Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Site-Specific Analysis of Geothermal Development-Data Files of Prospective Sites  

DOE Green Energy (OSTI)

This document presents site-specific data and sample development schedules for the first plant on line at 30 hydrothermal and 7 geopressured prospective sites (prospects) that are believed to be suited for supporting the geothermal generation of electricity. This report includes many prospects from an earlier METREK report on geothermal development scenarios. The list has been augmented with other sites chosen as development prospects by the division of Geothermal Energy (DGE) of the Energy Research and Development Administration (ERDA). The DGE additions include a general area called ''Cascade Range''. METREK has chosen the following specific Cascade Range Sites in place of that general area: Baker Hot Springs, Mount Hood, Lassen and Glass Mountain/ Diablo. All the prospects have been selected on the basis of current knowledge of hydrothermal and geopressured resources. The selection is intended for program planning purposes. Neither METREK nor the Federal government warrants that any of these sites will necessarily be developed, nor does their selection necessarily imply any commitment on the part of the Federal government to their development. [DJE-2005

Williams, F.; Cohen, A.; Pfundstein, R.; Pond, S.

1977-10-01T23:59:59.000Z

2

Active Fault Controls At High-Temperature Geothermal Sites- Prospecting For  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Active Fault Controls At High-Temperature Geothermal Sites- Prospecting For New Faults Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Active Fault Controls At High-Temperature Geothermal Sites- Prospecting For New Faults Details Activities (1) Areas (1) Regions (0) Abstract: Our previous studies found spatial associations between seismically active faults and high-temperature geothermal resources in the western Basin and Range, suggesting that recency of fault movement may be a useful criterion for resource exploration. We have developed a simple conceptual model in which recently active (Holocene) faults are preferred conduits for migration of thermal water from deep crustal depths, and we

3

Site-specific analysis of geothermal development-data files of prospective sites. Vol. III  

DOE Green Energy (OSTI)

Development scenarios for 37 hydrothermal and geopressured prospects in the United States were analyzed. This third of three volumes presents site-specific data and sample development schedules for the first plant on line at each of the 37 prospects.

Williams, F.; Cohen, A.; Pfundstein, R.; Pond, S.

1978-02-01T23:59:59.000Z

4

Geothermal: Site Map  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Site Map Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

5

Evaluation of potential geopressure geothermal test sites in southern Louisiana  

DOE Green Energy (OSTI)

Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

Bassiouni, Z.

1980-04-01T23:59:59.000Z

6

Rapid reconnaissance of geothermal prospects using shallow temperature...  

Open Energy Info (EERE)

reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid...

7

Site specific analysis of geothermal development. Volume 1. Summary report  

SciTech Connect

MITRE/Metrek has analyzed development scenarios for 37 hydrothermal and geopressured prospects in the United States to assist DOE's Division of Geothermal Energy in mission-oriented planning of geothermal resource development. A summary of the site-specific analyses is presented with particular emphasis on possible recommendations for the Federal Geothermal Program.

Leigh, J.; Cohen, A.; Jacobsen, W.; Trehan, R.

1978-08-01T23:59:59.000Z

8

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Semi-annual technical report Semi-annual technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Details Activities (1) Areas (1) Regions (0) Abstract: Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly our shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation were considered in making the necessary corrections to our 2-m temperature data. The corrected data for

9

Rapid reconnaissance of geothermal prospects using shallow temperature...  

Open Energy Info (EERE)

reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid...

10

Evaluation of land ownership, lease status, and surface features in five geopressured geothermal prospects  

DOE Green Energy (OSTI)

This study was accomplished for the purpose of gathering information pertaining to land and lease ownership, surface features and use and relevant environmental factors in the Lake Theriot (West and East), Kaplan, Bayou Hebert and Freshwater Bayou geopressured geothermal prospects in Louisiana, and the Blessing geopressured geothermal prospect in Texas. This information and recommendations predicated upon it will then be used to augment engineering and geological data utilized to select geopressured geothermal test well sites within the prospects. The five geopressured geothermal prospects are briefly described and recommendations given.

Hackenbracht, W.N.

1981-05-01T23:59:59.000Z

11

Development Of Genetic Occurrence Models For Geothermal Prospecting | Open  

Open Energy Info (EERE)

Development Of Genetic Occurrence Models For Geothermal Prospecting Development Of Genetic Occurrence Models For Geothermal Prospecting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Development Of Genetic Occurrence Models For Geothermal Prospecting Details Activities (1) Areas (1) Regions (0) Abstract: Exploration strategies based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust, and foster the conditions for shallow hydrothermal circulation or enhanced geothermal systems (EGS) exploration, are required to search efficiently for 'blind' geothermal resources. We propose a genetically based screening protocol to assess potentially prospective geothermal resources, beginning at the plate boundary scale and progressively focusing in on the scale of a producing

12

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

13

Rapid reconnaissance of geothermal prospects using shallow temperature  

Open Energy Info (EERE)

Second technical report Second technical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report Details Activities (1) Areas (1) Regions (0) Abstract: The previously examined geothermal sites at Long Valley and Coso were studied in much greater detail. Techniques for correcting the 2-m temperature data were evaluated. Using a preliminary model and analysis of the Coso data, the importance of measuring soil thermal diffusivity data at each temperature probe site was shown. Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe

14

Apacheta, A New Geothermal Prospect In Northern Chile | Open Energy  

Open Energy Info (EERE)

Apacheta, A New Geothermal Prospect In Northern Chile Apacheta, A New Geothermal Prospect In Northern Chile Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Apacheta, A New Geothermal Prospect In Northern Chile Details Activities (0) Areas (0) Regions (0) Abstract: The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a

15

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting:  

Open Energy Info (EERE)

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Authors H.M. Bibby, G.F. Risk, T.G. Caldwell and S.L. Bennie Conference World Geothermal Congress 2005; Antalya, Turkey; 2005/04/24 Published ?, 2005 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Citation H.M. Bibby,G.F. Risk,T.G. Caldwell,S.L. Bennie. 2005. Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from

16

Historical Exploration And Drilling Data From Geothermal Prospects And  

Open Energy Info (EERE)

Exploration And Drilling Data From Geothermal Prospects And Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Details Activities (20) Areas (7) Regions (0) Abstract: In 2005, Idaho National Laboratory was conducting a study of historical exploration practices and success rates for geothermal resources identification. Geo Hills Associates (GHA) was contracted to review and accumulate copies of published literature, Internet information, and unpublished geothermal exploration data to determine the level of exploration and drilling activities that occurred for all of the currently

17

Site-specific legal and institutional analysis of the barriers to geothermal hydrothermal commercialization present at target prospects in the five Pacific Rim states  

DOE Green Energy (OSTI)

The specifics of the permitting process, land access, power plant siting, water law, and other legal or institutional barriers or conflicts are presented for each of the most highly regarded target electric prospects in the five Pacific Rim states: California, Hawaii, Alaska, Oregon, and Wasington. (MHR)

Not Available

1979-10-20T23:59:59.000Z

18

NREL Geothermal Policymakers' Guidebooks Web site (Fact Sheet)  

Science Conference Proceedings (OSTI)

This document highlights the NREL Geothermal Policymakers' Guidebooks Web site, including the five steps to effective geothermal policy development for geothermal electricity generation and geothermal heating and cooling technologies.

Not Available

2010-10-01T23:59:59.000Z

19

File:App Geothermal PROSPECT.pdf | Open Energy Information  

Open Energy Info (EERE)

App Geothermal PROSPECT.pdf App Geothermal PROSPECT.pdf Jump to: navigation, search File File history File usage File:App Geothermal PROSPECT.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 124 KB, MIME type: application/pdf, 3 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 19:08, 16 November 2012 Thumbnail for version as of 19:08, 16 November 2012 1,275 × 1,650, 3 pages (124 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

20

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,  

Open Energy Info (EERE)

Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Citation Gabriel L. Plank. 1995. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada. Geothermal Resources Council Transactions. 19: (!) . Retrieved from "http://en.openei.org/w/index.php?title=Structure,_Stratigraphy,_and_Tectonics_of_the_Dixie_Valley_Geothermal_Site,_Dixie_Valley,_Nevada&oldid=682622"

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal: Sponsored by OSTI -- Wulanchabu UCG site data-status...  

Office of Scientific and Technical Information (OSTI)

Wulanchabu UCG site data-status report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

22

Study of geothermal prospects in the western United States  

DOE Green Energy (OSTI)

The commercial development potential of 13 underdeveloped geothermal prospects in the Western United States has been examined and the prospects have been ranked in order of relative potential for development on the basis of investment considerations. The following were considered in the ranking: geotechnical and engineering data, energy market accessibility, administrative constraints, and environmental and socio-economic factors. The primary ranking criterion is the unit cost of energy production expected from each prospect. This criterion is obtained principally from expected reservoir temperatures and depths. Secondary criteria are administrative constraints, environmental factors and the quality of the geotechnical data. The Roosevelt, Utah, prospect ranks first in development potential followed in order by Beowawe, Nevada; Coso Hot Springs, California; Long Valley, California; and Brady's Hot Springs, Nevada.

Not Available

1976-08-20T23:59:59.000Z

23

Apacheta, a new geothermal prospect in Northern Chile  

DOE Green Energy (OSTI)

The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

2002-05-24T23:59:59.000Z

24

Geothermal: Sponsored by OSTI -- EVALUATION OF A GEOTHERMAL PROSPECT...  

Office of Scientific and Technical Information (OSTI)

Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News Related Links You are...

25

Dixie Valley Geothermal Prospect Churchill County, Nevada  

DOE Green Energy (OSTI)

Attempts were made to cause well Dixie Federal 45-14 to flow by reducing the wellbore pressure opposing possible producing formation. Such pressure reduction was accomplished by using a Magcobar air compressor to lift the water column out of the wellbore. Three series of efforts using this method were performed. The conclusions from these last attempts to flow Dixie Federal 45-14 were: (1) the massive water entry at 5820-5870 feet was shut off; (2) the compressor, with some help from the mud pumps, was able to virtually clear the wellbore of water above the point of air injection; (3) despite evacuating water from the wellbore to as deep as 7500 feet, the Dixie Federal 45-14 had insufficient permeability to commence flowing on its own as of 7-8-79. The possible benefits of temperature equilibration or other time adjustments within the prospective interval below 8000 feet may include eventual capacity to flow. This potential will be evaluated with future flow attempts; and (4) there is some small liquid entry somewhere between 6290 and 9022 feet which caused the air compressor to go through very long (3-4 hour) cycles of unloading and slowly re-filling the wellbore.

none

1979-07-01T23:59:59.000Z

26

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

27

Geothermal: Sponsored by OSTI -- Extracting and Applying SV-SV...  

Office of Scientific and Technical Information (OSTI)

Extracting and Applying SV-SV Shear Modes from Vertical Vibrator Data Across Geothermal Prospects Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

28

Conceptual design of a geothermal site development forecasting system  

DOE Green Energy (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

29

Geothermal Site Assessment Using the National Geothermal Data...  

Open Energy Info (EERE)

the dataset for Hawthorne, NV, which has been supplemented extensively by the Naval Geothermal Program Office and subcontractor Epsilon Systems Solutions, Inc. As we...

30

Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report  

DOE Green Energy (OSTI)

Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly the shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation in making the necessary corrections to the 2-m temperature data were considered. The corrected data for both locations have been plotted up by computer to avoid any personal bias, and have been compared with the published 10-m contour data at Long Valley and the 30-m contour data for Coso. Close geometrical similarity has been observed. Additionally, previously located faults have been identified with the shallow temperature survey technique. Due to the relative inexpensiveness of the technique, it was concluded that shallow temperature exploration should be one of the first geophysical surveys initiated at a geothermal prospect to help guide the development and expenditure of financial resources when embarking on a detailed exploration program.

LeSchack, L.A.; Lewis, J.E.; Chang, D.C.

1977-12-01T23:59:59.000Z

31

Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report  

DOE Green Energy (OSTI)

Shallow (2-m) soil temperature data have been collected at 27 sites at Long Valley, California, and at 102 sites at Coso, California. These geothermal areas are locations where traditional deep reconnaissance geothermal survey bore holes have been emplaced, allowing us to compare directly our shallow temperature results with standard geothermal exploration techniques. The effects of surface roughness, albedo, soil thermal diffusivity, topography and elevation were considered in making the necessary corrections to our 2-m temperature data. The corrected data for both locations have been plotted up by computer to avoid any personal bias, and have been compared with the published 10-m contour data at Long Valley and the 30-m contour data for Coso. Close geometrical similarity has been observed. Additionally, previously located faults were identified with the shallow temperature survey technique. Due to the relative inexpensiveness of this technique, it was concluded that shallow temperature exploration should be one of the first geophysical surveys initiated at a geothermal prospect to help guide the development and expenditure of financial resources when embarking on a detailed exploration program.

LeSchack, L.A.; Lewis, J.E.; Chang, D.C.

1977-12-01T23:59:59.000Z

32

GRR/Section 4-OR-c - Geothermal Prospect Well Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 4-OR-c - Geothermal Prospect Well Process GRR/Section 4-OR-c - Geothermal Prospect Well Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-c - Geothermal Prospect Well Process 04ORCGeothermalProspectWellProcess (1).pdf Click to View Fullscreen Contact Agencies Oregon State Department of Geology and Mineral Industries Regulations & Policies ORS 516: DOGAMI ORS 522: Geothermal Resources Triggers None specified Click "Edit With Form" above to add content 04ORCGeothermalProspectWellProcess (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-c.1 - Has Environmental Process Been Completed?

33

Geothermal energy in Montana: site data base and development status  

DOE Green Energy (OSTI)

A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

Brown, K.E.

1979-11-01T23:59:59.000Z

34

A New Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal  

Open Energy Info (EERE)

Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal Steam Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal Steam Details Activities (0) Areas (0) Regions (0) Abstract: The Track Etch® system for radon detection was evaluated as a geothermal exploration technique in a known geothermal resource area in New Zealand called the Craters of the Moon (previously known as "Karapiti"). Very strong radon anomalies spaced along mapped fault traces were detected using 60-m sample spacings. Such radon anomalies may indicate good areas to drill for steam. The anomalies detected in these tests were located inside a larger area known to have above-back-ground concentrations of radon and

35

Geothermal energy in Montana: site data base and development status  

DOE Green Energy (OSTI)

A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

Brown, K.E.

1979-11-01T23:59:59.000Z

36

Geothermal energy in Alaska: site data base and development status  

DOE Green Energy (OSTI)

The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

Markle, D.

1979-04-01T23:59:59.000Z

37

Geothermal energy in Washington: site data base and development status  

DOE Green Energy (OSTI)

This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

Bloomquist, R.G.

1979-04-01T23:59:59.000Z

38

Photogeologic Interpretation of the Baltazor-McGee Geothermal Prospects, Humboldt County, Nevada  

DOE Green Energy (OSTI)

GeothermEx, Inc. was asked by Earth Power Corporation in October 1977 to perform a photogeologic study of the Baltazor and McGee geothermal prospects, northern Humboldt County, Nevada and southern Harney County, Oregon (figure 1), as a means of evaluating the geothermal reservoir and heat source at these prospects. Work began in October and was completed in December 1977. It included a brief field reconnaissance, to clarify particular points. This report summarizes findings and offers interpretations of structural features, stratigraphy, recent tectonic events, and subsurface conditions.

Gardner, Murray C.; Koenig, James B.

1978-02-01T23:59:59.000Z

39

Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas  

DOE Green Energy (OSTI)

The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test wells in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles. 2 figs.

Not Available

1991-01-01T23:59:59.000Z

40

Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas  

DOE Green Energy (OSTI)

The research objectives of this report are to: implement and maintain the ongoing environmental monitoring program around DOE geopressured-geothermal test well in Louisiana and Texas; analyze and interpret collected data for evidence of subsidence and induced microearthquakes which may be brought about by geopressured-geothermal well testing and development; continue geological-geophysical studies of the Hulin and Gladys McCall sites incorporating new seismic data; continue review of previously identified and tested geopressured-geothermal prospects in Louisiana to determine if any link exists between such reservoirs and the existence of free gas in commercial or subcommercial quantities; and initiate review of geology, co-location and properties of geopressured brines with medium and heavy oil reservoirs in Louisiana utilizing existing maps, databases, reports, and journal articles.

Groat, C.; Stevenson, D.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

McClain, D.W.

1979-07-01T23:59:59.000Z

42

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

McClain, D.V.

1979-07-01T23:59:59.000Z

43

Historical Exploration And Drilling Data From Geothermal Prospects...  

Open Energy Info (EERE)

the most definitive in providing the necessary data for successful citing of geothermal exploration, production, and injection wells, which appears to be electrical geophysical...

44

The Northern Fish Lake Valley Pull-Apart Basin: Geothermal Prospecting with Hyperspectral Imaging  

SciTech Connect

High fidelity continuous surface mineralogy maps are combined with local and regional structural models in order to define/refine exploration targets in Fish Lake Valley, NV. Surface mineralogy is derived from a 400 km{sup 2} airborne hyperspectral survey collected in July 2003. Smart and efficient first-tier algorithms consisting primarily of band indices were developed to process and 'spectrally strain' the large dataset for zones of prospective mineral assemblages. The reduced mineral targets then endured re-processing with more sophisticated spectral identification and mapping algorithms. A site at the intersection of the east-trending Coaldale Fault and north-northeast-trending Emigrant Peak Fault Zone was delineated and re-processed for further spectral identification. Populations of montmorillonite, kaolinite, jarosite, alunite and pyrophyllite in this region indicate anomalous geothermal gradients now or in the past and sustained hydrothermal discharge along faults, fractures and contacts in far northeastern Fish Lake Valley. Increased permeability and higher geothermal inputs at this locale are likely due to the transtensional deformation that focuses in this portion of the major right-stepover of the central Walker Lane deformation belt.

Martini, B; Hausknecht, P; Pickles, W

2004-04-26T23:59:59.000Z

45

A Geothermal Field Model Based On Geophysical And Thermal Prospectings In  

Open Energy Info (EERE)

Model Based On Geophysical And Thermal Prospectings In Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geothermal Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Details Activities (0) Areas (0) Regions (0) Abstract: The present study completes a study by Thanassoulas et al. (1986) Geophys. Prosp.34, 83-97 and deals with geophysical exploration for geothermal resources in Nea Kessani area, NE Greece. The results of some deep electrical soundings (AB = 6000 m) with the interpretation of a gravity profile crossing the investigated area are considered together with thermal investigations. All subsequent information, along with the conclusions of an earlier paper dealing with a reconnaissance geophysical

46

Prospects for geothermal commercialization in the lumber industry  

DOE Green Energy (OSTI)

A number of areas considered directly relevant to a particular lumber firm's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based upon extensive personal interviews with decision-makers in the industry. (MHR)

Bressler, S.E.; Hanemann, W.M.

1980-03-01T23:59:59.000Z

47

Prospects for geothermal commercialization in the chemical industry  

DOE Green Energy (OSTI)

A number of areas considered directly relevant to a particular chemical firm's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry and mechanisms for stimulating interest; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based on extensive personal interviews with decision-makers in the industry. (MHR)

Bressler, S.E.; Hanemann, W.M.

1980-03-01T23:59:59.000Z

48

Prospects for geothermal commercialization in the potato and onion industry  

DOE Green Energy (OSTI)

A number of areas considered directly relevant to a particular potato or onion processor's decision to use or not to use geothermal energy for its commercial needs are emphasized. These areas include: current fuel uses and problems, and future fuel concerns; firm decision-making processes, including managerial and financing conventions; perceived commercial potential for geothermal energy in the industry; the potential institutional framework for user involvement in geothermal development; and the role that government might most effectively play in stimulating user development. The results are based upon extensive personal interviews with decision-makers in the industry. (MHR)

Bressler, S.E.; Hanemann, W.M.

1980-03-01T23:59:59.000Z

49

Monitor well responses at the Raft River, Idaho, Geothermal Site  

DOE Green Energy (OSTI)

Effects of geothermal fluid production and injection on overlying ground-water aquifers have been studied at the Raft River Geothermal Site in southcentral Idaho. Data collected from 13 monitor wells indicate a complex fractured and porous media controlled ground-water flow system affected by natural recharge and discharge, irrigation withdrawal, and geothermal withdrawal and injection. The monitor wells are completed in aquifers and aquitards overlying the principal geothermal aquifers. Potentiometric heads and water quality are significantly affected by natural upward geothermal leakage via faults and matrix seepage. No significant change in water quality data has been observed, but potentiometric head changes resulted due to geothermal resource testing and utilization. Long-term hydrographs for the wells exhibit three distinct patterns, with superimposed responses due to geothermal pumping and injection. Well hydrographs typical of the Shallow aquifer exhibit effects of natural recharge and irrigation withdrawals. For selected wells, pressure declines due to injection and pressure buildup associated with pumping are observed. The latter effect is presumably due to the elastic deformation of geologic material overlying the stressed aquifers. A second distinct pattern occurs in two wells believed to be hydraulically connected to the underlying Intermediate aquifer via faults. These wells exhibit marked buildup effects due to injection as well as responses typical of the Shallow aquifer. The third pattern is demonstrated by three monitor wells near the principal production wells. This group of wells exhibits no seasonal potentiometric head fluctuations. Fluctuations which do occur are due to injection and pumpage. The three distinct hydrograph patterns are composites of the potentiometric head responses occurring in the various aquifers underlying the Raft River Site.

Skiba, P.A.; Allman, D.W.

1984-05-01T23:59:59.000Z

50

Reconnaissance geothermal resource assessment of 40 sites in California  

DOE Green Energy (OSTI)

Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

1981-01-01T23:59:59.000Z

51

Prospects and problems of development of geothermal resources of Russia  

SciTech Connect

This article discusses the pros and cons of geothermal energy source development in the Russian Federation. It estimates the geothermal reserves in each area of the Federation and presents the data in terms of tons of conventional fuels. Across the region, the average specific density exceeds 2,000,000 tons of conventional fuel per cubic kilometer. In the administrative regions of central Russia, the geothermal reserves are estimated to range from 160 years to 4200 years. The economic feasibility of developing these resources in the administrative regions is also explored, and it is concluded that the geothermal heat source is a source of hot water that is far superior to the conventional electric boiler-house source.

Boguslavskii, E.I.

1995-12-01T23:59:59.000Z

52

Geothermal energy prospects for the next 50 years  

DOE Green Energy (OSTI)

Three facets of geothermal energy--resource base, electric power potential, and potential nonelectric uses--are considered, using information derived from three sources: (1) analytic computations based on gross geologic and geophysical features of the earth's crust, (2) the literature, and (3) a worldwide questionnaire. Discussion is presented under the following section headings: geothermal resources; electric energy conversion; nonelectric uses; recent international developments; environmental considerations, and bibliography. (JGB)

Not Available

1978-02-01T23:59:59.000Z

53

Ornithological Survey of the Proposed Geothermal Well Site No. 2  

DOE Green Energy (OSTI)

The U.S. Fish and Wildlife Service (USFWS 1983) and the State of Hawaii (DLNR 1986) have listed as endangered six forest bird species for the Island of Hawaii. Two of these birds, the O'u (Psittirostra psittacea) and the Hawaiian hawk (Buteo solitarius) may be present within the Geothermal resource sub-zone (Scott et al. 1986). Thus, their presence could impact future development within the resource area. This report presents the results of a bird survey conducted August 11 and 12, 1990 in the sub-zone in and around the proposed well site and pad for True/Mid Pacific Geothermal Well No.2.

Jeffrey, Jack

1990-08-16T23:59:59.000Z

54

Geopressured geothermal fairway evaluation and test-well site location, Frio Formation, Texas Gulf Coast  

DOE Green Energy (OSTI)

Tertiary strata of the Texas Gulf Coast comprise a number of terrigenous depositional wedges, some of which thicken abruptly at their downdip ends as a result of contemporaneous movement of growth faults and underlying salt. The Frio Formation, one of these wedges, has been studied regionally by means of a grid of correlation cross sections aided by micropaleontological control. By means of these sections, the Frio was subdivided into six map units; maps of sandstone distribution within these units delineate principal elongate sandstone trends parallel to the Gulf Coast composed of deltaic, barrier-bar, and strandplain sandstones. These broad regional studies, followed by detailed local investigations, were pursued in order to delineate prospective areas for production of geopressured geothermal energy. A prospective area must meet the following minimum requirements; reservoir volume of 3 cubic miles, minimum permeability of 20 millidarcys (md), and fluid temperatures of 300/sup 0/F. Several geothermal fairways were identified as a result of this Frio study. In summary, detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At least 30% of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feed of methane in solution in this water.

Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

1978-01-01T23:59:59.000Z

55

Geothermal Well Site Restoration and Plug and Abandonment of Wells  

DOE Green Energy (OSTI)

A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

Rinehart, Ben N.

1994-08-01T23:59:59.000Z

56

Environmental analysis of geopressured-geothermal prospect areas, Brazoria and Kenedy Counties, Texas  

DOE Green Energy (OSTI)

Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.

White, W.A.; McGraw, M.; Gustavson, T.C.

1978-01-01T23:59:59.000Z

57

Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America  

DOE Green Energy (OSTI)

Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. (Los Alamos National Lab., NM (United States)); Aycinena, S.; Martinelli, L. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O.; Revolorio, M.; Roldan, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion); D

1992-02-01T23:59:59.000Z

58

Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas  

DOE Green Energy (OSTI)

Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

Foley, D.; Dorscher, M.

1982-11-01T23:59:59.000Z

59

Geothermal reservoir assessment: Northern Basin and Range Province, Stillwater prospect, Churchill County, Nevada. Final report, April 1979-July 1981  

DOE Green Energy (OSTI)

Union Oil Company of California drilled two exploratory geothermal wells in the Stillwater geothermal prospect area in northwestern Nevada to obtain new subsurface data for inclusion in the geothermal reservoir assessment program. Existing data from prior investigations, which included the drilling of four earlier deep temperature gradient wells in the Stillwater area, was also provided. The two wells were drilled to total depths of 6946 ft and 10,014 ft with no significant drilling problems. A maximum reservoir temperature of 353 F was measured at 9950 ft. The most productive well flow tested at a rate of 152,000 lbs/hr with a wellhead temperature of 252 F and pressure of 20 psig. Based upon current economics, the Stillwater geothermal prospect is considered to be subcommercial for the generation of electrical power. This synopsis of the exploratory drilling activities and results contains summary drilling, geologic, and reservoir information from two exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1981-08-01T23:59:59.000Z

60

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-  

Open Energy Info (EERE)

D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Details Activities (0) Areas (0) Regions (0) Abstract: With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES | Open  

Open Energy Info (EERE)

REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Details Activities (6) Areas (6) Regions (0) Abstract: Lawrence Berkeley National Laboratory (LBNL) at the direction of the United States Department of Energy (DOE) Geothermal Technologies EGS Program is installing, operating, and/or interfacing seismic arrays at multiple Enhanced Geothermal Systems (EGS) sites. The overall goal is to gather high resolution seismicity data before, during and after stimulation activities at the EGS projects. This will include both surface and borehole deployments (as necessary in available boreholes) to provide high quality

62

Testing geopressured geothermal reservoirs in existing wells: Detailed completions prognosis for geopressured-geothermal well of opportunity, prospect #1  

SciTech Connect

This prospective well of opportunity was originally drilled and completed as a gas producer by Wrightsman Investment Company in early 1973. The original and present producing interval was from 15,216 to 15,238 feet. IMC Exploration Company, Inc. acquired the property from Wrightsman and is the present owner operator. The well is presently shut in s a non-economic producer and IMC proposed to perform plug and abandonment operations in April, 1980. This well has a good geopressured-geothermal water sand behind the 5-1/2 inch casing that has 94 feet of net sand thickness. Pursuant to DOE/NVO authorization of March 11,1980, Eaton negotiated an option agreement with IMC whereby IMC would delay their abandonment operations for a period of 90 days to permit DOE to evaluate the well for geopressure-geothermal testing. The IMC-Eaton option agreements provide that IMG will delay plugging the well until June 15, 1980. If Eaton exercises its option to acquire the well, IMC will sell the well bore, and an adjacent salt water disposal well, to Eaton for the sole consideration of Eaton assuming the obligation to plug and abandon the wells in accordance with lease and regulatory requirements. If Eaton does not exercise its option, then Eaton will pay IMC $95,000 cash and IMC will proceed with plugging and abandonment at the termination of the option period.

Kennedy, Clovis A.

1980-04-03T23:59:59.000Z

63

Preliminary reservoir and subsidence simulations for the Austin Bayou geopressured geothermal prospect  

DOE Green Energy (OSTI)

For the last several years, the University of Texas at Austin (UTA) has analyzed the geopressured tertiary sandstones along the Texas Gulf Coast with the objective of locating prospective reservoirs from which geothermal energy could be recovered. Of the ''geothermal fairways'' (areas with thick sandstone bodies and estimated temperatures in excess of 300 F), the Brazoria fairway appears most promising and the Austin Bayou Prospect has been developed within this fairway. A test well (DOE 1 Martin Ranch) is currently being drilled in this area. Pending the availability of actual well test data, estimated reservoir properties have been employed in numerical simulations to study the effects of variations in reservoir properties on the projected long-term behavior of the Austin Bayou Prospect. The simulations assess the sensitivity of the reservoir behavior to variations is estimated sandstone/shale distribution, shale compressibility, and vertical shale permeability. Further, hypothetical properties for the stress-deformation behavior of the rock formations were employed in a very preliminary study of the potential ground surface displacements that might accompany fluid production.

Garg, S.K.; Riney, T.D.; Brownell, D.H., Jr.

1978-01-01T23:59:59.000Z

64

Hydrogeochemical investigation of six geothermal sites in Honduras, Central America  

DOE Green Energy (OSTI)

We conducted detailed hydrogeochemical investigations at six geothermal sites in western Honduras: Azacualpa, El Olivar, Pavana, Platanares, Sambo Creek, and San Ignacio. None of the sites is associated with Quaternary silicic volcanism, although El Olivar lies adjacent to a small Quaternary basalt field and Pavana is part of a belt of hot spring activity parallel to and 35 km east of the Central American volcanic arc. None of the sites contains acid-sulfate waters indicative of vapor-dominated conditions. Thermal fluids are characterized by pH between 7 and 10, Cl<125 mg/l, HCO/sub 3/>Cl, SO/sub 4/greater than or equal toCl, Bless than or equal to17 mg/l, Liless than or equal to4 mg/l, and Asless than or equal to1.25 mg/l. Stable isotope analyses of the water show that recharge to the geothermal systems generally occurs from areas of higher elevation adjacent to the sites. Tritium contents of apparently undiluted thermal fluids range from 0 to 0.4 T.U., indicating residence times of fluids in the systems of more than 500 y. Various geochemical indicators show that mixing of hot and cold end-member fluids occurs in the system at Platanares and, to a lesser degree, in the systems at San Ignacio and Azacualpa. No mixing is apparent in the fluids discharging at Pavana, Sambo Creek, or El Olivar. Boiling is the dominant process responsible for subtle geochemical variations at Azacualpa and, possibly, San Ignacio. Our best estimates of subsurface reservoir temperatures are 225/sup 0/C at Platanares, 190/sup 0/C at San Ignacio, 185/sup 0/C at Azacualpa, 155/sup 0/C at Sambo Creek, 150/sup 0/C at Pavana, and 120/sup 0/C at El Olivar. The estimated power output of the three hottest sites is 45 thermal megawatts at Platanares, 14 thermal megawatts at San Ignacio, and 13 thermal megawatts at Azacualpa.

Goff, F.E.; Truesdell, A.H.; Grigsby, C.O.; Janik, C.J.; Shevenell, L.A.; Paredes, J.R.; Gutierrez, J.W.; Trujillo, Jr.; Counce, D.A.

1987-06-01T23:59:59.000Z

65

Geothermal: About  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - About Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

66

Geothermal: Publications  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Publications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

67

Electromagnetic (EM-69) survey of the McCoy geothermal prospect, Nevada  

DOE Green Energy (OSTI)

A frequency-domain electromagnetic survey was conducted at 19 stations over a 200 km/sup 2/ area encompassing the McCoy geothermal prospect, Churchill County, central Nevada. The McCoy area is characterized by high heat flow, mercury mineralization, and recent volcanics. Three horizontal-loop transmitters were used with receivers from 0.5 to more than 4.0 km from the loops. Receiver stations were arranged along a pair of crossing north-south and east-west lines. Data were interpreted first with a simple apparent resistivity formula and then with a least-squares lumped-model inversion program. The rough terrain and complex geology introduce an element of uncertainty to the interpretations.

Wilt, M.; Haught, R.; Goldstein, N.E.

1980-12-01T23:59:59.000Z

68

Preliminary geological and geophysical evaluation of the Castle Dome HDR geothermal prospect, Southwestern Arizona  

DOE Green Energy (OSTI)

The Castle Dome HDR geothermal prospect is located in Yuma County, Arizona, in a region centered about 80 km north of Yuma along US Rte. 95. The area of interest is broadly defined by a negative residual Bouguer gravity anomaly which is about 45 km across, steep-sided in many places, and as much as 30 mgals in magnitude. The geology of this Basin and Range area is poorly known, but the few published reports and current Los Alamos Scientific Laboratory (LASL) field studies indicate that the Castle Dome Mountains and adjacent ranges are chiefly a thick pile of welded ash-flow tuffs of probable mid-Tertiary age. The tuffs rest unconformably on Mesozoic metasedimentary rocks exposed only outside steep edges of the gravity low. This gravity anomaly may reflect the presence of a large caldera. A regional magnetotelluric study now in progress will define the depths to electrical conductors within the crust and upper mantle and contribute to understanding of crustal structure, the gravity anomaly, and the Hot Dry Rock (HDR) geothermal potential of the Castle Dome area.

Gutmann, J.T.; Aiken, C.L.V.; Ander, M.E.; Laney, R.T.

1980-01-01T23:59:59.000Z

69

Geothermal energy in Alaska: site data base and development status  

DOE Green Energy (OSTI)

The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

Markle, D.R.

1979-04-01T23:59:59.000Z

70

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

The various factors affecting geothermal resource development are summarized for Idaho, including: resource data base, geological description, reservoir characteristics, environmental character, lease and development status, institutional factors, legal aspects, population and market, and development. (MHR)

Not Available

1979-07-01T23:59:59.000Z

71

Geothermal energy in Wyoming: site data base and development status  

DOE Green Energy (OSTI)

An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

James, R.W.

1979-04-01T23:59:59.000Z

72

Silica Extraction at the Mammoth Lakes Geothermal Site  

DOE Green Energy (OSTI)

The purpose of this project is to develop a cost-effective method to extract marketable silica (SiO{sub 2}) from fluids at the Mammoth Lakes, California geothermal power plant. Marketable silica provides an additional revenue source for the geothermal power industry and therefore lowers the costs of geothermal power production. The use of this type of ''solution mining'' to extract resources from geothermal fluids eliminates the need for acquiring these resources through energy intensive and environmentally damaging mining technologies. We have demonstrated that both precipitated and colloidal silica can be produced from the geothermal fluids at Mammoth Lakes by first concentrating the silica to over 600 ppm using reverse osmosis (RO). The RO permeate can be used in evaporative cooling at the plant; the RO concentrate is used for silica and potentially other (Li, Cs, Rb) resource extraction. Preliminary results suggest that silica recovery at Mammoth Lakes could reduce the cost of geothermal electricity production by 1.0 cents/kWh.

Bourcier, W; Ralph, W; Johnson, M; Bruton, C; Gutierrez, P

2006-06-07T23:59:59.000Z

73

Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Second technical report  

DOE Green Energy (OSTI)

The previously examined geothermal sites at Long Valley and Coso were studied in much greater detail. Techniques for correcting the 2-m temperature data were evaluated. Using a preliminary model and analysis of the Coso data, the importance of measuring soil thermal diffusivity data at each temperature probe site was shown. Corrected 2-m temperature anomaly at Coso was compared with a low altitude aeromagnetic anomaly and an anomaly outlined by electrical resistivity methods obtained independently. Preliminary tests were made with a simple thermal conductivity probe demonstrating the feasibility of measuring soil thermal diffusivity at the time the 2-m temperatures are recorded. This opens the way for operational shallow temperature surveys in areas which do not have, as at Coso, a simple set of surface conditions. It is concluded that making useful shallow temperature measurements where there is a modest amount of ground water flow need not be a hopeless task.

LeSchack, L.A.; Lewis, J.E.; Chang, D.C.; Lewellen, R.I.; O'Hara, N.W.

1979-03-01T23:59:59.000Z

74

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

The results of an analytical effort to determine the cost effectiveness of hybrid geothermal/fossil-fuel electrical-power generating stations. The analysis is directed at combining hydrothermal and coal energy in a Rankine steam cycle, for electrical power generation for the City of Burbank, California. This effort develops a methodology for hybrid power-plant cost analysis so that preliminary plant designs can be optimized as a function of specific site conditions and characteristics. It also defines cost-optimized site-specific plant designs for four potential sites: Roosevelt Hot Springs, Utah, Coso Thermal Area, California, East Mesa, California, and Long Valley, California. These optimized designs are compared for the costs, geothermal-resource utilization, and fossil fuel saved. The results indicate that development of geothermal resources to support a hybrid power plant are favorable for at least two of the four sites.

Anno, G.H.; Dore, M.A.; Grijalva, R.L.; Lang, G.D.; Thomas, F.J.

1977-04-01T23:59:59.000Z

75

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #2  

DOE Green Energy (OSTI)

A geopressured-geothermal test of Martin Exploration Company's Crown Zellerbach Well No. 2 will be conducted in the Tuscaloosa Trend. The Crown Zellerbach Well No. 1 will be converted to a saltwater disposal well for disposal of produced brine. The well is located in the Satsuma Area, Livingston parish, Louisiana. Eaton proposes to test the Tuscaloosa by perforating the 7 inch casing from 16,718 feet to 16,754 feet. The reservoir pressure at an intermediate formation depth of 16,736 feet is anticipated to be 12,010 psi and the temperature is anticipated to be 297 F. Calculated water salinity is 16,000 ppm. The well is expected to produce a maximum of 16,000 barrels of water a day with a gas content of 51 SCF/bbl. Eaton will re-enter the test well, clean out to 17,000 feet, run production casing and complete the well. The disposal well will be re-entered and completed in the 9-5/8 inch casing for disposal of produced brine. Testing will be conducted similar to previous Eaton annular flow WOO tests. An optional test from 16,462 feet to 16,490 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous tests will be utilized on this test. The equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. Weatherly Engineering will operate the test equipment. The Institute of Gas Technology (IGT) and Mr. Don Clark will handle sampling, testing and reservoir engineering evaluation, respectively. wireline work required will be awarded on basis of bid evaluation. At the conclusion of the test period, the D.O.E. owned test equipment will be removed from the test site, the test and disposal wells plugged and abandoned and the sites restored to the satisfaction of all parties.

None

1981-03-01T23:59:59.000Z

76

New geothermal site identification and qualification. Final report  

DOE Green Energy (OSTI)

This study identifies remaining undeveloped geothermal resources in California and western Nevada, and it estimates the development costs of each. It has relied on public-domain information and such additional data as geothermal developers have chosen to make available. Reserve estimation has been performed by volumetric analysis with a probabilistic approach to uncertain input parameters. Incremental geothermal reserves in the California/Nevada study area have a minimum value of 2,800 grosss MW and a most-likely value of 4,300 gross MW. For the state of California alone, these values are 2,000 and 3,000 gross MW, respectively. These estimates may be conservative to the extent that they do not take into account resources about which little or no public-domain information is available. The average capital cost of incremental generation capacity is estimated to average $3,100/kW for the California/Nevada study area, and $2,950/kW for the state of California alone. These cost estimates include exploration, confirmation drilling, development drilling, plant construction, and transmission-line costs. For the purposes of this study, a capital cost of $2,400/kW is considered competitive with other renewable resources. The amount of incremental geothermal capacity available at or below $2,400/kW is about 1,700 gross MW for the California/Nevada study area, and the same amount (within 50-MW rounding) for the state of California alone. The capital cost estimates are only approximate, because each developer would bring its own experience, bias, and opportunities to the development process. Nonetheless, the overall costs per project estimated in this study are believed to be reasonable.

Not Available

2004-04-01T23:59:59.000Z

77

Analysis of water reinjection at the Niland Geothermal Test Site  

DOE Green Energy (OSTI)

The problems associated with reinjecting spent geothermal brines are currently under investigation. This effort has included field tests of injection water to evaluate treating equipment effectiveness at the Niland Geothermal Test Loop. Membrane filter tests were conducted on fluids from the settling tanks, from the test loop, from the clarifier and at the injection well head (Magmamax No. 3). From this and other information concerning the injection interval, pressure, temperature and well history, an attempt to predict a well half life was made. The results of these calculations were not in agreement with observed well performance. An attempt with some apparent success has been made to understand the possible source of these discrepancies. The cyclic nature of the injection history dictated by need for descaling the test loop, followed by apparent partial recovery of injection acceptance, has led to a theory that is under investigation concerning effect of reheating the injection fluid containing amorphous particulate silica by the reservoir rock and fluid during well shut-in. Preliminary tests indicate some of this finely divided silica may be redisolving with consequent reduction in reservoir damage, and that two widely spaced injection wells in an alternating mode may provide low-cost, long-life injection capacity at Niland and similar geothermal projects.

Jorda, R.M.

1978-05-01T23:59:59.000Z

78

Compound hybrid geothermal-fossil power plants: thermodynamic analyses and site-specific applications  

DOE Green Energy (OSTI)

The analysis of hybrid fossil-geothermal power plants is extended to compound hybrid systems which combine the features of previously analyzed systems: the geothermal-preheat and the fossil-superheat systems. Compound systems of the one- and two-stage type are considered. A compilation of working formulae from earlier studies is included for completeness. Results are given for parametric analyses of compound hybrid plants. System performance was determined for wellhead conditions of 150, 200, and 250/sup 0/C, and for steam fractions of 10, 20, 30, and 40%. For two-stage systems an additional cycle variable, the hot water flash fraction, was varied from 0 to 100% in increments of 25%. From the viewpoint of thermodynamics, compound hybrid plants are superior to individual all-geothermal and all-fossil plants, and are shown to have certain advantages over basic geothermal-preheat and fossil-superheat hybrid plants. The flexibility of compound hybrid systems is illustrated by showing how such plants might be used at six geothermal sites in the western United States. The question of the optimum match between the energy resources and the power plant is addressed, and an analysis given for a hypothetical geothermal resource.

DiPippo, R.; Avelar, E.M.

1979-06-01T23:59:59.000Z

79

Initial investigation of soil mercury geochemistry as an aid to drill site selection in geothermal systems  

DOE Green Energy (OSTI)

A mercury-in-soil survey was conducted at the Roosevelt Hot Springs Known Geothermal Resource Area (KGRA), Utah, to evaluate mercury soil geochemistry as a method of selecting exploration well sites in a hot-water geothermal system. Samples of -80 mesh soil were collected at 30.5 m intervals along traverses crossing known structures, surficial geothermal alteration, and exploration well sites, and were analyzed using a Gold Film Mercury Detector. Strong mercury anomalies occur at locations along known structures in close proximity to subsurface thermal activity; examples include areas over hot spring deposits and near a shallow producing well. In contrast, background mercury concentrations are present in nearby locations with little or no indication of subsurface thermal activity, such as areas around deep marginal producing wells and dry wells, and areas lacking hot spring deposits. These results indicate that mercury geochemical surveys can be useful for identifying and mapping structures controlling fluid flow in geothermal systems and for delineating areas overlying near-surface thermal activity. Soil mercury geochemistry thus provides information which may aid in the cost-effective selection of exploratory well sites.

Capuano, R.M.; Bamford, R.W.

1978-12-01T23:59:59.000Z

80

Fluidized-bed potato waste drying experiments at the Raft River Geothermal Test Site  

SciTech Connect

A fluidized-bed dryer was built and operated at the Raft River Geothermal Test Site in south central Idaho to test the feasibility of using low-temperature (145/sup 0/C or lower) geothermal fluids as an energy source for drying operations. The dryer performed successfully on two potato industry waste products that had a solid content of 5 to 13%. The dried product was removed as a sand-like granular material or as fines with a flour-like texture. Test results, observations, and design recommendations are presented. Also presented is an economic evaluation for commercial-scale drying plants using either geothermal low-temperature water or oil as a heat source.

Cole, L.T.; Schmitt, R.C.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New Mexico Geothermal Commercialization Program. Final report  

SciTech Connect

The New Mexico Geothermal Commercialization Program was developed as a mission-oriented program aimed at accelerating the commercial utilization of geothermal resources. The program provided the US Department of Energy, the State of New Mexico, and the citizens of the state a technical and economic guide for geothermal applications and implementation. This was accomplished by developing market strategies, cultivating public outreach, serving as a broker where appropriate and by providing limited economic and engineering evaluation of specific resource applications. The State of New Mexico used the Commercialization Program as a means to organize, focus and direct all of the state geothermal research, development and demonstration. This action enhanced geothermal development and was strategic to securing $1.8 million from the legislature for geothermal demonstrations. The Commercialization Team identified electrical and direct-use prospects throughout the State. A total of ten sites were classified as inferred electrical grade sites; four sites were classified as potential electrical grade sites; and one site was classified as a proven electrical grade site. Thirty-one sites were classified as direct-use sites: (ten proven, eleven potential and ten inferred). The Commercialization Team defined one geographical area for which the development and utilization of geothermal energy prospects are likely by the year 2020. The Team developed an Area Development Plan for the Rio Grande Rift throughout its entire length within the state.

Scudella, G.

1984-02-01T23:59:59.000Z

82

Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells  

Science Conference Proceedings (OSTI)

A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

1982-04-01T23:59:59.000Z

83

Prospects for improvement in geothermal well technology and their expected benefits  

DOE Green Energy (OSTI)

Performance restrictions on current geothermal drilling technology and their impact on drilling costs are reviewed, with the impact on electric power costs. Sensitivities of drilling costs to changes in drilling performance are analyzed. A programmatic goal for improving drilling performance is offered. The likely cost savings to the nation if the goal is attained are estimated though the use of a geothermal well drilling scenario for the 1978 to 1990 period, which was derived from DOE's geothermal power on-line scenario. The present worth of the expectd savings stream (benefit) is offered as a point of departure for justifying programmatic costs for improving drilling technology.

Not Available

1978-06-01T23:59:59.000Z

84

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

85

Geothermal: Sponsored by OSTI -- Alaska geothermal bibliography  

Office of Scientific and Technical Information (OSTI)

Alaska geothermal bibliography Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

86

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

87

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

88

Geothermal: Sponsored by OSTI -- Engineered Geothermal Systems...  

Office of Scientific and Technical Information (OSTI)

Engineered Geothermal Systems Energy Return On Energy Investment Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

89

Summary and results of the comprehensive environmental monitoring program at the INEL's Raft River geothermal site  

DOE Green Energy (OSTI)

The Raft River Geothermal Program was designed to demonstrate that moderate temperature (approx. 150/sup 0/C) geothermal fluids could be used to generate electricity and provide an alternate energy source for direct-use applications. The environmental program was initiated soon after drilling began. The major elements of the monitoring program were continued during the construction and experimental testing of the 5-MW(e) power plant. The monitoring studies established pre-development baseline conditions of and assessed changes in the physical, biological, and human environment. The Physical Environmental Monitoring Program collected baseline data on geology, subsidence, seismicity, meteorology and air quality. The Biological Environmental Monitoring Program collected baseline data on the flora and fauna of the terrestrial ecosystem, studied raptor disturbances, and surveyed the aquatic communities of the Raft River. The Human Environmental Monitoring Program surveyed historic and archaeological sites, considered the socioeconomic environment, and documented incidences of fluorosis in the Raft River Valley. In addition to the environmental monitoring programs, research on biological direct applications using geothermal water was conducted at Raft River. Areas of research included biomass production of wetland and tree species, aquaculture, agricultural irrigation, and the use of wetlands as a treatment or pretreatment system for geothermal effluents.

Mayes, R.A.; Thurow, T.L.; Cahn, L.S.

1982-01-01T23:59:59.000Z

90

Geothermal resources in Oregon: site data base and development status  

DOE Green Energy (OSTI)

An inventory of resources based on available information is presented. Potential for utilization and the legal and institutional environment in which development is likely to occur were also considered. Sites selected for this investigation include the 13 identified KGRA's, one PGRA which was chosen because of substantial local interest expressed in favor of development, and one major geologic fault zone which shows indications of high potential. Each chapter represents a planning region and is introduced by a regional overview of the physical setting followed by a narrative summary statement of the specific resource location and characteristics, existing utilization and potential end-uses for future development. Detailed site information in the form of data sheets follows each narrative. (MHR)

Justus, D.L.

1979-04-01T23:59:59.000Z

91

Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979  

DOE Green Energy (OSTI)

Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, current land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)

Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

1980-02-01T23:59:59.000Z

92

Present Status and Future Prospects of Geothermal Development in Italy with an Appendix on Reservoir Engineering  

SciTech Connect

This paper consists of two parts and an appendix. In the first part a review is made of the geothermal activity in Italy from 1975 to 1982, including electrical and non-electrical applications. Remarks then follow on the trends that occurred and the operational criteria that were applied in the same period, which can be considered a transitional period of geothermal development in Italy. Information on recent trends and development objectives up to 1990 are given in the second part of the paper, together with a summary on program activities in the various geothermal areas of Italy. The appendix specifically reviews the main reseroir engineering activities carried out in the past years and the problems likely to be faced in the coming years in developing Itallian fields.

Cataldi, R.; Calamai, A.; Neri, G.; Manetti, G.

1983-12-15T23:59:59.000Z

93

Subsurface evaluation of the geopressured-geothermal Chloe Prospect, Calcasieu Parish, Louisiana  

DOE Green Energy (OSTI)

A 123 square mile area approximately 10 miles east of Lake Charles, Louisiana, has been studied to assess its potential geopressured-geothermal resources. Subsurface information was used to study the structure and stratigraphy of the area as they related to the development of geopressured aquifers. The Middle Frio Hackberry wedge was found to contain the geopressured-geothermal reservoir sand, as well as the shales responsible for the origin and sealing of the geopressured strata. The major reservoir within the wedge is the Hackberry massive A sand.

Kurth, R.J.

1981-12-01T23:59:59.000Z

94

Low-temperature geothermal reservoir site evaluation in Arizona. Quarterly progress report, November 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

The Department of Energy, Division of Geothermal Energy, has charged the Bureau of Geology and Mineral Technology, Geological Survey Branch with development of a cost-effective exploration program for low- to moderate-temperature geothermal resources. As part of this program two or three demonstration projects in Arizona will be brought on stream. The site-specific exploration, evaluation and development program as well as the state wide reconnaissance exploration program is continuing. The compilation of data for the 1 : 500,000 geothermal energy resource map is continuing. Drafting and data collection for the 1 : 1,000,000 preliminary map, Geothermal Energy Resources of Arizona, Geothermal Map No. 1, requested the first week in January by DOE/DGE is nearing completion. This preliminary map should be published in March, 1978. All outside projects are either complete or on schedule.

Hahman, W.R. Sr.

1978-03-01T23:59:59.000Z

95

Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, April 1-June 30, 1980  

DOE Green Energy (OSTI)

Progress is reported on the following: geothermal prospect identification, area development plans, site specific development analysis, time phased project plans, institutional analysis, hydrothermal commercialization baseline report, and the public outreach program. (MHR)

White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

1980-06-30T23:59:59.000Z

96

Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site  

DOE Green Energy (OSTI)

Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

Murphy, R.W.; Domingo, N.

1982-05-01T23:59:59.000Z

97

Geothermal: Promotional Video  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Promotional Video Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

98

Geothermal: Bibliographic Citation  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Bibliographic Citation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

99

Geothermal: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Related Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

100

Geothermal: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Home Page Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal: Contact Us  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Contact Us Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

102

Geothermal: Hot Documents Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Hot Documents Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

103

Geothermal: Basic Search  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Basic Search Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

104

Geothermal: Educational Zone  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Educational Zone Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

105

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

106

Radar imagery interpretation to provide information about several geothermal sites in the Philippines  

DOE Green Energy (OSTI)

The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nation-wide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential geothermal and petroleum prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 7 refs., 20 figs., 2 tabs.

Not Available

1988-11-17T23:59:59.000Z

107

Geothermal resources Frio Formation, South Texas  

DOE Green Energy (OSTI)

A preliminary study of the Frio sand distribution and formation temperatures and pressures was undertaken in order to define prospective areas in which a more detailed reservoir analysis is necessary prior to the selection of a site for a geothermal well. As a result two potential geothermal fairways were identified--one in the south part of the area in Hidalgo, Willacy, and Cameron Counties, and the other in the north part in north-central Nueces County.

Bebout, D.G.; Dorfman, M.H.; Agagu, O.K.

1975-01-01T23:59:59.000Z

108

Present status and future prospects for nonelectrical uses of geothermal resources  

DOE Green Energy (OSTI)

This report, which is part of a study initiated by the NATO Committee on the Challenges of Modern Society (CCMS), describes the current status of nonelectrical uses of geothermal resources. Such resources are defined as geothermal fluids between the temperatures of 50 and 160/sup 0/C. Current and potential uses of these resources including residential and commercial, agricultural and industrial applications are described. Also discussed are exploration and drilling; extraction and distribution; environmental impact; and economic and regulatory problems. Applications in a number of countries are described. Among the report's conclusions are: (1) Geothermal resources are widely distributed throughout the world. (2) The extraction of these resources presents no serious technical problems. (3) A wide variety of economically viable applications for these resources currently exists. (4) Current nonelectrical applications have a favorable economic structure compared with those of other energy sources. (5) Disposal of spent fluids has a significant ecological impact. Reinjection appears to be the most likely alternative. (6) The legal and institutional framework surrounding these applications needs both clarification and simplification.

Howard, J.H. (ed.)

1975-10-03T23:59:59.000Z

109

Internal Technical Report, Heat Exchanger Sizing for 20 MW Geothermal Power Plants at MX Sites  

DOE Green Energy (OSTI)

This report presents the details of the analyses used to size the heaters, steam condenser, and working fluid condenser for a proposed 20 MW geothermal power plant application at MX sites in the southwest. These units would use a mixture of hydrocarbons (90% isobutane--10% n-hexane) to extract energy from moderate temperature resources (resource temperatures of 365 F, 400 F, and 450 F were considered). The working fluid will be maintained at supercritical pressures in the heater units. Studies have shown that this cycle will provide a significant net power increase over standard dual boiling single fluid cycles currently in use, e.g., the Raft River 5 MW pilot plant.

Kochan, R.J.; Bliem, C.J.

1981-12-01T23:59:59.000Z

110

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

111

Misinterpretation of Electrical Resistivity Data in Geothermal...  

Open Energy Info (EERE)

Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

112

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7  

DOE Green Energy (OSTI)

This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

Godchaux, Frank A.

1981-06-01T23:59:59.000Z

113

Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California  

DOE Green Energy (OSTI)

The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in the region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.

Stimac, J.; Goff, F. (Los Alamos National Lab., NM (United States)); Hearn, B.C. Jr. (US Geological Survey, Reston, VA, Branch of Lithospheric Processes (United States))

1992-01-01T23:59:59.000Z

114

Geophysical reconnaissance of prospective geothermal areas on the Island of Hawaii using electrical methods  

DOE Green Energy (OSTI)

Resistivity data from several areas were compiled, analyzed, and interpreted in terms of possible geologic models. On the basis of this analysis alone, two areas have been ruled out for possible geothermal exploitation, two have been interpreted to have a moderate-temperature resource, and two have been interpreted to have a high-temperature resource. The two areas which have been ruled out are the Keaau and South Point areas. The Kawaihae area and the lower northwest rift zone of Hualalai appear to have anomalous resistivity structures which suggest a moderate-temperature resource in each of these areas. Finally, specific areas in the lower southwest and lower east rift zones of Kilaauea have been outlined as locations where high-temperature fluids may exist at depth.

Kauahikaua, J.; Mattice, M.

1981-12-01T23:59:59.000Z

115

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

116

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

117

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

118

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

119

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

120

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

122

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

123

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

124

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

125

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

126

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

127

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

128

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

129

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

130

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

131

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

132

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

133

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

134

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

135

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

136

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

137

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

138

Geothermal Prospecting using Hyperspectral Imaging and Field Observations, Dixie Meadows, NV  

DOE Green Energy (OSTI)

In an ongoing project to relate surface hydrothermal alteration to structurally controlled geothermal aquifers, we mapped a 16 km swath of the eastern front of the Stillwater Range using Hyperspectral fault and mineral mapping techniques. The Dixie Valley Fault system produces a large fractured aquifer heating Pleistocene aged groundwater to a temperature of 285 C at 5-6 km. Periodically over the last several thousand years, seismic events have pushed these heated fluids to the surface, leaving a rich history of hydrothermal alteration in the Stillwater Mountains. At Dixie Hot Springs, the potentiometric surface of the aquifer intersects the surface, and 75 C waters flow into the valley. We find a high concentration of alunite, kaolinite, and dickite on the exposed fault surface directly adjacent to a series of active fumaroles on the range front fault. This assemblage of minerals implies interaction with water in excess of 200 C. Field spectra support the location of the high temperature mineralization. Fault mapping using a Digital Elevation Model in combination with mineral lineation and field studies shows that complex fault interactions in this region are improving permeability in the region leading to unconfined fluid flow to the surface. Seismic studies conducted 10 km to the south of Dixie Meadows show that the range front fault dips 25-30 to the southeast (Abbott et al., 2001). At Dixie Meadows, the fault dips 35 to the southeast, demonstrating that this region is part of the low angle normal fault system that produced the Dixie Valley Earthquake in 1954 (M=6.8). We conclude that this unusually low angle faulting may have been accommodated by the presence of heated fluids, increasing pore pressure within the fault zone. We also find that younger synthetic faulting is occurring at more typical high angles. In an effort to present these findings visually, we created a cross-section, illustrating our interpretation of the subsurface structure and the hypothesized locations of increased permeability. The success of these methods at Dixie Meadows will greatly improve our understanding of other Basin and Range geothermal systems.

Kennedy-Bowdoin, T; Silver, E; Martini, B; Pickles, W

2004-04-26T23:59:59.000Z

139

Final report for the geothermal well site restoration and plug and abandonment of wells: DOE Pleasant Bayou test site, Brazoria County, Texas  

DOE Green Energy (OSTI)

For a variety of reasons, thousands of oil and gas wells have been abandoned in the Gulf Coast Region of the United States. Many of these wells penetrated geopressured zones whose resource potential for power generation was undervalued or ignored. The U.S. Department of Energy (DOE) Geopressured-Geothermal Research Program was chartered to improve geothermal technology to the point where electricity could be commercially produced from a substantial number of geopressured resource sites. This research program focused on relatively narrow technical issues that are unique to geopressured resources such as the ability to predict reservoir production capacity based on preliminary flow tests. Three well sites were selected for the research program. These are the Willis Hulin and Gladys McCall sites in Louisiana, and the Pleasant Bayou site in Texas. The final phase of this research project consists of plug and abandonment (P&A) of the wells and site restoration.

Rinehart, Ben N.; Seigel, Ben H.

1994-03-13T23:59:59.000Z

140

SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD  

E-Print Network (OSTI)

P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

Majer, E. L.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site  

DOE Green Energy (OSTI)

An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

1984-05-01T23:59:59.000Z

142

Low-temperature geothermal reservoir site evaluation in Arizona. Quarterly progress report, August 1, 1977--October 31, 1977  

DOE Green Energy (OSTI)

Progress in the development of a cost-effective exploration program for low- to moderate-temperature geothermal resources is reported. As part of this program two or three demonstration projects in Arizona will be brought on stream. The site-specific exploration, evaluation and development program as well as the state wide reconnaissance exploration program is continuing. The compilation of data for a geothermal energy resource map of Arizona has commenced. Geological field work was directed towards obtaining a broad overview of Arizona geology and regional reconnissance in the Springerville - St. Johns area. All outside projects are on schedule and the Landsat lineament map and report have been completed.

Hahman, W.R. Sr.

1977-12-01T23:59:59.000Z

143

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

144

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

145

Geothermal: Sponsored by OSTI -- STATUS OF PLOWSHARE GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

STATUS OF PLOWSHARE GEOTHERMAL POWER. Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

146

Geothermal: Sponsored by OSTI -- Multi-Fluid Geothermal Energy...  

Office of Scientific and Technical Information (OSTI)

Multi-Fluid Geothermal Energy Production and Storage in Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

147

Geothermal: Sponsored by OSTI -- Twenty-first workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twenty-first workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

148

Geothermal: Sponsored by OSTI -- Seventeenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Seventeenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

149

Geothermal: Sponsored by OSTI -- Twentieth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Twentieth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

150

Geothermal: Sponsored by OSTI -- Nineteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Nineteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

151

Geothermal: Sponsored by OSTI -- Eighteenth workshop on geothermal...  

Office of Scientific and Technical Information (OSTI)

Eighteenth workshop on geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

152

Geothermal: Sponsored by OSTI -- Economics of geothermal, solar...  

Office of Scientific and Technical Information (OSTI)

Economics of geothermal, solar, and conventional space heating Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

153

Geothermal: Sponsored by OSTI -- Beowawe Geothermal Area evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beowawe Geothermal Area evaluation program. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

154

Geothermal: Sponsored by OSTI -- Feasibility of geothermal application...  

Office of Scientific and Technical Information (OSTI)

of geothermal applications for greenhousing and space heating on the Pine Ridge Indian Reservation, South Dakota Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

155

Geothermal: Sponsored by OSTI -- Daemen Alternative Energy/Geothermal...  

Office of Scientific and Technical Information (OSTI)

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

156

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

157

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

158

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Michael Hillesheim and Gail Mosey Produced under direction of the U.S. Environmental Protection Agency (EPA) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement IAG-09-1751 and Task No. WFD4.1001. Technical Report NREL/TP-6A10-60251 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy

159

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

160

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

162

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

163

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

164

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

165

DOE - Office of Legacy Management -- Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Test Facility, California A Oakland Operations Office site geothermalmap The Geothermal Test Facility site was a research laboratory formerly operated under the DOE...

166

3D Magnetotelluric characterization of the COSO Geothermal Field  

E-Print Network (OSTI)

model of the Coso geothermal field has been constructed. TheResistivity model of the Coso geothermal site compiled fromthe Department of Energy, Geothermal Program Office. MT data

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

167

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...  

Open Energy Info (EERE)

a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the...

168

Environmental monitoring at designed geopressured-geothermal well sites, Louisiana and Texas  

DOE Green Energy (OSTI)

This document covers the activities of monitoring environmental aspects at designated geothermal wells in Texas and Louisiana during the second quarter of 1990 by the Louisiana Geological Survey, Louisiana State University under contract with US DOE. 1 fig. (FSD)

Not Available

1990-01-01T23:59:59.000Z

169

Geothermal: Sponsored by OSTI -- Geothermal pump program  

Office of Scientific and Technical Information (OSTI)

pump program Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

170

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

171

COMPARISON OF THREE TRACER TESTS AT THE RAFT RIVER GEOTHERMAL SITE  

DOE Green Energy (OSTI)

Three conservative tracer tests have been conducted through the Bridge Fault fracture zone at the Raft River Geothermal (RRG) site. All three tests were conducted between injection well RRG-5 and production wells RRG-1 (790 m distance) and RRG-4 (740 m distance). The injection well is used during the summer months to provide pressure support to the production wells. The first test was conducted in 2008 using 136 kg of fluorescein tracer. Two additional tracers were injected in 2010. The first 2010 tracer injected was 100 kg fluorescein disodium hydrate salt on June, 21. The second tracer (100 kg 2,6-naphthalene disulfonic acid sodium salt) was injected one month later on July 21. Sampling of the two productions wells is still being performed to obtain the tail end of the second 2010 tracer test. Tracer concentrations were measured using HPLC with a fluorescence detector. Results for the 2008 test, suggest 80% tracer recover at the two production wells. Of the tracer recovered, 85% of tracer mass was recovered in well RRG-4 indicating a greater flow pathway connection between injection well and RRG-4 than RRG-1. Fluorescein tracer results appear to be similar between the 2008 and 2010 tests for well RRG-4 with peak concentrations arriving approximately 20 days after injection despite the differences between the injection rates for the two tests (~950 gpm to 475 gpm) between the 2008 and 2010. The two 2010 tracer tests will be compared to determine if the results support the hypothesis that rock contraction along the flow pathway due to the 55 oC cooler water injection alters the flow through the ~140 oC reservoir.

Earl D Mattson; Mitchell Plummer; Carl Palmer; Larry Hull; Samantha Miller; Randy Nye

2011-02-01T23:59:59.000Z

172

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network (OSTI)

site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

173

Geopressured-geothermal well activities in Louisiana  

DOE Green Energy (OSTI)

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

174

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant has been completed for four geothermal Resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. Brown University provided the theoretical basis for the hybrid study. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant. Costing methods followed recommendations issued by the Energy research and Development Administration.

Not Available

1977-06-01T23:59:59.000Z

175

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

Not Available

1977-06-01T23:59:59.000Z

176

Montana geothermal handbook  

DOE Green Energy (OSTI)

The permits required for various geothermal projects and the approximate time needed to obtain them are listed. A brief discussion of relevant statutes and regulations is included. Some of the state and federal grant and loan programs available to a prospective geothermal developer are described. The names and addresses of relevant state and federal agencies are given. Legal citations are listed. (MHR)

Perlmutter, S.; Birkby, J.

1980-10-01T23:59:59.000Z

177

Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah  

DOE Green Energy (OSTI)

The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

1978-12-01T23:59:59.000Z

178

Preliminary environmental assessment of selected geopressured - geothermal prospect areas: Louisiana Gulf Coast Region. Volume II. Environmental baseline data  

DOE Green Energy (OSTI)

A separate section is presented for each of the six prospect areas studied. Each section includes a compilation and discussion of environmental baseline data derived from existing sources. The data are arranged as follows: geology and geohydrology, air quality, water resources and flood hazards, ecological systems, and land use. When data specific to the prospect were not available, regional data are reported. (MHR)

Newchurch, E.J.; Bachman, A.L.; Bryan, C.F.; Harrison, D.P.; Muller, R.A.; Newman, J.P. Jr.; Smith, C.G. Jr.; Bailey, J.I. Jr.; Kelly, G.G.; Reibert, K.C.

1978-10-15T23:59:59.000Z

179

DOE - Office of Legacy Management -- Geothermal Test Facility...  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

180

A Test Of The Transiel Method On The Travale Geothermal Field | Open Energy  

Open Energy Info (EERE)

Of The Transiel Method On The Travale Geothermal Field Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Test Of The Transiel Method On The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest. Author(s): A. Duprat, M. Roudot, S. Spitz Published: Geothermics, 1985

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal: Sponsored by OSTI -- Investigation of Stimulation...  

Office of Scientific and Technical Information (OSTI)

Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

182

Geothermal: Sponsored by OSTI -- Laboratory investigation of...  

Office of Scientific and Technical Information (OSTI)

Laboratory investigation of steam adsorption in geothermal reservoir rocks Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

183

Geothermal: Sponsored by OSTI -- Reconnaissance evaluation of...  

Office of Scientific and Technical Information (OSTI)

Reconnaissance evaluation of Honduran geothermal sites. Una evaluacion por medio de reconocimiento de seis areas geotermicas en Honduras Geothermal Technologies Legacy Collection...

184

Geothermal: Sponsored by OSTI -- Thermodynamic properties of...  

Office of Scientific and Technical Information (OSTI)

Thermodynamic properties of a geothermal working fluid; 90% isobutane-10% isopentane: Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

185

Geothermal: Sponsored by OSTI -- Multicomponent Equilibrium Models...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Multicomponent Equilibrium Models for Testing Geot Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

186

Geothermal: Website Policies and Important Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Website Policies and Important Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

187

Geothermal: Sponsored by OSTI -- Final Technical Report  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Final Technical Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

188

Overview of Geothermal Energy Development Webcast | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Overview of Geothermal Energy Development Webcast Overview of Geothermal Energy Development Webcast...

189

NREL: Energy Analysis - Geothermal Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program...

190

2012 Geothermal Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home 2012 Geothermal Webinar 2012 Geothermal Webinar January 10, 2012 - 12:47pm Addthis This Office of...

191

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

192

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

193

Baseline studies in the desert ecosystem at East Mesa Geothermal Test Site, Imperial Valley, California  

DOE Green Energy (OSTI)

Baseline data reported herein for soil, vegetation, and small mammal components of the East Mesa desert ecosystem represent a collection period from October 1975 to September 1977. Inasmuch as changes in salt balance from geothermal brine sources are of potential impact upon the ecosystem, considerable analytical effort was given to the determination of element constituents in soil, plant, and animal samples. A preliminary synthesis of data was done to investigate the heterogeneity of element constituents among the sampled population and to summarize results. Findings indicate that periodic sampling and chemical analysis of vegetation around an industrialized geothermal energy source is probably the best way to monitor the surrounding ecosystem for assuring containment of any resource pollutants.

Romney, E.M.; Wallace, A.; Lunt, O.R.; Ackerman, T.A.; Kinnear, J.E.

1977-09-01T23:59:59.000Z

194

Siting and drilling recommendations for a geothermal exploration well, Wendel-Amedee KGRA, Lassen County, California  

DOE Green Energy (OSTI)

All available exploration data relevant to the GeoProducts leasehold in the Wendel-Amedee KGRA are reviewed and interpreted. On the basis of this interpretation, locations and procedures are recommended for drilling geothermal production wells capable of supplying fluid at a temperature of 250/sup 0/F or greater. The following are covered: stratigraphy and geological history, geologic structure, geochemistry, geophysics, temperature-gradient data, and fluid quality. (MHR)

McNitt, J.R.; Wilde, W.R.

1980-12-01T23:59:59.000Z

195

Coso geothermal environmental overview study ecosystem quality  

DOE Green Energy (OSTI)

The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

Leitner, P.

1981-09-01T23:59:59.000Z

196

Geothermal well site restoration and plug and abandonment of wells, DOE Gladys McCall test site, Cameron Parish, Louisiana and DOE Willis Hulin test site, Vermillion Parish, Louisiana  

DOE Green Energy (OSTI)

A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana--the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

Rinehart, Ben N.

1994-08-01T23:59:59.000Z

197

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

198

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

199

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

200

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

202

Review of water resource potential for developing geothermal resource sites in the western United States  

DOE Green Energy (OSTI)

Water resources at 28 known geothermal resource areas (KGRAs) in the western United States are reviewed. Primary emphasis is placed upon examination of the waer resources, both surface and ground, that exist in the vicinity of the KGRAs located in the southwestern states of California, Arizona, Utah, Nevada, and New Mexico. In most of these regions water has been in short supply for many years and consequently a discussion of competing demands is included to provide an appropriate perspective on overall usage. A discussion of the water resources in the vicinity of KGRAs in the States of Montana, Idaho, Oregon, and Washington are also included.

Sonnichsen, J.C. Jr.

1980-07-01T23:59:59.000Z

203

Environmental analysis of the Fenton Hill Hot Dry Rock Geothermal Test Site  

DOE Green Energy (OSTI)

Techniques for the extraction of geothermal energy from hot dry rock within the earth's crust were tested at the first experimental system at Fenton Hill and proved successful. Because new concepts were being tried and new uses of the natural resources were being made, environmental effects were a major concern. Therefore, at all phases of development and operation, the area was monitored for physical, biological, and social factors. The results were significant because after several extended operations, there were no adverse environmental effects, and no detrimental social impacts were detected. Although these results are specific for Fenton Hill, they are applicable to future systems at other locations.

Kaufman, E.L.; Siciliano, C.L.B. (comps.)

1979-05-01T23:59:59.000Z

204

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

205

geothermal_test.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

206

Colorado geothermal commercialization program. Geothermal energy opportunities at four Colorado towns: Durango, Glenwood Springs, Idaho Springs, Ouray  

DOE Green Energy (OSTI)

The potential of four prospective geothermal development sites in Colorado was analyzed and hypothetical plans prepared for their development. Several broad areas were investigated for each site. The first area of investigation was the site itself: its geographic, population, economic, energy demand characteristics and the attitudes of its residents relative to geothermal development potential. Secondly, the resource potential was described, to the extent it was known, along with information concerning any exploration or development that has been conducted. The third item investigated was the process required for development. There are financial, institutional, environmental, technological and economic criteria for development that must be known in order to realistically gauge the possible development. Using that information, the next concern, the geothermal energy potential, was then addressed. Planned, proposed and potential development are all described, along with a possible schedule for that development. An assessment of the development opportunities and constraints are included. Technical methodologies are described in the Appendix. (MHR)

Coe, B.A.; Zimmerman, J.

1981-01-01T23:59:59.000Z

207

Geothermal pipeline: Progress and development update from the geothermal progress monitor  

SciTech Connect

This article is a progress and development update of new prospects for the utilization of geothermal energy. The city of San Bernadino, California uses high-quality geothermal fluids for laundry processes without the need for water softening or heating. Four geothermal prospects in Oregon including exploration work by Amadarko, CE Exploration Company, Trans-Pacific Geothermal Corporation, and Vulcan Power Company are also reviewed.

1994-07-01T23:59:59.000Z

208

Survey of Potential Geothermal Exploration Sites at Newberry Volcano Deschutes County, Oregon.  

SciTech Connect

The study summarizes the current data, generates some new data, and recommends further steps which should be taken to investigate the electrical power production potential of Newberry volcano. The objective was to concentrate on data from the developable flanks of the volcano. All previous data on the geology, hydrology, and geophysics were summarized. A soil-mercury survey focused on the flanks of the volcano was conducted. Samples from 1000 km/sup 2/ of the volcano were analyzed for mercury content. All this information was utilized to evaluate (1) the likelihood of future discovery of electrical-quality geothermal fluids on the flanks, and (2) the most cost-effective means of improving the quality of available power generation estimates for the volcano. 37 figures.

Priest, George R.; Vogt, Beverly F.; Black, Gerald L.

1983-01-01T23:59:59.000Z

209

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho  

SciTech Connect

The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

2013-09-01T23:59:59.000Z

210

Feasibility study of geothermal energy for heating greenhouses. Final report  

SciTech Connect

The technical feasibility of heating greenhouses with geothermal heat is established. Off-the-shelf equipment suitable for geothermal heating is readily available. A procedure is given to economically examine a geothermal site for its suitability. Generally, geothermal heating systems are capital intensive. Where the geothermal energy is free the geothermal system is very attractive and where the cost of geothermal heat is the same as other energy, Btu/$, geothermal heat is unattractive.

LaFrance, L.J.

1979-06-01T23:59:59.000Z

211

Proceedings of second geopressured geothermal energy conference, Austin, Texas, February 23--25, 1976. Volume II. Resource assessment. [Geologic procedures for test- or industrial-site selection along Texas Gulf coast  

DOE Green Energy (OSTI)

This report describes techniques being used in the assessment of geopressured geothermal resources along the Texas Gulf Coast and defines geologic procedures for test- or industrial-site selection. These approaches have been proven in petroleum exploration and are applicable in geothermal exploration here in the Gulf basin and in other sedimentary basins.

Bebout, D.G.

1976-01-01T23:59:59.000Z

212

Geothermal Technologies Office: Geothermal Maps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

213

Geothermal-energy files in computer storage: sites, cities, and industries  

SciTech Connect

The site, city, and industrial files are described. The data presented are from the hydrothermal site file containing about three thousand records which describe some of the principal physical features of hydrothermal resources in the United States. Data elements include: latitude, longitude, township, range, section, surface temperature, subsurface temperature, the field potential, and well depth for commercialization. (MHR)

O'Dea, P.L.

1981-12-01T23:59:59.000Z

214

Imperial County geothermal development annual meeting: summary  

DOE Green Energy (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

215

Recommendations report for the platanares geothermal site, Department of Copan, Honduras. Reporte de recomendaciones para el sitio geotermico de platanares, Departamento de Copan, Honduras  

SciTech Connect

A geothermal assessment of six previously identified sites in Honduras has been conducted by a team comprised of staff from the Los Alamos National Laboratory, the US Geological Survey, and the Empresa Nacional de Energia Electrica. The application of both reconnaissance and detailed scale techniques lead to the selection of Platanares in the Department of Copan as the highest potential site. Additional work resulted in the completion of a prefeasibility study at Platanares. We present here a tabulation of the work completed and short summaries of the results from these technical studies. We also present a brief model of the geothermal system and recommendations for additional feasibility work. Both English and Spanish versions of this report are provided in the same document. 18 figs., 5 tabs.

Not Available

1988-11-01T23:59:59.000Z

216

Zuni Mountains, New Mexico as a potential dry hot rock geothermal energy Site  

DOE Green Energy (OSTI)

Many of the criteria for the successful exploitation of energy from dry hot rock are met in the Zuni Mountains, New Mexico. This area falls within a broad region of abnormally high heat flow on the Colorado Plateau. Within this region, a variety of evidence indicates that local ''hot spots'' may be present. These ''hot spots'' are prime targets for dry hot rock exploration. A site-evaluation program utilizing geological, geochemical-geochronological, and geophysical techniques is proposed to delineate the optimal sites for subsequent exploratory drilling.

Laughlin, A.W.; West, F.G.

1975-12-01T23:59:59.000Z

217

Environmental implications for geothermal energy development  

SciTech Connect

The nature of geothermal resources and the constraints that site characteristics place on their development are discussed. (MHR)

Craig, R.B.; Suter, G.W. II

1979-04-01T23:59:59.000Z

218

Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics  

Science Conference Proceedings (OSTI)

Moderately thermophilic acidophilic bacteria were isolated from geothermal (3083 C) acidic (pH 2.7 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 C, and pH 1.01.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

D. B. Johnson; N. Okibe; F. F. Roberto

2003-07-01T23:59:59.000Z

219

Geothermal: Sponsored by OSTI -- Geothermal resources of the...  

Office of Scientific and Technical Information (OSTI)

resources of the Washakie and Great Divide basins, Wyoming Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

220

Geothermal: Sponsored by OSTI -- Sampling and analysis methods...  

Office of Scientific and Technical Information (OSTI)

Sampling and analysis methods for geothermal fluids and gases Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal: Sponsored by OSTI -- High-potential Working Fluids...  

Office of Scientific and Technical Information (OSTI)

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

222

Geothermal: Sponsored by OSTI -- Air-Cooled Condensers for Next...  

Office of Scientific and Technical Information (OSTI)

Air-Cooled Condensers for Next Generation Geotherm Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

223

Geothermal: Sponsored by OSTI -- Climatology of air quality of...  

Office of Scientific and Technical Information (OSTI)

Climatology of air quality of Long Valley Geothermal Resource Area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

224

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient...

225

Geothermal: Sponsored by OSTI -- Chapter 11. Heat Exchangers  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Chapter 11. Heat Exchangers Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

226

Geothermal: Sponsored by OSTI -- GeoEnergy technology  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- GeoEnergy technology Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

227

Geothermal: Sponsored by OSTI -- Chapter 17. Engineering cost...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Chapter 17. Engineering cost analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

228

EA-1763: Geothermal Expansion to Boise State University, City...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home EA-1763: Geothermal Expansion to Boise State University, City of Boise, Boise, Idaho EA-1763: Geothermal...

229

Geothermal: Sponsored by OSTI -- Programs in Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Programs in Renewable Energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

230

Geothermal: Sponsored by OSTI -- Chapter 13. Absorption Refrigeration  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Chapter 13. Absorption Refrigeration Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

231

Geothermal Webinar Presentation Slides and Text Version | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home Geothermal Webinar Presentation Slides and Text Version Geothermal Webinar Presentation Slides...

232

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

Hillesheim, M.; Mosey, G.

2013-11-01T23:59:59.000Z

233

NREL: Geothermal Technologies - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Research Staff...

234

DOE - Office of Legacy Management -- Mound Site  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

235

Geothermal: Distributed Search Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

236

geothermal_test.cdr  

Office of Legacy Management (LM)

F A C T S H E E T Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S....

237

Beowawe Geothermal Area evaluation program. Final report  

DOE Green Energy (OSTI)

Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

Iovenitti, J. L

1981-03-01T23:59:59.000Z

238

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

239

Navy Geothermal Plan  

SciTech Connect

Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

1984-12-01T23:59:59.000Z

240

First order leveling: Pleasant Bayou geothermal test site, Brazoria County, Texas  

DOE Green Energy (OSTI)

First order leveling to be conducted as part of an environmental monitoring program for a geopressured test well was reported. 39.43 kilometers of first order levels were run to NGS specifications. Twelve Class B type bench marks were set to NGS specifications. The adjusted elevation of bench mark C-1209 was used as a starting elevation and is based on a supplementary adjustment of April 6, 1979 by NGS. The closure for the loop around the well site is -0.65 millimeters. The distance around the loop is 1.29 kilometers, the allowable error of closure was 4.54 millimeters. The initial leveling of this well was performed in 1977. A thorough search for their monumentation was conducted. No monuments were found due to the lack of adequate monument descriptions. Therefore, an elevation comparison summary for this report is only available along the NGS lines outside the well area. The first order level tie to line No. 101 (BMA-1208) was +3.37 millimeters in 17.21 kilometers. The allowable error of closure was 12.44 millimeters.

Not Available

1984-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

2-M Probe Survey At Coso Geothermal Area (1977) | Open Energy Information  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique 2-M Probe Survey Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis Compare directly shallow temperature results with standard geothermal exploration techniques. Notes Shallow soil temperature data (2m) were collected at 102 sites at Coso. Close geometrical similarity between the shallow soil temperature has been observed with the 30-m contour data for Coso using computer program. References Leschack, L. A.; Lewis, J. E.; Chang, D. C. (1 December 1977) Rapid reconnaissance of geothermal prospects using shallow temperature surveys. Semi-annual technical report Retrieved from "http://en.openei.org/w/index.php?title=2-M_Probe_Survey_At_Coso_Geothermal_Area_(1977)&oldid=47367

242

Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration  

DOE Green Energy (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

243

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

244

Geothermal progress monitor. Progress report No. 7  

DOE Green Energy (OSTI)

A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

Not Available

1983-04-01T23:59:59.000Z

245

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

246

Optimizations of geothermal cycle shell and tube exchangers of various configurations with variable fluid properties and site specific fouling. [SIZEHX  

DOE Green Energy (OSTI)

A new heat exchanger program, SIZEHX, is described. This program allows single step multiparameter cost optimizations on single phase or supercritical exchanger arrays with variable properties and arbitrary fouling for a multitude of matrix configurations and fluids. SIZEHX uses a simplified form of Tinker's method for characterization of shell side performance; the Starling modified BWR equation for thermodynamic properties of hydrocarbons; and transport properties developed by NBS. Results of four parameter cost optimizations on exchangers for specific geothermal applications are included. The relative mix of capital cost, pumping cost, and brine cost ($/Btu) is determined for geothermal exchangers illustrating the invariant nature of the optimal cost distribution for fixed unit costs.

Pope, W.L.; Pines, H.S.; Silvester, L.F.; Doyle, P.A.; Fulton, R.L.; Green, M.A.

1978-03-01T23:59:59.000Z

247

Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981  

SciTech Connect

Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

248

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

249

Geothermal: Distributed Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

250

Investigation and Evaluation of Geopressured-Geothermal Wells; Detailed Reentry Prognosis for Geopressure-Geothermal Testing of Alice C. Plantation No. 2 Well  

DOE Green Energy (OSTI)

This Gruy Federal Type II-B, geopressured-geothermal (Geo) prospect was drilled as the Sun Oil Company, No. 2 Alice C. Plantation and is located in Section 2, Township 16-S, Range 10-E, St. mary Parish, Louisiana. The well site is 3,705.61 feet from U.S.C. and G.S. marker ''Foster''. The well site is located in a sugar cane field, and is accessible by approximately 2,500 feet of cane field road. The well was originally drilled to a depth of 19,000 feet and abandoned as a dry hole in December, 1963. The location is shown on the west central area of the USGS topographic sheet, 'North Bend'', Louisiana, in the Gruy Federal report, ''Investigation and Evaluation of Geopressured-Geothermal Wells, prospective Test Wells in the Texas and Louisiana Gulf Coast'', March 20, 1978.

None

1978-05-01T23:59:59.000Z

251

WELCST: engineering cost model of geothermal wells. Description and user's guide  

DOE Green Energy (OSTI)

WELCST, a FORTRAN code for estimating the effects of R and D project results upon the future cost of geothermal wells is described. The code simulates the drilling and completion of a well at 27 specific US geothermal prospects, given assumptions about well design and casing plan, formation drillability, and selected engineering and cost characteristics of today's drilling technology. The user may change many of the assumptions about engineering and cost characteristics to allow WELCST to simulate impacts of specific R and D projects on the estimated cost of wells at the prospects. An important capability of WELCST is that it simulates rates and costs of major drilling mishaps, based on drilling incident data from the Imperial Valley and Geysers geothermal fields. WELCST is capable of estimating geothermal well costs at liquid-dominated (hydrothermal) sites, vapor-dominated sites, geopressured sites, and Hot Dry Rock sites. The model can contribute to many system-optimization studies, and could be easily adapted to estimate well costs outside of the United States.

Entingh, D.J.; Lopez, A.

1979-02-01T23:59:59.000Z

252

Geothermal Information Dissemination and Outreach  

DOE Green Energy (OSTI)

The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

253

Geopressured-geothermal well activities in Louisiana. Annual report, 1 January 1991--31 December 1991  

DOE Green Energy (OSTI)

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

254

DOE - Office of Legacy Management -- Grand Junction Sites  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

255

DOE - Office of Legacy Management -- Oxford OH Site - OH 22  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

256

DOE - Office of Legacy Management -- Maywood Site - NJ 10  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

257

DOE - Office of Legacy Management -- Seymour CT Site - CT 02  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

258

DOE - Office of Legacy Management -- Niagara Falls Storage Site...  

Office of Legacy Management (LM)

Site Fairfield Site Falls City Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison...

259

Northern Nevada Joint Utility Geothermal Project  

SciTech Connect

After approximately eight months of formation discussion between a number of western utilities, a group of five companies defined a project scope, schedule and budget for assessing the prospects for electric power production using Nevada geothermal resources.

Richards, R.G.

1980-12-01T23:59:59.000Z

260

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

262

Applicability of digital terrain analyses to wind energy prospecting and siting  

DOE Green Energy (OSTI)

The recent publication of the Digital Elevation Model (DEM) database by the US Geological Survey (USGS) has provided a unique opportunity for the development of cost-effective wind energy prospecting technology. This database contains terrain elevation values on a Latitude-Longitude grid with a resolution of 3 arc-seconds (about 90 m) for the contiguous United States, Hawaii, and Puerto Rico. This database has been coupled with software that will produce shaded-relief maps on a laser printer in a format compatible with the state wind power maps in the US wind energy atlas. By providing a much higher resolution of the terrain features than was possible when the US atlas was prepared, these maps can be useful in general wind prospecting activities. As highly resolved as the 90-m DEM data seem to be when compared to the atlas grid, they still appear to be too coarse to resolve terrain features in the detail required for local wind flow characterization and wind plant layout. Gridded terrain data at about 10-m resolution are available from the USGS for some areas of the United States. In areas where these data are unavailable, they may be generated by digitizing and gridding the contours from a 1:24,000-scale USGS map over the area of interest. Comparisons of terrain profiles from cross sections of the 10-m and 90-m data provide an indication of the effect of resolution on the reliability of terrain feature representation. Oblique views of the terrain in shaded-relief format provide a dramatic enhancement of the shape and relative position of features of interest.

Wendell, L.L.; Gower, G.L.; Birn, M.B. [Pacific Northwest Lab., Richland, WA (United States); Castellano, C.C. [USDOE, Washington, DC (United States)

1993-07-01T23:59:59.000Z

263

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

264

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

265

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

266

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

267

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

268

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

269

Geothermal Information Dissemination and Outreach  

SciTech Connect

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

270

Geothermal: Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

271

National Geothermal Data System (NGDS)  

DOE Data Explorer (OSTI)

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry. [Copied from http://www.geothermaldata.org/Home.aspx

272

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

273

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

274

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

275

Industrial-market opportunities for geothermal energy in Colorado. Special Publication 20  

DOE Green Energy (OSTI)

Geothermal sites in Colorado are listed. The potential industrial market for geothermal energy in Colorado is described for agriculture, manufacturing, and the tourism and travel industry.

Coe, B.A.

1982-04-01T23:59:59.000Z

276

South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985  

DOE Green Energy (OSTI)

This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

Wegman, S.

1985-01-01T23:59:59.000Z

277

Geothermal: Sponsored by OSTI -- Hydraulic fracturing: insights...  

Office of Scientific and Technical Information (OSTI)

Hydraulic fracturing: insights from field, lab, and numerical studies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

278

Geothermal: Sponsored by OSTI -- Regional issue identification...  

Office of Scientific and Technical Information (OSTI)

issue identification and assessment (RIIA). Volume I. An analysis of the TRENDLONG MID-MID Scenario for Federal Region 10 Geothermal Technologies Legacy Collection HelpFAQ | Site...

279

Geothermal: Sponsored by OSTI -- Improving Convection Parameterization...  

Office of Scientific and Technical Information (OSTI)

Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

280

Geothermal: Sponsored by OSTI -- Injection through fractures  

Office of Scientific and Technical Information (OSTI)

Injection through fractures Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal: Sponsored by OSTI -- Geologic flow characterization...  

Office of Scientific and Technical Information (OSTI)

Geologic flow characterization using tracer techniques Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

282

NREL: Geothermal Technologies - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Data and...

283

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version News Archives -...

284

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

Science Conference Proceedings (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

285

NREL: Energy Analysis - Geothermal Technology Analysis Models...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis Models and Tools The following is a list of models and tools...

286

NREL: Learning - Student Resources on Geothermal Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search More Search Options Site Map Printable Version Student Resources on Geothermal Electricity Production Photo of the Geysers power plants in California. Students can...

287

Geothermal: Sponsored by OSTI -- Generalized displacement correlation...  

Office of Scientific and Technical Information (OSTI)

Generalized displacement correlation method for estimating stress intensity factors Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

288

Geothermal Technologies Available for Licensing - Energy ...  

Site Map; Printable Version; Share this resource. Send a link to Geothermal Technologies Available for Licensing - Energy Innovation Portalto someone by E-mail

289

Geothermal: Sponsored by OSTI -- Selected bibliography: cost...  

Office of Scientific and Technical Information (OSTI)

Selected bibliography: cost and energy savings of conservation and renewable energy technologies Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin...

290

Field tests of a vertical-fluted-tube condenser in the prototype power plant at the Raft River Geothermal Test Site  

DOE Green Energy (OSTI)

A vertical-fluted-tube condenser was designed, fabricated, and tested with isobutane as the shell-side working fluid in a binary prototype power plant at the Raft River Geothermal Test Site. After shakedown and contamination removal operations were completed, the four-pass water-cooled unit (with 102 outside-fluted Admiralty tubes) achieved performance predictions while operating with the plant surface evaporator on-line. A sample comparison shows that use of this enhanced condenser concept offers the potential for a reduction of about 65% from the size suggested by corresponding designs using conventional horizontal-smooth-tube concepts. Subsequent substitution of a direct-contact evaporator for the surface evaporator brought drastic reductions in system performance, the apparent consequence of high concentrations of noncondensible gases introduced by the brine/working-fluid interaction.

Murphy, R.W.

1983-04-01T23:59:59.000Z

291

Geothermal: Sponsored by OSTI -- Geothermal R and D project report...  

Office of Scientific and Technical Information (OSTI)

R and D project report, January 1, 1976--march 31, 1976 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

292

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

293

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

Lunis, B.C.; Toth, W.J. (comps.)

1982-05-01T23:59:59.000Z

294

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

Lunis, B.C. (ed.)

1982-08-01T23:59:59.000Z

295

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

296

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

297

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

298

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

299

Geothermal Technologies Office: Geothermal Electricity Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

300

Geothermal Technologies Office: Enhanced Geothermal Systems Technologi...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal Technologies Office: Enhanced Geothermal Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

302

Advanced geothermal technologies  

DOE Green Energy (OSTI)

Research and development in advanced technologies for geothermal energy production continue to increase the energy production options for the Nation. The high-risk investment over the past few years by the US Department of Energy in geopressured, hot dry rock, and magma energy resources is producing new means to lower production costs and to take advantage of these resources. The Nation has far larger and more regionally extensive geothermal resources than heretofore realized. At the end of a short 30-day closed-loop flow test, the manmade hot dry rock reservoir at Fenton Hill, New Mexico, was producing 10 MW thermal - and still climbing - proving the technical feasibility of this new technology. The scientific feasibility of magma energy extraction has been demonstrated, and new field tests to evaluate this technology are planned. Analysis and field tests confirm the viability of geopressured-geothermal energy and the prospect that many dry-hole or depleted petroleum wells can be turned into producing geopressured-geothermal wells. Technological advances achieved through hot dry rock, magma, geopressured, and other geothermal research are making these resources and conventional hydrothermal resources more competitive. Noteworthy among these technological advances are techniques in computer simulation of geothermal reservoirs, new means for well stimulation, new high-temperature logging tools and packers, new hard-rock penetration techniques, and new methods for mapping fracture flow paths across large underground areas in reservoirs. In addition, many of these same technological advances can be applied by the petroleum industry to help lower production costs in domestic oil and gas fields. 5 refs., 4 figs.

Whetten, J.T.; Murphy, H.D.; Hanold, R.J.; Myers, C.W.; Dunn, J.C.

1988-01-01T23:59:59.000Z

303

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

304

Exploration geothermal gradient drilling, Platanares, Honduras, Central America  

DOE Green Energy (OSTI)

This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

1988-01-01T23:59:59.000Z

305

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

306

Geothermal Handbook  

DOE Green Energy (OSTI)

This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

Leffel, C.S., Jr.; Eisenberg, R.A.

1977-06-01T23:59:59.000Z

307

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

308

DOE - Office of Legacy Management -- Geothermal  

Office of Legacy Management (LM)

Geothermal Test Facility, California Geothermal Test Facility, California This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon Fact Sheet Other Documents Fact Sheet Geothermal Test Facility, California, Site Fact Sheet December 12, 2011 Other Documents Geothermal Test Facility (GTF) Closure and Records Transfer (DOE/National Nuclear Security Administration memorandum) April 23, 2004 Closure Report East Mesa Geothermal Test Facility July 31, 1998 Recission of Waste Discharge Requirements for U.S. Department of Energy, Geothermal Test Facility, East Mesa - El Centro, Imperial County (California Regional Water Quality Control Board letter) January 4, 1997

309

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

310

Geothermal Energy: National Estimate for Direct Use  

SciTech Connect

The purpose of this report is to present the first national estimate of direct geothermal energy use based upon an aggregation of site-specific analyses of all known geothermal resources. The conclusions are: (1) Geothermal energy can make a significant contribution can to the nation's low temperature energy needs and lessen dependence on foreign energy sources. (2) Federal tax incentives and regulatory easement will enhance the development of geothermal energy in the U.S. (3) District heating applications will constitute the major portion of geothermal market penetration. (4) Most development will occur in the western U.S.

1980-12-01T23:59:59.000Z

311

Geothermal Energy: National Estimate for Direct Use  

DOE Green Energy (OSTI)

The purpose of this report is to present the first national estimate of direct geothermal energy use based upon an aggregation of site-specific analyses of all known geothermal resources. The conclusions are: (1) Geothermal energy can make a significant contribution can to the nation's low temperature energy needs and lessen dependence on foreign energy sources. (2) Federal tax incentives and regulatory easement will enhance the development of geothermal energy in the U.S. (3) District heating applications will constitute the major portion of geothermal market penetration. (4) Most development will occur in the western U.S.

None

1980-12-01T23:59:59.000Z

312

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

313

Reservoir engineering report for the magma-SDG and E geothermal experimental site near the Salton Sea, California  

DOE Green Energy (OSTI)

A description of the Salton Sea geothermal reservoir is given and includes approximate fault locations, geology (lithology), temperatures, and estimates of the extent of the reservoir. The reservoir's temperatures and chemical composition are also reviewed. The flow characteristics are discussed after analyses of drillstem tests and extended well tests. The field production, reserves and depletion are estimated, and the effects of fractures on flow and depletion are discussed. The reservoir is believed to be separated into an ''upper'' and ''lower'' portion by a relatively thick and continuous shale layer. The upper reservoir is highly porous, with high permeability and productivity. The lower reservoir is at least twice as large as the upper but has much lower storativity and permeability in the rock matrix. The lower reservoir may be highly fractured, and its temperatures and dissolved solids are greater than those of the upper reservoir. The proven reserves of heat in the upper reservoir are about /sup 1///sub 4/ GW.yr (in the fluid) and /sup 1///sub 3/ GW.yr (in the rock). In the lower reservoir the proven reserves of heat are 5/sup 3///sub 4/ GW.yr (in the fluid) and 17 GW.yr (in the rock). Unproven reserves greatly exceed these numbers. Injection tests following well completion imply that hydraulic fracturing has taken place in two of the SDG and E wells and at least one other well nearby.

Schroeder, R.C.

1976-07-12T23:59:59.000Z

314

Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff &  

Open Energy Info (EERE)

Goff & Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill Hdr Geothermal Area (Goff & Decker, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems in which promising EGS sites occur. References Fraser Goff, Edward R. Decker (1983) Candidate Sites For Future Hot Dry Rock Development In The United States Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Fenton_Hill_Hdr_Geothermal_Area_(Goff_%26_Decker,_1983)&oldid=511314"

315

Subsurface geology and geopressured/geothermal resource evaluation of the Lirette-Chauvin-Lake Boudreaux area, Terrebonne Parish, Louisiana  

Science Conference Proceedings (OSTI)

The geology of a 125 square mile area located about 85 miles southeast of Baton Rouge and about 12 miles southeast of Houma, Louisiana, has been studied to evaluate its potential for geopressured/geothermal energy resources. Structure, stratigraphy, and sedimentation were studied in conjunction with pressure and temperature distributions over a broad area to locate and identify reservoirs that may be prospective. Recommendations concerning future site specific studies within the current area are proposed based on these findings.

Lyons, W.S.

1982-12-01T23:59:59.000Z

316

Site-specific analysis of hybrid geothermal/fossil power plants. Volume One. Roosevelt Hot Springs KGRA  

DOE Green Energy (OSTI)

The economics of a particular hybrid plant must be evaluated with respect to a specific site. This volume focuses on the Roosevelt Hot Springs KGRA. The temperature, pressure, and flow rate data given suggests the site deserves serious consideration for a hybrid plant. Key siting considerations which must be addressed before an economic judgment can be attempted are presented as follows: the availability, quality, and cost of coal; the availability of water; and the availability of transmission. Seismological and climate factors are presented. (MHR)

Not Available

1977-06-01T23:59:59.000Z

317

Geothermal: Sponsored by OSTI -- Data Acquisition for Low-Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Acquisition for Low-Temperature Geothermal Well Tests and Long-Term Monitoring Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

318

Geothermal: Sponsored by OSTI -- CO2-Rock Interactions in EGS...  

Office of Scientific and Technical Information (OSTI)

CO2-Rock Interactions in EGS-CO2: New Zealand TVZ Geothermal Systems as a Natural Analog Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

319

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

SciTech Connect

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

320

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

322

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

323

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

324

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

325

Decision Analysis for Enhanced Geothermal Systems Geothermal...  

Open Energy Info (EERE)

Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Geothermal Analysis Project Description The result of the proposed...

326

"Assistance to States on Geothermal Energy"  

SciTech Connect

This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energyContract Number DE-FG03-01SF22367with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

Linda Sikkema; Jennifer DeCesaro

2006-07-10T23:59:59.000Z

327

"Assistance to States on Geothermal Energy"  

SciTech Connect

This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energyContract Number DE-FG03-01SF22367with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

Linda Sikkema; Jennifer DeCesaro

2006-07-10T23:59:59.000Z

328

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

329

Geothermal initiatives in Central America  

SciTech Connect

The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

1986-01-01T23:59:59.000Z

330

Geothermal development plan: Yuma County  

DOE Green Energy (OSTI)

The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

331

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

332

Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report  

DOE Green Energy (OSTI)

The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

Pilger, R.H. Jr. (ed.)

1985-01-01T23:59:59.000Z

333

Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council  

SciTech Connect

This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

1989-09-26T23:59:59.000Z

334

Geothermal Fact Book  

Science Conference Proceedings (OSTI)

EPRI maintains and updates a database of commonly requested technical information on geothermal power generation technologies, projects, and issues. The database addresses cost and performance, resource assessment, project siting and development, environmental impacts, policy and market drivers, and other relevant issues. The data and information have been compiled into this fact book, building on and complementing the annual Renewable Energy Technology GuideRETG and other EPRI ...

2012-12-31T23:59:59.000Z

335

Geothermal Well Testing and Evaluation | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Testing and Evaluation Geothermal Well Testing and Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geothermal Well Testing and Evaluation Author Jon Ragnarsson Published Iceland Geosurvey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Well Testing and Evaluation Citation Jon Ragnarsson. Geothermal Well Testing and Evaluation [Internet]. 2013. Iceland Geosurvey. [cited 2013/10/18]. Available from: http://www.geothermal.is/geothermal-well-testing-and-evaluation Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Well_Testing_and_Evaluation&oldid=688939" Categories: References Geothermal References Uncited References What links here Related changes Special pages

336

Comprehensive Evaluation of the Geothermal Resource Potential within the  

Open Energy Info (EERE)

Comprehensive Evaluation of the Geothermal Resource Potential within the Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed project will provide state-of-the-art characterization information and a detailed analysis of the geothermal resource potential at the Astor Pass site. The information gained during this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new technologies and geothermal data to the geothermal industry and to create and preserve nearly three dozen jobs that will serve to stimulate the economy in accordance with the American Recovery and Reinvestment Act of 2009.

337

Property:Geothermal/Partner5Website | Open Energy Information  

Open Energy Info (EERE)

Partner5Website Partner5Website Jump to: navigation, search Property Name Geothermal/Partner5Website Property Type URL Description Partner 5 Website (URL) Pages using the property "Geothermal/Partner5Website" Showing 6 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.westerngeco.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.thermasource.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://- + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

338

Geothermal Power and Interconnection: The Economics of Getting to Market  

Science Conference Proceedings (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

339

Investigation and Evaluation of Geopressured-Geothermal Wells; Detailed Reentry Prognosis for Geopressure-Geothermal Testing of The Watkins-Miller No. 1 Well, Cameron Parish, Louisiana  

DOE Green Energy (OSTI)

This Gruy Federal Type II-B prospect was drilled as the Superior Oil Company No. 1 Watkins-Miller, API designation 17-023-20501 and is located in Section 5, T15S, R5W, Cameron Parish, Louisiana. The well site is just north of lot 39 on Indian Point Island and is readily accessible from state highway Route 82 and a shell road in good condition. Superior Oil completed this well in late 1970 as a dual gas producer in sands between 11,150 and 11,250 feet but eventually abandoned the well in December, 1974. The cellar of the well is still visible on the site. This location is shown on the lower portion of USGS topographic sheet ''Grand Lake West'' in the map pocket of the Gruy Federal report ''Investigation and Evaluation of Geopressured-Geothermal Wells, Prospective Test Wells in the Texas and Louisiana Gulf Coast'', February 28, 1978.

None

1978-04-13T23:59:59.000Z

340

Geothermal: Sponsored by OSTI -- A Study of the Large Block Test...  

Office of Scientific and Technical Information (OSTI)

A Study of the Large Block Test as an Analog for Geothermal Site Characterization Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Session: Geopressured-Geothermal  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

342

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

1 runoff - co;il pile Geothermal wells Waste Disposal: WaterLiquid-Dominated Fields Geothermal Nuclear Water EmissionsOil 1. 2. 3. L 3 Gas Geothermal Nuclear Section 1.3 Noise

Nero, A.V.

2010-01-01T23:59:59.000Z

343

National Geothermal Information Resource annual report, 1977  

DOE Green Energy (OSTI)

The National Geothermal Information Resource (GRID) of the Lawrence Berkeley Laboratory is chartered by the U.S. Department of Energy (DOE) to provide critically evaluated data and other information for the development and utilization of geothermal energy. Included are both site dependent and site independent information related to resource evaluation, electrical and direct utilization, environmental aspects, and the basic properties of aqueous electrolytes. The GRID project is involved in cooperative agreements for the interchange of information and data with other organizations. There are currently three U.S. data centers working to implement the collection and exchange of information on geothermal energy research and production: the DOE Technical Information Center (TIC), Oak Ridge, the GEOTHERM database of the U.S. Geological Survey in Menlo Park, and the GRID project. The data systems of TIC, GEOTHERM and GRID are coordinated for data collection and dissemination, with GRID serving as a clearinghouse having access to files from all geothermal databases including both numerical and bibliographic data. GRID interfaces with DOE/TIC for bibliographic information and with GEOTHERM for certain site-dependent numerical data. The program is organized into four principal areas: (1) basic geothermal energy data; (2) site-dependent data for both electrical and direct utilization; (3) environmental aspects, and (4) data handling development. The four sections of the report are organized in this way.

Phillips, S.L.

1978-04-19T23:59:59.000Z

344

Geothermal resources development project: Phase I  

DOE Green Energy (OSTI)

Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

Not Available

1979-09-30T23:59:59.000Z

345

Geothermal Resources (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Conservation and Survey Division School of Natural Resources This section establishes the support of the state for the efficient development of Nebraska's geothermal resources, as well as permitting

346

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

347

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

348

Geothermal turbine  

SciTech Connect

A turbine for the generation of energy from geothermal sources including a reaction water turbine of the radial outflow type and a similar turbine for supersonic expansion of steam or gases. The rotor structure may incorporate an integral separator for removing the liquid and/or solids from the steam and gas before the mixture reaches the turbines.

Sohre, J.S.

1982-06-22T23:59:59.000Z

349

Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979  

DOE Green Energy (OSTI)

An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

LeFebre, V.; Miller, A.

1980-01-01T23:59:59.000Z

350

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

351

Geothermal: Sponsored by OSTI -- Using fully coupled hydro-geomechanic...  

Office of Scientific and Technical Information (OSTI)

Using fully coupled hydro-geomechanical numerical test bed to study reservoir stimulation with low hydraulic pressure Geothermal Technologies Legacy Collection HelpFAQ | Site Map...

352

Geothermal: Sponsored by OSTI -- Internal Technical Report, Safety...  

Office of Scientific and Technical Information (OSTI)

Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Research and Development Plant Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

353

Geothermal: Sponsored by OSTI -- Earth Sciences Division annual...  

Office of Scientific and Technical Information (OSTI)

Earth Sciences Division annual report, 1976. Research programs in Earth sciences Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

354

Geothermal: Sponsored by OSTI -- Solar energy task force report...  

Office of Scientific and Technical Information (OSTI)

task force report technical training guidelines Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

355

Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...  

Open Energy Info (EERE)

1995 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site,...

356

Geothermal: Sponsored by OSTI -- Chapter 17. Engineering cost...  

Office of Scientific and Technical Information (OSTI)

7. Engineering cost analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

357

Geothermal: Sponsored by OSTI -- Chapter 6. Drilling and Well...  

Office of Scientific and Technical Information (OSTI)

Chapter 6. Drilling and Well Construction Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

358

Geothermal: Sponsored by OSTI -- The energy situation in five...  

Office of Scientific and Technical Information (OSTI)

energy situation in five Central American countries Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

359

Geothermal: Sponsored by OSTI -- Annual outlook for US electric...  

Office of Scientific and Technical Information (OSTI)

Annual outlook for US electric power, 1986 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

360

Geothermal: Sponsored by OSTI -- Geological occurrence of gas...  

Office of Scientific and Technical Information (OSTI)

Geological occurrence of gas hydrates at the Blake Outer Ridge, western North Atlantic Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal: Sponsored by OSTI -- Analyses of operational times...  

Office of Scientific and Technical Information (OSTI)

Analyses of operational times and technical aspects of the Salton Sea scientific drilling project: (Final report) Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

362

Geothermal: Sponsored by OSTI -- Overview of the Quality and...  

Office of Scientific and Technical Information (OSTI)

Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

363

Geothermal: Sponsored by OSTI -- Identification of energy and...  

Office of Scientific and Technical Information (OSTI)

Identification of energy and environmental issues in the South: views of officials from selected state agencies Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

364

Geothermal: Sponsored by OSTI -- Energy availabilities for state...  

Office of Scientific and Technical Information (OSTI)

Energy availabilities for state and local development: 1975 data volume Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

365

Geothermal: Sponsored by OSTI -- Solar energy technical training...  

Office of Scientific and Technical Information (OSTI)

technical training directory Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

366

Feasibility Study of Economics and Performance of Geothermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon A Study Prepared in Partnership with the Environmental...

367

Geothermal: Sponsored by OSTI -- 2012 Renewable Energy Data Book...  

Office of Scientific and Technical Information (OSTI)

2012 Renewable Energy Data Book (Book) Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced...

368

Geothermal: Sponsored by OSTI -- Final Scientific/Technical Report  

Office of Scientific and Technical Information (OSTI)

Final ScientificTechnical Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

369

Geothermal: Sponsored by OSTI -- Control of hydrogen sulfide...  

Office of Scientific and Technical Information (OSTI)

III. Final report: demonstration plant equipment descriptions, test plan, and operating instructions Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

370

Geothermal: Sponsored by OSTI -- Caldwell Ranch Exploration and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caldwell Ranch Exploration and Confirmation Project, Northwest Geysers, CA Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

371

Geothermal: Sponsored by OSTI -- GRED STUDIES AND DRILLING OF...  

NLE Websites -- All DOE Office Websites (Extended Search)

STATE 2, AMERICULTURE TILAPIA FARM LIGHTNING DOCK KGRA, ANIMAS VALLEY, NM Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

372

NREL: Learning - Student Resources on Geothermal Heat Pumps  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search More Search Options Site Map Printable Version Student Resources on Geothermal Heat Pumps Photo of students at an elementary school. Students at Slocomb Elementary...

373

NREL: Renewable Resource Data Center - Geothermal Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Resource Data Center Search More Search Options Site Map Printable Version Geothermal Resource Information Photo of the Hot Springs Lodge and Pool. The Hot Springs Lodge...

374

Enhanced Geothermal in Nevada: Extracting Heat From the Earth...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced...

375

Heat flow and microearthquake studies, Coso Geothermal Area,...  

Open Energy Info (EERE)

and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the...

376

Geothermal: Sponsored by OSTI -- Leading trends in environmental...  

Office of Scientific and Technical Information (OSTI)

Leading trends in environmental regulation that affect energy development. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

377

Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration  

Open Energy Info (EERE)

Thermal Infrared Imagery To Geothermal Exploration Thermal Infrared Imagery To Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Application Of Airborne Thermal Infrared Imagery To Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: Burlington Northern (BN) conducted TIR surveys using a fixed wing aircraft over 17 different geothermal prospects in Washington, Montana and Wyoming because of this remote sensing tool's ability to detect variations in the heat emitted from the earth's surface. The surveys were flown at an average elevation of 5000 ft. above the ground surface which gave a spatial resolution of approximately 7 feet diameter. BN found thermal activity which had not been recognized previously in some prospects (e.g., Lester,

378

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) |  

Open Energy Info (EERE)

Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 1974 - 1976 Usefulness useful DOE-funding Unknown Exploration Basis Reconnaissance geothermal exploration Notes A TIR survey of the Raft River geothermal area prospect in Idaho where thermal waters move laterally in an alluvial plain and have no visible surface manifestations was undertaken as part of geothermal exploration. References K. Watson (1974) Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery

379

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

380

Geothermal Technologies Program: Utah  

DOE Green Energy (OSTI)

Geothermal Technologies Program Utah fact sheet describes the geothermal areas and use in Utah, focusing on power generation as well as direct use, including geothermally heated greenhouses, swimming pools, and therapeutic baths.

Not Available

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Application of magnetic method to assess the extent of high temperature geothermal reservoirs  

DOE Green Energy (OSTI)

The extent of thermally altered rocks in high temperature geothermal reservoirs hosted by young volcanic rocks can be assessed from magnetic surveys. Magnetic anomalies associated with many geothermal field in New Zealand and Indonesia can be interpreted in terms of thick (up to 1 km) demagnetized reservoir rocks. Demagnetization of these rocks has been confirmed by core studies and is caused by hydrothermal alteration produced from fluid/rock interactions. Models of the demagnetized Wairakei (NZ) and Kamojang (Indonesia) reservoirs are presented which include the productive areas. Magnetic surveys give fast and economical investigations of high temperature prospects if measurements are made from the air. The magnetic interpretation models can provide important constraints for reservoir models. Magnetic ground surveys can also be used to assess the extent of concealed near surface alteration which can be used in site selection of engineering structures.

Soengkono, S.; Hochstein, M.P.

1995-01-26T23:59:59.000Z

382

Geothermal probabilistic cost study  

DOE Green Energy (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

383

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of  

Open Energy Info (EERE)

Of Geothermal Potential For The Great Basin, Usa- Recognition Of Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Details Activities (8) Areas (4) Regions (0) Abstract: A 1:1,000,000 scale geothermal favorability map of the Great Basin is currently being published through the Nevada Bureau of Mines and Geology (NBMG) and is now available at the web site (http://www.unr.edu/geothermal/geothermal_gis2. htm) of the Great Basin Center for Geothermal Energy (GBCGE). This map allows for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from

384

Progress report on electrical resistivity studies, COSO Geothermal Area,  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The first phase of an electrical geophysical survey of the Coso Geothermal Area is described. The objective of the survey was to outline areas of anomalously conductive ground that may be associated with geothermal activity and to assist in locating drilling sites to test the geothermal potential. Author(s): Ferguson, R. B. Published: Publisher Unknown, 6/1/1973 Document Number: Unavailable DOI: Unavailable Source: View Original Report Electrical Resistivity At Coso Geothermal Area (1972)

385

Property:Geothermal/Partner4Website | Open Energy Information  

Open Energy Info (EERE)

Partner4Website Partner4Website Jump to: navigation, search Property Name Geothermal/Partner4Website Property Type URL Description Partner 4 Website (URL) Pages using the property "Geothermal/Partner4Website" Showing 7 pages using this property. A Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.smu.edu/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sandia.gov/ + D Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

386

Materials selection guidelines for geothermal energy utilization systems  

DOE Green Energy (OSTI)

This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

Ellis, P.F. II; Conover, M.F.

1981-01-01T23:59:59.000Z

387

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

388

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

389

Geothermal development in Australia  

DOE Green Energy (OSTI)

In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

Burns, K.L. [Los Alamos National Lab., NM (United States); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia); Buckingham, N.W. [Glenelg Shire Council, Portland, VIC (Australia); Harrington, H.J. [Australian National Univ., Canberra, ACT (Australia)]|[Sydney Univ., NSW (Australia)

1995-03-01T23:59:59.000Z

390

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

391

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The  

Open Energy Info (EERE)

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews the use of earthquake studies in the field of geothermal exploration. Local, regional and teleseismic events can all provide useful information about a geothermal area on various scales. It is imperative that data collection is conducted in properly designed, realistic experiments. Ground noise is still of limited usefulness as a prospecting tool. The utility of the method cannot yet be assessed because of its undeveloped methodology and the paucity of case histories.

392

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana  

Open Energy Info (EERE)

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Details Activities (2) Areas (1) Regions (0) Abstract: Measurements of heat flow and near-surface (< 500 m) geothermal gradients in the Gulf Coastal Plain suggest a zone of low-grade geothermal resources extending from northern Louisiana across south-central Mississippi. Subsurface temperatures exceeding 50°C, suitable for space-heating use, seem probable at depths of 1 km. Thermal conditions within the zone are comparable to those known for areas having attractive thermal energy prospects on the Atlantic Coastal Plain.

393

A New Geothermal Resource Map Of Nicaragua | Open Energy Information  

Open Energy Info (EERE)

Map Of Nicaragua Map Of Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Geothermal Resource Map Of Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: A recently completed Geothermal Master Plan Study of Nicaragua assesses the geothermal resource potential of the identified fields and prospects in the country. During the course of the 18-month study, existing data were compiled and evaluated and new exploration work was conducted to determine, for each of ten geothermal resource areas studied: 1) the current level of knowledge about the resource; 2) its exploration or development status; 3) a conceptual model of the geothermal system or systems (incorporating geology, volcanology, geophysics, hydrology, fluid chemistry and geothermometry); 4) estimated recoverable energy reserves; 5)

394

Montana geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979  

SciTech Connect

Area development plans were prepared which describe geothermal resources and their potential use on a county or multicounty basis. Development plans for two areas are presented. Cost analyses show that the proximity of the geothermal resource to the end user is the most important criterion in geothermal energy development. Thirteen tentative site-specific plans are being revised. The analysis of institutional factors affecting geothermal development, the outreach, and the state geothermal are discussed briefly. (MHR)

Birkby, J.; Brown, K.; Chapman, M.

1979-06-01T23:59:59.000Z

395

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

396

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

DOE Green Energy (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

397

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

398

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

399

Geothermal: Sponsored by OSTI -- Two-phase flow in geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Two-phase flow in geothermal energy sources. Annual report, June 1, 1975--May 31, 1976 Geothermal Technologies...

400

Geothermal: Sponsored by OSTI -- Hybrid Cooling for Geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report Geothermal Technologies Legacy Collection...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

402

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

403

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Groups > Groups > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

404

Geothermal Tomorrow 2008  

Science Conference Proceedings (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

405

Alaska geothermal bibliography  

DOE Green Energy (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.) [comps.

1987-05-01T23:59:59.000Z

406

Newberry Geothermal | Open Energy Information  

Open Energy Info (EERE)

Newberry Geothermal Jump to: navigation, search Davenport Newberry Holdings (previously named Northwest Geothermal Company) started to develop a 120MW geothermal project on its...

407

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production...

408

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

409

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

410

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

411

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

412

Session: Geopressured-Geothermal  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

1992-01-01T23:59:59.000Z

413

State policies for geothermal development  

DOE Green Energy (OSTI)

The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

Sacarto, D.M.

1976-01-01T23:59:59.000Z

414

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

415

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Atlantic coastal plain geothermal test holes, New Jersey. Hole completion reports  

DOE Green Energy (OSTI)

A description of the Atlantic Coastal Plains Geothermal Drilling Program and data for the following Geothermal test holes drilled in New Jersey are summarized: Site No. 40, Fort Monmouth; Site No. 41, Sea Girt; Site No. 39-A, Forked River; Site No. 38, Atlantic City; and Site No. 36, Cape May.

Cobb, L.B.; Radford, L.; Glascock, M.

1979-03-01T23:59:59.000Z

417

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

418

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fenton Hill Hdr Geothermal Area (Brookins & Laughlin, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Fenton Hill HDR Site References D. G. Brookins, A. W. Laughlin (1983) Rb-Sr Geochronologic Investigation Of Precambrian Samples From Deep Geothermal Drill Holes, Fenton Hill, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Fenton_Hill_Hdr_Geothermal_Area_(Brookins_%26_Laughlin,_1983)&oldid=511281"

419

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

420

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Direct Confirmation of Commercial Geothermal Resources in Colorado  

Open Energy Info (EERE)

Direct Confirmation of Commercial Geothermal Resources in Colorado Direct Confirmation of Commercial Geothermal Resources in Colorado Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Direct Confirmation of Commercial Geothermal Resources in Colorado Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The program is phased in three segments: -Phase 1: Acquisition, Processing and Analysis of Remote Sensing Data -Phase 2: Conduct on site Temperature Surveys and Map results -Phase 3: Drill and Test Geothermal Resource -minimum of Two Wells The direct benefits of a successful Program will be application of new processing of existing of Remote Sensing Data as a means to identify other commercial geothermal resouces throughout the United States.

422

Alaska: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

423

Oregon: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

424

Raft River Geothermal Aquaculture Experiment. Phase II  

DOE Green Energy (OSTI)

Channel catfish, tilapia and Malaysian prawns were cultured directly in geothermal water for approximately seven months at the Department of Energy, Raft River Geothermal Site, to evaluate the organisms throughout a grow-out cycle. Parameters evaluated included survival, growth, bioaccumulation of metals and fluoride, collagen synthesis, and bone calcium levels. Growth at Raft River was slightly lower than at a companion commercial facility at Buhl, Idaho, but was attributed to facility differences rather than an adverse impact of geothermal water. No significant differences were recorded between Raft River and Buhl fish for bone calcium or collagen concentrations. No significant accumulation of heavy metals by fish or prawns was recorded.

Campbell, D.K.; Rose, F.L.; Kent, J.C.; Watson, L.R.; Sullivan, J.F.

1979-08-01T23:59:59.000Z

425

Washington: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-01-01T23:59:59.000Z

426

Hot dry rock geothermal energy. Draft final report  

DOE Green Energy (OSTI)

This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new site would have to be selected in parallel with the confirmatory studies because it would have to be modeled as part of the studies and because its similarity to other candidate sites must be known well enough to assure that results at the selected site are relevant to many others. Also, the industry partners in the joint effort at the new site must be part of the confirmatory studies, because they must be convinced of the economic feasibility. This meeting may have brought together the core of people who can make such a joint effort take place. EPRI sponsored the organization of this meeting in order to provide utilities with an update on the prospects for power generation via heat mining. Although the emerging rules for electric utilities competing in power generation make it very unlikely that the rate-payers of any one utility (or small group of utilities) can pay the differential to support this new heat mining research and development effort, the community represented at this meeting may be able to make the case for national or international support of a new heat mining effort, based on the potential size and economics of this resource as a benefit for the nation as a whole and as a contribution to reduced emissions of fossil CO{sub 2} worldwide.

Not Available

1994-09-01T23:59:59.000Z

427

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

428

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

429

INEL geothermal environmental program. 1980 annual report  

DOE Green Energy (OSTI)

An overview of continuing environmental research and monitoring programs conducted at the Raft River Geothermal Site is provided. The monitoring programs are designed to collect data on the physical, biological and human environments of the development area. Primary research during 1980 emphasized completing baseline studies on terrestrial fauna, establishing an air quality monitoring network, investigating potential sources of fluoride in the Raft River Valley, and studying water level changes in the shallow monitor wells in response to development of the geothermal resource.

Cahn, L.S.; Thurow, T.L.; Martinez, J.A.

1981-04-01T23:59:59.000Z

430

Appraisal study of the geothermal resources of Arizona and adjacent areas in New Mexico and Utah and their value for desalination and other uses  

DOE Green Energy (OSTI)

An appraisal investigation of the geothermal resources of a portion of the Lower Colorado River Region of the U.S. Bureau of Reclamation is reported. The study area includes most of Arizona, part of western New Mexico west of the continental divide, and a small part of southwestern Utah. Almost 300 water samples have been collected from the study area and chemically analyzed. These samples include hot wells and springs in addition to nearby nonthermal waters to help establish background chemistry. Further, almost 10,000 chemical analyses of groundwaters were obtained from the U.S. Geological Survey's water quality file. Routine geothermal interpretative techniques were then applied to these chemical data to identify geothermal anomalies which might indicate the presence of exploitable geothermal resources. These geochemical anomalies were then evaluated in terms of available geophysical data such as heat flow, gravity, magnetics, basement linears, earthquake epicentral locations, depth of sedimentary basins, quaternary volcanics, recent fault scarps, etc. to further delineate the size and shape of the prospective geothermal sites and help establish their production potential.

Callender, J.F.; Swanberg, C.A.; Morgan, P.; Stoyer, C.H.; Witcher, J.C.

1977-07-01T23:59:59.000Z

431

Category:Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

of 6 total. G GeothermalExploration GeothermalLand Use GeothermalLeasing GeothermalPower Plant GeothermalTransmission GeothermalWell Field Retrieved from "http:...

432

Chemical logging- a geothermal technique | Open Energy Information  

Open Energy Info (EERE)

logging- a geothermal technique logging- a geothermal technique Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical logging- a geothermal technique Details Activities (1) Areas (1) Regions (0) Abstract: Chemical logging studies conducted at the Department of Energy's Raft River Geothermal Test Site in south central Idaho resulted in the development of a technique to assist in geothermal well drilling and resource development. Calcium-alkalinity ratios plotted versus drill depth assisted in defining warm and hot water aquifers. Correlations between the calcium-alkalinity log and lithologic logs were used to determine aquifer types and detection of hot water zones 15 to 120 m before drill penetration. INEL-1 at the Idaho National Engineering Laboratory site in

433

Geothermal publications list for Geopowering the West States  

DOE Green Energy (OSTI)

A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

None

2004-12-01T23:59:59.000Z

434

Feasibility of using geothermal effluents for waterfowl wetlands  

SciTech Connect

This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

None

1981-09-01T23:59:59.000Z

435

Guidebook to Geothermal Finance  

Science Conference Proceedings (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

436

Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration  

DOE Green Energy (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

437

Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase II. Final report. Volume III. Systems description  

DOE Green Energy (OSTI)

The major fraction of hydrothermal resources that have the prospect of being economically useful for the generation of electricity are in the 300/sup 0/F to 425/sup 0/F temperature range. Cost-effective conversion of the geothermal energy to electricity requires the conception and reduction to practice of new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed during past activities are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low-temperature resource, and in geothermal economics. Explained in detail in this document, some of these problems are: the energy expended by the down-hole pump; the difficulty in designing reliable down-hole equipment; fouling of heat-exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect - a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat-exchanger costs - the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW (actually, more than inversely proportional); the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

Matthews, H.B.

1984-01-01T23:59:59.000Z

438

Attenuation structure of Coso geothermal area, California, from wave pulse  

Open Energy Info (EERE)

structure of Coso geothermal area, California, from wave pulse structure of Coso geothermal area, California, from wave pulse widths Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Attenuation structure of Coso geothermal area, California, from wave pulse widths Details Activities (1) Areas (1) Regions (0) Abstract: Pulse width data are used to invert for attenuation structure in the Coso geothermal area, California. The dataset consists of pulse width measurements of 838 microseismic events recorded on a seismic array of 16 downhole stations between August 1993 and March 1994. The quality factor Q correlates well with surface geology and surface heat flow observations. A broad region of low Q (≈ 30 to 37) is located at 0.5 to 1.2 km in depth below Devil's Kitchen, Nicol Prospects, and Coso Hot Springs. A vertical,

439

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy...

440

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Holocene Magmatic Geothermal Region (Redirected from Holocene Magmatic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Holocene Magmatic Geothermal Region Details...

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Hydrodynamic/kinetic reactions in liquid dominated geothermal systems: Hydroscale Test Program, Mercer 2 well site South Brawley, California (Tests No. 15--20). Final report, 27 October 1980--6 February 1981  

DOE Green Energy (OSTI)

The Aerojet Energy Conversion Company, under contract to the Los Alamos National Laboratory, US Department of Energy, has constructed and tested a mobile geothermal well-site test unit at the Mercer 2 well in South Brawley, California (Imperial Valley). The equipment controlled, monitored, and recorded all process conditions of single- and dual-flash power cycles. Single- and two-phase flashed brine effluents were flowed through piping component test sections to provide hydrodynamic/kinetic data for scale formation. The unit operated at flowrates in excess of 200 gpm and is designed to accommodate flowrates up to 300 gpm. Primary scale formations encountered were those of Pbs, Fe{sub 2} (OH){sub 3}Cl (iron hydroxychloride), iron chlorides, and non-crystalline forms Of SiO{sub 2}. The formation of iron hydroxychloride was due to the unusually high concentration of iron in the wellhead brine (5000 mg/1).

Nesewich, J.P.; Gracey, C.M. [Los Alamos National Lab., NM (United States)

1982-04-01T23:59:59.000Z

442

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

443

Exploration Criteria for Low Permeability Geothermal Resources  

DOE Green Energy (OSTI)

The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results of the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005

Norton, D.

1977-03-01T23:59:59.000Z

444

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

445

Geothermal Exploration Using Surface Mercury Geochemistry | Open Energy  

Open Energy Info (EERE)

Surface Mercury Geochemistry Surface Mercury Geochemistry Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Details Activities (5) Areas (3) Regions (0) Abstract: Shallow, soil-mercury surveys can be used effectively in exploration for geothermal resources. Soil-mercury data from six areas in Nevada, California and New Mexico are analyzed using contour maps, histogram and probability graphs. Plotting on probability graphs allows background and anomalous populations to be resolved even when considerable overlap between populations is present. As is shown in several examples, separate soil-mercury populations can be plausibly interpreted. Mercury data can significantly enhance the structural understanding of a prospect

446

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

447

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

448

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

449

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

450

A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS  

E-Print Network (OSTI)

Pleasant Bayw Prospect, Texas Location ma0 EXPLANATION Sanecosystem of Louisiana and Texas: U.S. Fish and WildlifeGeothermal resources of the Texas Gulf Coast, in Vanston, J.

Lee, L.M.

2010-01-01T23:59:59.000Z

451

Case study data base companion report 3 to simulation of geothermal subsidence (LBL-10571)  

DOE Green Energy (OSTI)

The data base developed for selection and evaluation of geothermal subsidence case studies is presented. Data from this data base were used in case studies of Wairakei, The Geysers, and Austin Bayou Prospect (Report LBL 10571).

Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

1980-03-01T23:59:59.000Z

452

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

453

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

454

EIA Energy Kids - Geothermal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Geothermal Basics What Is Geothermal Energy? The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within ...

455

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

456

Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981  

DOE Green Energy (OSTI)

Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

Not Available

1981-01-01T23:59:59.000Z

457

Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979  

DOE Green Energy (OSTI)

The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.; Gupta, Y.F.; Davis, R.J.

1979-06-01T23:59:59.000Z

458

Neutron imaging for geothermal energy systems  

Science Conference Proceedings (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

459

Geothermal application feasibility study for the New Mexico State University campus. Technical report  

DOE Green Energy (OSTI)

The following are covered: a geothermal prospect conceptual study for NMSU campus, geothermal resources on and near NMSU land, present campus heating and cooling system, conceptual design and preliminary cost estimates - alternative systems, economic analysis, and legal and environmental considerations. (MHR)

Gunaji, N.N.; Thode, E.F.; Chaturvedi, L.; Walvekar, A.; LaFrance, L.; Swanberg, C.A.; Jiracek, G.R.

1978-12-01T23:59:59.000Z

460

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal sites prospecting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

462

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

463

Geothermal well stimulation treatments  

DOE Green Energy (OSTI)

The behavior of proppants in geothermal environments and two field experiments in well stimulation are discussed. (MHR)

Hanold, R.J.

1980-01-01T23:59:59.000Z

464

Geothermal Energy Technology Guide  

Science Conference Proceedings (OSTI)

Geothermal power production is a renewable technology with a worldwide operating capacity of more than 11,000 MW. Geothermal reservoirs have been a commercial reality in Italy, Japan, the United States, Iceland, New Zealand, and Mexico for many decades. According to the Energy Information Administration, the United States is the world leader in electricity production from geothermal resources with approximately 16,791 GWh of net production in 2012. Future geothermal power generation will depend on ...

2013-12-23T23:59:59.000Z

465

South Dakota geothermal handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

1980-06-01T23:59:59.000Z

466

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

467

1992--1993 low-temperature geothermal assessment program, Colorada  

DOE Green Energy (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

Cappa, J.A.; Hemborg, H.T.

1995-01-01T23:59:59.000Z

468

California: basic data for thermal springs and wells as recorded in GEOTHERM. Part A  

DOE Green Energy (OSTI)

This GEOTHERM sample file contains 1535 records for California. Three computer-generated indexes give one line summaries of each GEOTHERM record. Each index is sorted by different variables to assist in locating geothermal records describing specific sites. 7 refs. (ACR)

Bliss, J.D.

1983-07-01T23:59:59.000Z

469

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal  

Open Energy Info (EERE)

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Author Richard Zehner Organization U.S. Department of Energy Published U.S. Department of Energy, 2010 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Citation Richard Zehner (U.S. Department of Energy). 2010. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously

470

Geothermal Resources Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Buying & Making Electricity Program Info State Texas Program Type Siting and Permitting Provider Railroad Commission of Texas The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide a dependable supply of energy in an efficient manner that avoids waste of the energy resources. Secondary considerations will be afforded to the protection of the environment, the protection of correlative rights, and the conservation of

471

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

472

Results from geopressured-geothermal subsidence studies  

DOE Green Energy (OSTI)

Benchmark networks have been installed around each of the US Department of Energy geopressured-geothermal test sites in southwestern Louisiana. These networks are periodically surveyed to detect subsidence which may be attributable to depressurization of the geopressured-geothermal reservoirs. The acquired leveling data have been adjusted to account for regional base-line movement determined in another study. The effects of geopressured-geothermal development can only be assessed after carefully examining other potential causes of subsidence. The histories of oil and gas production and ground-water withdrawal around the geopressured-geothermal test site at Parcperdue indicate that oil, gas, and ground-water production may contribute much more to anomalous subsidence than recent geopressured-geothermal brine production. A trend-surface analysis of leveling data for the Parcperdue test site allowed for the separation of a regional component of movement attributable to uplift in the Iberian structural axis to the east and subsidence above a Pleistocene depocenter to the west of the test site. Residual deviations from the regional trend may be associated with the temporary loading and compaction of surface soils caused by the weight of drilling equipment and with ground-water withdrawal.

Trahan, D.B.

1984-01-01T23:59:59.000Z

473

Geothermal direct heat applications program summary  

DOE Green Energy (OSTI)

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

474

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

475

Candidate Sites For Future Hot Dry Rock Development In The United States |  

Open Energy Info (EERE)

Candidate Sites For Future Hot Dry Rock Development In The United States Candidate Sites For Future Hot Dry Rock Development In The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Candidate Sites For Future Hot Dry Rock Development In The United States Details Activities (8) Areas (4) Regions (0) Abstract: Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is categorized according to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are

476

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

477

The Impact of Taxation on the Development of Geothermal Resources  

DOE Green Energy (OSTI)

This contractor report reviews past and current tax mechanisms for the development and operation of geothermal power facilities. A 50 MW binary plant is featured as the case study. The report demonstrates that tax credits with windows of availability of greater than one year are essential to allow enough time for siting and design of geothermal power systems. (DJE 2005)

Gaffen, Michael; Baker, James

1992-09-01T23:59:59.000Z

478

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

479

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New