scenarios were evaluated. In the first, which assumes 160/sup 0/F supply temperature, the geothermal system is assumed to satisfy the entire space and domestic water heating loads. In the second, which assumes the supply temperature to be less than 120/sup 0/F at the wellhead only space heating is provided. The economics of the first scenario are quite favorable. The additional expenditure of $15,630 is projected to save $3522 annually at current energy costs, and the life cycle cost study projects a discounted rate of return on the investment of 44.4%. Surprisingly, the investment is even more favorable for the second scenario, due to the higher cost and lower resultant savings for the domestic water components. Forced air space heating from geothermal is recommended. Domestic water heating is recommended pending additional information on supply water temperature.

Not Available

1981-11-01T23:59:59.000Z

351

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

352

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

353

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Geothermal Power) (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy is heat extracted from the Earth [Geo (Earth) + thermal (heat)].The temperature of the Earth varies widely, and a wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from several sources, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located both near the Earth's surface as well as several miles deep into the Earth, even reaching the Earth's magma.[2][3] Geothermal

354

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

355

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

356

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

357

The Future of Geothermal Energy  

Broader source: Energy.gov [DOE]

The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise...

358

Geothermal Maps | Department of Energy  

Energy Savers [EERE]

Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and...

359

Modern Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Modern Geothermal Features Modern Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Modern Geothermal Features Dictionary.png Modern Geothermal Features: Active geothermal manifestations such as hot springs, fumaroles, steaming ground, mud pots, mud pools, mud volcanoes, or geysers. Other definitions:Wikipedia Reegle When geothermal systems have conduits available to the surface, they cause surface manifestations (or geothermal features). These features may vary between steam seeps (fumaroles) or pure fluid manifestations (geysers and hot springs) causing spectacular mineral formations (e.g. sinter terraces, tufa mounds). These types of manifestations are clear indications of an underlying geothermal system. Geothermal systems with no modern surface

360

Geothermal Properties Measurement Tool | Open Energy Information  

Open Energy Info (EERE)

Geothermal Properties Measurement Tool Geothermal Properties Measurement Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Properties Measurement Tool Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Geothermal Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ornl.gov/sci/ees/etsd/btric/ground-source.shtml Cost: Free References: Geothermal Properties Measurement Tool [1] Logo: Geothermal Properties Measurement Tool The Geothermal Properties Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a certain location. The Geothermal Properties Measurement Excel tool was developed at Oak Ridge

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Enhanced Geothermal Systems subprogram was given at the GTP Program Peer Review on May 18, 2010.

362

South Dakota Geothermal Energy Handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

Not Available

1980-06-01T23:59:59.000Z

363

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

364

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

365

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

366

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

367

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

368

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

369

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

370

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

371

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

372

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office No. DE-AT03-80SF11459 Department of Energy Division of Geothermal Energy #12;#12;1 , .... TABLE n t e r e s t t o the geothermal energy community. The topic f o r panel analysis f o r the Sixth

Stanford University

373

Postgraduate Certificate in Geothermal Energy  

E-Print Network [OSTI]

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

374

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network [OSTI]

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

375

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

376

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

377

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

378

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and  

Open Energy Info (EERE)

Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium isotopes in geothermal systems- Iceland, The Geysers, Raft River and Steamboat Springs Details Activities (3) Areas (3) Regions (0) Abstract: Helium isotope ratios have been measured in geothermal fluids from Iceland, The Geysers, Raft River, Steamboat Springs and Hawaii. These ratios have been interpreted in terms of the processes which supply He in distinct isotopic ratios (i.e. magmatic He, ~10 Ra; atmospheric He, R,sub>a; and crustal He, ~0.1 Ra) and in terms of the processes which can alter the isotopic ratio (hydrologic mixing, U-Th series alpha production and weathering release of crustal He, magma aging and

379

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

380

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

382

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies |  

Open Energy Info (EERE)

Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Tracer Recovery and Mixing from Two Geothermal Injection-Backflow Studies Details Activities (2) Areas (2) Regions (0) Abstract: Injection-backflow tracer testing on a single well is not a commonly used procedure for geothermal reservoir evaluation, and, consequently, there is little published information on the character or interpretation of tracer recovery curves. Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection

383

Geothermal Energy; (USA)  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

384

Baltimore County - Property Tax Credit for Solar and Geothermal Devices  

Broader source: Energy.gov (indexed) [DOE]

Baltimore County - Property Tax Credit for Solar and Geothermal Baltimore County - Property Tax Credit for Solar and Geothermal Devices (Maryland) Baltimore County - Property Tax Credit for Solar and Geothermal Devices (Maryland) < Back Eligibility Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate Heating System: $5,000 Hot Water Supply System: $1,500 Electricity Generation, Cooling: Not specified Program Info State Maryland Program Type Property Tax Incentive Rebate Amount Allocated budget for these credits has been met. New applications will be placed on a wait list. 50% of eligible costs Provider Office of Budget and Finance The total volume of credits awarded through this program has exceeded the

385

2008 Geothermal Technologies Market Report  

Broader source: Energy.gov [DOE]

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

386

Geothermal Information Dissemination and Outreach  

SciTech Connect (OSTI)

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

387

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

388

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

curve approach supplements with load shape information the data contained in a supply curve of conservedLBL-27286 Conservation Screening Curves to Compare Efficiency Investments to Power Plants Jonathan to Compare Efficiency Investments to Power Plants Jonathan Koomey, Arthur H. Rosenfeld, and Ashok Gadgil

389

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

390

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

391

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

392

College of Idaho Geothermal System, Caldwell, Idaho  

SciTech Connect (OSTI)

There appears to be a good potential for a 160{sup 0}F resource at the College of Idaho site. Both existing well data and recent geologic and hydrologic investigations suggest that such a temperature should be available at a depth of approximately 3500 feet. Use of a temperature in the 160{sup 0}F range would not permit a 100% displacement of present natural gas use for space and domestic hot water. Because these systems were typically designed for 200{sup 0}F water or low pressure steam (approx. 220{sup 0}F), the performance of the existing equipment would be less than peak building requirements. However, even without major system modifications (the cost of which would be unreasonable), a geothermal system based on the above resource temperature would be capable of displacing about 78% of current natural gas consumption attributable to space and domestic hot water heating. The system outlined in the report would consist of a 3500 foot production well which would supply geothermal fluid to 12 major buildings on campus. Geothermal water would be passed through heat exchangers in each building. The heat exchangers would deliver heat to the existing heating loops. Most buildings would still require a small amount of input from the existing boiler during the coldest periods of the year. After having passed through the system, the geothermal water would then be injected into a disposal well. This is a key factor in the overall economics of the system. The assumption has been made that a full depth (3550 foot) injection well would be required. It is possible, though unclear at this point, that injection could be accomplished at a shallower depth into a similar aquifer. Since the injection well amounts to 24% of the total system capital cost, this is an important factor.

Rafferty, K.

1984-10-01T23:59:59.000Z

393

Direct utilization of geothermal energy for Pagosa Springs, Colorado. Final report, June 1979-June 1984  

SciTech Connect (OSTI)

The Pagosa Springs Geothermal District Heating System was conceptualized, designed, and constructed between 1979 to 1984 under the US Department of Energy Program Opportunity Notice (PON) program to demonstrate the feasibility for utilizing moderate temperature geothermal resources for direct-use applications. The Pagosa Springs system successfully provides space heating to public buildings, school facilities, residences, and commercial establishments at costs significantly lower than costs of available conventional fuels. The Pagosa Springs project encompassed a full range of technical, institutional, and economic activities. Geothermal reservoir evaluations and testing were performed, and two productive approx.140/sup 0/F geothermal supply wells were successfully drilled and completed. Transmission and distribution system design, construction, startup, and operation were achieved with minimum difficulty. The geothermal system operation during the first two heating seasons has been fully reliable and well respected in the community. The project has proven that low to moderate-temperature waters can effectively meet required heating loads, even for harsh winter-mountain environments. The principal difficulty encountered has been institutional in nature and centers on the obtaining of the geothermal production well permits and the adjudicated water rights necessary to supply the geothermal hot water fluids for the full operating life of the system. 28 figs., 15 tabs.

Goering, S.W.; Garing, K.L.; Coury, G.

1984-08-01T23:59:59.000Z

394

GEOTHERMAL HEAT PUMPS Jack DiEnna  

E-Print Network [OSTI]

by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

395

State Geothermal Resource Assessment and Data Collection Efforts  

Broader source: Energy.gov [DOE]

HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

396

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

Howard, J. H.

2012-01-01T23:59:59.000Z

397

Energy 101: Geothermal Energy  

ScienceCinema (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-06-23T23:59:59.000Z

398

Energy 101: Geothermal Energy  

SciTech Connect (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-05-27T23:59:59.000Z

399

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 1976–2009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

400

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

National Geothermal Data System (NGDS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

402

Geothermal district heating applications in Turkey: a case study of Izmir–Balcova  

Science Journals Connector (OSTI)

Turkey is located on the Mediterranean sector of the Alpine–Himalayan Tectonic Belt and is among the first seven countries in abundance of geothermal resources around the world. However, the share of its potential used is only about 2%. This means that considerable studies on geothermal energy could be conducted in order to increase the energy supply and to reduce atmospheric pollution in Turkey. The main objective in doing the present study is twofold, namely: (a) to overview the status and future aspects of geothermal district heating applications in Turkey and (b) to present the Izmir–Balcova geothermal district heating system, which is one example of the high temperature district heating applications in Turkey. The first geothermal heating application was applied in 1981 to the Izmir–Balcova thermal facilities, where the downhole heat exchanger was also used for the first time. Besides this, the first city based geothermal district heating system has been operated in Balikesir–Gonen since 1987. Recently, the total installed capacity has reached 820 \\{MWt\\} for direct use. An annual average growth of 23% of the residences connected to geothermal district heating systems has been achieved since 1983 in the country, representing a decrease of 5% in the last three years. Present applications have shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and can make a significant contribution towards reducing the emission of greenhouse gases.

A Hepbasli; C Canakci

2003-01-01T23:59:59.000Z

403

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project | Open  

Open Energy Info (EERE)

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project OM-300 - MWD Geothermal Navigation Instrument Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title OM-300 - MWD Geothermal Navigation Instrument Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole MWD Tools for Directional Drilling Project Description Honeywell proposes to perform this project in three phases; Phase 1 will enhance accelerometers, magnetometers and high temperature electronic components to operate at 300C. Phase 2 will define, design and demonstrate circuit card assembly (CCA) and external packaging capable of operating in the temperature, shock, and vibration of downhole MWD tools. Phase 3 will utilize the components onto a CCA, integrate the CCA sensors into a final package for final assembly, test, and the delivery of one Prototype.

404

Geothermal Food Processors Agricultural Drying Low Temperature Geothermal  

Open Energy Info (EERE)

Food Processors Agricultural Drying Low Temperature Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Facility Geothermal Food Processors Sector Geothermal energy Type Agricultural Drying Location Fernley, Nevada Coordinates 39.6079683°, -119.2518349° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

405

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

406

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Broader source: Energy.gov [DOE]

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

407

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

408

Chelated Indium Activable Tracers for Geothermal Reservoirs  

E-Print Network [OSTI]

SGP-TR-99 Chelated Indium Activable Tracers for Geothermal Reservoirs Constantinos V. Chrysikopoulos Paul Kruger June 1986 Financial support was provided through the Stanford Geothermal Program under University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

409

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network [OSTI]

Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

Lippmann, M.J.

2011-01-01T23:59:59.000Z

410

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

411

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

412

Navy 1 Geothermal Area | Department of Energy  

Energy Savers [EERE]

Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the...

413

Eastern Geothermal Resources: Should We Pursue Them?  

Science Journals Connector (OSTI)

...for each application. Geothermal resources, where techni-In...there are no known geothermal re-sources that can...heat-ing, agriculture, district heating, and in-dustrial...Of all the forms of geothermal energy, this moderate...

J. E. Tillman

1980-11-07T23:59:59.000Z

414

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

Majer, Ernest L.

2006-01-01T23:59:59.000Z

415

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network [OSTI]

compaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (Applications o f Geothermal Energy and t h e i r Place i n t

Lippmann, M.J.

2011-01-01T23:59:59.000Z

416

Utah Geothermal Area | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy...

417

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

Sudo!, G.A

2012-01-01T23:59:59.000Z

418

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

Pope, W.L.

2011-01-01T23:59:59.000Z

419

Casa Diablo Geothermal Area | Department of Energy  

Energy Savers [EERE]

Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough...

420

Geothermal energy in Nevada: development and utilization  

SciTech Connect (OSTI)

The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

Not Available

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

Division of Geothermal Energy (ERDA-DGE) to do energy costEnergy Cost Resource Utilization Efficiency-Resource Temp- erature Surface for GeothermalEnergy Cost Resource Utilization Efficiency-Resource Temp- erature Surface for Geothermal

Pope, W.L.

2011-01-01T23:59:59.000Z

422

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

greenhouses across the US, which included information about the Burgett greenhouses in Cotton City near Lightning Dock References P. J. Lienau (1990) Geothermal greenhouse...

423

Geothermal: Sponsored by OSTI -- Geothermal Energy: Current abstracts  

Office of Scientific and Technical Information (OSTI)

Energy: Current abstracts Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

424

Geothermal Energy Association Recognizes the National Geothermal Data System  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) announced today the winners of their 2014 GEA Honors, which recognizes companies, projects, and individuals who have demonstrated outstanding achievement in...

425

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...  

Open Energy Info (EERE)

Abstract Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A...

426

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Evidence for Large-Scale Laramide Tectonic Inversion and a Mid-Tertiary Caldera Ring Fracture Zone at the Lightning Dock Geothermal System, New Mexico Additional References...

427

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

will document detailed stratigraphy of each site. 8 | US DOE Geothermal Program eere.energy.gov ScientificTechnical Approach * Detailed Gravity & Magnetics: US Geological...

428

Geothermal: Sponsored by OSTI -- Assessment of Geothermal Resource...  

Office of Scientific and Technical Information (OSTI)

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range?South (UTTR?S)...

429

Geothermal: Sponsored by OSTI -- Integrated, Geothermal-CO2 Storage...  

Office of Scientific and Technical Information (OSTI)

Integrated, Geothermal-CO2 Storage Reservoirs: Adaptable, Multi-Stage, Sustainable, Energy-Recovery Strategies that Reduce Carbon Intensity and Environmental Risk...

430

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located several miles deep into the Earth.[2][3]

431

NREL: Learning - Geothermal Direct Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Use Direct Use Photo of alligators on a farm. Geothermally heated waters allow alligators to thrive on a farm in Colorado, where temperatures can drop below freezing. Geothermal reservoirs of hot water, which are found a few miles or more beneath the Earth's surface, can be used to provide heat directly. This is called the direct use of geothermal energy. Geothermal direct use has a long history, going back to when people began using hot springs for bathing, cooking food, and loosening feathers and skin from game. Today, hot springs are still used as spas. But there are now more sophisticated ways of using this geothermal resource. In modern direct-use systems, a well is drilled into a geothermal reservoir to provide a steady stream of hot water. The water is brought up through

432

Geothermal development plan: Maricopa county  

SciTech Connect (OSTI)

Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

White, D.H.

1981-01-01T23:59:59.000Z

433

Property:Geothermal/Type | Open Energy Information  

Open Energy Info (EERE)

Type Type Jump to: navigation, search This is a property of type String. Pages using the property "Geothermal/Type" Showing 25 pages using this property. (previous 25) (next 25) 4 4 UR Guest Ranch Pool & Spa Low Temperature Geothermal Facility + Pool and Spa + A Ace Development Aquaculture Low Temperature Geothermal Facility + Aquaculture + Agua Calientes Trailer Park Space Heating Low Temperature Geothermal Facility + Space Heating + Alive Polarity's Murrietta Hot Spring Pool & Spa Low Temperature Geothermal Facility + Pool and Spa + Americulture Aquaculture Low Temperature Geothermal Facility + Aquaculture + Aq Dryers Agricultural Drying Low Temperature Geothermal Facility + Agricultural Drying + Aqua Caliente County Park Pool & Spa Low Temperature Geothermal Facility + Pool and Spa +

434

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

435

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

436

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

437

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties,

438

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

439

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

440

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Imperial Valley in California; the Cerro Prieto geothermalImperial Valley, California,~~~ Proceedings, First Symposium on the Cerro Prieto Geothermal

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

442

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD February 1 9 8 5 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

443

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

Stanford University

444

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract

Stanford University

445

National Geothermal Data System Architecture Design, Testing...  

Broader source: Energy.gov (indexed) [DOE]

Architecture Design, Testing and Maintenance National Geothermal Data System Architecture Design, Testing and Maintenance Project objective: To create the National Geothermal Data...

446

Geothermal Technologies Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Overview Geothermal Technologies Program Overview This overview of the Geothermal Technologies Program was given at the GTP Program Peer Review on May 18,...

447

Aurora Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aurora Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4...

448

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

449

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

450

Geothermal Technologies Program Coproduction Fact Sheet | Department...  

Office of Environmental Management (EM)

& Publications Low TemperatureCoproducedGeopressured Subprogram Overview Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal...

451

Performance of Deep Geothermal Energy Systems .  

E-Print Network [OSTI]

??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation… (more)

Manikonda, Nikhil

2012-01-01T23:59:59.000Z

452

Uncertainty analysis of geothermal energy economics.  

E-Print Network [OSTI]

?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

Sener, Adil Caner

2009-01-01T23:59:59.000Z

453

US Geothermal Inc | Open Energy Information  

Open Energy Info (EERE)

Boise, Idaho Zip: 83706 Sector: Geothermal energy Product: Former Idaho-based project developer that held the rights to the Raft River Geothermal Project. Website: http:...

454

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

455

Sustainable Energy Resources for Consumers (SERC) -Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

456

Geothermal: Sponsored by OSTI -- Development in California's...  

Office of Scientific and Technical Information (OSTI)

Development in California's geothermal regions: implications for Energy Commission regulatory policy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

457

Property:Geothermal/News | Open Energy Information  

Open Energy Info (EERE)

News Property Type String Description News Retrieved from "http:en.openei.orgwindex.php?titleProperty:GeothermalNews&oldid382771" Categories: Properties Geothermal ARRA...

458

Investigation for geothermal energy in Sweden  

Science Journals Connector (OSTI)

Preliminary investigations of the geothermal energy potential in Sweden are being carried out ... well as in the Triassic Buntsandstone. The geothermal potential of fracture zones is also being...

K. G. Eriksson; K. Ahlbom; O. Landström; S. Å. Larson…

459

Investigation for Geothermal Energy in Sweden  

Science Journals Connector (OSTI)

Preliminary investigations of the geothermal energy potential in Sweden are being carried out ... well as in the Triassic Buntsandstone. The geothermal potential of fracture zones is also being...

K. G. Eriksson; K. Ahlbom; O. Landström; S. Å. Larson…

1979-01-01T23:59:59.000Z

460

Potential Perspectives of Geothermal Energy Utilization  

Science Journals Connector (OSTI)

Geothermal energy is renewable energy in the sense that heat extraction by ... effect everlasting, the question of sustainability of geothermal energy utilization must be answered for each individual...

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal Ultrasonic Fracture Imager | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Ultrasonic Fracture Imager Geothermal Ultrasonic Fracture Imager Development of a downhole wireline tool to characterize fractures in EGS wells in temperatures up to...

462

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

463

NREL: Climate Neutral Research Campuses - Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

following documents are viewable as Adobe PDFs. Download Adobe Reader. Geothermal Basics: DOE explains the fundamentals of geothermal technologies. DOE Department of Energy...

464

Utility Geothermal Development Strategies | Department of Energy  

Energy Savers [EERE]

hosted by the Geothermal Resources Council (GRC) and sponsored by the U.S. Department of Energy Geothermal Technologies Office. The Webinar focused on ways utilities can include...

465

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

466

Geothermal Success Stories | Department of Energy  

Energy Savers [EERE]

Renewable Energy Geothermal Success Stories Geothermal Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in finding, accessing, and...

467

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers [EERE]

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

468

GEA Geothermal Summit Presentation ? Lauren Boyd | Department...  

Energy Savers [EERE]

Summit Presentation Lauren Boyd GEA Geothermal Summit Presentation Lauren Boyd GEA geothermal energy industry briefing presentation on February 26, 2013 in Washington, D.C....

469

Funding Mechanisms for Federal Geothermal Permitting (Presentation)  

SciTech Connect (OSTI)

This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

Witherbee, K.

2014-03-01T23:59:59.000Z

470

Energy Department Awards Geothermal Student Scholarships | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Department Awards Geothermal Student Scholarships Energy Department Awards Geothermal Student Scholarships January 28, 2015 - 3:39pm Addthis Aurelie Roche at the University...

471

Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...  

Office of Scientific and Technical Information (OSTI)

ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

472

Stanford Geothermal Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and managers...

473

Stanford Geothermal Workshop 2012 Annual Meeting | Department...  

Energy Savers [EERE]

2012 Annual Meeting Stanford Geothermal Workshop 2012 Annual Meeting Presentation slides for the Stanford Geothermal Workshop Annual Meeting presentation by Doug Hollett,...

474

NREL: Geothermal Technologies - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help...

475

Geothermal Technologies Office Hosts Collegiate Competition ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EDT Final presentation will be in Portland, OR. To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case...

476

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

477

Geothermal Reconnaissance From Quantitative Analysis Of Thermal...  

Open Energy Info (EERE)

Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Geothermal...

478

Volcanology and Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

and Geothermal Energy Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Volcanology and Geothermal Energy Author University of California Press Published...

479

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

Office of Scientific and Technical Information (OSTI)

Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

480

Geothermal: Sponsored by OSTI -- Electronic Submersible Pump...  

Office of Scientific and Technical Information (OSTI)

Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet) Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact...

Note: This page contains sample records for the topic "geothermal supply curve" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

482

CDC DOGGR Geothermal Publications | Open Energy Information  

Open Energy Info (EERE)

PublicationsLegal Abstract The California Department of Conservation (CDC) Division of Oil, Gas, and Geothermal Resources (DOGGR) provides publications related to geothermal...

483

Geothermal Development Plan: Pima County  

SciTech Connect (OSTI)

Pima County is located entirely within the Basin and Range physiographic province in which geothermal resources are known to occur. Continued growth as indicated by such factors as population growth, employment and income will require large amounts of energy. It is believed that geothermal energy could provide some of the energy that will be needed. Potential users of geothermal energy within the county are identified.

White, D.H.

1981-01-01T23:59:59.000Z

484

Category:Geothermal ARRA Funded Projects Properties | Open Energy  

Open Energy Info (EERE)

Geothermal ARRA Funded Projects Properties Geothermal ARRA Funded Projects Properties Jump to: navigation, search Properties used in the Geothermal ARRA Funded template. Pages in category "Geothermal ARRA Funded Projects Properties" The following 57 pages are in this category, out of 57 total. G Property:Geothermal/AboutArea Property:Geothermal/AccomplishmentsAwards Property:Geothermal/AwardDate Property:Geothermal/AwardeeCostShare Property:Geothermal/Awardees Property:Geothermal/AwardeeWebsite Property:Geothermal/CurrentStatus Property:Geothermal/DOEFundingLevel Property:Geothermal/DoeFundingLevelToDate Property:Geothermal/DOEJobsCreationEst Property:Geothermal/FundingOpportunityAnnouncemt Property:Geothermal/FundingSource Property:Geothermal/FY Property:Geothermal/Impacts Property:Geothermal/LegalNameOfAwardee

485

Geothermal Glossary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Use of geothermal heat without first converting it to electricity, such as for space heating and cooling, food preparation, industrial processes, etc. District Heating A type of...

486

Federal Interagency Geothermal Activities 2011  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of foreign oil from volatile regions of the world. By helping to avoid greenhouse gas emissions, geothermal energy also has the added benefit of mitigating climate change....

487

NREL: Learning - Geothermal Energy Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

buildings. NREL helps advance technologies for the following geothermal applications: Heat pumps - Using the Earth's shallow ground temperature for heating and cooling....

488

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and distribution. The agency is seeking projects relating to biomass, geothermal, solar, and wind energy, as well as projects involving hydropower, alternative fuel...

489

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the economic arena, the policy environment in 2008 was favorable to continued geothermal power development. In the United States, the Emergency Economic Stabilization Act (EESA)...

490

Geothermal development plan: Pinal county  

SciTech Connect (OSTI)

Wells drilled in the county provide evidence of geothermal energy sufficient for process heat and space heating and cooling applications. Annual energy consumption was estimated for industries whose process heat requirements are less than 105/sup 0/C (221/sup 0/F). This information was then used to model the introduction of geothermal energy into the process heat market. Also, agriculture and agribusiness industries were identified. Many of these are located on or near a geothermal resource and might be able to utilize geothermal energy in their operations.

White, D.H.

1981-01-01T23:59:59.000Z

491

Geothermal Research and Development Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

492

Geothermal Jobs | Department of Energy  

Office of Environmental Management (EM)

Plaza in Washington, D.C., serves as headquarters for the United States Department of Energy. The Geothermal Technologies Office is located within. The Forrestal Building,...

493

Geothermal Technologies Office: Financial Opportunities  

Office of Environmental Management (EM)

partners with industry, academia, and research facilities to further the development of geothermal energy technologies. Competitive solicitations issued as Funding Opportunity...

494

NREL: Geothermal Technologies - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stacee Foster Administrative Assistant Colorado Collaboration for Subsurface Research in Geothermal Energy (SURGE) Tom Williams, Executive Diretor Dag Nummedal, Colorado School of...

495

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

496

Geothermal materials development  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

497

NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS  

SciTech Connect (OSTI)

To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

2013-01-01T23:59:59.000Z

498

Geothermal resources of Montana  

SciTech Connect (OSTI)

The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

Metesh, J.

1994-06-01T23:59:59.000Z

499

Geo Hydro Supply | Open Energy Information  

Open Energy Info (EERE)

Geo Hydro Supply Geo Hydro Supply Jump to: navigation, search Name Geo Hydro Supply Address 997 State Route 93 NW Place Sugarcreek, Ohio Zip 44681 Sector Geothermal energy Phone number 800-820-1005 Website http://www.geohydrosupply.com Coordinates 40.498216°, -81.661197° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.498216,"lon":-81.661197,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Earthquake and Geothermal Energy  

E-Print Network [OSTI]

The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

Kapoor, Surya Prakash

2013-01-01T23:59:59.000Z