National Library of Energy BETA

Sample records for geothermal site identification

  1. New geothermal site identification and qualification. Final report

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This study identifies remaining undeveloped geothermal resources in California and western Nevada, and it estimates the development costs of each. It has relied on public-domain information and such additional data as geothermal developers have chosen to make available. Reserve estimation has been performed by volumetric analysis with a probabilistic approach to uncertain input parameters. Incremental geothermal reserves in the California/Nevada study area have a minimum value of 2,800 grosss MW and a most-likely value of 4,300 gross MW. For the state of California alone, these values are 2,000 and 3,000 gross MW, respectively. These estimates may be conservative to the extent that they do not take into account resources about which little or no public-domain information is available. The average capital cost of incremental generation capacity is estimated to average $3,100/kW for the California/Nevada study area, and $2,950/kW for the state of California alone. These cost estimates include exploration, confirmation drilling, development drilling, plant construction, and transmission-line costs. For the purposes of this study, a capital cost of $2,400/kW is considered competitive with other renewable resources. The amount of incremental geothermal capacity available at or below $2,400/kW is about 1,700 gross MW for the California/Nevada study area, and the same amount (within 50-MW rounding) for the state of California alone. The capital cost estimates are only approximate, because each developer would bring its own experience, bias, and opportunities to the development process. Nonetheless, the overall costs per project estimated in this study are believed to be reasonable.

  2. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding access toSmallTechnicalSheldon Glashow and the ElectroweakSite Map

  3. NREL Geothermal Policymakers' Guidebooks Web site (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This document highlights the NREL Geothermal Policymakers' Guidebooks Web site, including the five steps to effective geothermal policy development for geothermal electricity generation and geothermal heating and cooling technologies.

  4. Identification of high angle structures controlling the geothermal...

    Open Energy Info (EERE)

    Identification of high angle structures controlling the geothermal system at Rye Patch, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  5. Geothermal Site Assessment Using the National Geothermal Data...

    Open Energy Info (EERE)

    Company Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studiesexamples,...

  6. Geothermal Well Site Restoration and Plug and Abandonment of Wells

    SciTech Connect (OSTI)

    Rinehart, Ben N.

    1994-08-01

    A report is presented on the final phase of an energy research program conducted by the U.S. Department of Energy (DOE) involving two geothermal well sites in the State of Louisiana-the Gladys McCall site and the Willis Hulin site. The research program was intended to improve geothermal technology and to determine the efficacy of producing electricity commercially from geopressured resource sites. The final phase of the program consisted of plug and abandonment (P&A) of the wells and restoration of the well sites. Restoration involved (a) initial soil and water sampling and analysis; (b) removal and disposal of well pads, concrete, utility poles, and trash; (c) plugging of monitor and freshwater wells; and (d) site leveling and general cleanup. Restoration of the McCall site required removal of naturally occurring radioactive material (NORM), which was costly and time-consuming. Exhibits are included that provide copies of work permits and authorizations, P&A reports and procedures, daily workover and current conditions report, and cost and salvage reports. Site locations, grid maps, and photographs are provided.

  7. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    SciTech Connect (OSTI)

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  8. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect (OSTI)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. (Los Alamos National Lab., NM (United States)); Aycinena, S.; Martinelli, L. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O.; Revolorio, M.; Roldan, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  9. Stochastic inversion of magnetotelluric data using a sharp boundary parameterization and application to a geothermal site

    E-Print Network [OSTI]

    Chen, Jinsong

    and application to a geothermal site Jinsong Chen1 , G. Michael Hoversten2 , Kerry Key3 , Gregg Nordquist4 assumed that those variables are independent in the vertical direction and depen- dent along the lateral case that mimics a geothermal exploration scenario. Our results demonstrated that the de- veloped

  10. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

  11. RAPID/Geothermal/Site Considerations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal < RAPID‎

  12. RAPID/Geothermal/Transmission Siting & Interconnection | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal < RAPID‎Information form

  13. RAPID/Geothermal/Transmission Siting & Interconnection/California | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal < RAPID‎InformationEnergy

  14. RAPID/Geothermal/Transmission Siting & Interconnection/Colorado | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal <

  15. RAPID/Geothermal/Transmission Siting & Interconnection/Montana | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal

  16. RAPID/Geothermal/Transmission Siting & Interconnection/Utah | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/LandInformation Transmission Siting &

  17. Nevada/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Confirmation Silver Peak Geothermal Area Walker-Lane Transition Zone Geothermal Region Smith Creek Geothermal Project Ormat Phase I - Resource Procurement and Identification Smith...

  18. New Geothermal Site Identification and Qualification | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: Energy ResourcesCorporation

  19. Site Identification by Ligand Competitive Saturation (SILCS)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    binding sites on protein surfaces for functional group classes based on rigorous free energy criteria that include protein flexibility and fragment desolvation. Information...

  20. Radar imagery interpretation to provide information about several geothermal sites in the Philippines

    SciTech Connect (OSTI)

    Not Available

    1988-11-17

    The Republic of the Philippines is intensely interested in the identification, development, and conservation of natural resources. In keeping with this, the Government of the Philippines has recently completed a nation-wide sedimentary basin evaluation program to assess hydrocarbon potential and assist in future exploration activities. This program of collection and interpretation of the radar imagery was designed to augment and complement the existing data base. The primary objective of the project was to further the goals of international energy development by aiding the Republic of the Philippines in the assessment of potential geothermal and petroleum prospects within the areas imaged. Secondary goals were to assist the Republic of the Philippines in utilizing state-of-the-art radar remote sensing technology for resource exploration, and to train key Philippines scientists in the use of imaging radar data. 7 refs., 20 figs., 2 tabs.

  1. Bulletin of the Seismological Society of America, 90, 6, pp. 15281534, December 2000 Spatial Correlation of Seismic Slip at the HDR-Soultz Geothermal Site

    E-Print Network [OSTI]

    Correlation of Seismic Slip at the HDR-Soultz Geothermal Site: Qualitative Approach by Peter Starzec, Michael injection well at Soultz-sou-Fore^ts Hot Dry Rock geothermal site (Alsace, France). Variograms obtained of fractures in a borehole. We found that variograms exhibiting spatial dependency correlated well with zones

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Exploration Basis examining known geothermal sites in New Mexico Notes...

  3. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect (OSTI)

    Anderson, Arlene; Allison, Lee; Richard, Steve; Caudill-Daugherty, Christy; Patten, Kim

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry have been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.

  4. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  5. Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field

    E-Print Network [OSTI]

    Foxall, B.; Vasco, D.W.

    2008-01-01

    site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

  6. RAPID/Geothermal/Transmission Siting & Interconnection/Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal < RAPID‎Information

  7. RAPID/Geothermal/Transmission Siting & Interconnection/Hawaii | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal <Information

  8. RAPID/Geothermal/Transmission Siting & Interconnection/Idaho | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/Federal <InformationInformation

  9. RAPID/Geothermal/Transmission Siting & Interconnection/Nevada | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/FederalInformation

  10. RAPID/Geothermal/Transmission Siting & Interconnection/Oregon | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land Use/FederalInformationInformation

  11. RAPID/Geothermal/Transmission Siting & Interconnection/Texas | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/Land

  12. Modeling correlation in binary count data with application to fragile site identification

    E-Print Network [OSTI]

    Hintze, Christopher Jerry

    2006-10-30

    Available fragile site identification software packages (FSM and FSM3) assume that all chromosomal breaks occur independently. However, under a Mendelian model of inheritance, homozygosity at fragile loci implies pairwise correlation between...

  13. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

  14. Identification and Characterization of a Bacterial Chromosome Partitioning Site

    E-Print Network [OSTI]

    Lin, Daniel Chi-Hong

    We have identified a DNA site involved in chromosome partitioning in B. subtilis. This site was identified in vivo as the binding site for the chromosome partitioning protein Spo0J, a member of the ParB family of partitioning ...

  15. TRACKING SITE

    Energy Science and Technology Software Center (OSTI)

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site. https://github.com/usgin/aasgtrack

  16. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

  17. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Rummel, F. , 2006. The deep EGS (Enhanced Geothermal System)stimulation at the European EGS site Soultz-sous-Forets. In:at naturally fractured EGS sites. Geothermal Resources

  18. Enhanced Geothermal Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Geothermal Systems Enhanced Geothermal Systems EGS 2 Page 1.jpg Steps to Develop Power Production at an EGS Site Step 1: IdentifyCharacterize a Site Develop a geologic...

  19. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect (OSTI)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  20. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    SciTech Connect (OSTI)

    Levey, Schon S.

    2010-12-01

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  1. Biomaterials 23 (2002) 38653870 Identification and validation of a novel cell-recognition site

    E-Print Network [OSTI]

    Weng, Zhiping

    2002-01-01

    Biomaterials 23 (2002) 38653870 Identification and validation of a novel cell-recognition site in the 10th type III domain, are effective in promoting cell adhesion when immobilized to a biomaterial adhesion by Pierschbacher and Ruoslahti [1] revolutio- nized the area of biomaterials because it was subse

  2. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    E-Print Network [OSTI]

    Zhang, Haijiang

    2012-01-01

    We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

  3. A Roadmap for Strategic Development of Geothermal Exploration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    site, near Bend, Oregon. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems 2013 Peer Review Opening Plenary Presentation Geothermal Home About the...

  4. Geothermal-energy files in computer storage: sites, cities, and industries

    SciTech Connect (OSTI)

    O'Dea, P.L.

    1981-12-01

    The site, city, and industrial files are described. The data presented are from the hydrothermal site file containing about three thousand records which describe some of the principal physical features of hydrothermal resources in the United States. Data elements include: latitude, longitude, township, range, section, surface temperature, subsurface temperature, the field potential, and well depth for commercialization. (MHR)

  5. Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Hillesheim, M.; Mosey, G.

    2013-11-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

  6. Final Scientific - Technical Report, Geothermal Resource Exploration...

    Open Energy Info (EERE)

    of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8...

  7. 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...

    Open Energy Info (EERE)

    smoothing revealed significant results from 10 out of 16 sites. Indication for 1-D structures was found in the shortest periods, 2-D effects in the periods up to 40 s, and 3-D...

  8. Novel Thermo-Acidophilic Bacteria Isolated from Geothermal Sites in Yellowstone National Park: Physiological and Phylogenetic Characteristics

    SciTech Connect (OSTI)

    D. B. Johnson; N. Okibe; F. F. Roberto

    2003-07-01

    Moderately thermophilic acidophilic bacteria were isolated from geothermal (3083 C) acidic (pH 2.7 3.7) sites in Yellowstone National Park. The temperature maxima and pH minima of the isolates ranged from 50 to 65 C, and pH 1.01.9. Eight of the bacteria were able to catalyze the dissimilatory oxidation of ferrous iron, and eleven could reduce ferric iron to ferrous iron in anaerobic cultures. Several of the isolates could also oxidize tetrathionate. Six of the iron-oxidizing isolates, and one obligate heterotroph, were low G+C gram-positive bacteria (Firmicutes). The former included three Sulfobacillus-like isolates (two closely related to a previously isolated Yellowstone strain, and the third to a mesophilic bacterium isolated from Montserrat), while the other three appeared to belong to a different genus. The other two iron-oxidizers were an Actinobacterium (related to Acidimicrobium ferrooxidans) and a Methylobacterium-like isolate (a genus within the a-Proteobacteria that has not previously been found to contain either iron-oxidizers or acidophiles). The other three (heterotrophic) isolates were also a-Proteobacteria and appeared be a novel thermophilic Acidisphaera sp. An ARDREA protocol was developed to discriminate between the iron-oxidizing isolates. Digestion of amplified rRNA genes with two restriction enzymes (SnaBI and BsaAI) separated these bacteria into five distinct groups; this result was confirmed by analysis of sequenced rRNA genes.

  9. New River Geothermal Research Program

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

  10. Navy Geothermal Plan

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  11. Numerical simulation study of silica and calcite dissolution around a geothermal well by injecting high pH solutions with chelating agent.

    E-Print Network [OSTI]

    Xu, Tianfu

    2009-01-01

    unit at the Enhanced Geothermal System (EGS) site at Desertof developing an Enhanced Geothermal System. The project is

  12. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  13. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-B: Resource description, program history, wells tested, university and company based research, site restoration

    SciTech Connect (OSTI)

    John, C.J.; Maciasz, G.; Harder, B.J.

    1998-06-01

    The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Design well program; LaFourche Crossing; MG-T/DOE Amoco Fee No. 1 (Sweet Lake); Environmental monitoring at Sweet Lake; Air quality; Water quality; Microseismic monitoring; Subsidence; Dow/DOE L.R. Sweezy No. 1 well; Reservoir testing; Environmental monitoring at Parcperdue; Air monitoring; Water runoff; Groundwater; Microseismic events; Subsidence; Environmental consideration at site; Gladys McCall No. 1 well; Test results of Gladys McCall; Hydrocarbons in production gas and brine; Environmental monitoring at the Gladys McCall site; Pleasant Bayou No. 2 well; Pleasant Bayou hybrid power system; Environmental monitoring at Pleasant Bayou; and Plug abandonment and well site restoration of three geopressured-geothermal test sites. 197 figs., 64 tabs.

  15. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  16. COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald...

    Office of Scientific and Technical Information (OSTI)

    at six geothermal sites in the western United States. the energy resources and the power plant is addressed, and an analysis given for a hypothetical geothermal resource. System...

  17. Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area, Iceland: Variation of temperature

    E-Print Network [OSTI]

    Foulger, G. R.

    Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The likely measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up

  18. National Geothermal Data System Architecture Design, Testing...

    Broader source: Energy.gov (indexed) [DOE]

    objective: To create the National Geothermal Data System (NGDS) comprised of a core and distributed network of databases and data sites that will comprise a federated system for...

  19. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be produced at temperatures below the boiling point (212 degrees Fahrenheit).This innovation increases the development potential of geothermal sites worldwide. The exciting news...

  20. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  1. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  9. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  10. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  11. Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix landing site: Implications for substrate

    E-Print Network [OSTI]

    Marchant, David R.

    Identification of sublimation-type thermal contraction crack polygons at the proposed NASA Phoenix within the NASA Phoenix landing site Area D characterized by boulder-topped, polygonally-patterned mounds of buried ice. On the basis of morphological similarities, we classify the Phoenix Box 1 polygons

  12. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  13. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Fiscal Year...

  14. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  15. On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    at the Desert Peak east EGS area, Nevada, In Proceedings ofof enhanced geothermal systems (EGS) on the United States inthe Enhanced Geothermal Systems (EGS) site at Desert Peak (

  16. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  17. On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    impact of enhanced geothermal systems (EGS) on the UnitedStimulation of an Enhanced Geothermal System using a High pHunit at the Enhanced Geothermal Systems (EGS) site at Desert

  18. On modeling of chemical stimulation of an enhanced geothermal system using a high pH solution with chelating agent

    E-Print Network [OSTI]

    Xu, T.

    2009-01-01

    energy impact of enhanced geothermal systems (EGS) on theStimulation of an Enhanced Geothermal System using a High pHunit at the Enhanced Geothermal Systems (EGS) site at Desert

  19. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    SciTech Connect (OSTI)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  20. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  1. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  2. "Assistance to States on Geothermal Energy"

    SciTech Connect (OSTI)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energyContract Number DE-FG03-01SF22367with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

  3. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  8. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  9. National Geothermal Data System - DOE Geothermal Data Repository...

    Energy Savers [EERE]

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  10. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  11. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional...

  12. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  13. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    SciTech Connect (OSTI)

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  14. Geothermal initiatives in Central America

    SciTech Connect (OSTI)

    Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

    1986-01-01

    The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

  15. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  16. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  17. Geothermal Energy Association Recognizes the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems Geothermal energy, traditionally a baseload power source among renewables,...

  18. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect (OSTI)

    Pilger, R.H. Jr. (ed.)

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  19. Effectiveness of Shallow Temperatures Surveys to Target a Geothermal...

    Open Energy Info (EERE)

    Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Site at Mcgee Mountain, Nevada Jump to: navigation, search OpenEI Reference...

  20. DOE-Backed Project Will Demonstrate Innovative Geothermal Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Davenport Newberry, announced plans on June 8 to conduct a demonstration of Enhanced Geothermal Systems (EGS) technology at a site located near Bend, Oregon. The purpose of this...

  1. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  2. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  3. Sandia Energy - Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy & Drilling Technology Home Stationary Power Energy Conversion Efficiency Geothermal Geothermal Energy & Drilling Technology Geothermal Energy & Drilling...

  4. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  5. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect (OSTI)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  6. Site-Specific Chemoenzymatic Labeling of Aerolysin Enables the Identification of New Aerolysin Receptors

    E-Print Network [OSTI]

    Wuethrich, Irene

    Aerolysin is a secreted bacterial toxin that perforates the plasma membrane of a target cell with lethal consequences. Previously explored native and epitope-tagged forms of the toxin do not allow site-specific modification ...

  7. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  8. Geothermal Progress Monitor report No. 11

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  9. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  10. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation...

  11. Identification of Potential Sites for Astronomical Observations in Northern South-America

    E-Print Network [OSTI]

    Pinzn, G; Hernndez, J

    2015-01-01

    In this study we describe an innovative method to determine potential sites for optical and infrared astronomical observations in the Andes region of northern South America. The method computes the Clear sky fraction (CSF) from Geostationary Observational Environmental Satellite (GOES) data for the years 2008-12 through a comparison with temperatures obtained from long-term records of weather stations and atmospheric temperature profiles from radiosonde. Criteria for sky clearance were established for two infrared GOES channels in order to determine potential sites in the Andes region of northern South-America. The method was validated using the reported observed hours at Observatorio Nacional de Llano del Hato in Venezuela. Separate CSF percentages were computed for dry and rainy seasons for both, photometric and spectroscopic night qualities. Twelve sites with five year averages of CSF for spectroscopic nights larger than 30% during the dry seasons were found to be suitable for astronomical observations. Th...

  12. National Geothermal Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Energy Association (GEA) will be holding its fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  13. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  14. Identification of Substrate Binding Sites in Enzymes by Computational Solvent Mapping

    E-Print Network [OSTI]

    Vajda, Sandor

    . Dennis, Biotechnology Research Institute, National Research Council of Canada, Montreal, Canada; L. Brown * 1 Program in Bioinformatics Boston University, Boston, MA 02215, USA 2 Department of Biomedical with the most favorable binding free energy. The method then finds the con- sensus site that binds the highest

  15. Identification of an octamer-binding site in the human kappa light-chain enhancer

    SciTech Connect (OSTI)

    Nelms, K.; Van Ness, B. (Institute of Human Genetics and Dept. of Biochemistry, Univ. of Minnesota, Minneapolis (MN))

    1990-07-01

    Octamer motifs contribute to the function and tissue specificity of immunoglobulin heavy- and light-chain gene promoters and the heavy-chain enhancer. A variant octamer-binding site within a conserved region of the human kappa light-chain gene enhancer which contributes to the function of this enhancer has been identified.

  16. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  17. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C.

    1982-08-01

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    At Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At...

  19. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  1. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    SciTech Connect (OSTI)

    Phillips, Benjamin R.; Ziagos, John; Thorsteinsson, Hildigunnur; Hass, Eric

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energys Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  2. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy GeothermalDemonstration2008

  3. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  4. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  5. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    the division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,associated with geothermal energy development. These g o a l

  6. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  7. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    Liquid Dominated Geothermal Systems," Second Intern. Symp.behavior related to geothermal systems and their potentialsetting of most geothermal systems is such that natural

  8. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  9. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC) a tax-exempt, non-profit, geothermal educational association publishes quarterly as an insert in its GRC Bulletin.

  10. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  11. Geothermal progress monitor: Report No. 10

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This issue synthesizes information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this source of energy. The contents include: (1) the Federal Beat; (2) The Industry Scene; (3) Financing; (4) Development Status; (5) Leasing and Drilling; (6) State and Local; (7) International; and (8) Technology Transfer. (ACR)

  12. Geothermal publications list for Geopowering the West States

    SciTech Connect (OSTI)

    2004-12-01

    A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

  13. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    geothermal facilities are well-drilling and steam venting.Field Emissions Drilling new wells and venting are all

  14. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  15. California: basic data for thermal springs and wells as recorded in GEOTHERM. Part A

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01

    This GEOTHERM sample file contains 1535 records for California. Three computer-generated indexes give one line summaries of each GEOTHERM record. Each index is sorted by different variables to assist in locating geothermal records describing specific sites. 7 refs. (ACR)

  16. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  17. Hydrodynamic/kinetic reactions in liquid dominated geothermal systems: Hydroscale Test Program, Mercer 2 well site South Brawley, California (Tests No. 15--20). Final report, 27 October 1980--6 February 1981

    SciTech Connect (OSTI)

    Nesewich, J.P.; Gracey, C.M. [Los Alamos National Lab., NM (United States)

    1982-04-01

    The Aerojet Energy Conversion Company, under contract to the Los Alamos National Laboratory, US Department of Energy, has constructed and tested a mobile geothermal well-site test unit at the Mercer 2 well in South Brawley, California (Imperial Valley). The equipment controlled, monitored, and recorded all process conditions of single- and dual-flash power cycles. Single- and two-phase flashed brine effluents were flowed through piping component test sections to provide hydrodynamic/kinetic data for scale formation. The unit operated at flowrates in excess of 200 gpm and is designed to accommodate flowrates up to 300 gpm. Primary scale formations encountered were those of Pbs, Fe{sub 2} (OH){sub 3}Cl (iron hydroxychloride), iron chlorides, and non-crystalline forms Of SiO{sub 2}. The formation of iron hydroxychloride was due to the unusually high concentration of iron in the wellhead brine (5000 mg/1).

  18. Geothermal Literature Review At Cascades Region (Ingebritsen...

    Open Energy Info (EERE)

    Geothermal Literature Review At Cascades Region (Ingebritsen & Mariner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  19. Dominica Grants Geothermal Exploration and Development License...

    Energy Savers [EERE]

    Energy Needs Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  20. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  1. Wyoming/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera...

  2. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    induced seismicity in geothermal systems. In: Proceedings ofThe deep EGS (Enhanced Geothermal System) project at Soultz-with enhanced geothermal systems. Geothermal Resources

  3. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  4. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  5. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  6. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  7. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  8. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  9. Summer 2012 National Geothermal Academy: Applications Due February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course modules include: Introduction to Geothermal Energy Utilization Geothermal Geology and Geochemistry Geothermal Field Trips Geothermal Geophysics Drilling Engineering...

  10. Doug Hollett Gives Keynote Presentation at Stanford Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  11. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying advanced materials to improve well construction technologies Development of harsh environment sensors for reservoir characterization DOE Geothermal Technologies Office...

  12. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  13. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications including technical reports, newsletters, brochures, and more about geothermal energy.

  14. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  15. Low-temperature geothermal database for Oregon

    SciTech Connect (OSTI)

    Black, G.

    1994-11-01

    The goals of the low-temperature assessment project, performed by the Oregon Department of Geology and Mineral Industries (DOGAMI) is aimed primarily at updating the inventory of the nation's low and moderate temperature geothermal resources. The study has begun in Oregon, where the areas of Paisley, Lakeview, Burns/Hines, Lagrande, and Vale were identified over 40 sites as having potential for direct heat utilization. Specifics sites are outlined, detailing water temperature, flow, and current uses of the sites.

  16. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  17. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells...

  18. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    by fluid injections at the EGS Site of Soultz-sous-Forts (2012. Recovery factor for EGS. In: Proceedings of the 37thof Enhanced Geothermal Systems (EGS) on the United States in

  19. Policymakers' Guidebook for Geothermal Heating and Cooling (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Heating and Cooling with information directing people to the Web site for more in-depth information.

  20. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between 190 and 325F. It uses a mobile unit at current oil and gas sites to reduce costs for geothermal exploration, drilling, and infrastructure. PureCycle users can...

  1. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    pressurized-water or boiling- water reactor) geothermal (Vessel Code Boiling water reactor California Administrativepressurized-water and boiling-water reactor power plants.

  2. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    considering the Nuclear Regulatory Commission safety reviewof the Nuclear Regulatory Commission safety review has onlyc..1 HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND

  3. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  4. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  5. Great Western Malting Company geothermal project, Pocatello, Idaho. Final report

    SciTech Connect (OSTI)

    Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

    1981-12-23

    The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

  6. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  7. Modeling fault-zone guided waves of microearthquakes in a geothermal...

    Open Energy Info (EERE)

    the identification and modeling of such guided waves is an effective tool to locate fracture-induced, low-velocity fault-zone structures in geothermal fields. Authors Lou, M.;...

  8. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  9. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  10. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  11. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  12. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...

  13. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  14. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  15. Fiber-optic sensors and geothermal reservoir engineering

    SciTech Connect (OSTI)

    Angel, S.M.; Kasameyer, P.W. )

    1988-12-01

    Perhaps the first demonstrations of fiber-optic sensors in a geothermal well occurred in early 1988 on the Island of Hawaii. The first of two fiber-optic optrode tests was at the HGP-A well and 3-megawatt power plant facility managed by the Hawaii National Energy Institute at the University of Hawaii. The second test was in a nearby geothermal exploratory well, Geothermal Test Well 2. Both sites are in the Kilauea East Rift zone. A fiber-optic temperature sensor test will be undertaken soon in a deeper, hotter geothermal well. Problems will be examined that may occur with a stainless steel-sleeved, fiber-optic cable. The paper describes fiber optic technology and its use in geothermal reservoir engineering.

  16. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  17. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  18. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    SciTech Connect (OSTI)

    Marceau, Thomas E.; Watson, Thomas L.

    2013-11-13

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  19. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  20. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  1. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  2. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  3. Geothermal Reservoir Dynamics - TOUGHREACT

    E-Print Network [OSTI]

    2005-01-01

    enhanced geothermal systems (EGS) and hot dry rock (HDR),deformation, to demonstrate new EGS technology through fieldsystems, primarily focusing on EGS and HDR systems and on

  4. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  5. NANA Geothermal Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  6. Photos on This Web Site

    Broader source: Energy.gov [DOE]

    Most of the geothermal energy photos used on this web site can be obtained from the National Renewable Energy Laboratory's Photographic Information eXchange (PIX). Before using a photo, please read...

  7. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  8. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  9. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

  10. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theby GRID for geothermal energy have wider applications. In

  11. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."2nd Geo- pressured Geothermal Energy Conference, Austin,

  12. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

  13. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    on the Cerro Prieto Geothermal Field, Baja California,monitoring at the Geysers Geothermal Field, California,~~W. and Faust, C. R. , 1979, Geothermal resource simulation:

  14. NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01

    School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

  15. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01

    Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

  16. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    that well blocks must geothermal reservoir studies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  17. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    characteristics of geothermal boreholes are studied.Maini, Tidu. "Geothermal Energy From a Borehole i n H o t28 (1967): Borehole Temperature Survey Analysis Geothermal

  18. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01

    of the Salton Sea Geothermal System. pp. 129-166. Hubbert,and Lardarello: Geothermal Power Systems New Zealand Journalthe western edge of the geothermal system. Attenuation In

  19. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    is a vapor dominated geothermal system and is the largestin liquid-dominated geothermal systems, 11 Proceedings,histories relating to geothermal systems from around the

  20. 2015 Peer Review Presentations | Geothermal Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Peer Review Presentations | Geothermal Energy 2015 Peer Review Presentations | Geothermal Energy The Energy Department featured Play Fairway Analysis at the 2015 Geothermal...

  1. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  2. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature...

  3. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    The deep EGS (Enhanced Geothermal System) project at Soultz-associated with enhanced geothermal systems. Geothermalfor a long-lived enhanced geothermal system (EGS) in the

  4. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  5. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  6. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on early

  7. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    through September 30, 1982. The Stanford Geothermal Program conducts interdisciplinary research in the geothermal industry. In the first 10 years of the Program about 50 graduates have been trained in geotherSTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL

  8. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  9. RAPID/Geothermal/Water Quality | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado < RAPID‎RAPID/Geothermal/LandInformation Transmission Siting

  10. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  11. Geothermal Site Assessment Using the National Geothermal Data System

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:Bore TechnologiesAssessment In HawaiiSalton Trough |

  12. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered low-grade geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.

  13. Updating the Classification of Geothermal Resources- Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  14. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  15. National Geothermal Resource Assessment and Classification |...

    Office of Environmental Management (EM)

    Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the...

  16. Rural Cooperative Geothermal Development Electric & Agriculture...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

  17. Updating the Classification of Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  18. Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii

    SciTech Connect (OSTI)

    Canon, P.

    1980-06-01

    The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

  19. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    in The Geysers. GeothermalResourcesCouncilA planned Enhanced Geothermal System demonstrationproject. Geothermal Resources Council Transactions33,

  20. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  1. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    from enhanced geothermal systems. Transactions Geothermalapproach to enhanced geothermal systems. Transactionsof the enhanced geothermal system demonstration reservoir in

  2. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aspects of geothermal energy development and utilization. Modules include Geothermal Geology and Geochemistry, Geothermal Geophysics, Reservoir Engineering, and more. The...

  3. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  4. Geothermal Energy Production with Co-produced and Geopressured...

    Energy Savers [EERE]

    Projects Poster Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  5. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    prospects from enhanced geothermal systems. Transactionsapproach to enhanced geothermal systems. Transactionsexperiment of the enhanced geothermal system demonstration

  6. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  7. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

  8. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  9. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    into sustainable geothermal energy: The S.E. Geysersseismicityandgeothermal energy. GeothermalResourcesinto sustainable geothermal energy: The S.E. Geysers

  10. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    of the Coso Geothermal System, Geothermal Resources Councileast flank of the Coso geothermal system, Proceedings 28 thCreation of an enhanced geothermal system through hydraulic

  11. How an Enhanced Geothermal System Works | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems,...

  12. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    A planned Enhanced Geothermal System demonstrationassociatedwithEnhancedGeothermalSystems. GeothermicsSection3). 5. EnhancedGeothermalSystems(EGS) Brown,

  13. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  14. Preliminary identification of potentially disruptive scenarios at the Greater Confinement Disposal Facility, Area 5 of the Nevada Test Site

    SciTech Connect (OSTI)

    Guzowski, R.V.; Newman, G.

    1993-12-01

    The Greater Confinement Disposal location is being evaluated to determine whether defense-generated transuranic waste buried at this location complies with the Containment Requirements established by the US Environmental Protection Agency. One step in determining compliance is to identify those combinations of events and processes (scenarios) that define possible future states of the disposal system for which performance assessments must be performed. An established scenario-development procedure was used to identify a comprehensive set of mutually exclusive scenarios. To assure completeness, 761 features, events, processes, and other listings (FEPS) were compiled from 11 references. This number was reduced to 205 primarily through the elimination of duplications. The 205 FEPs were screened based on site-specific, goal-specific, and regulatory criteria. Four events survived screening and were used in preliminary scenario development: (1) exploratory drilling penetrates a GCD borehole, (2) drilling of a withdrawal/injection well penetrates a GCD borehole, (3) subsidence occurs at the RWMS, and (4) irrigation occurs at the RWMS. A logic diagram was used to develop 16 scenarios from the four events. No screening of these scenarios was attempted at this time. Additional screening of the currently retained events and processes will be based on additional data and information from site-characterization activities. When screening of the events and processes is completed, a final set of scenarios will be developed and screened based on consequence and probability of occurrence.

  15. Evaluation of land ownership, lease status, and surface features in five geopressured geothermal prospects

    SciTech Connect (OSTI)

    Hackenbracht, W.N.

    1981-05-01

    This study was accomplished for the purpose of gathering information pertaining to land and lease ownership, surface features and use and relevant environmental factors in the Lake Theriot (West and East), Kaplan, Bayou Hebert and Freshwater Bayou geopressured geothermal prospects in Louisiana, and the Blessing geopressured geothermal prospect in Texas. This information and recommendations predicated upon it will then be used to augment engineering and geological data utilized to select geopressured geothermal test well sites within the prospects. The five geopressured geothermal prospects are briefly described and recommendations given.

  16. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  17. Geothermal Energy Retrofit

    SciTech Connect (OSTI)

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  18. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job VacanciesGeothermal Geothermal EERE

  19. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities FinancialofInformation Geothermal Geothermal

  20. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  1. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The...

  2. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect (OSTI)

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  3. Numerical simulation study of silica and calcite dissolution around a geothermal well by injecting high pH solutions with chelating agent.

    E-Print Network [OSTI]

    Xu, Tianfu

    2009-01-01

    at the Desert Peak east EGS area, Nevada, In Proceedings ofthe Enhanced Geothermal System (EGS) site at Desert Peak (chemical stimulation of an EGS reservoir. A general kinetic

  4. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect (OSTI)

    Erkelens, Conrad

    1994-03-01

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  5. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect (OSTI)

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  6. track 4: enhanced geothermal systems (EGS) | geothermal 2015...

    Broader source: Energy.gov (indexed) [DOE]

    Office portfolio presented fifty three technical project presentations on enhanced geothermal systems technologies (EGS). EGS technologies utilize directional drilling and...

  7. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  8. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project l-Subsidence Case Histories . . . . . . . . . .8 . Subsidence Models . . . . . . . . . . . . . . . .

  9. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  10. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Robertseere.energy.gov Timothy Reinhardt Geothermal

  11. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  12. Postgraduate Certificate in Geothermal Energy

    E-Print Network [OSTI]

    Auckland, University of

    Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University for development of geothermal fields is large and many countries are seeking to move away from fossil fuel power generation for both economic and environmental reasons. Global revenues for geothermal power were estimated

  13. GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger

    E-Print Network [OSTI]

    Stanford University

    SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

  14. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  15. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-42 PROCEEDINGS SPECIAL PANEL ON GEOTHERMAL MODEL INTERCOMPARISON STUDY held in conjunction with The Code Comparison Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office

  16. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  17. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  18. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  19. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  20. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Office of Environmental Management (EM)

    76: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final...

  1. Geothermal Test Facility, California, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports1E~ S·D3 2,000Attachment

  2. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect (OSTI)

    Lance Prothro, Sigmund Drellack, Margaret Townsend

    2009-03-25

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  3. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    These shapefiles was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  4. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zehner, Richard

    2012-02-01

    These shapefiles was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  5. Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland

    E-Print Network [OSTI]

    Parker, Beatrice Smith

    2012-01-01

    Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

  6. Fracture Mapping in the Soultz-sous-Forets Geothermal Field from Microearthquake Relocation

    E-Print Network [OSTI]

    Michelet, Sophie

    2006-01-01

    In 2003, a massive hydraulic fracturing experiment was carried out at the European Geothermal Hot Dry Rock site at Soultz-sous-Forts, France. The two week injection of water generated a high level of microseismic activity. ...

  7. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  8. State Geothermal Resource Assessment and Data Collection Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  9. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  10. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  11. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  12. Using Automated, High-Precision Repicking to Improve Delineation of Microseismic Structures at the Soultz Geothermal Reservoir

    E-Print Network [OSTI]

    at the Soultz Geothermal Reservoir C.A. Rowe*1 , R.C. Aster1 , W.S. Phillips2 , R.H.Jones3 , B.Borchers4 and M seismicity at the Soultz-sous-Forets geothermal site, France. The method is first applied to a small to future velocity model refinements. ^ #12;3 INTRODUCTION The Soultz-sous-Forets geothermal field

  13. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  14. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  15. Geothermal Energy; (USA)

    SciTech Connect (OSTI)

    Raridon, M.H.; Hicks, S.C. (eds.)

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  16. Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892

    SciTech Connect (OSTI)

    Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-12-15

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  17. Assessment of the Geothermal Potential Within the BPA Marketing Area.

    SciTech Connect (OSTI)

    Lund, John W.; Allen, Eliot D.

    1980-07-01

    The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 x 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.

  18. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

  19. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

  20. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01

    P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

  1. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

  2. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    of Geothermal Resources, Pisa, v. 2, p. 99-109. Browne,of Geothermal Resources, Pisa, v. 2, p. 287-294. Sageev,Use of Geothermal Resources, Pisa, 1970, v. 2, p. 564-570.

  3. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    i o n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1, 1970:n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1 1970: 516-o f Geothermal Resources, Pisa, Sept. 22-Oct. 1 1970: .1440-

  4. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    t al. , "Modeling Geothermal Systems," A t t i dei Convegnio f L i q u i d Geothermal Systems," Open-File Report 75-i q u i d Dominated Geothermal Systems," Proceedings o f t h

  5. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    Phenomena i n Geothermal Systems. I' U.N. Symposium on theModeling o f Geothermal Systems." 2nd U.N. Symposium on theassociations of geothermal systems and postulates on a

  6. Geothermal Regulatory Roadmap | OpenEI Community

    Open Energy Info (EERE)

    geothermal Type Term Title Author Replies Last Post sort icon Blog entry geothermal Geothermal Regulatory Roadmap featured on NREL Now Graham7781 5 Aug 2013 - 14:18 Blog entry...

  7. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  8. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  9. Geothermal Technologies Office Hosts Collegiate Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

  10. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor History of sales procedures Manufacturer Driven Procedures What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." It should

  11. THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL

    E-Print Network [OSTI]

    Politcnica de Catalunya, Universitat

    Seminario del Grupo de Hidrologa Subterrnea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 C/Km Hydraulic stimulation enhances fracture permeability (energyTHERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia

  12. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams Greg Nash

    2004-03-31

    Chemical compounds have been designed under this contract that can be used to trace water that has been injected into vapor-dominated and two-phase geothermal fields. Increased knowledge of the injection flow is provided by the tracers, and this augments the power that can be produced. Details on the stability and use of these tracers are included in this report.

  13. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  14. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremesfrom scorching heat in the summer to sub-zero cold in the winterthe ground a few feet below the earth's surface remains at a relatively constant temperature.

  15. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  16. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  17. Hawaii basic data for thermal springs and wells as recorded in geotherm

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01

    GEOTHERM sample file contains 34 records for Hawaii. The high average ambient air temperature found on the Hawaiian Islands required fluid samples to have a temperature of at least 30/sup 0/C to be included. A computer-generated index is found in appendices A of this report. The index give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Hawaii. The index is found in appendix A (p. is sorted by county and by the name of the source. Also given are well number (when appropriate), site type (spring, well, fumarole), latitude, longitude (both use decimal minutes), GEOTHERM record identifier, and temperature (/sup 0/C). In conducting a search of Appendix A, site names are quite useful for locating springs or wells for which a specific name is commonly used, but sites which do not have specific names are more difficult to locate.

  18. Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorpotion analysis. Annual progress report

    SciTech Connect (OSTI)

    Kowalski, B R

    1980-01-01

    Only the actual application of the ultratrace metal analysis methods to samples taken from geothermal sites in Washington and Oregon is covered. The in-field sampling equipment constructed for the studies, procedures developed or adapted, and the results obtained on representative samples taken from geothermal sites are described. (MHR)

  19. Application of scientific core drilling to geothermal exploration: Platanares, Honduras and Tecuamburro Volcano, Guatemala, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Goff, F.E.; Heiken, G.H. [Los Alamos National Lab., NM (United States); Duffield, W.A. [Geological Survey, Flagstaff, AZ (United States); Janik, C.J. [Geological Survey, Menlo Park, CA (United States)

    1994-04-01

    Our efforts in Honduras and Guatemala were part of the Central America Energy Resource Project (CAERP) funded by the United States Agency for International Development (AID). Exploration core drilling operations at the Platanares, Honduras and Tecuamburro Volcano, Guatemala sites were part of a geothermal assessment for the national utility companies of these countries to locate and evaluate their geothermal resources for electrical power generation. In Honduras, country-wide assessment of all thermal areas determined that Platanares was the site with the greatest geothermal potential. In late 1986 to middle 1987, three slim core holes were drilled at Platanares to a maximum depth of 680 m and a maximum temperature of 165{degree}C. The objectives were to obtain information on the geothermal gradient, hydrothermal alterations, fracturing, and possible inflows of hydrothermal fluids. Two holes produced copious amounts of water under artesian conditions and a total of 8 MW(t) of energy. Geothermal investigations in Guatemala focused on the Tecuamburro Volcano geothermal site. The results of surface geological, volcanological, hydrogeochemical, and geophysical studies at Tecuamburro Volcano indicated a substantial shallow heat source. In early 1990 we drilled one core hole, TCB-1, to 808 m depth. The measured bottom hole temperature was 238{degree}C. Although the borehole did not flow, in-situ samples indicate the hole is completed in a vapor-zone above a probable 300{degree}C geothermal reservoir.

  20. Funding Mechanisms for Federal Geothermal Permitting (Presentation)

    SciTech Connect (OSTI)

    Witherbee, K.

    2014-03-01

    This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

  1. 2014 Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    The Annual Meeting attracts geothermal industry stakeholders worldwide and provides opportunity to participate in presentations on geothermal research, exploration, development, and utilization.

  2. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Geothermal...

  3. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  4. Geothermal Exploration Best Practices Webinar Presentation Now...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy DOE Projects Receive Honors for Best Geothermal Presentations Workshop to Examine Outlook for State and Federal Policies to Promote Geothermal Energy in the West...

  5. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    Review o f Geothermal Subsidence", LBL-3220, Sept. 1975. 5.bles emissions; (3) subsidence; and (4) boron. Generally,Review of Geothermal Subsidence", LBL-3220, September 1975.

  6. Geothermal Technologies Program Annual Peer Review Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Peer Review presentation by Doug Hollett, Program Manager, Geothermal Technologies Program gtp2012peerreviewdhollett.pdf More Documents & Publications Stanford Geothermal...

  7. Geothermal Technologies Office 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | US DOE Geothermal Office eere.energy.gov Geothermal Technologies Office 2015 Peer Review Sustainability of Shear-Induced Permeability for EGS Reservoirs - A Laboratory...

  8. Digital Mapping Of Structurally Controlled Geothermal Features...

    Open Energy Info (EERE)

    (PCs) were used to map surface geothermal features at the Bradys Hot Springs and Salt Wells geothermal systems, Churchill County, Nevada, in less time and with greater...

  9. Integrated Geoscience Investigation and Geothermal Exploration...

    Open Energy Info (EERE)

    Al., 2006) Isotopic Analysis At Chena Geothermal Area (Holdmann, Et Al., 2006) Micro-Earthquake At Chena Geothermal Area (Holdmann, Et Al., 2006) Pressure Temperature Log At Chena...

  10. Strategic Planning, Analysis, and Geothermal Informatics Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview This is an overview of...

  11. Geothermal Direct Use Technology and the Marketplace

    Broader source: Energy.gov [DOE]

    Geothermal energy applications are emerging across a much wider spectrum of cascaded uses, from lower temperature geothermal energy production to direct heating and cooling, to agricultural uses.

  12. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

  13. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir...

  14. Google Archives by Fiscal Year Geothermal

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Geothermal Technologies Office, retired Google Analytics profiles for the Geothermal Technologies Blog for FY12-FY13.

  15. North Carolina/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon North CarolinaGeothermal < North Carolina Jump to: navigation, search GEOTHERMAL...

  16. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA...

  17. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

  18. Cuttings Analysis At International Geothermal Area, Indonesia...

    Open Energy Info (EERE)

    Cuttings Analysis At International Geothermal Area, Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At...

  19. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to bring new geothermal power online. Surprise Valley Electrification Corporation, in Paisley, Oregon, (in the image left) seeks to develop geothermal electric power from an...

  20. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  1. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  2. GETEM -Geothermal Electricity Technology Evaluation Model | Department...

    Broader source: Energy.gov (indexed) [DOE]

    guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of...

  3. 2012 Geothermal Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This Office of Indian Energy webinar provides information on developing geothermal resources on tribal lands with an overview of: geothermal resources by region; technology...

  4. An Evaluation of Enhanced Geothermal Systems Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Evaluation of Enhanced Geothermal Systems Technology Geothermal Technologies Program 2008 Foreword This document presents the results of an eight-month study by the Department...

  5. Analysis of Geothermal Reservoir Stimulation Using Geomechanics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Microseismic Study...

  6. Employment Impacts of Geothermal Electric Projects (Technical...

    Office of Scientific and Technical Information (OSTI)

    Employment Impacts of Geothermal Electric Projects Citation Details In-Document Search Title: Employment Impacts of Geothermal Electric Projects You are accessing a document...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    around the state at over 50 temperature anomalies. Examined correlations between structures and thermal anomalies. Made recommendations for future geothermal use. Much of the...

  8. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully...

  9. Cost Contributors to Geothermal Power Production

    SciTech Connect (OSTI)

    Nathwani, Jay; Mines, Greg

    2011-07-01

    The US Department of Energy Geothermal Technologies Office (DOE-GTO) has developed the tool Geothermal Electricity Technologies Evaluation Model (GETEM) to assess the levelized cost of electricity (LCOE) of power produced from geothermal resources. Recently modifications to GETEM allow the DOE-GTO to better assess how different factors impact the generation costs, including initial project risk, time required to complete a development, and development size. The model characterizes the costs associated with project risk by including the costs to evaluate and drill those sites that are considered but not developed for commercial power generation, as well as to assign higher costs to finance those activities having more risk. This paper discusses how the important parameters impact the magnitude project costs for different project scenarios. The cost distributions presented include capital cost recovery for the exploration, confirmation, well field completion and power plant construction, as well as the operation and maintenance (O&M) costs. The paper will present these cost distributions for both EGS and hydrothermal resources.

  10. Geothermal corehole drilling and operations, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.; Rufenacht, H.D.; Laughlin, A.W.; Adams, A.; Planner, H.; Ramos, N.

    1987-01-01

    Two slim exploration coreholes to depths of 650 m and 428 m, respectively, have been completed at the Platanares geothermal site, Honduras, Central America. A third corehole is now being drilled. These boreholes have provided information on the stratigraphy, temperature variation with depth, nature and compositions of fluids, fracturing, permeability, and hydrothermal alterations associated with the geothermal reservoir. Eruptions of hot water occurred during the drilling of both the first and third boreholes. Recovery of >98% core has been obtained even under difficult superheated conditions.

  11. Residential Vertical Geothermal Heat Pump System Models: Calibration to Data:

    SciTech Connect (OSTI)

    Thornton, Jeff W.; McDowell, T. P.; Shonder, John A; Hughes, Patrick; Pahud, D.; Hellstrom, G.

    1997-06-01

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was 'tuned' to better match the measured data from the site. These tuned models were then interconnect to form the system model. The system model was then exercised in order to demonatrate its capabilities.

  12. Residential vertical geothermal heat pump system models: Calibration to data

    SciTech Connect (OSTI)

    Thornton, J.W.; McDowell, T.P.; Shonder, J.A.; Hughes, P.J.; Pahud, D.; Hellstroem, G.A.J.

    1997-12-31

    A detailed component-based simulation model of a geothermal heat pump system has been calibrated to monitored data taken from a family housing unit located at Fort Polk, Louisiana. The simulation model represents the housing unit, geothermal heat pump, ground heat exchanger, thermostat, blower, and ground-loop pump. Each of these component models was tuned to better match the measured data from the site. These tuned models were then interconnected to form the system model. The system model was then exercised in order to demonstrate its capabilities.

  13. El Paso County Geothermal Project at Fort Bliss

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically viable low temperature geothermal resources might exist in the McGregor test area ?or if necessary at other lesser known sites that exist on the Fort Bliss Military Reservation ?and to determine at what location they can be best accessed without compromising the tactical and strategic missions of Fort Bliss. Determine if identified resources have adequate temperatures and flow rates/volumes to justify development at any scale, with an eye toward the 20 megawatt target identified. Over base need: 45 megawatts.

  14. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  15. NREL SBV Pilot Geothermal Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of experimental data, high-resolution 3-D visual imagery and large-scale simulation data. For more information, contact: Craig.Turchi@nrel.gov (Geothermal Technical Questions)...

  16. Direct application of geothermal energy

    SciTech Connect (OSTI)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  17. Geothermal Research and Development Programs

    Broader source: Energy.gov [DOE]

    Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

  18. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    SciTech Connect (OSTI)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy; Boyd, Toni; Horne, Roland; MacKenzie, Matthew; Moore, Joseph; Nickull, Duane; Richard, Stephen; Shevenell, Lisa A.

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  19. Preliminary geothermal assessment surveys for the State of Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.E.; Lienert, B.R.; Kauahikaua, J.P.; Mattice, M.D.

    1980-09-01

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys in ten separate locations within the State of Hawaii in an effort to identify and assess potential geothermal areas throughout the state. The techniques applied include groundwater chemistry and temperatures, soil mercury surveys, ground radon emanometry, time-domain electromagnetic surveys and Schlumberger resistivity soundings. Although geochemical and geophysical anomalies were identified in nearly all the survey sites, those areas which show most promise, based on presently available data, for a geothermal resource are as follows: Puna, Kailua Kona, and Kawaihae on the island of Hawaii; Haiku-Paia and Olowalu-Ukumehame canyons on Maui; and Lualualei Valley on Oahu. Further surveys are planned for most of these areas in order to further define the nature of the thermal resource present.

  20. Hawaii's Geothermal Development

    SciTech Connect (OSTI)

    Uemura, Roy T.

    1980-12-01

    On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

  1. Geothermal Progress Monitor 12

    SciTech Connect (OSTI)

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  2. SILICA FOULING BY GEOTHERMAL PART III SILICA FOULING BY GEOTHERMAL WATERS

    E-Print Network [OSTI]

    Gudmundsson, Jon Steinar

    PART III SILICA FOULING BY GEOTHERMAL WATERS #12;- 49 - PART III SILICA FOULING BY GEOTHERMAL WATERS 1. INTRODUCTION In recent years the world-wide interest in geothermal energy has been stimulated in geothermal engineering; that of deposition and fouling. Presently, geothermal waters containing useful energy

  3. Geothermal resources of Montana

    SciTech Connect (OSTI)

    Metesh, J.

    1994-06-01

    The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

  4. Federal Interagency Geothermal Activities

    SciTech Connect (OSTI)

    Anderson, Arlene; Prencipe, Loretta; Todaro, Richard M.; Cuyler, David; Eide, Elizabeth

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  5. Geothermal Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1 Geothermal Success Stories en Percussive

  6. Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1 Geothermal Success Stories ennear-term 8

  7. Geothermal Technologies Office: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy Services »Information1 Geothermal SuccessInformation Resources

  8. Regional geothermal exploration in north central New Mexico. Final report

    SciTech Connect (OSTI)

    Icerman, L. (ed.) [ed.

    1984-02-01

    A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

  9. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  10. Earthquake and Geothermal Energy

    E-Print Network [OSTI]

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  11. Conceptual Model At Valles Caldera - Redondo Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area...

  12. Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Area (Gardner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...

  13. Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground...

  14. Reconnaissance geothermal exploration at Raft River, Idaho from...

    Open Energy Info (EERE)

    library Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS;...

  15. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  16. INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Bodvarsson, Gudmundur S.

    2012-01-01

    Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

  17. VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA

    E-Print Network [OSTI]

    Churchman, C.W.

    2011-01-01

    Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

  18. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Milora and J . W. Tester, Geothermal Energy as a Source o fNations Symposium on Geothermal Energy, San Francisco, May

  19. Low-Temperature, Coproduced, and Geopressured Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Temperature, Coproduced, and Geopressured Geothermal Power Low-Temperature, Coproduced, and Geopressured Geothermal Power The Geothermal Technology Program (GTP)...

  20. LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...

    Broader source: Energy.gov (indexed) [DOE]

    mineral-webinar.pdf More Documents & Publications LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM Geothermal Play Fairway Analysis Geothermal Play Fairway Analysis...

  1. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

  2. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

  3. Geothermal Literature Review At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Geothermal Literature Review At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  4. Seismic triggering by rectified diffusion in geothermal systems

    E-Print Network [OSTI]

    Sturtevant, Bradford; Kanamori, Hiroo; Brodsky, Emily E.

    1996-01-01

    diffusion in geothermal systems Bradford Sturtevant Graduateof pressure In geothermal systems, fluid flow throughsystems. The modeled geothermal system consists of fractured

  5. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    are applicable to geothermal systems, and esta- blish aof an unexploited geothermal system has been constructed inment methods for geothermal well system param- eters,

  6. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    In:ActiveGeothermalSystemsand Gold?MercuryDepositsin1993. ActivegeothermalsystemsandgoldmercurydepositsA planned Enhanced Geothermal System demonstration

  7. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    the Behavior of Geothermal Systems . . . . . . . . . 1 6energy transport in geothermal systems. Analysis o f shortthe Behavior of Geothermal Systems B. Numerical Model i ng

  8. Seismic methods for resource exploration in enhanced geothermal systems

    E-Print Network [OSTI]

    Gritto, Roland; Majer, Ernest L.

    2002-01-01

    Exploration in Enhanced Geothermal Systems Roland Gritto andestablished an Enhanced Geothermal Systems Program (EGSP) toartificially created geothermal systems. The challenges in

  9. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  10. Geothermal Literature Review At General Us Region (Williams ...

    Open Energy Info (EERE)

    Geothermal Literature Review At General Us Region (Williams & Reed, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature...

  11. Geothermal Literature Review At Lake City Hot Springs Area (Benoit...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lake City Hot Springs Area (Benoit, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  12. Geothermal Literature Review At General Us Region (Blackwell...

    Open Energy Info (EERE)

    Geothermal Literature Review At General Us Region (Blackwell, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature...

  13. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources Purchase and Installation of a Geothermal Power Plant to Generate...

  14. DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15 Million Geothermal Heat Recovery Opportunity DOE Offers 15 Million Geothermal Heat Recovery Opportunity August 25, 2010 - 11:11am Addthis Photo of geothermal power plant....

  15. NREL: Awards and Honors - Geothermal Energy Association Honors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy Geothermal Technologies Office, the Geothermal Prospector, a mapping tool that provides a data resource for visual exploration of geothermal resources....

  16. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Energy Savers [EERE]

    First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells...

  17. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Metal Organic Heat Carriers for Enhanced Geothermal Systems...

  18. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    Creation of an enhanced geothermal system through hydraulicTechnologies, Enhanced Geothermal Systems Program, also seesupport of the enhanced geothermal systems concept: survey

  19. Seismic methods for resource exploration in enhanced geothermal systems

    E-Print Network [OSTI]

    Gritto, Roland; Majer, Ernest L.

    2002-01-01

    Exploration in Enhanced Geothermal Systems Roland Gritto andestablished an Enhanced Geothermal Systems Program (EGSP) toin developing Enhanced Geothermal Systems (EGS) include,

  20. Geothermal Industry Ends 2012 on a High Note | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    additional highlights of geothermal industry development in 2012 were: The first hybrid solar-geothermal project was commissioned by Enel Green Power at its Stillwater Geothermal...

  1. Raft River Geothermal Area Data Models - Conceptual, Logical...

    Open Energy Info (EERE)

    Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx,...

  2. Summary of geothermal exploration activity in the state of Washington from 1978 to 1983

    SciTech Connect (OSTI)

    Korosec, M.A.

    1984-01-01

    During the course of conducting the statewide reconnaissance study of Washington's potential geothermal resources, several specific areas and broader regions have been identified as targets which warrant a more concentrated effort. Over the past three years, the program has continued to identify new sites, but has concentrated on better defining the resource potential of the best areas. The locations of these geothermal areas are shown, and the level of progress for each area is shown, expressed as a percentage of completion for the various exploration tasks. Descriptions of the geothermal target areas are presented.

  3. Webtrends Archives by Fiscal Year Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE)

    From the EERE Web Statistics Archive: Geothermal Technologies Office, Webtrends archives by fiscal year.

  4. Proceedings 23rd NZ Geothermal Workshop 2001

    E-Print Network [OSTI]

    Benning, Liane G.

    Proceedings 23rd NZ Geothermal Workshop 2001 BIOMINERALIZATION IN NEW ZEALAND GEOTHERMAL AREAS B deposits at New Zealand geothermal areas,. Preliminary results are presented from three areas: Wairakei Zealand geothermal areas are well known for their spectacular surface features. The overall distribution

  5. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    data base from which general management procedures , interpretive techniques , and conceptual models for producin geothermal systems

  6. Geothermal direct-heat utilization assistance

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Progress on technical assistance, R D activities, technology transfer, and geothermal progress monitoring is summarized.

  7. 2013 National Geothermal Student Competition Background

    E-Print Network [OSTI]

    Carrington, Emily

    1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

  8. Livingston Campus Geothermal Project The Project

    E-Print Network [OSTI]

    Delgado, Mauricio

    Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

  9. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  10. Silica extraction from geothermal water

    DOE Patents [OSTI]

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  11. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  12. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  13. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  14. -Injection Technology -Geothermal Reservoir Engineering

    E-Print Network [OSTI]

    Stanford University

    For the Period October 1, 1985 through September 30, 1986 DE-ASO7-84ID12529 Stanford Geothermal Program was initiated in fiscal year 1981. The report covers the period from October 1, 1985 through September 30, 1986SGP-TR-107 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

  15. Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers

    E-Print Network [OSTI]

    Dobson, P.F.

    2014-01-01

    energy: Impact of enhanced geothermal systems (EGS) on thea DOE-funded Enhanced Geothermal System field demonstrationand potential of enhanced geothermal systems (EGS). The EGS

  16. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTPs involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs. The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  17. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  18. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

  19. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01

    BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

  20. Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook

    Broader source: Energy.gov [DOE]

    Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

  1. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY

    E-Print Network [OSTI]

    Howard, J.H.

    2011-01-01

    the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

  2. identification Distributed

    E-Print Network [OSTI]

    Schenato, Luca

    Networked Control Systems Clock Sync Channel identification in WSN Distributed control of Smart. Sandro Zampieri #12;Networked Control Systems Clock Sync Channel identification in WSN Distributed Systems Clock Sync Channel identification in WSN Distributed control of Smart Grids Conclusions Issues

  3. Geothermal Heat Pumps are Scoring High Marks

    SciTech Connect (OSTI)

    2000-08-01

    Geothermal Energy Program Office of Geothermal and Wind Technologies Geothermal Heat Pumps are Scoring High Marks Geothermal heat pumps, one of the clean energy technology stars Geothermal heat pumps (GHPs) are one of the most cost-effective heating, cooling, and water heating systems available for both residential and commercial buildings. GHPs extract heat from the ground during the heating season and discharge waste heat to the ground during the cooling season. The U.S. Environmental Protecti

  4. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect (OSTI)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  5. Energy Return On Investment of Engineered Geothermal Systems Data

    SciTech Connect (OSTI)

    Mansure, Chip

    2012-01-01

    The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  6. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  7. Sandia Energy - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologiesEnergyGeoscience Home ClimateGeothermal

  8. Geothermal Resources Council's 36

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LET IonizingGeorge B.ThousandGeosciencesGeothermal

  9. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice ofofWindUpcomingcan I find moreGeothermal energy plant at The

  10. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

    Office of Environmental Management (EM)

    and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action...

  11. Working Fluids and Their Effect on Geothermal Turbines

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

  12. Integrated seismic studies at the Rye Patch Geothermal Reservoir, Nevada

    E-Print Network [OSTI]

    Gritto, Roland; Daley, Thomas M.; Majer, Ernest L.

    2002-01-01

    most geothermal areas provide access to open boreholesand borehole experiments were conducted at the Rye Patch geothermal

  13. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At International Geothermal Area, Philippines (Wood, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  14. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Info (EERE)

    Compound and Elemental Analysis At International Geothermal Area, Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  16. Geographic Information System At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic...

  17. Geothermal Data Aggregation: Submission of Information into the

    Broader source: Energy.gov [DOE]

    Project objective: High quality information supporting geothermal research and development will be submitted to the National Geothermal Data System (NGDS).

  18. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory...

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    programmanagement.pdf More Documents & Publications Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices Geothermal Technologies...

  20. Energy Department Develops Regulatory Roadmap to Spur Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Development Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Geothermal energy, traditionally a baseload...

  1. Energy Department Announces Project Selections for Enhanced Geothermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS)...

  2. MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

    E-Print Network [OSTI]

    Wodin-Schwartz, Sarah

    2013-01-01

    Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

  3. A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS

    E-Print Network [OSTI]

    Lee, L.M.

    2010-01-01

    Potential geopressured geothermal-related subsidence ratesto Potential Geopressured Geothermal-RelatedSubsidence Ratesmm). Potential geopressured geothermal-related rubaidence

  4. Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs

    E-Print Network [OSTI]

    Wessling, S.

    2009-01-01

    Geothermal; Enhanced Geothermal Systems; Huff-puff process;viability of an Enhanced Geothermal System not only depends

  5. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  6. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    long-lived enhanced geothermal system (EGS) in the Northernis a vapor dominated geothermal reservoir system, which is

  7. Basic data for thermal springs and wells as recorded in GEOTHERM: Wyoming

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-05-01

    GEOTHERM sample file contains 356 records for Wyoming. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Wyoming. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  8. Washington state basic data for thermal springs and wells as recorded in GEOTHERM

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01

    This report on Washington is one of a series intended to preserve the data collected for GEOTHERM and make the data available to the public. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Washington. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by county name and the name of the source. Also given are latitude, longitude (both in decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Also given are GEOTHERM record identifier, and temperature (/sup 0/C).

  9. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect (OSTI)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or node is located at Southern Methodist University developed by a consortium made up of: SMU Geothermal Laboratory Siemens Corporate Technology, a division of Siemens Corporation Bureau of Economic Geology at the University of Texas at Austin Cornell Energy Institute, Cornell University Geothermal Resources Council MLKay Technologies Texas Tech University University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this teams NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

  10. Geothermal Energy Production With Innovative Methods Of Geothermal Heat Recovery

    SciTech Connect (OSTI)

    Swenson, Allen; Darlow, Rick; Sanchez, Angel; Pierce, Michael; Sellers, Blake

    2014-12-19

    The ThermalDrive Power System (TDPS) offers one of the most exciting technological advances in the geothermal power generation industry in the last 30 years. Using innovations in subsurface heat recovery methods, revolutionary advances in downhole pumping technology and a distributed approach to surface power production, GeoTek Energy, LLCs TDPS offers an opportunity to change the geothermal power industry dynamics.

  11. Geothermal Data from the National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energys Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

  12. Numerical modeling of water injection into vapor-dominated geothermal reservoirs

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

  13. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    long-lived enhanced geothermal system (EGS) in the NorthernGeothermal, Enhanced Geothermal Systems Abstract Waterinjection into geothermal systems has often become a

  14. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-01-01

    Mahon, Chemistry and Geothermal Systems, Academic Press, NewHidden Geothermal Systems geothermal origin. However, thesefor Detection of Hidden Geothermal Systems Figure 7.4.

  15. Best Practices for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS)

    E-Print Network [OSTI]

    Majer, E.

    2014-01-01

    associated with Enhanced Geothermal Systems. Report producedassociated with Enhanced Geothermal Systems: Geothermics, v.associated with Enhanced Geothermal Systems, DOE/EE-0662, 45

  16. The Impact of Injection on Seismicity at The Geyses, California Geothermal Field

    E-Print Network [OSTI]

    Majer, Ernest L.; Peterson, John E.

    2008-01-01

    for a long-lived enhanced geothermal system (EGS) in theGeothermal, Enhanced Geothermal Systems Abstract Wateri.e. , enhanced geothermal systems, (EGS). Presented in this

  17. Geothermal Systems of the Yellowstone Caldera Field Trip Guide

    SciTech Connect (OSTI)

    Foley, Duncan; Neilson, Dennis L.; Nichols, Clayton R.

    1980-09-08

    Geothermal studies are proceedings on two fronts in the West Yellowstone area. High-temperature resources for the generation of electricity are being sought in the Island Park area, and lower temperatures resources for direct applications, primarily space heating, are being explored for near the town of West Yellowstone. Potential electric geothermal development in the Island Park area has been the subject of widespread publicity over fears of damage to thermal features in Yellowstone Park. At the time of writing this guide, companies have applied for geothermal leases in the Island Park area, but these leases have not yet been granted by the US Forest Service. The Senate is now discussing a bill that would regulate geothermal development in Island Park; outcome of this debate will determine the course of action on the lease applications. The Island Park area was the site of two cycles of caldera activity, with major eruptions at 2.0 and 1.2 million years ago. The US Geological Survey estimates that 16,850 x 10{sup 18} joules of energy may remain in the system. Geothermal resources suitable for direct applications are being sought in the West Yellowstone vicinity by the Montana Bureau of Mines and Geology, under funding from the US Department of Energy. West Yellowstone has a mean annual temperature of 1-2 C. Research thus far suggests that basement rocks in the vicinity are at a depth of about 600 m and are probably similar to the rocks exposed north of Hebgen Lake, where Precambrian, Paleozoic and Mesozoic rocks have been mapped. A few sites with anomalously warm water have been identified near the town. Work is continuing on this project.

  18. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-02-01

    Title: Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado Tags: Colorado, lineaments, air-photo, geothermal Summary: These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Description: Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable plumbing system that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Projection Information: UTM Zone 13 NAD 27 projection Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Funding was provided in part by DOE Grant DE-EEE0002828. Use Limitation These shapefiles was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  19. Geothermal energy for American Samoa

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  20. Geothermal Program Review IV: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  1. Wind and Geothermal Incentives Program

    Broader source: Energy.gov [DOE]

    The program will offer support for wind and geothermal technologies in the form of loans, grants and loan guarantees (i.e., grants to be used in the event of a financing default). The definition...

  2. Hawaii geothermal resource assessment: 1982

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  3. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The definition of geothermal heat pump property does not include swimming pools, hot tubs, or any other energy storage device that has a primary function other than storage. In addition, systems...

  4. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  5. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  6. Decision analysis for geothermal energy

    E-Print Network [OSTI]

    Yost, Keith A

    2012-01-01

    One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

  7. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsourceBulkTransmission/Environment/Nevada < RAPID‎RAPID/BulkTransmission/SiteWaterRAPID/Geothermal/Air

  8. Geothermal technology transfer for direct heat applications: Final report, 1983--1988

    SciTech Connect (OSTI)

    Lienau, P.J.; Culver, G.

    1988-01-01

    This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

  9. Geothermal Money Book [Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

  10. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  11. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    with applicable safety design criteria. Two generic areasSAFETY DESIGN Stage 3 would determine compliance with applicable safety criteria,design and operating criteria and to show the adequacy of the site characteristics from a safety

  12. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony Bryant Senior Project Alaska Pacific University May 5, 2010 #12;Running head: GEOTHERMAL POWER PRODUCTION January 2009. This paper researches the possibility of using geothermal energy as an alternative energy

  13. GRC Transactions, Vol. 34, 2010 Geothermal, Engineered Geothermal Systems, EGS, induced

    E-Print Network [OSTI]

    Foulger, G. R.

    GRC Transactions, Vol. 34, 2010 1213 Keywords Geothermal, Engineered Geothermal Systems, EGS during oil and gas development, enhanced oil recovery, geothermal operations, and waste disposal in deep in the geothermal, mining, petroleum and other industries must address. We present a brief review of the history

  14. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  15. Modeling-Computer Simulations At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  16. Geothermal Literature Review At White Mountains Area (Goff &...

    Open Energy Info (EERE)

    useful DOE-funding Unknown Notes Review and identification of 24 potential sites for EGS development across the U.S., as well as modeling of the representative geologic systems...

  17. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  18. Geothermal energy geopressure subprogram

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  19. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    f a Hawaii Geothermal Well-- HGP-A. It Geothermal ResourcesPrelimin 11 Test Results from HGP-A." Resources Counci 1and others. e s t Results Trom HGP-A." Geothermat 2 (Part 1,

  20. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis An error occurred. Try watching this video on www.youtube.com, or enable JavaScript if it is disabled in...

  1. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  2. Geothermal Energy Growth Continues, Industry Survey Reports

    Broader source: Energy.gov [DOE]

    A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

  3. Geothermal Development Job Types and Impacts

    Broader source: Energy.gov [DOE]

    Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

  4. Geothermal Direct Use Technology & Marketplace Hilton Garden...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Paul Brophy) 12:00-1:30 p.m. Luncheon and Presentation on Geothermal Experience in Iceland 1:30 p.m. - Geothermal Marketplace (in the Eastern U.S.) Discussion Lead - Jay Egg,...

  5. An evaluation of enhanced geothermal systems technology

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    A review of the assumptions and conclusions of the DOE-sponsored 2006 MIT study on "The Future of Geothermal Energy" and an evaluation of relevant technology from the commercial geothermal industry.

  6. California/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    III - Permitting and Initial Development Geysers Geothermal Area Holocene Magmatic KeystoneMesquite Lake Geothermal Project Ram Power Brawley, NV 100 MW100,000 kW 100,000,000 W...

  7. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources

    SciTech Connect (OSTI)

    Mays, Gary T; Belles, Randy; Blevins, Brandon R; Hadley, Stanton W; Harrison, Thomas J; Jochem, Warren C; Neish, Bradley S; Omitaomu, Olufemi A; Rose, Amy N

    2012-05-01

    Oak Ridge National Laboratory (ORNL) initiated an internal National Electric Generation Siting Study, which is an ongoing multiphase study addressing several key questions related to our national electrical energy supply. This effort has led to the development of a tool, OR-SAGE (Oak Ridge Siting Analysis for power Generation Expansion), to support siting evaluations. The objective in developing OR-SAGE was to use industry-accepted approaches and/or develop appropriate criteria for screening sites and employ an array of Geographic Information Systems (GIS) data sources at ORNL to identify candidate areas for a power generation technology application. The initial phase of the study examined nuclear power generation. These early nuclear phase results were shared with staff from the Electric Power Research Institute (EPRI), which formed the genesis and support for an expansion of the work to several other power generation forms, including advanced coal with carbon capture and storage (CCS), solar, and compressed air energy storage (CAES). Wind generation was not included in this scope of work for EPRI. The OR-SAGE tool is essentially a dynamic visualization database. The results shown in this report represent a single static set of results using a specific set of input parameters. In this case, the GIS input parameters were optimized to support an economic study conducted by EPRI. A single set of individual results should not be construed as an ultimate energy solution, since US energy policy is very complex. However, the strength of the OR-SAGE tool is that numerous alternative scenarios can be quickly generated to provide additional insight into electrical generation or other GIS-based applications. The screening process divides the contiguous United States into 100 x 100 m (1-hectare) squares (cells), applying successive power generation-appropriate site selection and evaluation criteria (SSEC) to each cell. There are just under 700 million cells representing the contiguous United States. If a cell meets the requirements of each criterion, the cell is deemed a candidate area for siting a specific power generation form relative to a reference plant for that power type. Some SSEC parameters preclude siting a power plant because of an environmental, regulatory, or land-use constraint. Other SSEC assist in identifying less favorable areas, such as proximity to hazardous operations. All of the selected SSEC tend to recommend against sites. The focus of the ORNL electrical generation source siting study is on identifying candidate areas from which potential sites might be selected, stopping short of performing any detailed site evaluations or comparisons. This approach is designed to quickly screen for and characterize candidate areas. Critical assumptions supporting this work include the supply of cooling water to thermoelectric power generation; a methodology to provide an adequate siting footprint for typical power plant applications; a methodology to estimate thermoelectric plant capacity while accounting for available cooling water; and a methodology to account for future ({approx}2035) siting limitations as population increases and demands on freshwater sources change. OR-SAGE algorithms were built to account for these critical assumptions. Stream flow is the primary thermoelectric plant cooling source evaluated in this study. All cooling was assumed to be provided by a closed-cycle cooling (CCC) system requiring makeup water to account for evaporation and blowdown. Limited evaluations of shoreline cooling and the use of municipal processed water (gray) cooling were performed. Using a representative set of SSEC as input to the OR-SAGE tool and employing the accompanying critical assumptions, independent results for the various power generation sources studied were calculated.

  8. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  9. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information on Monitoring Checklists for the installation of GeothermalGround-Source Heat Pumps. geothermalgroundsourceheatpumps.pdf More Documents & Publications...

  10. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Additional References Retrieved from...

  11. Geothermal Electricity Technology Evaluation Model (GETEM) Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating the performance and...

  12. Applied Microearthquake Techniques for Geothermal Resource Development

    E-Print Network [OSTI]

    Foulger, G. R.

    . In recent years, interest in exploiting geothermal energy has increased greatly, accompanied by interest. The microearthquake techniques currently producing the most useful results for geothermal energy production, and whichApplied Microearthquake Techniques for Geothermal Resource Development Gillian R. Foulger1 & Bruce

  13. Geothermal energy for Hawaii: a prospectus

    SciTech Connect (OSTI)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  14. . Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    . Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

  15. SGP-TR-32 STANFORD GEOTHERMAL PROGRAM

    E-Print Network [OSTI]

    Stanford University

    SGP- TR- 32 STANFORD GEOTHERMAL PROGRAM PROGRESS REPORT NO. 7 t o U. S. DEPARTMENT OF ENERGY Recent Radon Transient Experiments Energy Recovery from Fracture-Stimulated Geothermal Reservoirs 1 2 l e c t i o n of Summary presentations prepared by t h e Stanford Geothermal Program s t a f f

  16. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR-81 TRACER TEST ANALYSIS OF THE KLAMATH FALLS GEOTHERMAL RESOURCE Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department

  17. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459

  18. Stanford Geothermal Program Interdisciplinary Research in

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Departnent by water cir- culated in a " hot dry rock" geothermal reservoir will induce tensile thermal stresses i n

  19. The Buck Institute Turned to Geothermal

    E-Print Network [OSTI]

    The Buck Institute Turned to Geothermal Heating and Cooling for Significant Savings on Energy with the goal of sustaining the healthy years of life... #12;Geothermal Exchange #12; Cooling Tower: One. Other Challenges to the Original Central Plant: #12;The geothermal well field replaces the cooling tower

  20. STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT t o U.S. DEPARTMENT OF ENERGY LAWRENCE BERKELEY PRESENTATIONS & PUBLICATIONS APPENDIX A: STANDARD GEOTHERMAL PROGRAM WEEKLY SEMINAR ii 1 4 23 35 49 58 60 63 65 Geothermal Program has maintained momentum built up under the previous National Science Foundation support

  1. Book Review Geothermal Biology and Geochemis-

    E-Print Network [OSTI]

    Book Review Geothermal Biology and Geochemis- try in Yellowstone National Park. (eds WP Inskeep of life. The legacy of chemical and biologi- cal research in geothermal regimes, while short in duration geothermal areas, including Yellowstone, are largely confined to the specialty literature of geochemical

  2. Maintaining a competitive geothermal industry

    SciTech Connect (OSTI)

    Zodiaco, V.P.

    1996-04-10

    I come to this geothermal business with over 30 years of experience in the power generation industry. I have earned my spurs (so to speak) in the electric utility, nuclear power, coal and the gas-fired cogeneration power businesses. I have been employed by Oxbow Power for the past seven years and for the past 18 months I have been based in Reno and responsible for the operation, maintenance and management of Oxbow`s domestic power projects which include three geothermal and two gas-fired facilities. The Oxbow Power Group (consisting principally of Oxbow Power Corporation, Oxbow Geothermal Corporation, Oxbow Power of Beowawe, Oxbow Power International and Oxbow Power Services, Inc.) is based in West Palm Beach, Florida, and has regional offices in Reno, Hong Kong and Manila to support on-line geothermal projects in Nevada, other domestic power projects and a geothermal plant under construction in the Philippines. Oxbow Power employs approximately 30 professionals in the development and management of power projects and over 100 supervisors and technicians in the operation and maintenance of power facilities. Current ownership in independent power projects total 340 MW in the United States and 47 MW under construction in the Philippines. Oxbow is currently negotiating additional projects in several Asian and Central American countries.

  3. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mansure, Chip

    EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  4. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mansure, Chip

    2012-01-01

    EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  5. Geothermal Progress Monitor: Report No. 14

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  6. The Separation of Thermal and Chemical Effects in Evaluating Geothermal Influences on Aquatic Biota

    E-Print Network [OSTI]

    Resh, Vincent H; Lamberti, Gary A; McElravy, Eric P; Wood, John R

    1983-01-01

    River (Yellowstone Park) below geothermal effluents.geothermal habitats been most intensively studied in Yellowstone

  7. MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring

    E-Print Network [OSTI]

    Wodin-Schwartz, Sarah

    2013-01-01

    Monitoring Geothermal Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . .down hole environment monitoring. Harsh environment sensorsfor Geothermal Monitoring Harsh environment MEMS sensors

  8. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  9. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  10. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  11. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  12. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Boyanov, Maxim I.

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 ?M. Concentrations of U (VI) >2 ?M were generally found to inhibit ribosome synthesis. Two activemorebacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.less

  13. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  14. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  15. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS 1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  16. Sandia Energy - Siting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser HeatingSeminarsSimulatingSiting

  17. Evaluation of noise associated with geothermal-development activities. Final report, July 31, 1979-April 30, 1982

    SciTech Connect (OSTI)

    Long, M.; Stern, R.

    1982-01-01

    This report was prepared for the purpose of ascertaining the current state of noise generation, suppression, and mitigation techniques associated with geothermal development. A description of the geothermal drilling process is included as well as an overview of geothermal development activities in the United States. Noise sources at the well site, along geothermal pipelines, and at the power plants are considered. All data presented are measured values by workers in the field and by Marshall Long/Acoustics. One particular well site was monitored for a period of 55 continuous days, and includes all sources of noise from the time that the drilling rig was brought in until the time that it was moved off site. A complete log of events associated with the drilling process is correlated with the noise measurements including production testing of the completed well. Data are also presented which compare measured values of geothermal noise with federal, state, county, and local standards. A section on control of geothermal noise is also given. Volume I of this document presents summary information.

  18. Geothermal activities in Central America

    SciTech Connect (OSTI)

    Whetten, J.T.; Hanold, R.J.

    1985-09-11

    The Agency for International Development is funding a new program in energy and minerals for Central America. Geothermal energy is an important component. A country-wide geothermal assessment has started in Honduras, and other assessment activities are in progress or planned for Costa Rica, El Salvador, Guatemala, and Panama. Instrumentation for well logging has been provided to Costa Rica, and a self-contained logging truck will be made available for use throughout Central America. An important objective of this program is to involve the private sector in resource development. 4 refs., 3 figs.

  19. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  20. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect (OSTI)

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.