Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal resources in California: potentials and problems  

DOE Green Energy (OSTI)

The technology, cost and potential of geothermal resources in California are examined. The production of power from dry stream fields is expanding in Northern California, at The Geysers, at costs that compare favorably with alternate means of generation. The possibility exists that economic production of power can be started in the Imperial Valley, but numerous issues remain to be resolved; chief among them is the demonstration that commercially valuable aquifers indeed exist. The production of demineralized water from the geothermal fluids of the Imperial Valley depends, among other things, upon the identification of other sources of water for power plant cooling, or for reservoir reinjection, should it be necessary to avoid subsidence. It would appear that water production, without the income-producing capability of associated power generation, is not economically reasonable. The pace of geothermal development at the Geysers could probably be accelerated perhaps offering the opportunity for maintenance of adequate generating reserves should their nuclear construction program be delayed. The unknown factors and risks involved seem to preclude the Imperial Valley resource from being immediately effective in improving the power generation picture in Southern California. However, in the next decade, geothermal power could provide a useful energy increment, perhaps 10 percent of peak load. Associated water production could offer relief for the Imperial Valley in its predicted water quality problem. The pace of public and private development in the Imperial Valley seems incommensurately slow in relation to the potential of the resource. Geothermal power and water production is not intrinsically pollution-free, but appropriate environmental protection is possible.

Goldsmith, M.

1971-12-01T23:59:59.000Z

2

Comprehensive Evaluation of the Geothermal Resource Potential within the  

Open Energy Info (EERE)

Comprehensive Evaluation of the Geothermal Resource Potential within the Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed project will provide state-of-the-art characterization information and a detailed analysis of the geothermal resource potential at the Astor Pass site. The information gained during this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new technologies and geothermal data to the geothermal industry and to create and preserve nearly three dozen jobs that will serve to stimulate the economy in accordance with the American Recovery and Reinvestment Act of 2009.

3

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

4

Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Details Activities (16) Areas (9) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing

5

Our Evolving Knowledge Of Nevada's Geothermal Resource Potential | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Abstract The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing new tools

6

Comprehensive Evaluation of the Geothermal Resource Potential...  

Open Energy Info (EERE)

this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new...

7

Potential benefits of geothermal electrical production from hydrothermal resources  

DOE Green Energy (OSTI)

The potential national benefits of geothermal electric energy development from the hydrothermal resources in the West are estimated for several different scenarios. The U.S. electrical economy is simulated by computer using a linear programming optimization technique. Under most of the scenarios, benefits are estimated at $2 to $4 billion over the next 50 years on a discounted present value basis. The electricity production from hydrothermal plants reaches 2 to 4 percent of the national total, which will represent 10 to 20 percent of the installed capacity in the West. Installed geothermal capacity in 1990 is estimated to be 9,000 to 17,000 Mw(e). The geothermal capacity should reach 28,000 to 65,000 Mw(e) by year 2015. The ''most likely'' scenario yields the lower values in the above ranges. Under this scenario geothermal development would save the utility industry $11 billion in capital costs (undiscounted); 32 million separative work units; 64,000 tons of U/sub 3/O/sub 8/; and 700 million barrels of oil. The most favorable scenario for geothermal energy occurs when fossil fuel prices are projected to increase at 5 percent/year. The benefits of geothermal energy then exceed $8 billion on a discounted present value basis. Supply curves were developed for hydrothermal resources based on the recent U.S. Geological Survey (USGS) resource assessment, resource characteristics, and projected power conversion technology and costs. Geothermal plants were selected by the optimizing technique to fill a need for ''light load'' plants. This infers that geothermal plants may be used in the future primarily for load-following purposes.

Bloomster, C.H.; Engel, R.L.

1976-06-01T23:59:59.000Z

8

Preliminary definition of the geothermal resources potential of Pennsylvania  

DOE Green Energy (OSTI)

Pennsylvania has a diverse geology. A small portion of the northeastern corner of the state is covered by Atlantic Coastal Plains sediments. To the northwest metamorphic rocks in the Piedment, Blue Ridge and Reading Prong areas are exposed. Triassic basine cut across portions of the Piedmont. The western portion of the state is underlain by Paleozoic sediments of the folded Appalachians and the Appalachian or Allegheny Basin. Crystalline rocks are limited to the metamorphic and igneous rocks of the Piedmont, Blue Ridge, and Reading Prong and to Triassic diabase intrusives. Potential for geothermal resources in Pennsylvania appear to be limited to small hydrothermal systems associated with deep convection in the folded Appalachians or deep sources in the Appalachian Basin. Heat flow measurements and temperature gradients from oil and gas wells suggest normal continental heat flow in Pennsylvania. Under such conditions temperatures of about 200{sup 0}C (392{sup 0}F) are possible near the base of the sedimentary section (about 9 km, 30,000 feet). Warm springs are not as common in Pennsylvania as they are to the south in West Virginia and Virginia. Apparently the structure does not facilitate convective circulation. Geothermal resources in Pennsylvania appear to be restricted to those available in an area of normal temperature gradients.

Renner, J.L.; Vaught, T.L.

1979-01-01T23:59:59.000Z

9

Geothermal resource potential of the Socorro Area, New Mexico  

DOE Green Energy (OSTI)

This report provides a regional synthesis of geology, geochemistry, hydrology and geophysical data for the Socorro, New Mexico, area. It is based principally on extensive drill-hole data supplied by, and proprietary to, Gulf Mineral Resources Company and Sunoco Energy Development Co. These temperature-gradient and heat-flow data are integrated with older gradient and heat-flow data, groundwater chemistry, studies of local seismicity, regional and local geologic mapping, and other data. This synthesis yields a revised estimate of the geothermal energy potential for the Socorro area. it should be recalled that attention has been focused on Socorro and vicinity because of reported high heat flow and probable magmatic bodies within the shallow crust. Some 20 man-days of effort have gone into this study, exclusive of time spent earlier in logging temperature gradients and studying drill-hole cuttings.

Petersen, C.A.; Koenig, J.B.

1979-10-01T23:59:59.000Z

10

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

11

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

12

Preliminary Assessment of Geothermal Resource Potential at the UTTR  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the current state of geologic knowledge concerning potential high-temperature geothermal development on the lands controlled by Hill Air Force Base (HAFB) at the Utah Testing and Training Range (UTTR) and the lands encompassed by the Dugway Proving Grounds (Dugway). This report is based on currently available published and publically available information. Most of the information presented here is purely geologic in nature. Therefore, the logistical issues (such as military exclusion areas, proximity to electrical infrastructure, and access) are additional considerations that are being addressed in a separate report that will be issued to HAFB by the SES corporation.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2011-06-01T23:59:59.000Z

13

Preliminary definition of the geothermal resources potential of West Virginia  

DOE Green Energy (OSTI)

Most of West Virginia is underlain by Paleozoic sedimentary rocks. Crystalline rocks are limited to two areas: a small area in the Harpers Ferry region and some basic intrusives and extrusives in Pendleton County. In the Valley and Ridge province the rocks are folded and faulted. The deformation appears to be confined to the sediments overlying the crystalline basement. The Appalachian Basin is characterized by moderately dipping sediments which may reach ticknesses of 7600 meters (25,000 feet) in eastern West Virginia. The 38th parallel fracture zone may extend through West Virginia and serve to localize geothermal resources. Heat flow in West Virginia appears to be rather uniform and in the range of 1.12 to 1.26 heat flow units. Bottomhole temperatures from oil and gas tests show no abnormally hot spots. Warm springs are limited to the eastern portion of West Virginia in the folded Appalachians and appear to be located on the flanks of anticlines at topographic lows. Geothermometry suggests subsurface temperatures in the 45 to 65{sup 0}C (113 to 149{sup 0}F) range. The Appalachian Basin provides a thick sequence of rocks with normal geothermal gradient (18.2{sup 0}C/kilometer, 1{sup 0}F/100 feet). High temperatures are expected at great depths, but production rates are likely to be low. Several oil and gas tests in West Virginia have encountered pressures about twice the normal pressure expected at the depth. However, the overpressured zones appear to be of small extent.

Renner, J.L.; Vaught, T.L.

1979-01-01T23:59:59.000Z

14

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

15

Geothermal Resources Council's ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications...

16

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

17

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production...

18

Review of water resource potential for developing geothermal resource sites in the western United States  

DOE Green Energy (OSTI)

Water resources at 28 known geothermal resource areas (KGRAs) in the western United States are reviewed. Primary emphasis is placed upon examination of the waer resources, both surface and ground, that exist in the vicinity of the KGRAs located in the southwestern states of California, Arizona, Utah, Nevada, and New Mexico. In most of these regions water has been in short supply for many years and consequently a discussion of competing demands is included to provide an appropriate perspective on overall usage. A discussion of the water resources in the vicinity of KGRAs in the States of Montana, Idaho, Oregon, and Washington are also included.

Sonnichsen, J.C. Jr.

1980-07-01T23:59:59.000Z

19

Potential of low-temperature geothermal resources in northern California. Report No. TR13  

DOE Green Energy (OSTI)

Economically feasible uses for geothermal heat at temperatures too low for conventional electrical power generation at present are delineated. Several geothermal resource areas in northern California that have development potential are described, and applications of the heat found in each area are suggested. Plates are included of the following field study areas: the east side of the Sierra-Cascade Range north of Bishop, and the northern Coast Range from San Francisco Bay to Clear Lake. The counties included in the study area are Mo doc, Lassen, Sierra, Plumas, Placer, Alpine, Mono, Mendocino, Lake, and Sonoma. (LBS)

Hannah, J.L.

1975-01-01T23:59:59.000Z

20

Industrial low temperature utilization of geothermal resources  

SciTech Connect

This brief presentation on industrial utilization of low temperature geothermal resources first considers an overview of what has been achieved in using geothermal resources in this way and, second, considers potential, future industrial applications.

Howard, J.H.

1976-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal resources of Montana  

DOE Green Energy (OSTI)

The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

Metesh, J.

1994-06-01T23:59:59.000Z

22

UWC geothermal resource exploration  

DOE Green Energy (OSTI)

A program was developed to explore the strength of the geothermal and hot dry rock (HDR) resource at the Montezuma Hot Springs at the United World College (UWC). The purpose of the UWC {number_sign}1 well is to obtain hydrologic, geologic, and temperature information for ongoing geothermal evaluation of the Montezuma Hot Springs area. If sufficient fluids are encountered, the hole will be cased with a 4 1/2 inch production casing and re-permitted as a geothermal low-temperature well. If no fluid is encountered, the well will be abandoned per Oil Conservation Division regulation. The objectives of the exploration are to evaluate the resource potential to provide space heating for the entire campus of the United World College, determine the effect of a well on the Hot Springs outflow, accurately measure the UWC heating loads versus time, evaluate the potential to support local thermal industry development, assess the feasibility of HDR development, and create an educational program from the collection of data derived from the research effort.

NONE

1996-04-01T23:59:59.000Z

23

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

24

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

25

Geothermal Energy Resource Assessment  

DOE Green Energy (OSTI)

This report covers the objectives and the status of a long-range program to develop techniques for assessing the resource potential of liquid-dominated geothermal systems. Field studies underway in northern Nevada comprise a systematic integrated program of geologic, geophysical, and geochemical measurements, necessary to specify a drilling program encompassing heat flow holes, deep calibration holes, and ultimately, deep test wells. The status of Nevada field activities is described. The areas under study are in a region characterized by high heat flow where temperatures at depth in some geothermal systems exceed 180 C. Areas presently being examined include Beowawe Hot Springs in Whirlwind Valley. Buffalo Valley Hot Springs, Leach Hot Springs in Grass Valley, and Kyle Hot Springs in Buena Vista Valley. Geologic studies encompass detailed examinations of structure and lithology to establish the geologic framework of the areas. The geothermal occurrences are characterized by zones of intense fault intersection, which furnish permeable channelways for the introduction of meteoric water into regions of high temperature at depth.

Wollenberg, H.A.; Asaro, F.; Bowman, H.; McEvilly, T.; Morrison, F.; Witherspoon, P.

1975-07-01T23:59:59.000Z

26

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume I  

DOE Green Energy (OSTI)

Environmental baseline data for the Snake River Plain known geothermal resource areas (KGRAs) are evaluated for geothermal development. The objective is to achieve a sound data base prior to geothermal development. These KGRAs are: Vulcan Hot Springs, Crane Creek, Castle Creek, Bruneau, Mountain Home, Raft River, Island Park, and Yellowstone. Air quality, meteorology, hydrology, water quality, soils, land use, geology, subsidence, seismicity, terrestrial and aquatic ecology, demography, socioeconomics, and heritage resources are analyzed. This program includes a summary of environmental concerns related to geothermal development in each of the KGRAs, an annotated bibliography of reference materials (Volume II), detailed reports on the various program elements for each of the KGRAs, a program plan identifying future research needs, and a comprehensive data file.

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01T23:59:59.000Z

27

Potential effects of the Hawaii geothermal project on ground-water resources on the Island of Hawaii  

DOE Green Energy (OSTI)

This report provides data and information on the quantity and quality of ground-water resources in and adjacent to proposed geothermal development areas on the Island of Hawaii Geothermal project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. Data presented for about 31 wells and 8 springs describe the chemical, thermal, and hydraulic properties of the ground-water system in and adjacent to the East Rift Zone. On the basis of this information, potential effects of this geothermal development on drawdown of ground-water levels and contamination of ground-water resources are discussed. Significant differences in ground-water levels and in the salinity and temperature of ground water within the study area appear to be related to mixing of waters from different sources and varying degrees of ground-water impoundment by volcanic dikes. Near Pahoa and to the east, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the relatively modest requirements for fresh water to support geothermal development in that part of the east rift zone would result in minimal effects on ground-water levels in and adjacent to the rift. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying fresh water at rates sufficient to support geothermal operations. Water would have to be transported to such developments from supply systems located outside the rift or farther downrift. Contaminant migration resulting from well accidents could be rapid because of relatively high ground-water velocities in parts of the region. Hydrologic monitoring of observation wells needs to be continued throughout development of geothermal resources for the Hawaii Geothermal Project to enable the early detection of leakage and migration of geothermal fluids.

Sorey, M.L.; Colvard, E.M.

1994-07-01T23:59:59.000Z

28

Geothermal resource investigations, Imperial Valley, California. Status report  

DOE Green Energy (OSTI)

The discussion is presented under the following chapter titles: geothermal resource investigations, Imperial Valley, California; the source of geothermal heat; status of geothermal resources (worldwide); geothermal aspects of Imperial Valley, California; potential geothermal development in Imperial Valley; environmental considerations; and proposed plan for development. (JGB)

Not Available

1971-04-01T23:59:59.000Z

29

Geothermal: Sponsored by OSTI -- Geothermal resource evaluation...  

Office of Scientific and Technical Information (OSTI)

resource evaluation of the Yuma area Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search...

30

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic

31

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in...

32

Geothermal resources of South Dakota  

SciTech Connect

This document consists of 1:750,000 map showing the accessible stratabound geothermal resources of South Dakota. (BN)

Gosnold, W.D. Jr. (comp.) (North Dakota Univ., Grand Forks, ND (United States). North Dakota Mining and Mineral Resources Research Inst.)

1992-01-01T23:59:59.000Z

33

Geothermal resources of South Dakota  

SciTech Connect

This document consists of 1:750,000 map showing the accessible stratabound geothermal resources of South Dakota. (BN)

Gosnold, W.D. Jr. [comp.] [North Dakota Univ., Grand Forks, ND (United States). North Dakota Mining and Mineral Resources Research Inst.

1992-08-01T23:59:59.000Z

34

Mineral and geothermal resource potential of Wild Cattle Mountain and Heart Lake roadless areas Plumas, Shasta, and Tehama Counties, California  

DOE Green Energy (OSTI)

The results of geological, geochemical, and geophysical surveys in Wild Cattle Mountain and Heart Lake Roadless Areas indicate no potential for metallic or non-metallic mineral resources in the areas and no potential for coal or petroleum energy resources. However, Wild Cattle Mountain Roadless Area and part of Heart Lake Roadless Area lie in Lassen Known Geothermal Resources Area, and much of the rest of Heart Lake Roadless Area is subject to non-competitive geothermal lease applications. Both areas are adjacent to Lassen Volcanic National Park, which contains extensive areas of fumaroles, hot springs, and hydrothermally altered rock; voluminous silicic volcanism occurred here during late Pleistocene and Holocene time. Geochemical data and geological interpretation indicate that the thermal manifestations in the Park and at Morgan and Growler Hot Springs (immediately west of Wild Cattle Mountain Roadless Area) are part of the same large geothermal system. Consequently, substantial geothermal resources are likely to be discovered in Wild Cattle Mountain Roadless Area and cannot be ruled out for Heart Lake Roadless Area.

Muffler, L.J.P.; Clynne, M.A.; Cook, A.L.

1982-01-01T23:59:59.000Z

35

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

36

Resource assessment for geothermal direct use applications  

DOE Green Energy (OSTI)

This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

1984-04-01T23:59:59.000Z

37

Investigation of geothermal potential in the Waianae Caldera Area, Western Oahu, Hawaii. Assessment of Geothermal Resources in Hawaii: Number 2  

DOE Green Energy (OSTI)

Studies of Lualualei Valley, Oahu have been conducted to determine whether a thermal anomaly exists in the area and, if so, to identify sites at which subsurface techniques should be utilized to characterize the resource. Geologic mapping identifies several caldera and rift zone structures in the Valley and provides a tentative outline of their boundaries. Clay mineralogy studies indicate that minor geothermal alteration of near-surface rocks has occurred at some period in the history of the area. Schlumberger resistivity soundings indicate the presence of a low resistivity layer beneath the valley floor, which has been tentatively attributed to warm water-saturated basalt. Soil and groundwater chemistry studies outline several geochemical anomalies around the perimeter and within the inferred caldera boundaries. The observed anomalies strongly suggest a subsurface heat source. Recommendations for further exploratory work to confirm the presence of a geothermal reservoir include more intensive surveys in a few selected areas of the valley as well as the drilling of at least three shallow (1000-m) holes for subsurface geochemical, geological and geophysical studies.

Cox, M.E.; Sinton, J.M.; Thomas, D.M.; Mattice, M.D.; Kauahikaua, J.P.; Helstern, D.M.; Fan, P.

1979-09-01T23:59:59.000Z

38

Technology assessment of geothermal energy resource development  

DOE Green Energy (OSTI)

Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

Not Available

1975-04-15T23:59:59.000Z

39

Final Technical Report, Geothermal Resource Evaluation And Definitioni  

Open Energy Info (EERE)

Technical Report, Geothermal Resource Evaluation And Definitioni Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Details Activities (9) Areas (1) Regions (0) Abstract: This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource

40

Unearthing Geothermal's Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unearthing Geothermal's Potential Unearthing Geothermal's Potential Unearthing Geothermal's Potential September 16, 2010 - 12:33pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Our latest geothermal technologies awards are for those who think outside of the box (and below the surface). Secretary of Energy Steven Chu announced $20 million towards the research and development of non-conventional geothermal energy technologies in three areas: low temperatures fluids, geothermal fluids recovered from oil and gas wells and highly pressurized geothermal fluids. As the Secretary said, these innovative projects have the potential to expand the use of geothermal energy to more areas around the country. Low temperature resources are widely available across the country and offer

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Potential growth of electric power production from Imperial Valley geothermal resources  

DOE Green Energy (OSTI)

The growth of geothermal electric power operations in Imperial Valley, California is projected over the next 40 years. With commercial power forecast to become available in the 1980's, the scenario considers three subsequent growth rates: 40, 100, and 250 MW per year. These growth rates, along with estimates of the total resource size, result in a maximum level of electric power production ranging from 1000 to 8000 MW to be attained in the 2010 to 2020 time period. Power plant siting constraints are developed and used to make siting patterns for the 400- through 8000-MW level of power production. Two geothermal technologies are included in the scenario: flashed steam systems that produce cooling water from the geothermal steam condensate and emit noncondensable gases to the atmosphere; and high pressure, confined flow systems that inject the geoghermal fluid back into the ground. An analysis of the scenario is made with regard to well drilling and power plant construction rates, land use, cooling water requirements, and hydrogen sulfide emissions.

Ermak, D.L.

1977-09-30T23:59:59.000Z

42

Drilling for Geothermal Resources Rules - Idaho | Open Energy...  

Open Energy Info (EERE)

Geothermal Resources Rules - Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reference Material: Drilling for Geothermal Resources Rules - Idaho Details...

43

Tribal Energy Program: Geothermal Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Printable Version Share this resource Send a link to Tribal Energy Program: Geothermal Energy Resources to someone by E-mail Share Tribal Energy Program: Geothermal Energy...

44

Hypothesis testing for resource evaluation: an application to geothermal potential estimation in Nevada  

DOE Green Energy (OSTI)

A hypothesis testing methodology for the statistical integration of diverse data types has been further investigated. In an earlier study the technique was developed and applied, with limited data, to evaluation of the geothermal potential of Nevada. That effort has been extended in this report to include the implementation of data on major lineaments and surface lithology. Information from the new data bases is integrated with that from the seismicity and small scale linear data previously studied. The new data added in this study has improved the results considerably. A number of new areas appropriate for further, more detailed geophysical investigation are indicated by high likelihood ratios.

Parr, J.T.

1978-10-01T23:59:59.000Z

45

Human Resources in Geothermal Development  

DOE Green Energy (OSTI)

Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

Fridleifsson, I.B.

1995-01-01T23:59:59.000Z

46

Geothermal resource data base: Arizona  

DOE Green Energy (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

47

South Dakota geothermal resources  

SciTech Connect

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

48

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane...

49

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

50

Geothermal resources of the eastern United States  

DOE Green Energy (OSTI)

Known and potential geothermal resources of the eastern United States are reported. The resources considered are exclusively hydrothermal, and the study was confined to the 35 states east of the Rocky Mountains, excluding the Dakotas. Resource definition in these areas is based entirely on data found in the literature and in the files of a number of state geological offices. The general geology of the eastern United States is outlined. Six relatively homogeneous eastern geologic regions are discussed. (MHR)

Renner, J.L.; Vaught, T.L.

1979-12-01T23:59:59.000Z

51

Geothermal energy. A national proposal for geothermal resources research  

DOE Green Energy (OSTI)

Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

Denton, J.C. (ed.)

1972-01-01T23:59:59.000Z

52

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

53

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

54

The United Nations' Approach To Geothermal Resource Assessment | Open  

Open Energy Info (EERE)

United Nations' Approach To Geothermal Resource Assessment United Nations' Approach To Geothermal Resource Assessment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The United Nations' Approach To Geothermal Resource Assessment Details Activities (2) Areas (1) Regions (0) Abstract: Although the emphasis of United Nations' assisted geothermal projects has been on demonstrating the feasibility of producing geothermal fluids, the potential capacity of individual fields has been estimated by both the energy in place and decline curve methods. The energy in place method has been applied to three geothermal fields resulting in total resource estimates ranging from 380 to 16,800 MW-yr. The results of these studies must be considered highly tentative, however, due to inadequate reservoir data and a poor knowledge of producing mechanisms. The decline

55

California Division of Oil, Gas, and Geothermal Resources - GIS...  

Open Energy Info (EERE)

Division of Oil, Gas, and Geothermal Resources - GIS and Well data The California Division of Oil, Gas, and Geothermal Resources contains oil, gas, and geothermal data for the...

56

Potential for crop drying with geothermal hot water resources in the western United States: alfalfa, a case study. Report 305-100-02  

DOE Green Energy (OSTI)

Preliminary results of engineering, economic, and geographic analysis of the use of low-temperature geothermal heat for the commercial drying of grains, grasses, fruits, vegetables and livestock products in the United States are reported. Alfalfa (lucerne) dehydration was chosen for detailed process and cost study. Six different geothermal heat exchanger/dryer configurations were examined. A conveyor type that could utilize geothermal hot water for its entire heat requirement proved to be the most economical. A capital cost estimate for an all-geothermal alfalfa dehydration plant near the Heber Known Geothermal Resource Area in the Imperial Valley, California was prepared. The combined cost for heat exchangers and dryer is about $1.6 million. Output is about 11 metric tons per hour. Acreage, production and dollar value data for 22 dryable crops were compiled for the areas surrounding identified hydrothermal resources in 11 western states. The potential magnitude of fossil fuel use that could be replaced by geothermal heat for drying these crops will be estimated.

Wright, T.C.

1977-06-22T23:59:59.000Z

57

Potential environmental hazards associated with geopressured-geothermal resource development in coastal Louisiana  

Science Conference Proceedings (OSTI)

Gulf Coast high temperature (> 275 F) geopressured brines are more or less saturated with dissolved natural gas. These can be exploited at high flow rated (> 20,000 barrels per day) using wells completed with modified conventional technology for extracting gas from brine. Surface subsidence, fault reactivation, induced subsurface faulting and fracturing, brine spills, wetland loss, and the contamination of fresh water aquifers are the major potential hazards involved in this resource development which were all taken into consideration for implementing the environmental monitoring program being currently carried out at the well test sites. High volume production from a geopressured reservoir causes depressurization, compaction, and dewatering which could translate into surface subsidence rates that are greater than base line rates unless pressure is maintained by water ingress at the boundaries of producing reservoirs. Subsidence is of critical concern in coastal Louisiana where much of the land surface is at or below sea level. Increased subsidence will result in urban flooding, wetland loss, and loss of ecosystem habitats. Induced stresses could result in new faulting and fracturing enabling fluid flow between previously unconnected reservoirs and possibly contaminating fresh water aquifers. Fault displacements and minor earth movements can be detected with microseismic monitoring which is being done. Brine spills at well sites which could not be contained within levees will seriously impact the surrounding marshes and some minor wetland loss may occur in establishing production sites. Continued no major environmental impact attributable to resource testing.

John, C.J.; Groat, C.G.; Lindstedt, D.; Jensen, B. (Louisiana Geological Survey, Baton Rouge, LA (United States))

1992-01-01T23:59:59.000Z

58

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography  

DOE Green Energy (OSTI)

This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01T23:59:59.000Z

59

Mapping Geothermal Potential In The Western United States | Open Energy  

Open Energy Info (EERE)

Geothermal Potential In The Western United States Geothermal Potential In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Geothermal Potential In The Western United States Details Activities (3) Areas (1) Regions (0) Abstract: The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. An important component of the assessment is the estimate of the spatial distribution and quantity of undiscovered geothermal resources. Weights of evidence and logistic regression models have been applied through a Geographic Information System (GIS) framework to produce maps of geothermal favorability. These maps provide the basis for characterizing the undiscovered geothermal resource base and could guide future exploration

60

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Preliminary assessment of the geothermal resource potential of the Yuma area, Arizona  

DOE Green Energy (OSTI)

The Yuma area has had a long and complex tectonic history. The most southwesterly corner of the area presently comprises a small segment of the Salton Trough, a deep sediment-filled structural depression. Known geothermal anomalies in the Salton Trough make the Yuma area a favorable exploration target even though spreading-center heat sources are not expected to occur there. Geological and geophysical investigations reveal that the area is made up of low, rugged northwest-trending mountains separated by deep sediment-filled basins. Relief is a result of both erosional and structural activity. Northwest-trending en-echelon faults bound the range fronts and the basins, and have created several horst blocks (basement highs) that crop out at or near the surface. The Algodonnes fault is inferred to represent the northeast margin of the Salton Trough and apparently an inactive extension of the San Andreas fault system. Extensive well-pumping and applications of irrigation waters in recent years have created an unnatural state of flux in the hydrologic regime in the Yuma area. Gravity and aeromagnetic anomalies trend strongly northwest through the region as do lineaments derived from Landsat and Skylab photos. Electrical resistivity values in the Bouse Formation are exceptionally low, about 3 ohn-m. Heat flow appears to be normal for the Basin and Range province. Ground-water temperatures indicate zones of rising warm water, with one such warm anomaly confirmed by sparse geothermal-gradient data.

Stone, C.

1981-01-01T23:59:59.000Z

62

Geothermal: Sponsored by OSTI -- Geothermal resources of the...  

Office of Scientific and Technical Information (OSTI)

resources of the Washakie and Great Divide basins, Wyoming Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

63

Geothermal: Sponsored by OSTI -- Enhanced Geothermal System Potential...  

Office of Scientific and Technical Information (OSTI)

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

64

A New Geothermal Resource Map Of Nicaragua | Open Energy Information  

Open Energy Info (EERE)

Map Of Nicaragua Map Of Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Geothermal Resource Map Of Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: A recently completed Geothermal Master Plan Study of Nicaragua assesses the geothermal resource potential of the identified fields and prospects in the country. During the course of the 18-month study, existing data were compiled and evaluated and new exploration work was conducted to determine, for each of ten geothermal resource areas studied: 1) the current level of knowledge about the resource; 2) its exploration or development status; 3) a conceptual model of the geothermal system or systems (incorporating geology, volcanology, geophysics, hydrology, fluid chemistry and geothermometry); 4) estimated recoverable energy reserves; 5)

65

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

66

Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography  

SciTech Connect

This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

Spencer, S.G.; Russell, B.F.; Sullivan, J.F. (eds.)

1979-09-01T23:59:59.000Z

67

NREL: Renewable Resource Data Center - Geothermal Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Resource Data Center Search More Search Options Site Map Printable Version Geothermal Resource Information Photo of the Hot Springs Lodge and Pool. The Hot Springs Lodge...

68

West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report  

DOE Green Energy (OSTI)

The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

Gilliland, M.W.; Fenner, L.B.

1980-01-01T23:59:59.000Z

69

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

70

Geothermal Resources (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Conservation and Survey Division School of Natural Resources This section establishes the support of the state for the efficient development of Nebraska's geothermal resources, as well as permitting

71

Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development  

DOE Green Energy (OSTI)

The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

Not Available

1976-06-01T23:59:59.000Z

72

Geothermal resource evaluation of the Yuma area  

DOE Green Energy (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

73

NREL: Learning - Student Resources on Geothermal Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search More Search Options Site Map Printable Version Student Resources on Geothermal Electricity Production Photo of the Geysers power plants in California. Students can...

74

Geothermal resource development: laws and regulations  

DOE Green Energy (OSTI)

The development of geothermal resources in California is becoming of increasing interest because of the large amounts of these resources in the state. In response to this interest in development, the legislature and regulatory bodies have taken actions to increase geothermal power production. The important federal and California laws on the subject are presented and discussed. Pertinent federal and state provisions are compared, and inconsistencies are discussed. An important concept that needs clarification is the manner of designating an area as a ''known geothermal resource area.'' The question of designating geothermal resource as a mineral is not completely resolved, although there is authority tending toward the finding that it is a mineral.

Wharton, J.C.

1977-08-25T23:59:59.000Z

75

Figure 4.17 Geothermal Resources  

U.S. Energy Information Administration (EIA)

Figure 4.17 Geothermal Resources 124 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: Data are for locations of identified hydrothermal ...

76

Representative well models for eight geothermal-resource areas  

DOE Green Energy (OSTI)

Representative well models have been constructed for eight major geothermal-resource areas. The models define representative times and costs associated with the individual operations that can be expected during drilling and completion of geothermal wells. The models were made for and have been used to evaluate the impacts of potential new technologies. The nature, construction, and validation of the models are presented.

Carson, C.C.; Lin, Y.T.; Livesay, B.J.

1983-02-01T23:59:59.000Z

77

Geothermal resource assessment, South Dakota: Final report  

SciTech Connect

Seven geothermal aquifers in South Dakota contain an accessible resource base of about 11,207 x 10/sup 18/ J. The potentially productive geothermal aquifers are: Deadwood Formation (Cambrian), Winnipeg Formation + Red River Formation + Englewood Limestone (Ordovician through Devonian), Madison Limestone (Mississippian), Minnelusa Formation (Mississippian-Permian), Inyan Kara Group (Cretaceous), and Newcastle Sandstone (Cretaceous). The resource estimate was obtained by first using heat flow, thermal conductivity, temperature gradient, and stratigraphic data to estimate aquifer temperatures. The heat content of each aquifer was determined from the product of the volumetric heat capacity, aquifer volume, and temperature difference between the aquifer and the mean annual temperature for a 14 x 14 grid of 240 km/sup 2/ cells. Geothermal fluid temperatures range from about 120/sup 0/C in the Deadwood Formation in the Williston Basin to about 30/sup 0/C for the Newcastle Sandstone in south-central South Dakota. The area containing the resource lies largely west of the Missouri River. About 10,000 km/sup 2/ of the resource area is characterized by anomalously high heat flow values greater than 100 mW m/sup -2/.

Gosnold, W.D. Jr.

1987-07-01T23:59:59.000Z

78

Analysis of potential geothermal resources and their use: Lebanon Springs area, New York  

DOE Green Energy (OSTI)

The feasibility of using thermal waters at Lebanon Springs or elsewhere in the Capital District of New York as an energy source was studied. To evaluate the area, geologic mapping of the Lebanon Springs, New York, to Williamstown, Massachusetts, area was conducted, and efforts made to locate additional thermal waters besides those already known. In addition to mapping, thermal gradients where measured in twenty-five abandoned water wells, and the silica contents and water temperatures of seventy-eight active domestic water wells were determined. Based on the results of that work, Lebanon Springs appears to be the first choice for a demonstration project, but further exploration may confirm that other areas with good potential exist. A preliminary economic analysis of possible uses in the Town of Lebanon Springs was made, and it was determined that a system combining groundwater heat pumps and a microhydroelectric plant could be applied to heating the town hall, town garage, and high school with significant savings.

Not Available

1981-04-01T23:59:59.000Z

79

Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California  

DOE Green Energy (OSTI)

Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

1993-05-01T23:59:59.000Z

80

Inventory of geothermal resources in Nebraska. Final report  

DOE Green Energy (OSTI)

The goal of the State Coupled Resource Assessment Program is to identify and evaluate geothermal resources in the state, particularly low-temperature potential. Eight tasks were identified and documented in this report as follows: bottom-hole temperature survey, heat flow and temperature gradient survey, data translation studies, gravity data, substate regions, information dissemination, state geothermal map, and reports. The project had three major products: (1) a map, Geothermal Resources of Nebraska; (2) a significant amount of thermal data collected and documented within the state; and (3) a series of publications, presentations and meetings (documented as an Appendix).

Gosnold, W.D.; Eversoll, D.A.

1983-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Potential of geothermal energy in China  

E-Print Network (OSTI)

This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

Sung, Peter On

2010-01-01T23:59:59.000Z

82

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

83

The 2004 Geothermal Map Of North America Explanation Of Resources...  

Open Energy Info (EERE)

Of Resources And Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: The 2004 Geothermal Map Of North America Explanation Of Resources...

84

Geothermal Resources Assessment In Hawaii | Open Energy Information  

Open Energy Info (EERE)

Assessment In Hawaii Assessment In Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Resources Assessment In Hawaii Details Activities (78) Areas (14) Regions (0) Abstract: The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRAs) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques. A total of 15 PGRAs on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The results of these studies have allowed us to attempt an estimate of the

85

Geothermal resources of southern Idaho  

DOE Green Energy (OSTI)

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01T23:59:59.000Z

86

Potential geothermal energy applications for Idaho Elks Rehabilitation Hospital  

SciTech Connect

Several potential applications of geothermal energy for the Idaho Elks Rehabilitation Hospital are outlined. A brief background on the resource and distribution system, is provided; which hospital heating systems should be considered for potential geothermal retrofit is discussed; and technical and economic feasibility are addressed.

Austin, J.C.

1981-11-01T23:59:59.000Z

87

Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)  

DOE Green Energy (OSTI)

The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

Siegel, S.M.; Siegel, B.Z.

1980-06-01T23:59:59.000Z

88

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

Geothermal Resource Exploration And Definition Project Geothermal Resource Exploration And Definition Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Project Details Activities (23) Areas (8) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) project is a cooperative DOEhdustry project to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to aid in the development of geographically diverse geothermal resources and increase electrical power generation from geothermal resources in the continental United States. The project was initiated in April 2000 with a solicitation for industry participation in the project, and this solicitation resulted in seven successful awards in

89

Geothermal Resources Leasing Programmatic EIS | Open Energy Information  

Open Energy Info (EERE)

Geothermal Resources Leasing Programmatic EIS Geothermal Resources Leasing Programmatic EIS Jump to: navigation, search The Bureau of Land Management (BLM) and the United States Forest Service (USFS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and USFS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska.[1] Objectives of the PEIS Programmatically assess the direct, indirect, and cumulative effects of leasing, exploration and development of geothermal resources on high priority areas (critical locations) on BLM- and USFS-administered lands in order to expedite leasing. Additional environmental documentation would be required prior to actual exploration drilling and development.

90

Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada  

DOE Green Energy (OSTI)

Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

2003-08-14T23:59:59.000Z

91

Utilization of U. S. geothermal resources. Final report  

SciTech Connect

This study is concerned with U.S. geothermal resources, their potential for commercial utilization by electric utilities between now and the year 2000, and their impact on the utility industry. USGS estimates of the resources in identified hydrothermal systems were extrapolated to the undiscovered resources marked by hot springs, and further to the blind resources between hot spring areas within the tectonic belts. The resulting estimate of the total hydrothermal resource to a depth of 10,000 ft. is about 100,000 MWe for 30 years with about one-half in undiscovered blind resources, one-fourth in undiscovered hot spring resources, and one-fourth in identified systems. Water rates and direct capital costs for geothermal power plants were evaluated as functions of resource temperature, together with costs and expected flowrates for geothermal wells. Combining these results with the temperature distribution of identified hydrothermal systems, a current supply curve for geothermal energy wa s made. This shows an estimated 20,000 MWe for 30 years potentially producible with current technology from identified resources for direct capital costs of $800/KW or less. The projected supply curve shows an estimated 30,000 to 60,000 MWe for 30 years potentially available at $800/KW or less, in 1976 dollars, taking account of estimated undiscovered resources and probable technical advances.

Reitzel, J.

1976-12-01T23:59:59.000Z

92

Geothermal resource area 11, Clark County area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

Pugsley, M.

1981-01-01T23:59:59.000Z

93

Geothermal Resources Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Buying & Making Electricity Program Info State Texas Program Type Siting and Permitting Provider Railroad Commission of Texas The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide a dependable supply of energy in an efficient manner that avoids waste of the energy resources. Secondary considerations will be afforded to the protection of the environment, the protection of correlative rights, and the conservation of

94

Finding Large Aperture Fractures in Geothermal Resource Areas Using a  

Open Energy Info (EERE)

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Because fractures and faults with sub-commercial permeability can propagate hot fluid and hydrothermal alteration throughout a geothermal reservoir, potential field geophysical methods including resistivity, gravity, heatflow and magnetics cannot distinguish between low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter synthetic aperture radar interferometry (PSInSAR) and structural kinematic analysis as an integrated method for locating and 3-D mapping of LAF's in shallow to intermediate depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing production field and find a new production field in a separate but related resource area. A full diameter production well will be drilled into each of the two lease blocks covered by the geophysical exploration program.

95

District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report  

DOE Green Energy (OSTI)

A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

McDevitt, P.K.; Rao, C.R.

1978-10-01T23:59:59.000Z

96

Methods for regional assessment of geothermal resources  

DOE Green Energy (OSTI)

The techniques in geothermal resource assessment are summarized, terminology and assumptions are clarified, and a foundation for the development of optimum geothermal resource assessment methodology is provided. A logical, sequential subdivision of the geothermal resource base is proposed, accepting its definition as all the heat in the earth's crust under a given area, measured from mean annual temperature. That part of the resource base which is shallow enough to be tapped by production drilling is termed the accessible resource base, and it in turn is divided into useful and residual components. The useful component (i.e., the heat that could reasonably be extracted at costs competitive with other forms of energy at some specified future time) is termed the geothermal resource. This in turn is divided into economic and subeconomic components, based on conditions existing at the time of assessment. In the format of a McKelvey diagram, this logic defines the vertical axis (degree of economic feasibility). The horizontal axis (degree of geologic assurance) contains identified and undiscovered components. Reserve is then designated as the identified economic resource. All categories should be expressed in units of heat, with resource and reserve figures calculated at wellhead, prior to the inevitable large losses inherent in any practical thermal use or in conversion to electricity. Methods for assessing geothermal resources can be grouped into 4 classes: (a) surface thermal flux, (b) volume, (c) planar fracture, and (d) magmatic heat budget. The volume method appears to be most useful.

Muffler, P.; Cataldi, R.

1977-01-01T23:59:59.000Z

97

California Laws for Conservation of Geothermal Resources | Open...  

Open Energy Info (EERE)

Sign Up Search Page Edit History Facebook icon Twitter icon California Laws for Conservation of Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal...

98

Exploration Of The Upper Hot Creek Ranch Geothermal Resource...  

Open Energy Info (EERE)

Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada...

99

NREL: Learning - Student Resources on Geothermal Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy The following resources can provide you with information on geothermal energy - heat from the earth. Geothermal direct use - Producing heat directly from hot water within the earth. Geothermal electricity production - Generating electricity from the earth's heat. Geothermal heat pumps - Using the shallow ground to heat and cool buildings. Printable Version Learning About Renewable Energy Home Renewable Energy Basics Using Renewable Energy Energy Delivery & Storage Basics Advanced Vehicles & Fuels Basics Student Resources Biomass Geothermal Direct Use Electricity Production Heat Pumps Hydrogen Solar Wind Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback.

100

Geothermal investment and policy analysis with evaluation of California and Utah resource areas  

DOE Green Energy (OSTI)

A geothermal investment decision model was developed which, when coupled to a site-specific stochastic cash flow model, estimates the conditional probability of a positive decision to invest in the development of geothermal resource areas. The geothermal cash flow model, the investment decision model and their applications for assessing the likely development potential of nine geothermal resource areas in California and Utah are described. The sensitivity of this investment behavior to several policy incentives is also analyzed and discussed.

Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.; Amundsen, C.B.

1979-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Potential for heating western tree seedling greenhouses with geothermal energy  

DOE Green Energy (OSTI)

Geothermal energy is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. The wisest approach to using geothermal energy is to seek out and use known resources. Factors influencing greenhouse heating needs include climate, elevation, structure, and growing regime, as well as the attributes of the geothermal energy source: heat, quantity, quality. Greenhouse sites should be evaluated for suitability, size, availability of labor supply, markets, etc. A sound economic assessment based on good engineering and geological advice will illustrate advantages and problems. When considering geothermal energy as an alternative energy source these steps are recommended: (1) determine the geographic region greenhouse will serve; (2) tabulate known geothermal resources within region; (3) rank potential locations in terms of geothermal fluid chemistry and location; (4) obtain data on chemistry, flow potential, temperature, and probable lifespan of resources; (5) conduct economic analysis of proposed greenhouse operation using these geothermal sources; compare with optimum fossil fuel economics and long term availability in the region; (6) proceed with project if economically attractive.

McDonald, S.E.; Austin, C.F.; Lott, J.R.

1976-11-01T23:59:59.000Z

102

Geothermal Energy - An Emerging Resource  

SciTech Connect

Address on the Department of Energy's overall energy policy, the role of alternative energy sources within the policy framework, and expectations for geothermal energy. Commendation of the industry's decision to pursue the longer-term field effort while demand for geothermal energy is low, and thus prepare for a substantial geothermal contribution to the nation's energy security.

Berg, John R.

1987-01-20T23:59:59.000Z

103

National Geothermal Information Resource annual report, 1977  

DOE Green Energy (OSTI)

The National Geothermal Information Resource (GRID) of the Lawrence Berkeley Laboratory is chartered by the U.S. Department of Energy (DOE) to provide critically evaluated data and other information for the development and utilization of geothermal energy. Included are both site dependent and site independent information related to resource evaluation, electrical and direct utilization, environmental aspects, and the basic properties of aqueous electrolytes. The GRID project is involved in cooperative agreements for the interchange of information and data with other organizations. There are currently three U.S. data centers working to implement the collection and exchange of information on geothermal energy research and production: the DOE Technical Information Center (TIC), Oak Ridge, the GEOTHERM database of the U.S. Geological Survey in Menlo Park, and the GRID project. The data systems of TIC, GEOTHERM and GRID are coordinated for data collection and dissemination, with GRID serving as a clearinghouse having access to files from all geothermal databases including both numerical and bibliographic data. GRID interfaces with DOE/TIC for bibliographic information and with GEOTHERM for certain site-dependent numerical data. The program is organized into four principal areas: (1) basic geothermal energy data; (2) site-dependent data for both electrical and direct utilization; (3) environmental aspects, and (4) data handling development. The four sections of the report are organized in this way.

Phillips, S.L.

1978-04-19T23:59:59.000Z

104

Exploration Criteria for Low Permeability Geothermal Resources  

DOE Green Energy (OSTI)

The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results of the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005

Norton, D.

1977-03-01T23:59:59.000Z

105

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

106

Geothermal Resources Council | Open Energy Information  

Open Energy Info (EERE)

Council Council Jump to: navigation, search Logo: Geothermal Resources Council Name Geothermal Resources Council Address 2001 Second Street, Suite 5 Place Davis, California Zip 95617 Sector Geothermal energy, Renewable Energy, Services Product Global Geothermal Community Membership Stock Symbol Resources Council Geothermal Resources Council Year founded 1970 Number of employees 1-10 Phone number (530) 758-2360 Website http://www.geothermal.org Coordinates 38.547241°, -121.725533° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.547241,"lon":-121.725533,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Stratabound geothermal resources in North Dakota and South Dakota  

SciTech Connect

Analysis of all geothermal aquifers in North Dakota and South Dakota indicates an accessible resource base of approximately 21.25 exajoules (10{sup 18} J = 1 exajoule, 10{sup 18} J{approximately}10{sup 15} Btu=1 quad) in North Dakota and approximately 12.25 exajoules in South Dakota. Resource temperatures range from 40{degree}C at depths of about 700 m to 150{degree}C at 4500 m. This resource assessment increases the identified accessible resource base by 31% over the previous assessments. These results imply that the total stratabound geothermal resource in conduction-dominated systems in the United States is two-to-three times greater than some current estimates. The large increase in the identified accessible resource base is primarily due to inclusion of all potential geothermal aquifers in the resource assessment and secondarily due to the expanded data base compiled in this study. These factors were interdependent in that the extensive data base provided the means for inclusion of all potential geothermal aquifers in the analysis. Previous assessments included only well-known aquifer systems and were limited by the amount of available data. 40 refs., 16 figs., 8 tabs.

Gosnold, W.D. Jr.

1991-08-01T23:59:59.000Z

108

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)  

DOE Green Energy (OSTI)

Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2012-04-01T23:59:59.000Z

109

Virginia Geothermal Resources Conservation Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Buying & Making Electricity Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia Department of Mines, Minerals, and Energy It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to the resource, protect existing high quality state waters and safeguard potable waters from pollution, safeguard the natural environment, and promote geothermal and

110

Contract No. DE-AC36-99-GO10337Geothermal The Energy Under Our Feet Geothermal Resource Estimates for the  

E-Print Network (OSTI)

The Earth houses a vast energy supply in the form of geothermal resources. Domestic resources are equivalent to a 30,000-year energy supply at our current rate for the United States! In fact, geothermal energy is used in all 50 U.S. states today. But geothermal energy has not reached its full potential as a clean, secure energy alternative because of issues with resources, technology, historically low natural gas prices, and public policies. These issues affect the economic competitiveness of geothermal energy On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource

United States; Bruce D. Green; R. Gerald Nix; United States; Bruce D. Green; R. Gerald Nix

2006-01-01T23:59:59.000Z

111

Potential for heating western tree seedling greenhouses with geothermal energy  

DOE Green Energy (OSTI)

The technology to apply geothermal energy to greenhousing is available. Geothermal energy is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. Factors influencing greenhouse heating needs include climate, elevation, structure, and growing regime, as well as the attributes of the geothermal energy source: heat, quantity, quality. Greenhouse sites should be evaluated for suitability, size, availability of labor supply, markets, etc. Problems exist in developing any new energy source, but a sound economic assessment based on good engineering and geological advice will illustrate advantages and problems. When considering geothermal energy as an alternative energy source these steps are recommended: (1) Determine the geographic region greenhouse will serve. (2) Tabulate known geothermal resources within region. (3) Rank potential locations in terms of geothermal fluid chemistry and location. (4) Obtain data on chemistry, flow potential, temperature, and probable lifespan of resources. (5) Conduct economic analysis of proposed greenhouse operation using these geothermal sources; compare with optimum fossil fuel economics and long term availability in the region. (6) Proceed with project if economically attractive.

McDonald, S.E.; Austin, C.F.; Lott, J.R.

1976-11-01T23:59:59.000Z

112

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

DOE Green Energy (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

113

Geothermal potential of Ascension Island, south Atlantic. Phase I. Preliminary examination  

DOE Green Energy (OSTI)

A preliminary evaluation of the potential for an economic geothermal resource at Ascension Island was completed. It is concluded that there is a high potential for the presence of a geothermal resource under the Island. A conceptual plant has been designed assuming the resource potential located near Gannet Hill is developed. A 7% discounted payback of 5.9 years was calculated for the baseline geothermal plant. Geothermal development can be easily integrated into the Ascension Island power system in that a selection of small, portable, skid mounted, turn key power geothermal generating systems are commercially available. Geologic findings and plant analysis are summarized.

Sibbett, B.S.; Neilson, D.L.; Ramsthaler, J.H.; Shane, M.K.

1982-09-01T23:59:59.000Z

114

Pinpointing America's Geothermal Resources with Open Source Data |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

115

Pinpointing America's Geothermal Resources with Open Source Data |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

116

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

117

Geothermal resource area 9: Nye County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

118

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

119

Geothermal resources of the eastern United States  

DOE Green Energy (OSTI)

The resouces considered are exclusively hydrothermal, and the study was confined to the 35 states east of the Rocky Mountains, excluding the Dakotas. Resource definition in these areas is based entirely on data found in the literature and in the files of a number of state geological offices. The general geology of the eastern United States is outlined. Since the presence of geothermal resources in an area is governed by the area's geology, an attempt to define useful geothermal resources is facilitated by an understanding of the geology of the area being studied. Six relatively homogeneous eastern geologic regions are discussed. The known occurrences of geothermal energy in the eastern United States fall into four categories: warm spring systems, radioactive granite plutons beneath thick sediment covers, abnormally warm aquifers, and deep sedimentary basins with normal temperature gradients.

Renner, J.L.; Vaught, T.L.

1979-12-01T23:59:59.000Z

120

Geothermal resources of the Alberta Plains  

Science Conference Proceedings (OSTI)

Formation waters of the Alberta Plains are inventoried in a new report prepared for the Renewable Energy Branch, Energy, Mines, and Resources, Canada. Water temperatures, salinities, depths, and the reservoir capacities of the enclosing rocks are included. From geological information and preexisting temperature and gradient data, 21 maps were drawn often rock units and the enclosed fluids. Although some previous site-specific inventories of the geothermal resources of the Alberta Plains have been made, the study is the first comprehensive survey. Capital costs to install geothermal energy recovery operations from scratch are prohibitively high on Canada's Alberta Plains. The geothermal resources there are about 1.5 kilometers deep, and drilling wells to reach them is expensive. For a geothermal recovery operation to be economically feasible, drilling cots must be avoided. One way is through a joint-venture operation with the petroleum industry. A joint venture may be possible because oil extraction often involves the production of large volumes of hot water, a geothermal resource. Typically, after the hot water is brought to the surface with oil, it is injected underground and the heat is never used. Ways to obtain and use this heat follow.

Loveseth, G.E.; Pfeffer, B.J.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

122

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network (OSTI)

D. L. Assessment of Geothermal Resources of the UnitedReport on the International Geothermal Information Exchangeon the Development and Use of Geothermal Resources, Lawrence

Cosner, S.R.

2010-01-01T23:59:59.000Z

123

A geothermal resource data base: New Mexico  

DOE Green Energy (OSTI)

This report provides a compilation of geothermal well and spring information in New Mexico up to 1993. Economically important geothermal direct-use development in New Mexico and the widespread use of personal computers (PC) in recent years attest to the need for an easily used and accessible data base of geothermal data in a digital format suitable for the PC. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-07-01T23:59:59.000Z

124

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

125

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

126

The 1980-1982 Geothermal Resource Assessment Program in Washington  

DOE Green Energy (OSTI)

Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

1983-08-01T23:59:59.000Z

127

Geothermal energy resource assessment of parts of Alaska. Final report  

DOE Green Energy (OSTI)

The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

Wescott, E.M.; Turner, D.L.; Kienle, J.

1982-08-01T23:59:59.000Z

128

Southern New Mexico low temperature geothermal resource economic analysis  

DOE Green Energy (OSTI)

This report presents an overview of geothermal resource development for three-low temperature (i.e, <200{degree}F) sites in southern New Mexico: the Lower Animas Valley, the Las Cruces East Mesa, and Truth or Consequences. This report is intended to provide potential geothermal developers with detailed information on each site for planning and decision making purposes. Included in the overview for each site is both a full site characterization and an economic analysis of development costs associated with the construction and operation of both geothermal and fresh water systems at each of the three locations. The economic analysis focuses on providing utility services to a commercial greenhouse because greenhouse operations are among the most likely candidates for use of the resource base. 9 tabs., 8 figs.

Fischer, C.L.; Whittier, J.; Witcher, J.C.; Schoenmackers, R.

1990-08-01T23:59:59.000Z

129

Hot-dry-rock geothermal resource 1980  

DOE Green Energy (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

130

Geothermal resources Frio Formation, South Texas  

DOE Green Energy (OSTI)

A preliminary study of the Frio sand distribution and formation temperatures and pressures was undertaken in order to define prospective areas in which a more detailed reservoir analysis is necessary prior to the selection of a site for a geothermal well. As a result two potential geothermal fairways were identified--one in the south part of the area in Hidalgo, Willacy, and Cameron Counties, and the other in the north part in north-central Nueces County.

Bebout, D.G.; Dorfman, M.H.; Agagu, O.K.

1975-01-01T23:59:59.000Z

131

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

132

The xerolithic geothermal (``hot dry rock``) energy resource of the United States: An update  

DOE Green Energy (OSTI)

This report presents revised estimates, based upon the most current geothermal gradient data, of the xerolithic geothermal (``hot dry rock`` or HDR) energy resources of the United States. State-by-state tabular listings are provided of the HDR energy resource base, the accessible resource base, and the potentially useful resource base. The latter further subdivided into components with potential for electricity generation, process heat, and space heat. Comparisons are made with present estimates of fossil fuel reserves. A full-sized geothermal gradient contour map is provided as a supplement in a pocket inside the back cover of the report.

Nunz, G.J.

1993-07-01T23:59:59.000Z

133

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

DOE Green Energy (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

134

Geothermal resource utilization: paper and cane sugar industries. Final report  

DOE Green Energy (OSTI)

This study was made as a specific contribution to an overall report by the United States in the area of industrial utilization of geothermal resources. This is part of an overall study in non-electrical uses of geothermal resources for a sub-committee of the North Atlantic Treaty Organization. This study was restricted to the geopressured zone along the Northern Gulf of Mexico Coast. Also, it was limited to utilizing the thermal energy of this ''geoenergy'' resource for process use in the Pulp and Paper Industry and Cane Sugar Industry. For the selected industries and resource area, this report sets forth energy requirements; identifies specific plant and sites; includes diagrams of main processes used; describes process and equipment modifications required; describes energy recovery systems; sets forth waste disposal schemes and problems; and establishes the economics involved. The scope of work included considerable data collection, analysis and documentation. Detailed technical work was done concerning existing processes and modifications to effectively utilize geothermal energy. A brief survey was made of other industries to determine which of these has a high potential for utilizing geothermal energy.

Hornburg, C.D.; Morin, O.J.

1975-03-01T23:59:59.000Z

135

Toward The Development Of Occurrence Models For Geothermal Resources In The  

Open Energy Info (EERE)

Toward The Development Of Occurrence Models For Geothermal Resources In The Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Details Activities (6) Areas (2) Regions (0) Abstract: Simplified geothermal occurrence models using attributes identified at Coso and elsewhere were developed and applied in preparing the recently completed Department of Defensefunded evaluation of geothermal potential on U.S. military bases. An interpretation of the spatial associations between selected characteristics was used to direct field investigations. Several potential targets were identified using this method, and field investigations at two bases provided evidence supporting

136

Climatology of air quality of Long Valley Geothermal Resource Area  

DOE Green Energy (OSTI)

The Long Valley Known Geothermal Resource Area is one of the more promising regions for development of a large-scale geothermal energy center. This report discusses the climatology and air quality of the area. Details are given on the temperatures, temperature inversions, and winds. Estimates are presented for the present air quality and future air quality during and following development of the resource area. Also discussed are project impact from added pollutants, noise, and precipitation augmentation. The major deleterious effects from development of the Long Valley Geothermal Resource Area appear to be due to increased dust loading during and following construction, and noise from production testing and potential well blowouts. Increased pollution from release of hydrogen sulfide and other pollutants associated with hot water geothermal wells seems to present no problems with regard to surrounding vegetation, potential contamination of Lake Crowley, and odor problems in nearby communities. Precipitation augmentation will probably increase the water level of Lake Crowley, at the expense of possible additional fogging and icing of nearby highways.

Peterson, K.R.; Palmer, T.Y.

1977-06-01T23:59:59.000Z

137

Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council  

SciTech Connect

This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

1989-09-26T23:59:59.000Z

138

Outstanding Issues For New Geothermal Resource Assessments | Open Energy  

Open Energy Info (EERE)

Outstanding Issues For New Geothermal Resource Assessments Outstanding Issues For New Geothermal Resource Assessments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Outstanding Issues For New Geothermal Resource Assessments Details Activities (1) Areas (1) Regions (0) Abstract: A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS)

139

Geothermal Exploration Best Practices: A Guide to Resource Data Collection,  

Open Energy Info (EERE)

Exploration Best Practices: A Guide to Resource Data Collection, Exploration Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Exploration Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Details Activities (0) Areas (0) Regions (0) Abstract: Exploration best practices for any natural resource commodity should aim to reduce the resource risk prior to significant capital investment, for a fraction of the cost of the planned investment. For geothermal energy, the high risks cost of proving the resource is one of the key barriers facing the industry. This guide lays out best practices for geothermal exploration to assist geothermal developers and their

140

Self Potential At Coso Geothermal Area (2006) | Open Energy Informatio...  

Open Energy Info (EERE)

Self Potential At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Self Potential Activity Date 2006 Usefulness not...

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Category:Geothermal Resource Areas | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal Resource Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Areas page? For detailed information on Geothermal Areas, click here. Category:Geothermal Resource Areas Add.png Add a new Geothermal Resource Area Please be sure the area does not already exist in the list below before adding - perhaps under a different name. Pages in category "Geothermal Resource Areas" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) A Abraham Hot Springs Geothermal Area

142

Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas  

DOE Green Energy (OSTI)

Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

Foley, D.; Dorscher, M.

1982-11-01T23:59:59.000Z

143

Template:GeothermalResourceArea | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:GeothermalResourceArea Jump to: navigation, search This is the GeothermalResourceArea template. To define a new Geothermal Resource Area, please use the Geothermal Resource Area form. Contents 1 Parameters 2 Dependencies 3 Usage 4 Example Parameters Map - The map of the resource area. Place - The city or state in which the resource area is located. GeothermalRegion - The geothermal exploration region in which the resource area is located. GEADevelopmentPhase - The phase of plant construction, as defined by GEA (can have more than one phase if more than one project)

144

Reconnaissance geothermal resource assessment of 40 sites in California  

DOE Green Energy (OSTI)

Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

1981-01-01T23:59:59.000Z

145

Mountain home known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There are no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

146

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona  

Open Energy Info (EERE)

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Details Activities (1) Areas (1) Regions (0) Abstract: The U.S Department of Energy's "Geopowering the West" initiative seeks to double the number of states (currently 4) that generate geothermal electric power over the next few years. Some states, like New Mexico and Oregon, have plentiful and conspicuous geothermal manifestations, and are thus likely to further DOE'S goal relatively easily. Other states, including Arizona, demonstrate less geothemal potential, but nevertheless

147

Assessment of the Geothermal Potential Within the BPA Marketing Area.  

DOE Green Energy (OSTI)

The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 x 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.

Lund, John W.; Allen, Eliot D.

1980-07-01T23:59:59.000Z

148

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

149

Relating Geothermal Resources To Great Basin Tectonics Using Gps | Open  

Open Energy Info (EERE)

Relating Geothermal Resources To Great Basin Tectonics Using Gps Relating Geothermal Resources To Great Basin Tectonics Using Gps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Relating Geothermal Resources To Great Basin Tectonics Using Gps Details Activities (8) Areas (4) Regions (0) Abstract: The Great Basin is characterized by non-magmatic geothermal fields, which we hypothesize are created, sustained, and controlled by active tectonics. In the Great Basin, GPS-measured rates of tectonic "transtensional" (shear plus dilatational) strain rate is correlated with geothermal well temperatures and the locations of known geothermal fields. This has led to a conceptual model in which non-magmatic geothermal systems are controlled by the style of strain, where shear (strike-slip faulting)

150

Geothermal Resources Exploration And Assessment Around The Cove  

Open Energy Info (EERE)

Geothermal Resources Exploration And Assessment Around The Cove Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Details Activities (4) Areas (1) Regions (0) Abstract: The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the Basin and Range to the west and the Colorado Plateau to the east. We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different

151

Geothermal resource area 3: Elko County. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 3 includes all of the land in Elko County, Nevada. There are in excess of 50 known thermal anomalies in this area. Several of the more major resources have been selected for detailed description and evaluation in this Area Development Plan. The other resources are considered too small, too low in temperature, or too remote to be considered for development in the near future. Various potential uses of the energy found at each of the studied resource sites in Elko County were determined after evaluating the area's physical characteristics; the land ownership and land use patterns; existing population and projected growth rates; transportation facilities and energy requirements. These factors were then compared with resource site specific data to determine the most likely uses of the resource. The uses considered in this evaluation were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories several subdivisions were considered separately. It was determined that several of the geothermal resources evaluated in the Area Development Plan could be commercially developed. The potential for development for the seven sites considered in this study is summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

152

Geothermal Technologies Office: Hydrothermal and Resource Confirmation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

153

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

154

Direct Confirmation of Commercial Geothermal Resources in Colorado  

Open Energy Info (EERE)

Direct Confirmation of Commercial Geothermal Resources in Colorado Direct Confirmation of Commercial Geothermal Resources in Colorado Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Direct Confirmation of Commercial Geothermal Resources in Colorado Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The program is phased in three segments: -Phase 1: Acquisition, Processing and Analysis of Remote Sensing Data -Phase 2: Conduct on site Temperature Surveys and Map results -Phase 3: Drill and Test Geothermal Resource -minimum of Two Wells The direct benefits of a successful Program will be application of new processing of existing of Remote Sensing Data as a means to identify other commercial geothermal resouces throughout the United States.

155

NREL: Learning - Student Resources on Geothermal Direct Use  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Use Direct Use Photo of flowers in a greenhouse. Johnson County High School in Tennessee features a geothermally heated greenhouse, where students can learn about agriculture. The following resources will help you learn more about the direct use of geothermal energy. If you are unfamiliar with this technology, see the introduction to geothermal direct use. High School and College Level U.S. Department of Energy Geothermal Technologies Program: Direct Use Has more basic information Oregon Institute of Technology Geo-Heat Center Features information on research in direct use technologies, including resource maps. Geothermal Resources Council Provides information about and for the geothermal industry. Renewable Energy Policy Project Provides in-depth coverage on geothermal resources, technologies and

156

Geothermal-resource verification for Air Force bases  

DOE Green Energy (OSTI)

This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

Grant, P.R. Jr.

1981-06-01T23:59:59.000Z

157

Hawaii Geothermal Resource Assessment Program: western state cooperative direct heat resource assessment, Phase I. Final report  

DOE Green Energy (OSTI)

A regional geothermal resource assessment has been conducted for the major islands in the Hawaiian chain. The assessment was made through the compilation and evaluation of the readily accessible geological, geochemical, and geophysical data for the Hawaiian archipelago which has been acquired during the last two decades. The geologic criteria used in the identification of possible geothermal reservoirs were: age and location of most recent volcanism on the island and the geologic structure of each island. The geochemical anomalies used as traces for geothermally altered ground water were: elevated silica concentrations and elevated chloride/magnesium ion ratios. Geophysical data used to identify subsurface structure which may have geothermal potential were: aeromagnetic anomalies, gravity anomalies, and higher than normal well and basal spring discharge temperatures. Geophysical and geochemical anomalies which may be the result of subsurface thermal effects have been identified on the islands of Hawaii, Maui, Molokai and Oahu.

Not Available

1978-01-01T23:59:59.000Z

158

NREL: Learning - Student Resources on Geothermal Heat Pumps  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Search More Search Options Site Map Printable Version Student Resources on Geothermal Heat Pumps Photo of students at an elementary school. Students at Slocomb Elementary...

159

Geothermal Resource Analysis and Structure of Basin and Range...  

Open Energy Info (EERE)

Energy, 2003 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems,...

160

Epithermal Gold Mineralization and a Geothermal Resource at Blue...  

Open Energy Info (EERE)

1991 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,...

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

low-temperature geothermal resources will spawn a new domestic industry, lead to job creation, and would be a positive step toward increasing domestic energy supplies and reducing...

162

Interactive Map Shows Geothermal Resources - Energy Innovation Portal  

Interactive Map Shows Geothermal Resources. February 12, 2013. Source: Jeff Barnard, AP Environmental Writer GRANTS PASS, Ore. (AP) With the click of a mouse ...

163

Tapping the earth's geothermal resources: Hydrothermal today, magma tomorrow  

DOE Green Energy (OSTI)

The paper discusses geothermal resources, what it is, where it is, and how to extract energy from it. The materials research activities at Brookhaven National Laboratory related to geothermal energy extraction are discussed. These include high-temperature, light-weight polymer cements, elastomers, biochemical waste processing techniques, and non-metallic heat exchanger tubing. The economics of geothermal energy is also discussed. (ACR)

Kukacka, L.E.

1986-12-17T23:59:59.000Z

164

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

165

Geology, Water Geochemistry And Geothermal Potential Of The Jemez...  

Open Energy Info (EERE)

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

166

Geothermal: Sponsored by OSTI -- High-potential Working Fluids...  

Office of Scientific and Technical Information (OSTI)

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

167

GIS model for geothermal resource exploration in Akita and Iwate prefectures, northern Japan  

Science Conference Proceedings (OSTI)

In this study, a Geographic Information System (GIS) is used as a decision-making tool to target potential regional-scale geothermal resources in the Akita and Iwate prefectures of northern Japan. The aims of the study are to determine the relationships ... Keywords: GIS, Geochemistry, Geoprocessing, Geothermal, Heat flow, Temperature gradient

Younes Noorollahi; Ryuichi Itoi; Hikari Fujii; Toshiaki Tanaka

2007-08-01T23:59:59.000Z

168

Low-temperature geothermal resources of Washington  

DOE Green Energy (OSTI)

This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

Schuster, J.E. [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources] [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources; Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)] [Washington State Energy Office, Olympia, WA (United States)

1994-06-01T23:59:59.000Z

169

Legal issues related to geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 1  

DOE Green Energy (OSTI)

The legal aspects of geopressured-geothermal development in Texas are discussed. Many of the legal issues associated with geopressured-geothermal development in Texas are unsettled and represent areas of developing policy and law. Lawsuits can be expected either before or shortly after the first commercial development of geopressured-geothermal resources.

Not Available

1979-07-01T23:59:59.000Z

170

Market study for direct utilization of geothermal resources by selected sectors of economy  

DOE Green Energy (OSTI)

A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. A brief statement is presented regarding sectors of the economy and major manufacturing processes which can readily utilize direct geothermal energy. Previous studies on plant location determinants are summarized and appropriate empirical data provided on plant locations. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented. Appendix A presents factors which impact on industry location decisions. Appendix B presents industry executives interviewed during the course of this study. (MHR)

Not Available

1980-08-01T23:59:59.000Z

171

Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources  

DOE Green Energy (OSTI)

Technology transfer to the industrial sector for geopressured-geothermal technology has included diverse strategies, with successes and obstacles or roadblocks. Numerical data are tabulated in terms of response to the various strategies. Strategy categories include the following: feasibility studies and reports, consortium activities and proceedings, the Geothermal Resource Council, national and international meetings of the American Association of Petroleum Geologists, other societal and organizational meetings, and conferences, Department of Energy solicitation of interest in the Commerce Business Daily, industry peer review panels, and the Secretary's Technology Initiative. Additionally, the potential of a 12-page color brochure on the geopressured-geothermal resource, workshops, and cooperative research and development agreement (CRADA) is discussed. In conclusion, what is the best way to reach the market and what is the winning combination? All of the above strategies contribute to technology transfer and are needed in some combination for the desired success. The most successful strategy activities for bringing in the interest of the largest number of industries and the independents are the consortium meetings, one-on-one telephone calling, and consortium proceedings with information service followup. the most successful strategy activities for bringing in the interest and participation of ''majors'' are national and international peer reviewed papers at internationally recognized industry-related society meetings, and on-call presentations to specific companies. Why? Because quality is insured, major filtering has already taken place, and the integrity of the showcase is established. Thus, the focused strategy is reduced to a target of numbers (general public/minors/independents) versus quality (majors). The numerical results of the activities reflecting four years of technology transfer following the 15 year lead in the early phases of geopressured-geothermal program under the leadership of Dr. Myron Dorfman, reflect a dynamic surveying of what works in technology transfer with industry in the area of geopressured-geothermal resources. The identified obstacles can be removed and future efforts can benefit by this cataloging and discussion of results.

Wys, J. Negus-de

1992-03-24T23:59:59.000Z

172

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

173

Geothermal Energy Production from Low Temperature Resources, Coproduced  

Open Energy Info (EERE)

Energy Production from Low Temperature Resources, Coproduced Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded Projects for Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

174

Environmental research needs for geothermal resources development. Volume I  

DOE Green Energy (OSTI)

A detailed analysis was conducted to determine the adequacy of the total research efforts regarding the potential environmental impacts related to the exploration, drilling, production, and transmission stages of vapor-dominated, liquid-dominated, geopressured, and hot-dry-rock geothermal resources. The following environmental considerations were selected and analyzed in detail: air emissions (hydrogen sulfide, ammonia, mercury, boron, radon, etc.); liquid emissions (brine, and toxic chemicals); land subsidence; seismic activity; and noise. Following the definition of the problem and the assessment of the past and ongoing research efforts, environmental research needs were then recommended based on: (1) the severity of the environmental problems as perceived by literature and contacts with the research community; (2) probability of occurrence; (3) and the research dependency for a solution to that particular problem. The recommended research needs consisted of: (1) an evaluation of the past and ongoing research efforts to ascertain gaps in knowledge for a particular pollutant, process, or control technology; (2) baseline studies of air, soil, water, and ecology around the existing geothermal facilities and in the locations scheduled for future geothermal development; (3) need for the development of appropriate models for predicting concentration and dispersion of pollutants; (4) development of predictive models for potential health and environmental effects associated with geothermal operations; and (5) development of appropriate control technology to destroy, remove or reduce harmful emissions in order to prevent the occurrence of environmental and health hazards and to comply with existing standards and criteria.

Carstea, D.

1977-04-01T23:59:59.000Z

175

Survey and preliminary evaluation of potential geothermal energy applications for Riverside, California  

DOE Green Energy (OSTI)

A preliminary assessment of the potential applications for geothermal energy in Riverside, California, was made. This assessment includes both potential electrical and non-electrical applications, and focuses on the following factors: the location of nearby geothermal resources; characteristics of these resources; types of applications suited to each resource; technical and economic feasibility of these applications; the potential impact on the energy demand of each application, and potential deterrents to the utilization of geothermal energy for the most promising application. It is concluded that geothermal energy has a promising potential to supply electricity, space heating and cooling, and process heat to Riverside. There are sufficient geothermal resources within 200 miles to supply the electrical requirements of Riverside for thousands of years. Depending on the particular reservoir involved, this electricity can probably be generated at costs ranging from 1 to 3 times the cost of conventional electric power generation. Over this distance, the additional unit cost for energy transmission should be comparatively small. The geothermal resource at nearby Arrowhead Hot Springs has the potential to supply space heating and cooling and process heat to Riverside for a hundred years. The technology for these non-electric uses is available. The cost of using geothermal energy for these applications is estimated at 1 to 2 times the cost of conventional fuels, depending on the population density of the service area. The most difficult problems in the possible use of geothermal energy in Riverside appear to be institutional difficulties in electric applications.

Bloomster, C.H.; Fassbender, L.L.; Schilling, A.H.; Lippek, H.E.

1978-03-01T23:59:59.000Z

176

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana  

Open Energy Info (EERE)

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Details Activities (2) Areas (1) Regions (0) Abstract: Measurements of heat flow and near-surface (< 500 m) geothermal gradients in the Gulf Coastal Plain suggest a zone of low-grade geothermal resources extending from northern Louisiana across south-central Mississippi. Subsurface temperatures exceeding 50°C, suitable for space-heating use, seem probable at depths of 1 km. Thermal conditions within the zone are comparable to those known for areas having attractive thermal energy prospects on the Atlantic Coastal Plain.

177

Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open  

Open Energy Info (EERE)

Baltazor Known Geothermal Resources Area, Nevada Baltazor Known Geothermal Resources Area, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evaluation Of Baltazor Known Geothermal Resources Area, Nevada Details Activities (3) Areas (1) Regions (0) Abstract: By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the

178

Geothermal resources: exploration and exploitation. A bibliography  

DOE Green Energy (OSTI)

This comprehensive bibliography contains 5476 citations of foreign and domestic research reports, journal articles, patents, conference proceedings, and books concerned with the exploration and exploitation of geothermal resources. The coverage dates back as far as useful references could be obtained and extends through June 1976. References are arranged in broad subject categories and are made up of complete bibliographic citations. These are followed by a listing of subject descriptors used to describe the subject content of each reference. Four indexes are included: Corporate, Personal Author, Subject, and Report Number. Also included is a list of journals from which articles were selected. (LBS)

Not Available

1976-07-01T23:59:59.000Z

179

Castle Creek known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in the county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

180

Vulcan Hot Springs known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network (OSTI)

Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

182

Geothermal resource utilization - Paper and cane sugar indsutries  

SciTech Connect

This paper was prepared from information developed during a study done by DSS Engineers, Inc., under contract from Lawrence Livermore Laboratory. The study was made as a specific contribution to an overall report by the United States in the area of industrial utilization of geothermal resources. This is part of an overall study in nonelectrical uses of geothermal resources for a subcommittee of the North Atlantic Treaty Organization. Due to limited time and funds, it was initially decided to restrict the study to the geopressured zone along the northern Gulf of Mexico Coast. Also, it was to be limited mainly to considering utilizing the thermal energy of this geoenergy resource for process use in the pulp and paper industry and cane sugar industry. For the selected industries and resource area, the final report sets forth energy requirements, identifies specific plant and sites, includes diagrams of main processes used, describes process and equipment modifications required, describes energy-recovery systems, sets forth waste-disposal schemes and problems, and establishes the economics involved. The scope of work included considerable data collection, analysis and documentation. Detailed technical work was done concerning existing processes and modifications to effectively utilize geothermal energy. A brief survey was made of other industries to determine which of these has a high potential for utilizing geothermal energy. Presented in this paper is a summary of the findings of the study, with emphasis on how the thermal energy is extracted and utilized in the processes and on the economics involved. (13 figs., 7 tabs., 7 refs.)

Hornburg, C. D.

1975-01-01T23:59:59.000Z

183

Geothermal energy and the land resource: conflicts and constraints in The Geysers-Calistoga KGRA  

DOE Green Energy (OSTI)

This study of potential land-related impacts of geothermal power development in The Geysers region focuses on Lake County because it has most of the undeveloped resource and the least regulatory capability. First, the land resource is characterized in terms of its ecological, hydrological, agricultural, and recreational value; intrinsic natural hazards; and the adequacy of roads and utility systems. Based on those factors, the potential land-use conflicts and constraints that geothermal development may encounter in the region are identified and the availability and relative suitability of land for such development is determined. A brief review of laws and powers germane to geothermal land-use regulation is included.

O'Banion, K.; Hall, C.

1980-07-14T23:59:59.000Z

184

Energy Resource Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Potential Resource Potential of Methane Hydrate Energy Resource Potential An introduction to the science and energy potential of a unique resource Disclaimer Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

185

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network (OSTI)

Review o f Geothermal Subsidence", LBL-3220, Sept. 1975. 5.bles emissions; (3) subsidence; and (4) boron. Generally,Review of Geothermal Subsidence", LBL-3220, September 1975.

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

186

Geothermal brines and sludges: a new resource  

DOE Green Energy (OSTI)

Development of cost efficient biochemical processes for the treatment of geothermal brines and sludges is the main thrust of a major R&D effort at Brookhaven National Laboratory (BNL). This effort has led to the design of an environmentally acceptable, technically and economically feasible new technology which converts geothermal wastes into products with significant commercial potential. These include valuable metals recovery with a metal extraction and recovery efficiency of better then 80% over short periods of time (5-25 hours). The new technology also yields valuable salts, such as potassium chloride and generates high quality pigment free silica. The basic technology is versatile and can, with slight modifications, be used in the treatment of hypersaline as well as low salinity brines and sludges. Concurrently traces of toxic metals, including radium are removed to levels which are within regulatory limits. The current status of the new biochemical technology will be discussed in this paper.

Premuzic, E.T.; Lin, M.S.; Lian, H.; Miltenberger, R.P.

1996-10-01T23:59:59.000Z

187

National Assessment Of Us Geothermal Resources- A Perspective | Open Energy  

Open Energy Info (EERE)

Assessment Of Us Geothermal Resources- A Perspective Assessment Of Us Geothermal Resources- A Perspective Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: National Assessment Of Us Geothermal Resources- A Perspective Details Activities (2) Areas (1) Regions (0) Abstract: The U.S. Department of Interior has assigned to the US Geological Survey ('USGS') the task of conducting an updated assessment of the geothermal resources in the United States. In that connection, we offer an objective analysis of the last such national assessment, made in 1978, and presented in USGS Circular 790, in view of the industry experience accumulated over the intervening 26 years. Based on this analysis we offer our perspective on how such assessment may be improved. Our analysis was largely based on a comparison of the results of assessment of resources in

188

Geothermal resource conceptual models using surface exploration data | Open  

Open Energy Info (EERE)

Geothermal resource conceptual models using surface exploration data Geothermal resource conceptual models using surface exploration data Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal resource conceptual models using surface exploration data Abstract The most important element of an analysis to target a geothermal well or assess resource capacity is a resource conceptual model consistent with the available information. A common alternative approach to both targeting and assessment is to focus on a data anomaly or, in some cases, several stacked anomalies. However, even stacked anomalies are commonly misleading without support from a conceptual model. The most important element of a geothermal conceptual model is a predicted natural state isotherm pattern, especially in section view. Although inferring such an isotherm pattern at an

189

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |  

Open Energy Info (EERE)

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Abstract Demonstrating the effectiveness of hyperspectral sensors to explore for geothermal resources will be critical to our nation's energy security plans. Discovering new geothermal resources will contribute to established renewable energy capacity and lower our dependence upon fuels that contribute to green house gas emissions. The use of hyperspectral data and derived imagery products is currently helping exploration managers gain greater efficiencies and drilling success. However, more work is needed as geologists continue to learn about hyperspectral imaging and, conversely,

190

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

191

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

192

Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource  

Open Energy Info (EERE)

Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Locations In The Us Basin And Range With A Focus On Dixie Meadows, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Locations In The Us Basin And Range With A Focus On Dixie Meadows, Nv Details Activities (1) Areas (1) Regions (0) Abstract: This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be

193

Analysis of ecological effects of geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 4  

DOE Green Energy (OSTI)

The activities involved in geopressured-geothermal resource production are identified and their ecological impacts are discussed. The analysis separates those activites that are unique to geopressured-geothermal development from those that also occur in oil and gas and other resource developments. Of the unique activities, those with the greatest potential for serious ecological effect are: (1) accidental brine discharge as a result of a blowout during well drilling; (2) subsidence; (3) fault activation and enhanced seismicity; and (4) subsurface contamination of water, hydrocarbon, and mineral reservoirs. Available methods to predict and control these effects are discussed.

Not Available

1979-07-01T23:59:59.000Z

194

Classification of public lands valuable for geothermal steam and associated geothermal resources  

DOE Green Energy (OSTI)

The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

1973-01-01T23:59:59.000Z

195

Potential for substitution of geothermal energy at domestic defense installations and White Sands Missile Range  

DOE Green Energy (OSTI)

Geothermal resources that might provide substitute energy at any of 76 defense installations are identified and evaluated. The geologic characteristics and related economics of potential geothermal resources located at or near the 76 installations were estimated. The geologic assessment identified 18 installations with possible geothermal resources and 4 Atlantic Coastal Plain resource configurations that represented the alternatives available to East Coast bases. These 18 locations and 4 resource configurations, together with 2 possible resources at the White Sands Missile Range and a potential resource at Kings Bay, Georgia, were examined to determine the relative economics of substituting potential geothermal energy for part or all of the existing oil, gas, and electrical energy usage. Four of the military installations - Mountain Home, Norton, Hawthorne, and Sierra - appear to be co-located with possible geothermal resources which, if present, might provide substitute energy at or below current market prices for oil. Six additional locations - Ellsworth, Luke, Williams, Bliss, Fallon, and Twentynine Palms - could become economically attractive under certain conditions. No geothermal resource was found to be economically competitive with natural gas at current controlled prices. Generation of electric power at the locations studied is estimated to be uneconomic at present.

Bakewell, C.A.; Renner, J.L.

1982-01-01T23:59:59.000Z

196

State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report  

DOE Green Energy (OSTI)

This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

Icerman, Larry

1983-08-01T23:59:59.000Z

197

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

198

Geothermal resource assessment of the New England states  

DOE Green Energy (OSTI)

With the exception of Sand Springs in Williamstown, Massachusetts, there are no identifiable hydrothermal geothermal resources in the New England region. The radioactive plutons of the White Mountains of New Hampshire do not, apparently, contain sufficient stored heat to make them a feasible target for an induced hydrothermal system such as exists at Fenton Hill near Los Alamos, New Mexico. The only potential source of low grade heat is the large volume of ground water contained within the unconsolidated sediments related to the Pleistocene glaciation of the region. During the course of the survey an unusual and unexplained thermal anomaly was discovered in St. Johnsbury, Vermont, which is described.

Brophy, G.P.

1982-01-01T23:59:59.000Z

199

Geothermal Resource Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Geothermal Resource Technologies Place Asheville, North Carolina Zip 28806 4229 Sector Services Product String representation "GRTI has evolve ... ign assistance." is too long. Coordinates 35.59846°, -82.553144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.59846,"lon":-82.553144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

GEOTHERMAL RESOURCES AT NPR-3, WYOMING  

NLE Websites -- All DOE Office Websites (Extended Search)

RESOURCES AT NPR-3 Mark Milliken March 2006 The Naval Petroleum Reserves NPR-3 Teapot Dome NPR-3 LOCATION Salt Creek Anticline Trend NPR-3 WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to provide a test site for technologies that to reduce energy-related operational costs. * Energy efficiency * Energy conservation * Alternative energy sources KEY CHALLENGES * Acceptance by Industry * Creation of a Joint Industry Partnership (JIP) * Consensus on best technologies * Funding for infrastructure support * Funding of Projects Teapot Dome Wyoming Depositional Basin Settings NPR-3 STRATIGRAPHY 1000 2000 3000 4000 5000 6000 7000 DEPTH PRECAMBRIAN BASEMENT CAMBRIAN SS MISSISSIPPIAN MADSION LS PENNSYLVANIAN TENSLEEP PERMIAN GOOSE EGG TRIASSIC CHUGWATER

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Northern California Power Association--Shell Oil Company Geothermal Project No. 2: energy and materials resources  

DOE Green Energy (OSTI)

The potential environmental impact of the energy and material resources expended in site preparation, construction, operation, maintenance, and abandonment of all phases of the Northern California Power Association--Shell Geothermal Project in The Geysers--Calistoga Known Geothermal Resource Area is described. The impact of well field development, operation, and abandonment is insignificant, with the possible exception of geothermal resource depletion due to steam withdrawal from supply wells during operation. The amount of resource renewal that may be possible through reinjection is unknown because of uncertainties in the exact amount of heat available in the steam supply field. Material resources to be used in construction, operation, and abandonment of the power plant and transmission lines are described. Proposed measures to mitigate the environmental impacts from the use of these resources are included. Electric power supply and demand forecasts to the year 2005 are described for the area served by the NCPA.

Hall, C.H.; Ricker, Y.E.

1979-01-01T23:59:59.000Z

202

Nevada low-temperaure geothermal resource assessment: 1994. Final report  

DOE Green Energy (OSTI)

Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

Garside, L.J.

1994-12-31T23:59:59.000Z

203

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

204

Geothermal Resources on State Lands (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources on State Lands (Montana) Geothermal Resources on State Lands (Montana) Geothermal Resources on State Lands (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Savings Category Buying & Making Electricity Program Info State Montana Program Type Leasing Program This chapter authorizes the leasing of state-owned lands for the development of geothermal resources, and provides regulations pertaining to the nature of the resources, compensation, and water rights, as well as for

205

Geothermal Resources Of California Sedimentary Basins | Open...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

206

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

207

Geothermal resource assessment of Waunita Hot Springs, Colorado  

DOE Green Energy (OSTI)

This assessment includes the project report; the geothermal prospect reconnaissance evaluation and recommendations; interpretation of water sample analyses; a hydrogeochemical comparison of the Waunita Hot Springs, Hortense, Castle Rock, and Anderson Hot Springs; geothermal resistivity resource evaluation survey, the geophysical environment; temperature, heat flow maps, and temperature gradient holes; and soil mercury investigations.

Zacharakis, T.G. (ed.)

1981-01-01T23:59:59.000Z

208

Potential effects of environmental regulatory procedures on geothermal development  

DOE Green Energy (OSTI)

The potential effects of several types of applicable environmental regulatory procedures on geothermal development were assessed, and particular problem areas were identified. The possible impact of procedures adopted pursuant to the following Federal statutes were analyzed: Clean Air Act; Clean Water Act; Safe Drinking Water Act; and Resource Conservation and Recovery Act. State regulations applicable, or potentially applicable, to geothermal facilities were also reviewed to determine: permit information requirements; pre-permit air or water quality monitoring requirements; effect of mandated time frames for permit approval; and potential for exemption of small facilities. The regulations of the following states were covered in the review: Alaska; Arizona; California; Colorado; Hawaii; Idaho; Montana; Nevada; New Mexico; Oregon; Utah; Washington; and Wyoming. (MHR)

Beeland, G.V.; Boies, D.B.

1981-01-01T23:59:59.000Z

209

Geothermal resources and conflicting concerns in the Alvord Valley, Oregon: an update  

DOE Green Energy (OSTI)

The geothermal resource potential of the Alvord Valley is among the highest in Oregon. However, environmental concerns, litigation, and administrative requirements have delayed exploration for and development of this resource. Present estimates indicate that deep exploratory drilling may not take place on Federal lands in the Alvord Valley until 1982.

Wassinger, C.E.; Koza, D.M.

1980-01-01T23:59:59.000Z

210

Kamchatka geothermal resources development: Problems and perspectives  

SciTech Connect

There are four long-term exploited geothermal fields in Kamchatka: one steam-water field Pauzhetka (south of Kamchatka peninsula) and three hot water fields: Paratunka (near by town of Petropavlovsk-Kamchatsky) and Esso and Anavgay (center of peninsula). Pauzhetka and Paratunka fields are exploited during almost 28 years. Esso and Anavgay fields are exploited during 25 years. In Pauzhetka 11 MWe geothermal power plant work and on the other fields thermal energy of hot water is directly used. Kamchatka region satisfies energetic demands mainly by organic imported fuels. At the same time electricity produced by geothermal fluids constitutes less than 2 per cent of total region electricity production, and thermal energy produced by geothermal fluids constitutes less than 3 per cent of total region thermal energy production. The main reasons of small geothermal portion in the energy production balance of Kamchatka are briefly discussed. The geothermal development reserves and perspectives of geothermal energy use increase in Kamchatka are outlined.

Pashkevich, Roman I.

1966-01-24T23:59:59.000Z

211

Geothermal: a review of US geothermal activity and an assessment of the resource availability  

Science Conference Proceedings (OSTI)

This review describes US geothermal activities and assesses resource availability. The future of geothermal activity in the US is uncertain due to slashes in the geothermal program at the US Department of Energy. The question is whether private industry will continue the geothermal exploration and development program. Major cutbacks in the federal budget are in areas designed to accelerate commercial development of hydrothermal energy. Basic research is still funded, at a lower cost level. Areas of research expected to pay off in the near future include drilling technology, well stimulation, energy conversion, and end materials.

Friedlander, A.F.

1981-06-01T23:59:59.000Z

212

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

DOE Green Energy (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

213

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

DOE Green Energy (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

214

GEM Resources II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEM Resources II Geothermal Facility GEM Resources II Geothermal Facility General Information Name GEM Resources II Geothermal Facility Facility GEM Resources II Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.77605344699°, -115.26323318481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.77605344699,"lon":-115.26323318481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

216

GEM Resources III Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEM Resources III Geothermal Facility GEM Resources III Geothermal Facility General Information Name GEM Resources III Geothermal Facility Facility GEM Resources III Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.776035405529°, -115.26321172714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.776035405529,"lon":-115.26321172714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Final Technical Report, Geothermal Resource Evaluation And Definitioni...  

Open Energy Info (EERE)

Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and...

218

Geothermal resource area 6: Lander and Eureka Counties. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

219

Geothermal Resource Area 6: Lander and Eureka Counties. Area development plan  

DOE Green Energy (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two county area. Eleven of these resources are considered major and have been selected for evaluation in this area development plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the geothermal sites considered are summarized.

Robinson, S.; Pugsley, M.

1981-01-01T23:59:59.000Z

220

Assessment of geothermal resources of the United States, 1978  

DOE Green Energy (OSTI)

The geothermal resource assessment presented is a refinement and updating of USGS Circular 726. Nonproprietary information available in June 1978 is used to assess geothermal energy in the ground and, when possible, to evaluate the fraction that might be recovered at the surface. Five categories of geothermal energy are discussed: conduction-dominated regimes, igneous-related geothermal systems, high-temperature (> 150/sup 0/C) and intermediate-temperature (90 to 150/sup 0/C) hydrothermal convection systems, low-temperature (< 90/sup 0/C) geothermal waters, and geopressured-geothermal energy (both thermal energy and energy from dissolved methane). Assessment data are presented on three colored maps prepared in cooperation with the National Oceanic and Atmospheric Administration. Separate abstracts were prepared for papers on these five categories.

Muffler, L.J.P. (ed.)

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Study of the geothermal production potential in the Williston Basin, North Dakota  

SciTech Connect

Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because of their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.

Chu, Min H.

1991-09-10T23:59:59.000Z

222

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

223

Geothermal resource requirements for an energy self-sufficient spaceport  

DOE Green Energy (OSTI)

Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

Kruger, P.; Fioravanti, M. [Stanford Univ., CA (United States). Civil Engineering Dept.; Duchane, D.; Vaughan, A. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1997-01-01T23:59:59.000Z

224

Analysis of requirements for accelerating the development of geothermal energy resources in California  

SciTech Connect

Various resource data are presented showing that geothermal energy has the potential of satisfying a significant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospect in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

Fredrickson, C.D.

1977-11-15T23:59:59.000Z

225

Analysis of requirements for accelerating the development of geothermal energy resources in California  

DOE Green Energy (OSTI)

Various resource data are presented showing that geothermal energy has the potential of satisfying a significant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospect in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

Fredrickson, C.D.

1977-11-15T23:59:59.000Z

226

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

2009-01-01T23:59:59.000Z

227

NREL: Geothermal Technologies - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Data and...

228

Detachment Faulting and Geothermal Resources - An Innovative...  

Open Energy Info (EERE)

Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment...

229

User's guide to the Geothermal Resource Areas Database  

DOE Green Energy (OSTI)

The National Geothermal Information Resource project at the Lawrence Berkeley Laboratory is developing a Geothermal Resource Areas Database, called GRAD, designed to answer questions about the progress of geothermal energy development. This database will contain extensive information on geothermal energy resources for selected areas, covering development from initial exploratory surveys to plant construction and operation. The database is available for on-lie interactive query by anyone with an account number on the computer, a computer terminal with an acoustic coupler, and a telephone. This report will help in making use of the database. Some information is provided on obtaining access to the computer system being used, instructions on obtaining standard reports, and some aids to using the query language.

Lawrence, J.D.; Leung, K.; Yen, W.

1981-10-01T23:59:59.000Z

230

Residential heating costs: a comparison of geothermal, solar and conventional resources  

DOE Green Energy (OSTI)

The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

1980-08-01T23:59:59.000Z

231

Reconnaissance of geothermal resources of Los Angeles County, California  

DOE Green Energy (OSTI)

Thermal waters produced from large oil fields are currently the most important geothermal resources in Los Angeles County. Otherwise, the County does not appear to have any large, near-surface geothermal resources. The oil fields produce thermal water because of both the moderate depths of production and normal to above-normal geothermal gradients. Gradients are about 3.0-3.5/sup 0/C/100 meters in the Ventura Basin and range from that up to about 5.5-6.0/sup 0/C/100 meters in the Los Angeles Basin. The hottest fields in the County are west of the Newport-Inglewood Structural Zone. The Los Angeles Basin has substantially more potential for uses of heat from oil fields than does the Ventura Basin because of its large fields and dense urban development. Produced fluid temperatures there range from ambient air to boiling, but most are in the 100-150/sup 0/F range. Daily water production ranges from only a few barrels at some fields to over a million barrels at Wilmington Oil Field; nearly all fields produce less than 50,000 barrels/day. Water salinity generally ranges from about 15,000-35,000 mg/liter NaCl. Fields with the most promise as sources of heat for outside applications are Wilmington, Torrance, Venice Beach, and Lawndale. The centralized treatment facilities are the most favorable sites for extraction of heat within the oil fields. Because of the poor water quality heat exchangers will likely be required rather than direct circulation of the field water to users. The best sites for applications are commercial-industrial areas and possibly institutional structures occupied by large numbers of people.

Higgins, C.T.

1981-01-01T23:59:59.000Z

232

Geothermal source potential and utilization for alcohol production  

DOE Green Energy (OSTI)

A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

Austin, J.C.

1981-11-01T23:59:59.000Z

233

Detachment Faulting and Geothermal Resources - An Innovative Integrated  

Open Energy Info (EERE)

Detachment Faulting and Geothermal Resources - An Innovative Integrated Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program is designed to provide valuable new subsurface information about one of the Nation's arguably most promising high-temperature geothermal targets. Until now, the Emigrant Geothermal Prospect has been tested by only shallow and relatively shallow thermal-gradient boreholes and a small number of exploration wells, all of which have lacked any detailed 2-D or 3-D structural context. The applicants propose to conduct an innovative integration of detailed 2- D and 3-D structural reconstructions (structural mapping and reflection/refraction source seismology integrated with available data).

234

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network (OSTI)

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed. The characteristics of the geothermal fields under consideration were not firm, with data indicating widely varying downhole temperatures. Thus, neither the resource nor the plant operating conditions could be set. To assist both the ultimate user of the resource, the utility, and the developer of the geothermal field, a series of parametric sensitivity studies were conducted for the initial evaluation of a field vis-a-vis the power plant. Using downhole temperature as the variable, the amount of brine, brine requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power plant. The selection of geothermal steam power plant design conditions must be related to the field in which the plant is located. The results of the work have proven to be valuable in two major respects: (1) to determine the production required of a particular geothermal field to meet electrical generation output and (2) as field characteristics become firm, operating conditions can be defined for the associated power plant.

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

235

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

Science Conference Proceedings (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is mined. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

236

Environmental geology workshop for the Geysers--Calistoga known geothermal resources area  

DOE Green Energy (OSTI)

Lawrence Livermore Laboratory (LLL) is studying ways in which the environmental quality of The Geysers-Calistoga known geothermal resources area may be protected from any significant harmful consequences of future geothermal development. The LLL study includes the effects of development on air and water quality, geology, the ecosystem, socioeconomics, and noise. The Geothermal Resource Impact Projection Study (GRIPS) has grants to undertake similar work. On 28 and 29 November 1977, LLL and GRIPS jointly sponsored a workshop at Sonoma State College at which knowledgeable earth scientists presented their views on the potential geological hazards of geothermal development. The workshop produced recommendations for studies in geological mapping, slope stability, subsidence, seismicity, and groundwater hydrology. These recommendations will be evaluated along with other considerations and in conjunction with the other subjects of the LLL study. The results of the study will be contained in a preplanning report of final recommendations to the Department of Energy.

Ledbetter, G.; Crow, N.B.

1978-02-08T23:59:59.000Z

237

Geothermal resources development project: Phase I  

DOE Green Energy (OSTI)

Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

Not Available

1979-09-30T23:59:59.000Z

238

Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource  

DOE Green Energy (OSTI)

This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

Cunniff, Roy A.; Bowers, Roger L.

2005-08-01T23:59:59.000Z

239

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

240

Economic incentive of geothermal resource development for direct applications  

DOE Green Energy (OSTI)

As part of a mission-oriented program for accelerating the commercialization of geothermal energy, research is sponsored which concerns the quantitative analysis of investment decisions by industries involved in the development of geothermal resources. The results of a quick-response study conducted during the course of this research are discussed. The report specifically compares the relative investment incentive offered by two categories of geothermal ventures: (a) geothermal electric power projects; and (b) geothermal direct application projects. The attributes of discounted cash flows for several typical projects within each of the two categories are compared and, by using statistically-strong industry decision models previously developed, the likelihood of a favorable investment decision is estimated for each project.

Cassel, T.A.V.; Amundsen, C.B.

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal Resource Conceptual Models Using Surface Exploration Data | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Geothermal Resource Conceptual Models Using Surface Exploration Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resource Conceptual Models Using Surface Exploration Data Abstract The most important element of an analysis to target a geothermal well or assess resource capacity is a resource conceptual model consistent with the available information. A common alternative approach to both targeting and assessment is to focus on a data anomaly or, in some cases, several stacked anomalies. However, even stacked anomalies are commonly misleading without

242

California low-temperature geothermal resources update: 1993  

DOE Green Energy (OSTI)

The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

Youngs, L.G.

1994-12-31T23:59:59.000Z

243

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects  

DOE Green Energy (OSTI)

The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

Robert P. Breckenridge; Thomas R. Wood; Joel Renner

2010-09-01T23:59:59.000Z

244

Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment  

DOE Green Energy (OSTI)

Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

Usibelli, A.; Deibler, P.; Sathaye, J.

1980-12-01T23:59:59.000Z

245

Geology, characteristics, and resource potential of the low-temperature geothermal system near Midway, Wasatch County, Utah. Report of Investigation No. 142  

DOE Green Energy (OSTI)

To evaluate the geothermal energy potential of the hot springs system near Midway, Wasatch Co., Utah, consideration was given to heat flow, water chemistry, and structural controls. Abnormal heat flow was indicated qualitatively by snow-melt patterns and quantitatively by heat-flow measurements that were obtained from two of four temperature-gradient wells drilled in the area. These measurements indicated that the area north of the town of Midway is characterized by heat flow equal to 321.75 MW/m/sup 2/, which is over four times the value generally considered as normal heat flow. Chemical analyses of water from six selected thermal springs and wells were used in conjunction with the silica and Na-K-Ca geothermometers to estimate the reservoir temperature of the thermal system. Because the calculated temperature was more than 25/sup 0/C above the maximum observed temperature, a mixing model calculation was used to project an upper limit for the reservoir temperature. Based on these calculations, the system has a reservoir temperature ranging from 46 to 125/sup 0/C. Structural information obtained from published geologic maps of the area and from an unpublished gravity survey, enabled two models to be developed for the system. The first model, based on geologic relationships in the mountains to the north and west of Midway, assumes that the heat for the thermal system comes from a relatively young intrusive or related hydrothermal convection system in the vicinity of the Mayflower mine. Meteoric waters would be heated as they approach the heat source and then move laterally to the south through faults and fractures in the rocks. These thermal waters then rise to the surface through fractures in the crest of an anticline underneath the Midway area. The second model, based on the gravity survey, assumes an igneous intrusion directly beneath Midway as the heat source.

Kohler, J.F.

1979-06-01T23:59:59.000Z

246

California Division of Oil, Gas, and Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Geothermal Resources Geothermal Resources Jump to: navigation, search State California Name California Division of Oil, Gas, and Geothermal Resources (CDOGGR) Address 801 K Street, MS 20-20 City, State Sacramento, CA Zip 95814-3530 Website http://www.consrv.ca.gov/dog/O Coordinates 38.580104°, -121.496008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.580104,"lon":-121.496008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

The Geopressured-Geothermal Resource, research and use  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Resource has an estimated accessible resource base of 5700 quads of gas and 11,000 quads of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured- geothermal wells in Texas and Louisiana. Supporting research in the Geopressured Program includes research on rock mechanics, logging, geologic studies, reservoir modeling, and co-location of brine and heavy oil, environmental monitoring, geologic studies, hydrocarbons associated with the geopressured brines and development of a pH monitor for harsh environments, research support in prediction of reservoir behavior, thermal enhanced oil recovery, direct use, hydraulic and thermal conversion, and use of supercritical processes and pyrolysis in detoxification. The on-going research and well operations are preparing the way to commercialization of the Geopressured-Geothermal Resource is covered in this report. 12 refs., 8 figs., 1 tab.

Negus-de Wys, J.

1990-01-01T23:59:59.000Z

248

GRR/Section 3-UT-a - State Geothermal Resource Leasing | Open Energy  

Open Energy Info (EERE)

UT-a - State Geothermal Resource Leasing UT-a - State Geothermal Resource Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-UT-a - State Geothermal Resource Leasing 03UTAStateGeothermalResourceLeasing.pdf Click to View Fullscreen Contact Agencies Utah Department of Natural Resources Regulations & Policies UC 73-22 Utah Geothermal Resources Conservation Act Triggers None specified Click "Edit With Form" above to add content 03UTAStateGeothermalResourceLeasing.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In 1981, the Utah Geothermal Resource Conservation Act established the

249

Geothermal resource assessment of Ouray, Colorado. Resource series 15  

DOE Green Energy (OSTI)

In 1979, a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. In the Ouray area, this effort consisted of geological mapping, soil mercury geochemical surveys and resistivity geophysical surveys. The soil mercury obtained inconclusive results, with the Box Canyon area indicating a few anomalous values, but these values are questionable and probably are due to the hot spring activity and mineralization within the Leadville limestone rock. One isolated locality indicating anomalous values was near the Radium Springs pool and ball park, but this appears to be related to warm waters leaking from a buried pipe or from the Uncompahgre River. The electrical resistivity survey however, indicated several areas of low resistivity zones namely above the Box Canyon area, the power station area and the Wiesbaden Motel area. From these low zones it is surmised that the springs are related to a complex fault system which serves as a conduit for the deep circulation of ground waters through the system.

Zacharakis, T.G.; Ringrose, C.D.; Pearl, R.H.

1981-01-01T23:59:59.000Z

250

Assessing geothermal energy potential in upstate New York. Final report  

DOE Green Energy (OSTI)

The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

Hodge, D.S. [SUNY, Buffalo, NY (United States)

1996-08-01T23:59:59.000Z

251

Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report  

DOE Green Energy (OSTI)

The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. Analyses were completed for 11 major geothermal areas in California: four in the Imperial Valley, Coso, Mono-Long Valley, Geysers-Calistoga, Surprise Valley, Glass Mountain, Wendel Amedee, and Lassen. One area in Hawaii, the Puna district, was also included in the analysis. The water requirements for representative types of energy conversion processes were developed using a case study approach. Cooling water requirements for each type of energy conversion process were estimated based upon a specific existing or proposed type of geothermal power plant. The make-up water requirements for each type of conversion process at each resource location were then estimated as a basis for analyzing any constraints on the megawatts which potentially could be developed.

Sakaguchi, J.L.

1979-03-19T23:59:59.000Z

252

Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

Not Available

2010-07-01T23:59:59.000Z

253

Issue Paper Potential Water Availability Problems Associated with Geothermal Energy Operations  

DOE Green Energy (OSTI)

The report is the first to study and discuss the effect of water supply problems of geothermal development. Geothermal energy resources have the potential of making a significant contribution to the U.S. energy supply situation, especially at the regional and local levels where the resources are located. A significant issue of concern is the availability and cost of water for use in a geothermal power operation primarily because geothermal power plants require large quantities of water for cooling, sludge handling and the operation of environmental control systems. On a per unit basis, geothermal power plants, because of their inherent high heat rejection rates, have cooling requirements several times greater than the conventional fossil fuel plants and therefore the supply of water is a critical factor in the planning, designing, and siting of geothermal power plants. However, no studies have been specifically performed to identify the water requirements of geothermal power plants, the underlying causes of water availability problems, and available techniques to alleviate some of these problems. There is no cost data included in the report. The report includes some descriptions of known geothermal areas. [DJE-2005

None

1982-02-19T23:59:59.000Z

254

Advances In Geothermal Resource Exploration Circa 2007 | Open Energy  

Open Energy Info (EERE)

Exploration Circa 2007 Exploration Circa 2007 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Advances In Geothermal Resource Exploration Circa 2007 Details Activities (8) Areas (1) Regions (0) Abstract: At the outset of the 21st centry, the geothermal community at-large is essentially attempting to use available exploration tools and techniques to find needles (geothermal occurrences) in very large haystacks (expanses of unexplored territory). Historically teh industry has relied on teh presence of surface manifestations of subsurface heat, such as hot springs, fumaroles, or geyers as a firt-order exploration tool., Regrettably, even when such surface manifestations are investigated more closely, there is no proven technique or techniques that can bve used with

255

Analysis Of Geothermal Resources In Northern Switzerland | Open Energy  

Open Energy Info (EERE)

In Northern Switzerland In Northern Switzerland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Analysis Of Geothermal Resources In Northern Switzerland Details Activities (0) Areas (0) Regions (0) Abstract: In Europe, geothermal energy becomes an attractive alternative for many conventional fuel based energy scenarios. In a time when actual political discussion favors regenerative energies, geothermal energy is an essential option since it offers the advantage of providing band energy. Recent studies provide evidence for large economical competitiveness of low-enthalpy, direct-use systems for heating and high-enthalpy systems for cogeneration (combined heat and power, CHP) or pure power generation. The study presented herein develops a detailed subsurface model of possible

256

Prospects and problems of development of geothermal resources of Russia  

SciTech Connect

This article discusses the pros and cons of geothermal energy source development in the Russian Federation. It estimates the geothermal reserves in each area of the Federation and presents the data in terms of tons of conventional fuels. Across the region, the average specific density exceeds 2,000,000 tons of conventional fuel per cubic kilometer. In the administrative regions of central Russia, the geothermal reserves are estimated to range from 160 years to 4200 years. The economic feasibility of developing these resources in the administrative regions is also explored, and it is concluded that the geothermal heat source is a source of hot water that is far superior to the conventional electric boiler-house source.

Boguslavskii, E.I.

1995-12-01T23:59:59.000Z

257

Economics of geothermal electricity generation from hydrothermal resources  

DOE Green Energy (OSTI)

The most important factors affecting the economics of geothermal electricity production are the wellhead temperature or enthalpy, the well flow rate, and the cost of the wells. The capital cost of the powerplant is significant, but not highly sensitive to these resource characteristics. The optimum geothermal plant size will remain small, usually in the 50-100 MWe range. Therefore, the opportunities for achieving significant cost reductions through ''economies of scale'' are small. The steam and binary power cycles are closely competitive; the binary cycle appears better when the brine temperature is below 200-230/sup 0/C, and the flashed steam cycle appears better above this range. Geothermal electricity production is capital intensive; over 75 percent of the generation costs are fixed costs related to capital investment. Technological advances are needed to reduce costs from marginal geothermal resources and thus to stimulate geothermal energy development. Significant reduction in power costs would be achieved by reducing well drilling costs, stimulating well flow rates, reducing powerplant capital costs, increasing powerplant efficiency and utilization, and developing more effective exploration techniques for locating and assessing high-quality resources. (auth)

Bloomster, C.H.; Knutsen, C.A.

1976-04-23T23:59:59.000Z

258

Economics of geothermal electricity generation from hydrothermal resources  

SciTech Connect

The most important factors affecting the economics of geothermal electricity production are the wellhead temperature or enthalpy, the well flow rate, and the cost of the wells. The capital cost of the powerplant is significant, but not highly sensitive to these resource characteristics. The optimum geothermal plant size will remain small, usually in the 50-100 MWe range. Therefore, the opportunities for achieving significant cost reductions through ''economies of scale'' are small. The steam and binary power cycles are closely competitive; the binary cycle appears better when the brine temperature is below 200-230/sup 0/C, and the flashed steam cycle appears better above this range. Geothermal electricity production is capital intensive; over 75 percent of the generation costs are fixed costs related to capital investment. Technological advances are needed to reduce costs from marginal geothermal resources and thus to stimulate geothermal energy development. Significant reduction in power costs would be achieved by reducing well drilling costs, stimulating well flow rates, reducing powerplant capital costs, increasing powerplant efficiency and utilization, and developing more effective exploration techniques for locating and assessing high-quality resources. (auth)

Bloomster, C.H.; Knutsen, C.A.

1976-04-23T23:59:59.000Z

259

Assessing geothermal energy potential in upstate New York. Final report, Tasks 1, 3, and 4  

Science Conference Proceedings (OSTI)

New York State`s geothermal energy potential was evaluated based on a new resource assessment performed by the State University of New York at Buffalo (SUNY-Buffalo) and currently commercial technologies, many of which have become available since New York`s potential was last evaluated. General background on geothermal energy and technologies was provided. A life-cycle cost analysis was performed to evaluate the economics of using geothermal energy to generate electricity in upstate New York. A conventional rankine cycle, binary power system was selected for the economic evaluation, based on SUNY-Buffalo`s resource assessment. Binary power systems are the most technologically suitable for upstate New York`s resources and have the added advantage of being environmentally attractive. Many of the potential environmental impacts associated with geothermal energy are not an issue in binary systems because the geothermal fluids are contained in a closed-loop and used solely to heat a working fluid that is then used to generate the electricity Three power plant sizes were selected based on geologic data supplied by SUNY-Buffalo. The hypothetical power plants were designed as 5 MW modular units and sized at 5 MW, 10 MW and 15 MW. The life-cycle cost analysis suggested that geothermal electricity in upstate New York, using currently commercial technology, will probably cost between 14 and 18 cents per kilowatt-hour.

Manger, K.C.

1996-07-25T23:59:59.000Z

260

Analysis of electricity production costs from the geopressured geothermal resource  

SciTech Connect

The economics of the geopressured geothermal resource along the northern coast of the Gulf of Mexico is assessed. Geopressured waters are nearly under twice the normal hydrostatic pressure and believed to be saturated with methane. The costs of generating electricity from this resource are estimated based on the description and conceptual development plans provided by the United States Geological Survey (USGS). Methane content and selling prices are the most important factors affecting the commercial potential of geopressured resources--so it is important that electrical generation be viewed as a by-product of methane production. On the same incremental cost basis, the cost of electricity generated from the geohydraulic energy is potentially competitive with conventional energy sources. This would require development of a small commercial high pressure, hydraulic turbine to extract geohydraulic energy at the wellhead in plants of about 3 MW capacity. Price/quantity relationships are developed for electricity generation from geopressured resources for each of three development plans proposed by USGS. Studies, based on field constructed plants, indicated an optimum power plant size in the range of 20 to 60 MWe, depending on water temperature. However, if standardized thermal conversion power plants could be factory produced in the 6 MWe range competitively with larger field constructed plants, then the optimum plant size might be reduced to single wellhead units.Wellhead units would completely eliminate fluid transmission costs, but would probably incur higher costs for heat rejection, power plant operation, and electrical transmission. The upper cost target for competitive wellhead plants would be on the order of $800/kW in 1975 dollars.

Bloomster, C.H.; Knutsen, C.A.

1977-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal resources of the Texas Gulf Coast: environmental concerns arising from the production and disposal of geothermal waters. Geological circular 76-7  

DOE Green Energy (OSTI)

Disposal and temporary surface storage of spent geothermal fluids and surface subsidence and faulting are the major environmental problems that could arise from geopressured geothermal water production. Geopressured geothermal fluids are moderately to highly saline and may contain significant amounts of boron. Disposal of hot saline geothermal water in subsurface saline aquifers will present the least hazard to the environment. It is not known, however, whether the disposal of as much as 54,000 m/sup 3/ of spent fluids per day into saline aquifers at the production site is technically or economically feasible. If saline aquifers adequate for fluid disposal cannot be found, geothermal fluids may have to be disposed of by open watercourses, canals, and pipelines to coastal bays on the Gulf of Mexico. Overland flow or temporary storage of geothermal fluids may cause negative environmental impacts. As the result of production of large volumes of geothermal fluid, reservoir pressure declines may cause compaction of sediments within and adjacent to the reservoir. The amount of compaction depends on pressure decline, reservoir thickness, and reservoir compressibility. The magnitude of environmental impact of subsidence and fault activation varies with current land use. Geothermal resource production facilities on the Gulf Coast of Texas could be subject to a series of natural hazards: (1) hurricane- or storm-induced flooding, (2) winds from tropical storms, (3) coastal erosion, or (4) expansive soils. None of these hazards is generated by geothermal resource production, but each has potential for damaging geothermal production and disposal facilities that could, in turn, result in leakage of hot saline geothermal fluids.

Gustavson, T.C.; Kreitler, C.W.

1976-01-01T23:59:59.000Z

262

Investigation of the geothermal potential of the UK. A preliminary assessment. Final report  

Science Conference Proceedings (OSTI)

Geologically, Britain is an extremely stable area without active volcanism. In this situation the development of geothermal resources depends upon the occurrence of permeable rocks in deep sedimentary basins or the successful development of the hot dry rock concept. The average geothermal gradient is about 25C/km, but two belts of above average heat flow extend across northern and south-western England. In these areas the gradient can be 30C/km or more. The principal aquifers occur in the Mesozoic and the greatest geothermal potential is in sandstones of the Permo-Triassic where their occurrence at depth coincides with the high heat flow belts.

Not Available

1982-01-01T23:59:59.000Z

263

SELF-POTENTIAL SURVEY AT THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network (OSTI)

Presented at the Geothermal Resources Council 1978 AnnualPrepared for the Division of Geothermal Energy of the U. S.of th'e dipole in km. Geothermal Field, Baja Cal ifornia,

Corwin, R.F.

2011-01-01T23:59:59.000Z

264

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)  

Science Conference Proceedings (OSTI)

Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

Esposito, A.; Augustine, C.

2012-04-01T23:59:59.000Z

265

Preliminary direct heat geothermal resource assessment of the Tennessee Valley region  

DOE Green Energy (OSTI)

A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

Staub, W.P.

1980-01-01T23:59:59.000Z

266

Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California  

Science Conference Proceedings (OSTI)

An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters.

Schimschal, U. (U.S. Geological Survey, Denver, CO (US))

1991-02-01T23:59:59.000Z

267

Issues facing the developmt of hot dry rock geothermal resources  

DOE Green Energy (OSTI)

Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat will be discussed. Topics covered will include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return.

Tester, J.W.

1979-01-01T23:59:59.000Z

268

Geothermal resources of the Southern Powder River Basin, Wyoming  

DOE Green Energy (OSTI)

This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

1985-06-13T23:59:59.000Z

269

Direct utilization of geothermal energy: a layman's guide. Geothermal Resources Council special report No. 8  

DOE Green Energy (OSTI)

The following subjects are covered: nature and distribution of geothermal energy; exploration, confirmation, and evaluation of the resource; reservoir development and management; utilization; economics of direct-use development; financing direct-use projects; and legal, institutional, and environmental aspects. (MHR)

Anderson, D.N.; Lund, J.W. (eds.)

1979-01-01T23:59:59.000Z

270

Geothermal resources, Wilcox Group, Texas Gulf Coast  

DOE Green Energy (OSTI)

Results are presented of a regional study to identify areas where the Wilcox Group contains significant thicknesses of sandstone with subsurface temperatures higher than 300/sup 0/F. Eight of these geothermal fairways were identified. Control for this study was based on wells chosen so as to provide stratigraphic dip sections spaced 15 to 20 miles apart along the entire Texas Gulf Coast. Electrical well logs from the eight fairways are shown. (MHR)

Bebout, D.G.; Gavenda, V.J.; Gregory, A.R.

1978-01-01T23:59:59.000Z

271

Property:PotentialGeothermalHydrothermalGeneration | Open Energy  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalGeneration PotentialGeothermalHydrothermalGeneration Jump to: navigation, search Property Name PotentialGeothermalHydrothermalGeneration Property Type Quantity Description The estimated potential energy generation from Geothermal Hydrothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialGeothermalHydrothermalGeneration"

272

Potential of utilization of geothermal energy in Arizona. Executive summary  

Science Conference Proceedings (OSTI)

Arizona is one of the fastest growing states in the United States. It is in the midst of the movement of the population of the United States from its cold regions to the warm Southwest. Being a hot, arid region, its electrical demand is nearly 50% higher in the peak hot summer months than that of the other seven months. The major uncertainty of utilizing geothermal energy in Arizona is that very little exploration and development have occurred to date. The potential is good, based on (a) the fact that there are over 3000 thermal wells in Arizona out of a total of about 30,000 shallow (less than 1000 ft) irrigation wells. In addition, there is much young volcanic rock in the State of Arizona. The combination of data from thermal wells, young volcanic rock, water geochemistry and other geological tools, indicate that there is a large geothermal resource throughout the southern half of the state. It is believed that most of this resource is in the range of 50/sup 0/C (122/sup 0/F) to 150/sup 0/C (302/sup 0/F), limiting its uses to direct heat utilization rather than for electric power generation.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

273

Economic review of the geopressured-geothermal resource with recommendations  

SciTech Connect

This report presents the results of an economic study conducted by the INEL under DOE Contract No. AC07-76ID01570 to evaluate the breakeven price to market energy from a geopressured-geothermal resource. A breakeven price is a minimum, per unit charge required for the developer to recover all direct and indirect costs and a rate of return sufficient to compensate the developer for depreciation, the time value of money, and the risk of failure. The DOE Geopressured-Geothermal Research Program and the DOE well testing and operations at three locations in the Gulf Coast region provide the bulk of resource and economic characteristics for this study. A menu-driven model was developed in LOTUS-123 to calculate the breakeven price to market gas and electricity from a geopressured-geothermal resource. This model was developed using the present value methodology and conservative assumptions. Assuming present well constraints and current off-the-shelf conversion technology, the breakeven price for electricity is about $0.26/kWh using only the thermal energy from a Hulin-type resource. Assuming identical resource and technology constraints, the breakeven price is reduced to about $0.15/kWh when using all available energy forms (methane, hydraulic, and thermal). Assuming the use of available advanced technologies, the breakeven price is reduced to about $0.10/kWh. Assuming the higher quality resource (with higher temperature and gas content) in the South Texas cases, the breakeven cost is about $0.095/kWh. Using advanced technology, this cost is further reduced to about $0.05/kWh. Both costs are within program goals. The results of this study suggest that the future direction of the Geopressured-Geothermal Program emphasize (a) selection of higher quality resource, (b) advanced energy conversion technology, and (c) total energy utilization.

Plum, M.M.; Negus-de Wys, J.; Faulder, D.D.; Lunis, B.C.

1989-11-01T23:59:59.000Z

274

GRR/Section 3-MT-a - State Geothermal Resource Lease | Open Energy  

Open Energy Info (EERE)

3-MT-a - State Geothermal Resource Lease 3-MT-a - State Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-a - State Geothermal Resource Lease 03MTAStateGeothermalResourceLease.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.25.404 Triggers None specified Click "Edit With Form" above to add content 03MTAStateGeothermalResourceLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to document the process behind the geothermal resource lease in Montana. The procedure is outlined in Rule 36.25.404.

275

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

276

Status of Nevada Geothermal Resource Development - Spring 2011 | Open  

Open Energy Info (EERE)

Resource Development - Spring 2011 Resource Development - Spring 2011 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Nevada Geothermal Resource Development - Spring 2011 Abstract Recent increases in geothermal exploration and power plant construction in Nevada are the first significant activities since the Steamboat II/III and Brady plants came on line in 1992.Exploration activity on existing projects grew between 2005 and 2010, culminating in the construction of several new power plants. The BLM's 2007 lease auction (first since the 2005 Energy Policy Act revisions) opened the door to exploration on green field properties. The number of wells permitted and drilled remained low from 1994 through 2003, but rose sharply to peak in 2009.However, over 760,000

277

Crane Creek known geothermal resource area: an environmental analysis  

DOE Green Energy (OSTI)

The Crane Creek known geothermal resource area (KGRA) is located in Washington County, in southwestern Idaho. Estimated hydrothermal resource temperatures for the region are 166/sup 0/C (Na-K-Ca) and 176/sup 0/C (quartz). The KGRA is situated along the west side of the north-south trending western Idaho Fault Zone. Historic seismicity data for the region identify earthquake activity within 50 km. The hot springs surface along the margin of a siliceous sinter terrace or in adjacent sediments. Approximately 75% of the KGRA is underlain by shallow, stony soils on steep slopes indicating topographic and drainage limitations to geothermal development. Species of concern include sage grouse, antelope, and mule deer. There is a high probability of finding significant prehistoric cultural resources within the proposed area of development.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

278

Bruneau Known Geothermal Resource Area: an environmental analysis  

DOE Green Energy (OSTI)

The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county. Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.

Spencer, S.G.; Russell, B.F. (eds.)

1979-09-01T23:59:59.000Z

279

Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area  

DOE Green Energy (OSTI)

Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

None

1981-12-01T23:59:59.000Z

280

Self Potential Measurements At Raft River Geothermal Area (1983) | Open  

Open Energy Info (EERE)

Measurements At Raft River Geothermal Area (1983) Measurements At Raft River Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential Measurements At Raft River Geothermal Area (1983) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Self Potential Measurements Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Self-potential measurements before and during injection tests at Raft River KGRA, Idaho indicate a small negative change. The magnitude of the change (5 to 10 mV) is near the noise level (5 mV) but they extend over a fairly broad area. The presence of a cathodic protection system clouds the issue of the validity of the changes, however the form of the observed changes cannot be explained by any simple change in the current strength of the

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of potential geopressure geothermal test sites in southern Louisiana  

DOE Green Energy (OSTI)

Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

Bassiouni, Z.

1980-04-01T23:59:59.000Z

282

Geothermal energy potential in the San Luis Valley, Colorado  

DOE Green Energy (OSTI)

The background of the area itself is investigated considering the geography, population, economy, attitudes of residents, and energy demands of the area. The requirements for geothermal energy development are considered, including socio-economic, institutional, and environmental conditions as well as some technical aspects. The current, proposed, and potential geothermal energy developments are described. The summary, conclusions, and methodology are included. (MHR)

Coe, B.A.

1980-01-01T23:59:59.000Z

283

Public Information Projects of the Geothermal Resources Council and the Geothermal Energy Association  

SciTech Connect

During the past 20 years the Geothermal Resources Council (GRC), has grown and changed dramatically. An educational organization, the GRC sponsors an annual scientific meeting, and short courses, workshops, and symposia. Meetings and workshops typically are held at locations where members can also attend field trips. The GRC also publishes special reports, a monthly magazine, the GRC BULLETIN, and annual meeting transactions. The GRC On-line Information System, a relatively new service, is a library containing over 20,000 technical geothermal papers, articles, maps and periodicals. Presently, citations for 10,000 of these library materials are stored on computer and available via modem to users anywhere in the world. New citations are added to the library frequently. The GRC's sister association, the Geothermal Energy Association (GEA), collaborates with the GRC on educational programs.

Anderson, David N.; Smith, Estela

1995-01-26T23:59:59.000Z

284

Present status and future prospects for nonelectrical uses of geothermal resources  

DOE Green Energy (OSTI)

This report, which is part of a study initiated by the NATO Committee on the Challenges of Modern Society (CCMS), describes the current status of nonelectrical uses of geothermal resources. Such resources are defined as geothermal fluids between the temperatures of 50 and 160/sup 0/C. Current and potential uses of these resources including residential and commercial, agricultural and industrial applications are described. Also discussed are exploration and drilling; extraction and distribution; environmental impact; and economic and regulatory problems. Applications in a number of countries are described. Among the report's conclusions are: (1) Geothermal resources are widely distributed throughout the world. (2) The extraction of these resources presents no serious technical problems. (3) A wide variety of economically viable applications for these resources currently exists. (4) Current nonelectrical applications have a favorable economic structure compared with those of other energy sources. (5) Disposal of spent fluids has a significant ecological impact. Reinjection appears to be the most likely alternative. (6) The legal and institutional framework surrounding these applications needs both clarification and simplification.

Howard, J.H. (ed.)

1975-10-03T23:59:59.000Z

285

Geothermal Resource Area 5, Churchill, Douglas, Lyon and Storey Counties area development plan  

DOE Green Energy (OSTI)

Within this four county area there are many known geothermal resources ranging in temperature from 70 to over 350{sup 0}F. Thirteen of these resources are considered major and have been selected for evaluation. Various potential uses of the energy found were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These factors were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation; space heating; recreation; industrial process heat; and agriculture.

Pugsley, M.

1981-01-01T23:59:59.000Z

286

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

287

Investigation of Low-Temperature Geothermal Resources in the Sonoma Valley Area, California  

DOE Green Energy (OSTI)

The Sonoma Valley area contains low-temperature geothermal resources (20 C {le} T {le} 90 C) having the potential for useful development. Sonoma Valley residents, local governments and institutions, private developers, and manufacturers may be able to utilize the geothermal resources as an alternate energy source. Historically, there have been at least six geothermal spring areas developed in the Sonoma Valley. Four of these (Boyes Hot Springs, Fetter's Hot Springs, Agua Caliente Springs, and the Sonoma State Hospital warm spring) lie on a linear trend extending northwestward from the City of Sonoma. Detailed geophysical surveys delineated a major fault trace along the east side of the Sonoma Valley in association with the historic geothermal areas. Other fault traces were also delineated revealing a general northwest-trending structural faulting fabric underlying the valley. Water wells located near the ''east side'' fault have relatively high boron concentrations. Geochemical evidence may suggest the ''east side'' fault presents a barrier to lateral fluid migration but is a conduit for ascending fluids. Fifteen of the twenty-nine geothermal wells or springs located from literature research or field surveys are located along or east of this major fault in a 10 km (6.2 miles) long, narrow zone. The highest recorded water temperature in the valley appears to be 62.7 C (145 F) at 137.2 meters (450 feet) in a well at Boyes Hot Springs. This is consistent with the geothermal reservoir temperature range of 52-77 C (126-171 F) indicated by geothermometry calculations performed on data from wells in the area. Interpretation of data indicates a low-temperature geothermal fluid upwelling or ''plume'', along the ''east side'' fault with subsequent migration into permeable aquifers predominantly within volcanic strata. It is quite likely other geothermal fluid ''plumes'' in association with faulting are present within the Sonoma Valley area. A 5.8 km{sup 2} geothermal zone, that parallels the fault trace, is delineated and is perhaps the most favorable area for further investigation and possible geothermal production.

Youngs, Leslie G.; Chapman, Rodger H.; Chase, Gordon W.; Bezore, Stephen P.; Majmundar, Hasu H.

1983-01-01T23:59:59.000Z

288

Geothermal resources of the Washakie and Great Divide basins, Wyoming  

DOE Green Energy (OSTI)

The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

Heasler, H.P.; Buelow, K.L.

1985-01-01T23:59:59.000Z

289

Inventory and case studies of Louisiana, non-electric industrial applications of geopressured geothermal resources. Quarterly progress report, March 1-May 31, 1977  

DOE Green Energy (OSTI)

An inventory is provided of geopressured geothermal resources in Louisiana. The Louisiana industries; classified as Food and Kindred Products were cataloged and inventoried to determine potential and specific uses of the known energy resources. The possibility of relocating industries to the available resources is explored. Individual case studies are presented for near term industrial conversion for resource application. (MHR)

Schnadelbach, T.W. Jr.

1977-06-01T23:59:59.000Z

290

Future for geopressured-geothermal resources  

SciTech Connect

The geopressured-geothermal production technologies for recompleting the Hulin Well and design and operation of surface facilities appear to be well in hand. A preliminary capital cost estimate indicates $4.45 million is required to recomplete and prepare the Hulin Well for production testing. The planned recompletion of the production well, surface facilities, and disposal well will have the capability to handle 24,000 barrels per day (bpd) of brine. If the reservoir can produce this design flow of brine saturated with gas, and the gas can be sold for $1.30/thousand cubic feet (mcf), DOE should have a positive cash flow about $530 per day for the first year. If gas zones are located above the brine as indicated by logs, the positive cash flow could reach $4130 per day or higher. The principal uncertainties are the gas content of the brine and the reservoir performance, both initially and long term. A private developer would need a market price for natural gas of from $1.38 to $4.60 per mcf for a reasonable return on investment depending on the reservoir performance and whether or not zones of excess gas are actually encountered. 7 refs., 6 figs.

Ramsthaler, J.; Plum, M.

1988-01-01T23:59:59.000Z

291

Preliminary evaluation of geothermal resources of South Texas  

DOE Green Energy (OSTI)

Studies on the following are summarized: regional distribution of Frio sands, South Texas; depositional patterns, Gulf-Coast Tertiary; growth faults, mechanisms for downdip thickening; the approach to obtaining sand distribution; reliable correlations from regional cross sections; depositional systems from sand-percentage maps; geopressured Frio related to sand distribution; isothermal maps; and conclusons and potential geothermal fairways. (MHR)

Bebout, D.G.

1974-10-01T23:59:59.000Z

292

Process applications for geothermal energy resources. Progress report  

SciTech Connect

Energy use characteristics of the major energy using industries in the US were examined. The pulp and paper industry was selected and a workshop held. Two analyses were performed of the potential for substituting geothermal energy for fossil fuel in specific pulp and paper plants. The lack of industry interest is discussed. (MHR)

1979-10-01T23:59:59.000Z

293

Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report  

DOE Green Energy (OSTI)

Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

1980-01-01T23:59:59.000Z

294

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Recoverable Resource Estimate of Identified Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic pressure gradient) * Common Geopressured Geothermal Reservoir Structure o Upper thick low permeability shale o Thin sandstone layer o Lower thick low permeability shale * Three Potential Sources of Energy o Thermal energy (Temperature > 100°C - geothermal electricity generation)

295

Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report  

DOE Green Energy (OSTI)

Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

Not Available

1982-01-01T23:59:59.000Z

296

Geopressured-geothermal resource development on public free school lands  

DOE Green Energy (OSTI)

The study's findings and recommendations are based upon analysis of the following: financial and economic feasibility of geopressured-geothermal resource development; possible ecological, social, and economic impacts of resource development on PFSL; and legal issues associated with resource development. The results of the analysis are summarized and are discussed in detail in a series of four technical papers which accompany this volume. Existing rules of the General Land Office (GLO), the School Land Board (SLB), and the Railroad Commission of Texas (RRC) were reviewed in light of the above analysis and were discussed with the agencies. The study's recommendations resulted from this analytical and review process; they are discussed. The preliminary draft rules and regulations to govern resource development on PFSL are presented in Appendix A; the accompanying forms and model lease are found in Appendix B.

Not Available

1979-07-01T23:59:59.000Z

297

Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177  

DOE Green Energy (OSTI)

In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

2007-05-17T23:59:59.000Z

298

The geopressured-geothermal resource: Transition to commercialization  

DOE Green Energy (OSTI)

The Geopressured-Geothermal resource has an estimated 5700 recoverable quad of gas and 11,000 recoverable quad of thermal energy in the onshore Texas and Louisiana Gulf Coast area alone. After 15 years the program is now beginning a transition to commercialization. The program presently has three geopressured-geothermal wells in Texas and Louisiana. The Pleasant Bayou Well has a 1 MWe hybrid power system converting some gas and the thermal energy to electricity. The Gladys McCall Well produced over 23 MM bbls brine with 23 scf per bbl over 4 1/2 years. It is now shut-in building up pressure. The deep Hulin Well has been cleaned out and short term flow tested. It is on standby awaiting funds for long-term flow testing. In January 1990 an Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource was convened at Rice University, Houston, TX. Sixty-five participants heard industry cost-shared proposals for using the hot geopressured brine. Proposals ranged from thermal enhanced oil recovery to aquaculture, conversion, and environmental clean up processes. By the September meeting at UTA-Balcones Research Center, industry approved charters will have been received, an Advisory Board will be appointed, and election of officers from industry will be held. 11 refs., 8 figs., 1 tab.

Negus-de Wys, J. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Dorfman, M. (Texas Univ., Austin, TX (USA). Dept. of Petroleum Engineering)

1990-01-01T23:59:59.000Z

299

Geothermal resource assessment for North Dakota. Final Report  

SciTech Connect

Temperatures in four geothermal aquifers, inyan Kara (Cretaceous), Mission Canyon (Mississippian), Duperow (Devonian), and Red River (Ordovician) are in the range for low and moderate temperature geothermal resources within an area of about 130,000 km{sup 2} in North Dakota. The accessible resource base is 13,500 x 10{sup 18} J., which, assuming a recovery factor of 0.001, may represent a greater quantity of recoverable energy than is present in the basin in the form of petroleum. A synthesis of heat flow, thermal conductivity, and stratigraphic data was found to be significantly more accurate in determining formation temperatures than the use of linear temperature gradients derived from bottom hole temperature data. The thermal structure of the Williston Basin is determined by the thermal conductivities of four principal lithologies: Tertiary silts and sands (1.6 W/m/K), Mesozoic shales (1.2 W/m/K), Paleozoic limestones (3.2 W/m/K), and Paleozoic dolomites (3.5 W/m/K). The stratigraphic placement of these lithologies leads to a complex, multi-component geothermal gradient which precludes use of any single component gradient for accurate determination of subsurface temperatures.

Gosnold, William D. Jr.

1984-04-01T23:59:59.000Z

300

Geothermal resource assessment for North Dakota. Final report  

SciTech Connect

Temperatures in four geothermal aquifers, Inyan Kara (Cretaceous), Mission Canyon (Mississippian), Duperow (Devonian), and Red River (Ordovician) are in the range for low and moderate temperature geothermal resources within an area of about 130,000 km/sup 2/ in North Dakota. The accessible resource base is 13,500 x 10/sup 18/ J., which, assuming a recovery factor of 0.001, may represent a greater quantity of recoverable energy than is present in the basin in the form of petroleum. A synthesis of heat flow, thermal conductivity, and stratigraphic data was found to be significantly more accurate in determining formation temperatures than the use of linear temperature gradients derived from bottom hole temperature data. The thermal structure of the Williston Basin is determined by the thermal conductivities of four principal lithologies: Tertiary silts and sands (1.6 W/m/K), Mesozoic shales (1.2 W/m/K), Paleozoic limestones (3.2 W/m/K), and Paleozoic dolomites (3.5 W/m/K). The stratigraphic placement of these lithologies leads to a complex, multicomponent geothermal gradient which precludes use of any single component gradient for accurate determination of subsurface temperatures.

Gosnold, W.D. Jr.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermics of Nile delta and southeast Mediterranean: Investigation and geothermal energy potential  

Science Conference Proceedings (OSTI)

The authors collected 289 temperature readings from 66 exploratory wells randomly distributed in an area about 57,000 km{sup 2} from different rock units of Tertiary and Quaternary ages. The bottom-hole temperature (BHT) readings were corrected using an empirical equation based on actual static formation temperatures collected from the study area. The authors modified the Fertl and Wichmann method to apply to the study area. If the Fertl and Wichmann curve is applied, readings can be corrected using a deduced relation. The geothermal gradient for each well calculated used the best-fit method utilizing all recorded BHTs in that well. A new geothermal gradient map was constructed using the corrected BHT values. A genetic relationship between the geothermal gradient and lithology, tectonic setup, gas saturation, and water saturation of the subsurface formations in the Nile delta and southeast Mediterranean area was sought. Isothermal maps at different depths in the study area were constructed. Areas of relatively high subsurface temperature were delineated. The Abu Madi gas field as a case study for geothermal behavior was emphasized. The geothermal reservoirs in the study area as possible new and renewable energy resources were defined and classified as low-temperature reservoirs. Two geothermal reservoirs have been recorded: a shallow one associated with Mit Ghamr-El Wastani rock units and a deep one associated with abu Madi-Qawassim Formations.

Zein El-Din, M.Y.; Zaghloul, Z.M.; Khidr, I.H. (Al Azhar Univ., Cairo (Egypt))

1988-08-01T23:59:59.000Z

302

Geothermal resources and technology in the United States. Supporting Paper No. 4  

DOE Green Energy (OSTI)

The types of geothermal resources and their energy contents and producibility are reviewed. The production method and costs, production rates, and prerequisites of development are discussed. (MHR)

Not Available

1979-01-01T23:59:59.000Z

303

Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources  

DOE Green Energy (OSTI)

This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

Heiken, G.; Sayer, S.

1980-02-01T23:59:59.000Z

304

GRR/Section 3-CA-a - State Geothermal Resource Leasing | Open Energy  

Open Energy Info (EERE)

3-CA-a - State Geothermal Resource Leasing 3-CA-a - State Geothermal Resource Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-CA-a - State Geothermal Resource Leasing 03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Click to View Fullscreen Contact Agencies California State Lands Commission California Division of Oil, Gas, and Geothermal Resources Regulations & Policies Geothermal Resources Act - Cal. Pub. Res. Code. § 6901-6925.2 CCR Title 2, 1900-2980.9 Triggers None specified Click "Edit With Form" above to add content 03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

305

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Details Activities (5) Areas (2) Regions (0) Abstract: Studies of the geology, geochemistry of thermal waters, and of one exploratory geothermal well show that two related hot spring systems discharge in Canon de San Diego at Soda Dam (48°C) and Jemez Springs (72°C). The hot springs discharge from separate strands of the Jemez fault zone which trends northeastward towards the center of Valles Caldera. Exploration drilling to Precambrian basement beneath Jemez Springs

306

The 2004 Geothermal Map Of North America Explanation Of Resources And  

Open Energy Info (EERE)

The 2004 Geothermal Map Of North America Explanation Of Resources And The 2004 Geothermal Map Of North America Explanation Of Resources And Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: The 2004 Geothermal Map Of North America Explanation Of Resources And Applications Details Activities (1) Areas (1) Regions (0) Abstract: The first Geothermal Map of North America was published in 1992 by the Geological Society of America (GSA). The American Association of Petroleum Geologist (AAPG) is publishing the 2004 Geothermal Map of North America (Blackwell and Richards, 2004a). Southern Methodist University Geothermal Lab produced the map over the last three years in conjunction with numerous collaborators. New data and cartographic techniques allow for greater detail and new data layers to be added to the 2004map. Thus the

307

Corrosion engineering in the utilization of the Raft River geothermal resource  

DOE Green Energy (OSTI)

The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

Miller, R.L.

1976-08-01T23:59:59.000Z

308

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of  

Open Energy Info (EERE)

Of Geothermal Potential For The Great Basin, Usa- Recognition Of Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Details Activities (8) Areas (4) Regions (0) Abstract: A 1:1,000,000 scale geothermal favorability map of the Great Basin is currently being published through the Nevada Bureau of Mines and Geology (NBMG) and is now available at the web site (http://www.unr.edu/geothermal/geothermal_gis2. htm) of the Great Basin Center for Geothermal Energy (GBCGE). This map allows for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from

309

An inventory of Geothermal Resources in Nebraska: State-Coupled Program between US Department of Energy and The University of Nebraska. Final report, June 30, 1983  

DOE Green Energy (OSTI)

The goal of the State Coupled Resource Assessment Program is to identify and evaluate geothermal resources in the state, particularly low-temperature potential. Eight tasks were identified and documented in this report as follows: (1) Bottom-hole Temperature Survey; (2) Heat Flow and Temperature Gradient Survey; (3) Data Translation studies; (4) Gravity Data; (5) Substate Regions; (6) Information Dissemination; (7) State Geothermal Map; (8) Reports. The project had three major products: (1) a map ''Geothermal Resources of Nebraska''; (2) a significant amount of thermal data collected and documented within the state; and (3) a series of publications, presentations and meetings.

Gosnold, William D.; Eversoll, Duane, A.; Messenger, Karen A.; Carlson, Marvin P.

1983-06-30T23:59:59.000Z

310

Report of the State Geothermal Resources Task Force, State of California  

DOE Green Energy (OSTI)

The State Geothermal Resources Task Force has investigated the status of geothermal resources and development in California and in this report offers recommendations for overcoming obstacles facing increased utilization of this significant natural resource. For the most part, these recommendations are short-term solutions to immediate problems and would not radically change the roles of governmental agencies currently regulating geothermal development. The Task Force concludes that geothermal operations have been hindered by the lack of a statewide policy on geothermal development. This has resulted in instances where industry has been forced to comply with conflicting governmental policies toward geothermal energy development and environmental protection. The Task Force therefore recommends legislation establishing a statewide policy to encourage geothermal development consistent with environmental quality standards. In addition to geothermal resources suitable for the production of electrical power, California has extensive undeveloped hot water reservoirs suitable for direct thermal applications. The Energy Resources Conservation and Development Commission and the US Geological Survey have concluded that these resources, if developed, could make a significant contribution to satisfying California's energy needs. The Task Force therefore recommends establishing a statewide policy to encourage the use of non-electric hot water geothermal resources for commercial and non-commercial uses where the development is consistent with environmental quality concerns.

Warburg, Judith; Kirkham, Bill; Hannon, Theodore

1978-06-01T23:59:59.000Z

311

The Power and Potential of Geothermal Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy October 3, 2011 - 7:03pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs As Secretary Chu noted this weekend, America finds itself in a fierce global competition for the clean energy jobs and industries of the future - with countries like China, Germany and others investing tens of billions of dollars to expand their domestic renewable energy industry and capture the lead in a rapidly growing field. In this context, the Department of Energy's loan programs have played a crucially important role in helping the United States compete, by providing affordable financing to innovative projects that might not otherwise happen but that hold the potential to seed entire new industries for U.S.

312

Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 2  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

Negus-deWys, J. (ed.)

1990-03-01T23:59:59.000Z

313

Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1  

DOE Green Energy (OSTI)

The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

Negus-deWys, J. (ed.)

1990-03-01T23:59:59.000Z

314

Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska  

DOE Green Energy (OSTI)

An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

1985-01-01T23:59:59.000Z

315

Geothermal energy: 1992 program overview  

DOE Green Energy (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

316

Analysis of binary thermodynamic cycles for a moderately low-temperature geothermal resource  

DOE Green Energy (OSTI)

Analyses of a number of geothermal binary-cycles were made with the objective of finding a cycle which can produce low-cost electrical energy from a moderately low-temperature geothermal resource. Cycles were screened which included isobutane, pentane, cis-2-butene, and several mixed-hydrocarbon working fluids. Dual- and triple-boiling cycles were analyzed. Both shell-and-tube and direct-contact boilers, heaters, and condensers were assessed. A geothermal fluid (geo-fluid), typical of Raft River resource conditions was assumed, which has a temperature of 290/sup 0/F and 52 parts per million dissolved nitrogen. Special emphasis in the analyses was directed toward investigation of several methods for keeping the loss of working fluid for the cycle at an acceptable level. It was concluded that for the Raft River geo-fluid, the direct-contact cycle has a potential for net geofluid utilization effectiveness values, (watt-hr/lbm geo-fluid) equivalent to those of the shell-and-tube cycle. Therefore, because of the lower cost of direct-contact components, a potential exists for the direct-contact plant to produce lower cost electrical energy than a comparable shell-and-tube plant. Advanced cycles were assessed which showed improvements in net geo-fluid utilization effectivness, relative to the first Raft River 5-MW Pilot Plant (dual-boiling, shell-and-tube isobutane cycle), of up to 19%.

Demuth, O.J.

1979-07-01T23:59:59.000Z

317

A Compilation of Data on Fluids from Geothermal Resources in the United States  

SciTech Connect

This report is part of the Lawrence Berkeley Laboratory work to compile data of characteristics of the main U.S. geothermal source areas. The purpose of this compilation is to provide information on the chemistry of geothermal fluids to scientists and engineers involved with the development of liquid dominated geothermal energy resources. The compilation is a comprehensive tabulation of available geothermal fluid data from the most important geothermal resources in the United States. [Abstracter's note: This was part of a large but short-lived effort at LBNL to collect lots of geothermal data. There may be other reports that are worth searching for to add to the Geothermal Legacy collection at OSTI. DJE-2005

Cosner, S.R.; Apps, J.A.

1978-05-01T23:59:59.000Z

318

Direct utilization of geothermal energy resources in food processing. Final report, May 17, 1978-May 31, 1982  

DOE Green Energy (OSTI)

In early 1978 financial assistance was granted for a project to utilize geothermal energy at Ore-Ida Foods, Inc.'s food processing plant in Ontario, Oregon. Specifically, the project included exploring, testing, and developing the potential geothermal resource; retrofitting the existing gas/oil-fired steam system; utilizing the geothermal resource for food processing, space heating, and hot potable water; and injecting the spent geothermal water back into a disposal well. Based on preliminary investigations which indicated the presence of a local geothermal resource, drilling began in August 1979. Although the anticipated resource temperature of 380/sup 0/F was reached at total well depth (10,054 feet), adequate flow to meet processing requirements could not be obtained. Subsequent well testing and stimulation techniques also failed to produce the necessary flow, and the project was eventually abandoned. However, throughout the duration of the project, all activities were carefully monitored and recorded to ensure the program's value for future evaluation. This report presents a culmination of data collected during the Ore-Ida project.

Austin, J.C.

1982-05-01T23:59:59.000Z

319

Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture  

DOE Green Energy (OSTI)

A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

Zachritz, W.H., II; Polka, R.; Schoenmackers

1996-04-01T23:59:59.000Z

320

GRR/Section 3-OR-a - Geothermal Resource Lease | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-OR-a - Geothermal Resource Lease GRR/Section 3-OR-a - Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-OR-a - Geothermal Resource Lease 03ORAGeothermalResourceLease (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Land Conservation and Development Oregon Department of State Lands Oregon Coastal Management Program Regulations & Policies Geothermal Lease Regulations ORS 273.775 to 273.790 Coastal Zone Management Act Triggers None specified Click "Edit With Form" above to add content 03ORAGeothermalResourceLease (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final Scientific / Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California  

DOE Green Energy (OSTI)

With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and interpretation of remote sensing imagery such as aerial and satellite photographs; acquisition, quality control and interpretation of gravity data; and acquisition, quality control and interpretation of resistivity data using state of the art magnetotelluric (MT) methods. The results of this exploratory program have allowed LEA to develop a structural and hydrologic interpretation of the Truckhaven geothermal resource which can be used to guide subsequent exploratory drilling and resource development. Of primary significance, is the identification of an 8 kilometer-long, WNW-trending zone of low resistivity associated with geothermal activity in nearby wells. The long axis of this low resistivity zone is inferred to mark a zone of faulting which likely provides the primary control on the distribution of geothermal resources in the Truckhaven area. Abundant cross-faults cutting the main WNW-trending zone in its western half may indicate elevated fracture permeability in this region, possibly associated with thermal upwelling and higher resource temperatures. Regional groundwater flow is inferred to push thermal fluids from west to east along the trend of the main low resistivity zone, with resource temperatures likely declining from west to east away from the inferred upwelling zone. Resistivity mapping and well data have also shown that within the WNW-trending low resistivity zone, the thickness of the Plio-Pleistocene sedimentary section above granite basement ranges from 1,9002,600 meters. Well data indicates the lower part of this sedimentary section is sand-rich, suggesting good potential for a sediment-hosted geothermal reservoir in porous sands, similar to other fields in the region such as Heber and East Mesa. Sand porosity may remain higher in the eastern portion of the low resistivity zone. This is based on its location hydrologically downstream of the probable area of thermal upwelling, intense fracture development, and associated pore-filling hydrothermal mineral deposition to the west.

Layman Energy Associates, Inc.

2006-08-15T23:59:59.000Z

322

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical  

Open Energy Info (EERE)

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Details Activities (21) Areas (4) Regions (0) Abstract: For many years, there has been speculation about "hidden" or "blind" geothermal systems- reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose

323

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

324

Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report  

DOE Green Energy (OSTI)

Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identify the source of the water in the Mesa geothermal system. (JGB)

Coplen, T.B.

1973-10-01T23:59:59.000Z

325

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

326

Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations  

SciTech Connect

The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this wellthe most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

2013-03-01T23:59:59.000Z

327

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties,

328

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

329

Geothermal development plan: northern Arizona counties  

Science Conference Proceedings (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

330

Some issues regarding regulatory policy, political participation, and social implications of geothermal resource development in the Imperial Valley  

DOE Green Energy (OSTI)

The early stages of geothermal resource development in the Imperial Valley have been characterized by an emphasis on the technological expertise of private developers and government officials. Government officials have created a complex array of Federal, state and county regulations to monitor the development. Local control is under the jurisdiction of the Imperial County government. The County has as its responsibility the protection of the general welfare of its residents, including any potentially adverse social, economic, or environmental impacts caused by geothermal resource development. Private developers and government officials are interested in the resources as a source of water desalination and electric power generation. An assessment of the interests and concerns of the public was made early in the development stage. In view of all these interests, it is essential in a democratic society that the various interests be identified so government can be representative of, and responsive to, those interests. Therefore, the four issues discussed in the paper are: (1) regulatory problems faced by local government officials in determining the course of development; (2) the social and political context in which the development is taking place; (3) the potential of geothermal development as perceived by community leaders and local government officials; and (4) the desirability of expanding citizen participation in geothermal decision-makingduring a period in which, as public opinion polls indicated, many citizens feel separated from government actions which may significantly affect their lives. Recommendations for regulations of geothermal resources and recommendations for improving public input into geothermal regulation are summarized in depth. (MCW)

Green, P.S.; Steinberger, M.F.

1976-02-01T23:59:59.000Z

331

Area development plan of the geothermal potential in planning region 8, Roosevelt - Custer area  

DOE Green Energy (OSTI)

Geothermal resource data, the Roosevelt-Custer Region development plan, and energy, economic, and institutional considerations are presented. Environmental considerations and water availability are discussed. (MHR)

Not Available

1980-07-01T23:59:59.000Z

332

Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California  

SciTech Connect

The California Division of Mines and Geology (CDMG) selected the San Bernardino area for detailed geothermal resource investigation because the area was known to contain promising geothermal resource sites, the area contained a large population center, and the City of San Bernardino had expressed serious interest in developing the area's geothermal resource. Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs, South San Bernardino, and Harlem Hot Springs--in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the South San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142 C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the South San Bernardino geothermal area was 56 C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal areas was 49.5 C at 174 meters (570 feet) in an abandoned water well.

Youngs, Leslie G.

1982-07-01T23:59:59.000Z

333

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

DOE Green Energy (OSTI)

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

334

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume I.  

DOE Green Energy (OSTI)

The objective was to consolidate and evaluate all geologic, environmental, and legal and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of sites to allow the making of creditable forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. A total of 1265 potential geothermal resource sites were identified from existing literature. Site selection was based upon the presence of thermal and mineral springs or wells and/or areas of recent volcanic activity and high heat flow. 250 sites were selected for detailed analysis. A methodology to rank the sites by energy potential, degree of developability, and cost of energy was developed. Resource developability was ranked by a method based on a weighted variable evaluation of resource favorability. Sites were ranked using an integration of values determined through the cost and developability analysis. 75 figs., 63 tabs.

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

335

West Texas geothermal resource assessment. Part I. Geothermal exploration in Trans-Pecos, Texas. Final report  

Science Conference Proceedings (OSTI)

All of the new drilling for geothermal gradient and heat flow studies have been concentrated in an area near Hueco Tanks State Park. Interest in the area was raised by the silica geothermometry map of Hoffer (1979) and its proximity to El Paso, which is less than 25 miles away and expanding rapidly toward the area of geothermal interest. Several industries in El Paso appear to be potential users of non-electrical grade hot waters. A total of 14 holes have been drilled for geothermal gradient and heat-flow measurements. Of these, 12 were 50 meters deep and all but two had gradients in excess of 100/sup 0/C/km, one having a gradient as high as 306/sup 0/C/km. Of the remaining two, one penetrated bedrock at about 50 meters and was drilled to a total depth of 125 meters. The gradient in the limestone bedrock is 170/sup 0/C/km and the heat flow is about 11 x 10/sup -6/cal/cm/sup 2/ sec. This is the highest heat flow thus far reported for a locality in the Rio Grande Rift. The last hole is 300 meters deep and has a gradient of 142/sup 0/C/km and a heat flow of 9 x 10/sup -6/cal/cm/sup 2/ sec. The Hueco Tanks site is very promising for at least space heating applications of hot water. Based on the 300 meter hole the potential for electricity grade temperatures still exist, but the tight limestone bedrock may require hot dry rock extraction technology.

Roy, R.F.; Taylor, B.

1980-01-01T23:59:59.000Z

336

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

337

Heat flow and geothermal potential of Kansas  

DOE Green Energy (OSTI)

The plan of the US Geological Survey and Kansas Geological Survey to drill four deep hydrologic tests in Kansas prompted a geothermal study in these wells. These wells were drilled through the Arbuckle Group to within a few feet of basement and two of the holes were deepened on into the basement and core samples collected of the basement rock. Because of the depth of the four holes and because of the fact that they have been cased through most of their depth and left undisturbed to reach temperature equilibrium, it is possible to get highly accurate, stable temperature measurements through the complete sedimentary section. In addition an extensive suite of geophysical logs were obtained for each of the holes (gamma-ray, travel time, density, neutron porosity, electric, etc.) and cuttings were collected at frequent intervals. In addition 5 other holes were logged as part of this study. For these holes cutting samples and geophysical logs are not available, but the additional holes offer useful supplementary information on the temperature regime in other parts of Kansas.

Blackwell, D.D.; Steele, J.L.

1981-01-01T23:59:59.000Z

338

Financing geothermal resource development in the Pacific Region states  

DOE Green Energy (OSTI)

State and federal tax treatment as an incentive to development and non-tax financial incentives such as: the federal geothermal loan guarantee program, the federal geothermal reservoir insurance, and state financial incentives are discussed. (MHR)

Not Available

1978-08-15T23:59:59.000Z

339

Geothermal Resource Analysis And Structure Of Basin And Range...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

340

Geothermal Exploration Best Practices: A Guide to Resource Data...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Resources Exploration And Assessment Around The Cove...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

342

Direct application of West Coast geothermal resources in a wet-corn-milling plant. Final report  

DOE Green Energy (OSTI)

The engineering and economic feasibility of using the geothermal resources in East Mesa, California, in a new corn processing plant is evaluated. Institutional barriers were also identified and evaluated. Several alternative plant designs which used geothermal energy were developed. A capital cost estimate and rate of return type of economic analysis were performed to evaluate each alternative. (MHR)

Not Available

1981-03-01T23:59:59.000Z

343

A Snapshot Of Geothermal Energy Potential And Utilization In Turkey | Open  

Open Energy Info (EERE)

Snapshot Of Geothermal Energy Potential And Utilization In Turkey Snapshot Of Geothermal Energy Potential And Utilization In Turkey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Snapshot Of Geothermal Energy Potential And Utilization In Turkey Details Activities (0) Areas (0) Regions (0) Abstract: Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey

344

Geothermal resources in Arizona: a bibliography. Circular 23  

DOE Green Energy (OSTI)

All reports and maps generated by the Geothermal Project of the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the University of Arizona are listed. In order to provide a more comprehensive listing of geothermal papers from other sources have been included. There are 224 references in the bibliography. (MHR)

Calvo, S.S.

1982-01-01T23:59:59.000Z

345

Geothermal resources in Arizona: a bibliography. Circular 23  

DOE Green Energy (OSTI)

This bibliography references all reports and maps generated by the Arizona Bureau of Geology and Mineral Technology and the Arizona Geothermal Commercialization Team of the Department of Chemical Engineering, University of Arizona. To provide a more comprehensive listing of geothermal energy in Arizona, all available geothermal papers from other sources have been included. A total of 224 references are presented. (MHR)

Calvo, S.S.

1982-01-01T23:59:59.000Z

346

Multielement geochemical exploration data for the Cove Fort-Sulphurdale Known Geothermal Resource Area, Beaver and Millard counties, Utah  

DOE Green Energy (OSTI)

Multielement geochemical exploration data have been acquired for the Cove Fort-Sulphurdale Known Geothermal Resource Area (KGRA). This was accomplished by analysis of both whole rock and +3.3 specific gravity concentrate samples from cuttings composites collected from shallow rotary drill holes. Areal distributions are reported for arsenic, mercury, lead and zinc. These are elements indicated by previous studies to be broadly zoned around thermal centers in geothermal systems and thus to be useful for selecting and prioritizing drilling targets. Results from this work suggest that reservoir temperature and/or reservoir to surface permeability, and thus possibly overall potential for a geothermal resource, increase northward beneath the approximately 18 square mile area containing shallow drill holes, possibly to beyond the northern limits of the area. The data provide a basis for development of three principal target models for the geothermal system but do not permit prioritization of these models. It is recommended that geochemical, geological, and temperature gradient surveys be expanded northward from the present survey area to more fully define the area which appears to have the best resource potential and to aid prioritization of the target models.

Bamford, R.W.; Christensen, O.D.

1979-09-01T23:59:59.000Z

347

Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.  

DOE Green Energy (OSTI)

The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

Taranik, James V.; Oppliger, Gary; Sawatsky, Don

2002-04-10T23:59:59.000Z

348

The feasibility of hydraulic energy recovery from geopressured- geothermal resources  

DOE Green Energy (OSTI)

This report presents the results of a study conducted by the Idaho National Engineering Laboratory (INEL) for DOE on the application of hydraulic energy recovery from geopressured-geothermal resources. The report examines both the technical and economic feasibility. Previous reports and demonstrations of geopressured-geothermal energy have been directed to the recovery of heat and methane. This report is specifically directed to extracting the pressure component of a typical reservoir. The pressure energy available in a 220 psia geopressured fluid could yield 1.49 W{center dot}h per pound and an average well could produce 500kW. The best available device for recovering this energy is a Pelton turbine. Commercial Pelton turbines are not available for this application but are technically feasible. Suitable turbines could be developed with first of a kind engineering and tooling costs of approximately $227,000. The breakeven cost to add conversion of hydraulic energy to an existing methane/heat recovery system would be $0.030 per kWh based on a 10 year lifetime. Development testing is necessary to understand the effect of the dissolved gases, verify cavitation suppression, and materials selection. Cavitation suppression would be provided by utilizing the gas backpressure of the dissolved methane and carbon dioxide that exists in the geofluid. It is estimated that adding conversion of hydraulic energy to an operating system recovering heat and methane could reduce the overall cost of electrical production by about 1.5 cents per kWh. This is not a viable stand-alone system is the well costs are to be born by the conversion of hydraulic energy alone. 5 refs., 4 figs., 2 tabs.

Thurston, G.C.; Plum, M.M.

1991-09-01T23:59:59.000Z

349

Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program  

DOE Green Energy (OSTI)

Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

Ruscetta, C.A. (ed.)

1982-07-01T23:59:59.000Z

350

Direct utilization of geothermal energy: a layman's guide. Geothermal Resources Council special report No. 8  

SciTech Connect

The following subjects are covered: nature and distribution of geothermal energy; exploration, confirmation, and evaluation of the resource; reservoir development and management; utilization; economics of direct-use development; financing direct-use projects; and legal, institutional, and environmental aspects. (MHR)

Anderson, D.N.; Lund, J.W. (eds.)

1979-01-01T23:59:59.000Z

351

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

352

File:03MTAStateGeothermalResourceLease.pdf | Open Energy Information  

Open Energy Info (EERE)

MTAStateGeothermalResourceLease.pdf MTAStateGeothermalResourceLease.pdf Jump to: navigation, search File File history File usage File:03MTAStateGeothermalResourceLease.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:01, 25 January 2013 Thumbnail for version as of 11:01, 25 January 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 3-MT-a - State Geothermal Resource Lease

353

File:03UTAStateGeothermalResourceLeasing.pdf | Open Energy Information  

Open Energy Info (EERE)

UTAStateGeothermalResourceLeasing.pdf UTAStateGeothermalResourceLeasing.pdf Jump to: navigation, search File File history File usage File:03UTAStateGeothermalResourceLeasing.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 17 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:12, 30 August 2012 Thumbnail for version as of 12:12, 30 August 2012 1,275 × 1,650 (17 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 3-UT-a - State Geothermal Resource Leasing

354

Evaluation of the geothermal resource in the area of Albuquerque, New Mexico  

DOE Green Energy (OSTI)

Factors indicating a potential geothermal resource near Albuquerque are: (1) nearby volcanoes active as recently as 120,000 years ago, (2) gravity interpretation indicating a potential reservoir averaging 1.5 km thickness, (3) high heat flow near the city, (4) warm waters (>30/sup 0/C) in municipal wells, (5) recent seismicity indicating active faulting, thereby, allowing the possibility of deep hydrothermal circulation, (6) high shallow (<30 m) temperature gradients (>100/sup 0/C/km) discovered in our drillholes, (7) deeper (<500 m) gradients from water wells exceeding 80/sup 0/C/km, and (8) chemical analyses of 88 groundwater samples yielding estimated base reservoir temperatures as high as 190/sup 0/C. An area of elevated shallow temperature gradients (less than or equal to 140/sup 0/C/km) was discovered a few kilometers west of Albuquerque by our 69 hole drilling program. Resistivity, magnetic, and gravity measurements combined with computer modeling suggests that heated ground water is forced closer to the surface here by flow over a buried ridge. A well drilled nearby yielded the highest recorded temperature in the Albuquerque area at its maximum depth (32.8/sup 0/C at 364 m). The deep gradient is 35/sup 0/C/km. An oil test well close by reported large volumes of water at 1 km; therefore, the possibility of a low temperature (>50/sup 0/C) geothermal resource exists west of Albuquerque at less than 1 km depth.

Jiracek, G.R.; Swanberg, C.A.; Morgan, P.; Parker, M.D.

1983-07-01T23:59:59.000Z

355

Geopressured geothermal resources of Texas: a report on legal ownership and royalty issues  

DOE Green Energy (OSTI)

Legal issues affecting ownership of the geopressured resources were examined. It was concluded that consideration of royalty interests indicates that the greatest promise for geothermal resource development would be offered if the geopressured resources were held to be entirely mineral in character. Further, the energy of the geopressured water should be held to be embraced by the standard term other minerals. (MHR)

Oberbeck, A.W.

1977-01-27T23:59:59.000Z

356

Geothermal resource, engineering and economic feasibility study for the City of Ouray, Colorado. Final report  

DOE Green Energy (OSTI)

A geothermal energy feasibility study has been performed for the City of Ouray, Colorado, to determine the potential economic development opportunities to the City. The resource assessment indicates the resource to be associated with the Ouray fault zone, the Leadville limestone formation, the high thermal gradient in the area of the San Juan mountains, and the recharge from precipitation in the adjacent mountains. Four engineering designs of alternative sizes, costs, applications, and years of start-up have been defined to offer the City a range of development scales. Life cycle cost analyses have been conducted for cases of both public and private ownership. All systems are found to be feasible on both economic and technical grounds. 49 refs., 8 figs.

Meyer, R.T.; Raskin, R.; Zocholl, J.R.

1982-07-31T23:59:59.000Z

357

Alaska Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alaska Geothermal Region Details Areas (54) Power Plants (1) Projects (2) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[2] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Alaska Area 1,717,854 km²1,717,854,000,000 m² 663,091.644 mi² 18,490,808,670,600 ft² 2,054,553,384,000 yd² 424,490,312.67 acres USGS Resource Estimate for this Region Identified Mean Potential 677 MW677,000 kW

358

Analysis of Low-Temperature Utilization of Geothermal Resources...  

Open Energy Info (EERE)

low-enthalpy geothermal water will be designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. - Perform process optimizations and economic...

359

An Investigation Of The Potential For Geothermal-Energy Recovery...  

Open Energy Info (EERE)

For Geothermal-Energy Recovery In The Calgary Area In Southern Alberta, Canada, Using Petroleum-Exploration Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

360

Subsurface geology and geopressured/geothermal resource evaluation of the Lirette-Chauvin-Lake Boudreaux area, Terrebonne Parish, Louisiana  

Science Conference Proceedings (OSTI)

The geology of a 125 square mile area located about 85 miles southeast of Baton Rouge and about 12 miles southeast of Houma, Louisiana, has been studied to evaluate its potential for geopressured/geothermal energy resources. Structure, stratigraphy, and sedimentation were studied in conjunction with pressure and temperature distributions over a broad area to locate and identify reservoirs that may be prospective. Recommendations concerning future site specific studies within the current area are proposed based on these findings.

Lyons, W.S.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes  

DOE Green Energy (OSTI)

The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

Christiansen, C.C.

1978-07-01T23:59:59.000Z

362

The hot dry rock geothermal potential of the Susanville (CA) area  

DOE Green Energy (OSTI)

A portion of northeastern California that lies within the Basin and Range Province represents a large, untapped geothermal energy resource in the form of hot, but essential impermeable, rock. If a means of developing sufficient permeability in the deep, granitic basement can be demonstrated, the electric power generation potential would be considerable. The objective of this study is to look at the specific geographical region extending from northeast to southeast of the village of Litchfield to the Nevada border as a target area for the first commercial application of Hot Dry Rock reservoir stimulation techniques. The ultimate goal is to provide background information that could lead to the creation of a commercial-scale, engineered geothermal reservoir in granitic basement rock of low permeability.

Brown, D.W.

1996-10-01T23:59:59.000Z

363

GEOCITY: a computer code for calculating costs of district heating using geothermal resources  

DOE Green Energy (OSTI)

GEOCITY is a computer simulation model developed to study the economics of district heating using geothermal energy. GEOCITY calculates the cost of district heating based on climate, population, resource characteristics, and financing conditions. The principal input variables are minimum temperature, heating degree days, population size and density, resource temperature and distance from load center, and the interest rate. From this input data the model designs the transmission and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system, including the production and disposal of the geothermal water. GEOCITY consists of two major submodels: the geothermal reservoir model and the distribution system model. The distribution system model calculates the cost of heat by simulating the design and the operation of the district heating system. The reservoir model calculates the cost of energy by simulating the discovery, development and operation of a geothermal resource and the transmission of this energy to a distribution center.

McDonald, C.L.; Bloomster, C.H.; Schulte, S.C.

1977-02-01T23:59:59.000Z

364

User's guide to the Geothermal Resource Areas Database  

SciTech Connect

The National Geothermal Information Resource project at the Lawrence Berkeley Laboratory is developing a Geothermal Resource Areas Database, called GRAD, designed to answer questions about the progress of geothermal energy development. This database will contain extensive information on geothermal energy resources for selected areas, covering development from initial exploratory surveys to plant construction and operation. The database is available for on-lie interactive query by anyone with an account number on the computer, a computer terminal with an acoustic coupler, and a telephone. This report will help in making use of the database. Some information is provided on obtaining access to the computer system being used, instructions on obtaining standard reports, and some aids to using the query language.

Lawrence, J.D.; Leung, K.; Yen, W.

1981-10-01T23:59:59.000Z

365

Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations  

DOE Green Energy (OSTI)

This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

Shinn, J.H. (ed.)

1976-12-17T23:59:59.000Z

366

Geothermal investigations in Idaho: Geothermal resource analysis in Twin Falls County, Idaho:  

DOE Green Energy (OSTI)

Increased utilization of the geothermal resource in the Twin Falls - Banbury area of southern Idaho has resulted in noticeable declines in the artesian head of the system. In order to determine the nature of the declines, a network of wells was identified for monitoring shut-in pressures and temperatures. In addition, a compilation of data and reconnaissance of the areal geology was undertaken in order to better understand the geologic framework and its relationship to the occurrence of the thermal waters in the system. The results of the monitoring indicate that while water temperatures have remained constant, the system shows a gradual overall decline in artesian pressure superimposed on fluctuations caused by seasonal use of the system. Well testing and the similarity of hydrographs resulting from well monitoring throughout the area suggest that there are no major hydrologic barriers to thermal water movement in the system and that wells are affected by increases and decreases in utilization of nearby wells. 46 refs., 13 figs., 1 tab.

Street, L.V.; DeTar, R.E.

1987-07-01T23:59:59.000Z

367

Assessment of the geothermal resources of Kansas. Final report  

DOE Green Energy (OSTI)

The following regional geological and geophysical studies are reported: establishment of a geothermal gradient data base from approximately 45,000 bottom hole temperatures recorded from well logs and interpretation of this data in terms of regional geology and establishment and interpretation of a second data base of geothermal gradients from thermal logging data from 144 holes of opportunity in the state. (MHR)

Steeples, D.W.; Stavnes, S.A.

1982-06-01T23:59:59.000Z

368

The Impact of Taxation on the Development of Geothermal Resources  

DOE Green Energy (OSTI)

This contractor report reviews past and current tax mechanisms for the development and operation of geothermal power facilities. A 50 MW binary plant is featured as the case study. The report demonstrates that tax credits with windows of availability of greater than one year are essential to allow enough time for siting and design of geothermal power systems. (DJE 2005)

Gaffen, Michael; Baker, James

1992-09-01T23:59:59.000Z

369

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

370

Geothermal resources in Oregon: site data base and development status  

DOE Green Energy (OSTI)

An inventory of resources based on available information is presented. Potential for utilization and the legal and institutional environment in which development is likely to occur were also considered. Sites selected for this investigation include the 13 identified KGRA's, one PGRA which was chosen because of substantial local interest expressed in favor of development, and one major geologic fault zone which shows indications of high potential. Each chapter represents a planning region and is introduced by a regional overview of the physical setting followed by a narrative summary statement of the specific resource location and characteristics, existing utilization and potential end-uses for future development. Detailed site information in the form of data sheets follows each narrative. (MHR)

Justus, D.L.

1979-04-01T23:59:59.000Z

371

Station location map, and audio-magnetotelluric and telluric data for Wendel-Amedee Known Geothermal Resource Area, California  

DOE Green Energy (OSTI)

The audio-magnetotelluric data log for Breitenbush Known Geothermal Resource Area, Oregon is presented covering 12 different frequencies and several stations. (MHR)

O'Donnell, J.E.; Long, C.L.; Senterfit, R.M.; Brougham, G.W.; Martinez, R.; Christopherson, K.R.

1976-01-01T23:59:59.000Z

372

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

373

Report of the Energy Research Advisory Board Direct Heat Subpanel of the Geothermal Panel  

DOE Green Energy (OSTI)

Geothermal resources and their market potential, barriers to development, the present federal program, and needed information are discussed. (MHR)

Not Available

1980-11-01T23:59:59.000Z

374

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

DOE Green Energy (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

375

Geothermal resource areas database for monitoring the progress of development in the United States  

DOE Green Energy (OSTI)

The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

1981-01-01T23:59:59.000Z

376

Assessment of the geothermal resources of Illinois based on existing geologic data  

DOE Green Energy (OSTI)

Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

Vaught, T.L.

1980-12-01T23:59:59.000Z

377

Outside a Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Outside a Geothermal Region Outside a Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do not fall within an existing geothermal region. As a number of these accumulate on OpenEI, new regions can be created and areas moved into those regions accordingly. Geothermal Regions Map[1] References ↑ "Geothermal Regions Map" Geothermal Region Data State(s) Wyoming, Colorado Area USGS Resource Estimate for this Region Identified Mean Potential Undiscovered Mean Potential Planned Capacity Planned Capacity Plants Included in Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Outside a Geothermal Region

378

The Geysers Geothermal Field Update1990/2010  

E-Print Network (OSTI)

in The Geysers. GeothermalResourcesCouncilA planned Enhanced Geothermal System demonstrationproject. Geothermal Resources Council Transactions33,

Brophy, P.

2012-01-01T23:59:59.000Z

379

Operations research and systems analysis of geopressured/geothermal resources in Texas. Final report  

DOE Green Energy (OSTI)

A preliminary resource assessment, based on the best available parameters, was made to identify potentially suitable fairways. Of those examined only the Brazoria Fairway in the Frio Formation was able to produce sufficient fluid to meet the minimum requirements. These requirements are based upon the need for a well to produce an initial flow rate of 40,000 bbl/day with a 6% decline rate over a 30 year production period. Next, a development planning analysis was done to determine the number of wells that would have to be drilled in the fairway, considering the probability of success, and the number of drilling rigs available. The results of this analysis provided a time phased scenario and costs of developing the fairway. These were next used in an economic analysis. The economic analysis was performed to determine the present worth of using the resource under a range of values for the key economic parameters. The results of this study indicate that the commercial development of geopressured, geothermal resource is highly dependent upon the pricing of natural gas in the US, the development of tax incentives to spur development, and a better understanding of the nature of the resource through additional well tests.

Lesso, W.G.; Zinn, C.D.; Cornwell, J.

1981-05-01T23:59:59.000Z

380

Geothermal resource base of the world: a revision of the Electric Power Research Institute's estimate  

DOE Green Energy (OSTI)

Review of the Electric Power Research Institute's (EPRI) method for calculating the geothermal resource base of a country shows that modifications are needed for several of the assumptions used in the calculation. These modifications include: (1) separating geothermal belts into volcanic types with a geothermal gradient of 50{sup 0}C/km and complex types in which 80% of the area has a temperature gradient of 30{sup 0}C/km and 20% has a gradient of 45{sup 0}C/km, (2) using the actual mean annual temperature of a country rather than an assumed 15{sup 0}C average ambient temperature, and (3) making separate calculations for the resource stored in water/brine and that stored in rock. Comparison of this method (Revised EPRI) for calculating a geothermal resource base with other resource base estimates made from a heat flow map of Europe indicates that the technique yields reasonable values. The calculated geothermal resource bases, stored in water and rock to a depth of 5 km, for each country in the world are given. Approximately five times as much energy is stored in rock as is stored in water.

Aldrich, M.J.; Laughlin, A.W.; Gambill, D.T.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal Development and Resource Management in the Yakima Valley : A Guidebook for Local Governments.  

DOE Green Energy (OSTI)

The guidebook defines the barriers to geothermal energy development at all levels of government and proposes ways to overcome these various barriers. In recognition that wholesale development of the region's geothermal resources could create a series of environmental problems and possible conflicts between groundwater users, resource management options are identified as possible ways to ensure the quality and quantity of the resource for future generations. It is important for local governments to get beyond the discussion of the merits of geothermal energy and take positive actions to develop or to encourage the development of the resource. To this end, several sources of technical and financial assistance are described. These sources of assistance can enable local governments and others to take action should they choose to do so. Even though the Yakima Valley is the setting for the analysis of local issues that could hamper geothermal development, this guidebook could be used by any locale with geothermal energy resources. The guidebook is not a scientific manual, but rather a policy document written especially for local government staff and officials who do not have technical backgrounds in geology or hydrology.

Creager, Kurt

1984-03-01T23:59:59.000Z

382

A Map Of Geothermal Potential For The Great Basin, Usa- Recognition...  

Open Energy Info (EERE)

for separate assessment of the potential for magmatically heated and extensional-type geothermal systems. Added to the map are temperature gradient wells from the Southern...

383

Process applications for geothermal energy resources. Final report  

DOE Green Energy (OSTI)

The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

1981-08-01T23:59:59.000Z

384

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

DOE Green Energy (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

385

Preliminary targeting of geothermal resources in Delaware. Progress report, July 15, 1978-July 14, 1979  

DOE Green Energy (OSTI)

Results of temperature logging the five DOE 1000 foot test wells in Delaware indicate that the potential is good for a relatively low temperature geothermal resource (temperatures less than about 80/sup 0/C). A preliminary Bouguer gravity map was made for portions of Kent and Sussex counties in order to detect gravity anomalies possibly related to granitic plutons. The map indicates a gravity low trending northeast-southwest across Sussex County that could be indicative of other structural features within the basement rocks beneath the Coastal Plain. Other logging activities and study of the cores and drill cuttings in the DOE test holes were useful in better defining the stratigraphic framework and in determining the fresh-salt water interface in southern Delaware.

Woodruff, K.D.

1979-07-01T23:59:59.000Z

386

Significant test results, energy potential, and geology of some Gulf Coast geopressured-geothermal sandstone reservoirs  

Science Conference Proceedings (OSTI)

Geopressured-geothermal reservoir found in the northern Gulf of Mexico basin represent a large potential future energy resource. Three reservoirs in various stages of developmental testing are of current interest. Over a four-year testing period the Gladys McCall 1 (Cameron Parish, Louisiana) produced 27.3 million bbl of brine and 676 million scf of gas at an average rate of 20,000 bbl/day from perforations between 15,158 and 15,490 ft. This lower Miocene sandstone section forms part of a genetic unit of interconnected channel and point-bar sandstones deposited in a lower shelf environment. Pleasant Bayou 2 well (Brazoria County, Texas) is currently being flow-tested at 20,000 bbl/day and has a gas/brine ratio of approximately 23 scf/stb and a temperature of 291/degrees/F. An electric energy conversion system being set up here will test potential for electric generation from geopressured-geothermal energy. Superior Hulin 1 (Vermilion Parish, Louisiana) is a deep (21,549 ft) former gas well proposed to be completed as a geopressured-geothermal well. Initial log analysis indicates that a 570-ft thick sandstone, of probable submarine fan origin, may contain free gas in addition to solution gas and may thus represent an economically feasible geopressured-geothermal well. Gas-separated brine is disposed by subsurface injection into disposal wells. However, in areas where hydrocarbon fields with wells penetrating geopressured sands are present, hot brines could be injected into depleted hydrocarbon zones to aid secondary recovery.

John, C.J.; Stevenson, D.A.

1989-03-01T23:59:59.000Z

387

Heat Flow And Geothermal Potential In The South-Central United States |  

Open Energy Info (EERE)

And Geothermal Potential In The South-Central United States And Geothermal Potential In The South-Central United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow And Geothermal Potential In The South-Central United States Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal exploration is typically limited to high-grade hydrothermal reservoirs that are usually found in the western United States, yet large areas with subsurface temperatures above 150 deg. C at economic drilling depths can be found east of the Rocky Mountains. The object of this paper is to present new heat flow data and to evaluate the geothermal potential of Texas and adjacent areas. The new data show that, west of the Ouachita Thrust Belt, the heat flow values are lower than east of the fault zone. Basement heat flow values for the Palo Duro and Fort

388

Potential for by-product recovery in geothermal energy operations issue paper  

DOE Green Energy (OSTI)

This document identifies and discusses the significant issues raised by the idea of recovering useful by-products from wastes (primarily spent brine) generated during geothermal power production. The physical availability of numerous valuable materials in geothermal brines has captured the interest of geothermal resource developers and other parties ever since their presence was known. The prospects for utilizing huge volumes of highly-saline geothermal brines for electricity generation in the Imperial Valley of California have served to maintain this interest in both private sector and government circles.

None

1982-07-01T23:59:59.000Z

389

Map showing geothermal resources of The Lake City-Surprise Valley Known Geothermal Resource Area, Modoc County, California  

DOE Green Energy (OSTI)

Geothermal data are summarized from published and unpublished geophysical, geochemical, and geologic reports on Surprise Valley prepared during the past 26 years. Particular emphasis is placed on a comprehensive structural interpretation of the west half of the valley that is based on map compilation of concealed faults that have been inferred from geophysical methods and exposed faults that can be seen in the field and/or on aerial photographs. The faults apparently control the location of modern geothermal activity.

Not Available

1981-01-01T23:59:59.000Z

390

Geothermal development plan: Maricopa county  

DOE Green Energy (OSTI)

Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

White, D.H.

1981-01-01T23:59:59.000Z

391

Executive Order 2010-001: New Mexico Clean Energy Economy Action Report from the Deep Source Geothermal Commercialization Working Group to the Green Jobs Council and Clean Energy Development Council: New Mexico Geothermal Resource Assessment and Data Base  

E-Print Network (OSTI)

Executive Order 2010-001 establishes directives for the Energy Minerals and Natural Resources Department (EMNRD) and New Mexico Tech (NMT) to convene a Geothermal Group to oversee the development of a statewide geothermal resource assessment and data base and develop technical and policy recommendations to accelerate full-scale development of New Mexicos deep-source geothermal resource: EMNRD, with the cooperation of the New Mexico Institute ofMining and Technology (NMT), shall convene a Deep Source Geothermal Commercialization Working Group (Geothermal Group) no later than March 1, 2010. The Geothermal Group shall be chaired by EMNRD. The Geothermal Group shall oversee the development of a statewide geothermal resource assessment and database. The purpose of the resource assessment and database shall be to sufficiently characterize the States geothermal resource and provide a database to prospective geothermal developers that shall promote commercial-scale development of the States geothermal resource. The Geothermal Group shall also develop technical and policy recommendations to accelerate full-scale development of New Mexicos deep-source geothermal resource.

Bill Richardson; Jim Noel; Karen W. Garcia

2010-01-01T23:59:59.000Z

392

Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics  

DOE Green Energy (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

393

Environmental overview for the development of geothermal resources in the State of New Mexico. Final report  

DOE Green Energy (OSTI)

A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

1980-06-01T23:59:59.000Z

394

Applications of geothermal resources in the evaporation and crystallization industry. Final report, September 1976--October 1977  

DOE Green Energy (OSTI)

The objective in this study was to determine the technical and economic feasibility of using low-temperature geothermal energy (hot brines) in place of steam from conventional sources in the evaporation and crystallization industry. A survey of major industries was carried out in order to choose three industries that were significant users of energy, could utilize geothermal brine, and demonstrate the broad range of industrial evaporation and crystallization operations. The selected industries were the preserved fruit and vegetable, sugar and confectionary products, and chemical industries. From among each of the selected industries, an example case was chosen for technical and economic evaluation. This evaluation included use of the ''feed-and-bleed'' process for energy extraction from the low-temperature geothermal brine. This process was chosen as the best process to use because it provides one of the most efficient means of utilizing geothermal brine in evaporation/crystallization operations. This study concludes that, under certain conditions, geothermal energy could be used economically in the evaporation and crystallization industry. The factors that would most affect cost include geothermal resource characteristics (well flow, temperature, and distance of transportation); the energy extraction process chosen (the feed-and-bleed process uses the least amount of brine); and the duration of the evaporation/crystallization process. A program to aid in implementing the use of geothermal energy is included.

May, S.C.; Basuino, D.J.; Doyle, P.T.; Rogers, A.N.

1977-10-01T23:59:59.000Z

395

Characterization of the geothermal resource at Lackland AFB, San Antonio, Texas. Phase I report  

DOE Green Energy (OSTI)

The geothermal resource under Lackland Air Force Base (AFB), San Antonio, Texas was studied. It is the conclusion of the investigators that a geothermal well drilled at the site recommended by this study has a high probability of delivering geothermal fluids in sufficient quantity and at adequate temperatures to support a projected space and domestic hot water heating system. An exploratory production well location is recommended in the southwest sector of the base, based upon geologic conditions and the availability of sufficient open space to support the drilling operation. It is projected that a production well drilled at the recommended location would produce geothermal fluid of 130 to 145/sup 0/F at a rate of approximately 1000 gpm with reasonable fluid drawdowns. The Environmental Assessment for the drilling portion of the project has been completed, and no irreversible or irretrievable impacts are anticipated as a result of this drilling program. The permitting process is proceeding smoothly.

Lawford, T.W.; Malone, C.R.; Allman, D.W.; Zeisloft, J.; Foley, D.

1983-06-01T23:59:59.000Z

396

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

397

Geothermal guidebook  

DOE Green Energy (OSTI)

The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

Not Available

1981-06-01T23:59:59.000Z

398

Heat flow and hot dry rock geothermal resources of the Clearlake Region, northern California  

DOE Green Energy (OSTI)

The Geysers-Clear Lake geothermal anomaly is an area of high heat flow in northern California. The anomaly is caused by abnormally high heat flows generated by asthenospheric uplift and basaltic magmatic underplating at a slabless window created by passage of the Mendocino Triple Junction. The Clear Lake volcanic field is underlain by magmatic igneous bodies in the form of a stack of sill-form intrusions with silicic bodies generally at the top and basic magmas at the bottom. The tabular shape and wide areal extent of the heat sources results in linear temperature gradients and near-horizontal isotherms in a broad region at the center of the geothermal anomaly. The Hot Dry Rock (HDR) portion of The Geysers-Clear Lake geothermal field is that part of the geothermal anomaly that is external to the steamfield, bounded by geothermal gradients of 167 mW/m2 (4 heat flow units-hfu) and 335 mW/m2 (8 hfu). The HDR resources, to a depth of 5 km, were estimated by piece-wise linear summation based on a sketch map of the heat flow. Approximately, the geothermal {open_quotes}accessible resource base{close_quotes} (Qa) is 1.68E+21 J; the {open_quotes}HDR resource base{close_quotes} (Qha) is 1.39E+21 J; and the {open_quotes}HDR power production resource{close_quotes} (Qhp) is 1.01E+21 J. The HDR power production resource (Qhp) is equivalent to 2.78E+ 11 Mwht (megawatt hours thermal), or 1.72E+11 bbls of oil.

Burns, K.L.

1996-08-01T23:59:59.000Z

399

Papers Presented - Geothermal Resources Council 1980 Annual Meeting  

DOE Green Energy (OSTI)

This report contains preprints of papers pertaining to geothermal energy development in the Eastern United States written by members of the Center for Metropolitan Planning and Research (Metro Center) and by the Applied Physics Laboratory (APL) both of The Johns Hopkins University.

None

1980-10-01T23:59:59.000Z

400

Electromagnetic soundings for geothermal resources in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field to map the subsurface resistivity in the geothermal field and the surrounding area. The EM survey, consisting of 19 frequency-domain depth soundings made with the LBL EM-60 system, was undertaken to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 km. Lithologic and well log resistivity information from well 66-21 show that for EM interpretation the section can be reduced to a three-layer model consisting of moderately resistive alluvial sediments, low resistivity lacustrine sediments, and high resistivity Tertiary volcanics and older rocks. This three layer model was used as a starting point in interpreting EM sounding data. Variations in resistivity and thickness provided structural information and clues to the accumulation of geothermal fluids. The interpreted soundings reveal a 1 to 1.5-km-deep low-resistivity zone spatially associated with the geothermal field. The shallow depth suggests that the zone detected is either fluid leakage or hydrothermal alteration, rather than high-temperature reservoir fluids. The position of the low-resistivity zone also conforms to changes in depth to the high resistivity basal layer, suggesting that faulting is a control on the location of productive intervals. 10 refs., 7 figs.

Wilt, M.J.; Goldstein, N.E.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Navy Geothermal Plan  

SciTech Connect

Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

1984-12-01T23:59:59.000Z

402

Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources  

DOE Green Energy (OSTI)

The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-12-11T23:59:59.000Z

403

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

404

Assessment of solar-geothermal hybrid system concepts  

SciTech Connect

Studies were conducted to assess the technical and economic merits and limitations of advanced solar-geothermal hybrid electric power plant concepts. Geothermal resource characteristics and technologies were reviewed to determine the best possible ways of combining solar and geothermal technologies into a hybrid operation. Potential hybrid system concepts are defined and their performance, resource usage, and economics are assessed relative to the individual solar and geothermal resource development techniques. Key results are presented.

Mathur, P.N.

1979-03-15T23:59:59.000Z

405

Development Of Genetic Occurrence Models For Geothermal Prospecting | Open  

Open Energy Info (EERE)

Development Of Genetic Occurrence Models For Geothermal Prospecting Development Of Genetic Occurrence Models For Geothermal Prospecting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Development Of Genetic Occurrence Models For Geothermal Prospecting Details Activities (1) Areas (1) Regions (0) Abstract: Exploration strategies based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust, and foster the conditions for shallow hydrothermal circulation or enhanced geothermal systems (EGS) exploration, are required to search efficiently for 'blind' geothermal resources. We propose a genetically based screening protocol to assess potentially prospective geothermal resources, beginning at the plate boundary scale and progressively focusing in on the scale of a producing

406

Conceptual study for total utilization of an intermediate temperature geothermal resource  

DOE Green Energy (OSTI)

A multi-use, integrated project plan has been developed for the combined electrical and direct utilization of an intermediate temperature geothermal resource. This concept addresses an integrated project plan with industrial participation, which could make a significant contribution to the national plan for energy independence, by creating new and realistic energy choices for the immediate future.

Swink, D.G.; Schultz, R.J.

1976-04-01T23:59:59.000Z

407

Development of hot dry rock geothermal resources; technical and economic issues  

DOE Green Energy (OSTI)

Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat are discussed. Topics covered include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return. The current status of research and deveopment efforts in the US are also summarized.

Tester, J.W.

1980-01-01T23:59:59.000Z

408

ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California  

DOE Green Energy (OSTI)

Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

Not Available

1976-01-01T23:59:59.000Z

409

Idaho Geothermal Handbook  

SciTech Connect

Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

1979-07-01T23:59:59.000Z

410

Idaho Geothermal Handbook  

DOE Green Energy (OSTI)

Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

1979-07-01T23:59:59.000Z

411

Seismic methods for resource exploration in enhanced geothermal systems  

DOE Green Energy (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

412

Exploration ofr geothermal resources in Dixie Valley, Nevada  

Science Conference Proceedings (OSTI)

A case history of SUNEDCO's exploratory efforts, which ultimately led to the drilling and discovery of the Dixie Valley goethermal field, is presented. The geochemistry from three active lot springs in the area: Dixie Hot Springs, South Hot Springs, and Hyder Hot Springs, was examined. Two heat flow drilling programs were conducted at Dixie Hot Springs consisting of 45 temperature gradient holes ranging in depth from 30 to 1500 ft. From this program a heat-flow anomaly was mapped extending along the Stillwater Range front in which temperature gradients are greater than 100/sup 0/c/Km. in 1978, the number 1 SW Lamb well was drilled on a 152 acre farmout from Chevron. The well was completed as a geothermal producer in a zone of fractured volcanic rocks. Since then, five additional geothermal producing wells were completed within the anomalous area. (MJF)

Parchman, W.L.; Knox, J.W.

1981-06-01T23:59:59.000Z

413

Introduction to electric energy conversion systems for geothermal energy resources  

SciTech Connect

The types of geothermal energy conversion systems in use are classified as follows: direct, dry steam; separated steam; single-flash steam; double-flash steam; multi-flash steam; brine/Freon binary cycle; and brine/isobutane binary cycle. The thermodynamics of each of these is discussed with reference to simplified flow diagrams. Typical existing power plants are identified for each type of system. (MHR)

DiPippo, R.

1978-06-01T23:59:59.000Z

414

Geothermal and heavy-oil resources in Texas  

Science Conference Proceedings (OSTI)

In a five-county area of South Texas, geopressured-geothermal reservoirs in the Paleocene-Eocene Wilcox Group lie below medium- to heavy-oil reservoirs in the Eocene Jackson Group. This fortuitous association suggests the use of geothermal fluids for thermally enhanced oil recovery (TEOR). Geothermal fairways are formed where thick deltaic sandstones are compartmentalized by growth faults. Wilcox geothermal reservoirs in South Texas are present at depths of 11,000 to 15,000 ft (3,350 to 4,570 m) in laterally continuous sandstones 100 to 200 ft (30 to 60 m) thick. Permeability is generally low (typically 1 md), porosity ranges from 12 to 24 percent, and temperature exceeds 250{degrees}F (121{degrees}C). Reservoirs containing medium (20{degrees} to 25{degrees} API gravity) to heavy (10{degrees} to 20{degrees} API gravity) oil are concentrated along the Texas Coastal Plain in the Jackson-Yegua Barrier/Strandplain (Mirando Trend), Cap Rock, and Piercement Salt Dome plays and in the East Texas Basin in Woodbine Fluvial/Deltaic Strandplain and Paluxy Fault Line plays. Injection of hot, moderately fresh to saline brines will improve oil recovery by lowering viscosity and decreasing residual oil saturation. Smectite clay matrix could swell and clog pore throats if injected waters have low salinity. The high temperature of injected fluids will collapse some of the interlayer clays, thus increasing porosity and permeability. Reservoir heterogeneity resulting from facies variation and diagenesis must be considered when siting production and injection wells within the heavy-oil reservoir. The ability of abandoned gas wells to produce sufficient volumes of hot water over the long term will also affect the economics of TEOR.

Seni, S.J.; Walter, T.G.

1994-01-01T23:59:59.000Z

415

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using 'hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well characterized * Known/proven temperature gradients from oil and gas well records * Drilling and reservoir fracturing techniques proven in sedimentary environment - Disadvantages: * Great depths required to encounter high temperatures * Emerging industry Photo by Warren Gretz, NREL/PIX 00450

416

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)  

Science Conference Proceedings (OSTI)

This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

Porro, C.; Augustine, C.

2012-04-01T23:59:59.000Z

417

Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)  

Science Conference Proceedings (OSTI)

Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

2012-09-01T23:59:59.000Z

418

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

419

Methods For Regional Assessment Of Geothermal Resources | Open...  

Open Energy Info (EERE)

That part of the resource base which is shallow enough to be tapped by production drilling is termed the "accessible resource base", and it in turn is divided into "useful" and...

420

Geology, drill holes, and geothermal energy potential of the basal Cambrian rock units of the Appalachian Basin of New York State  

DOE Green Energy (OSTI)

The published geologic and geophysical records plus data gathered from deep wells during hydrocarbon exploration were inventoried, discussed and summarized to evaluate hydro-geothermal energy potential in the western counties of New York, south of the 42/sup 0/ latitude. An assessment is provided of local geothermal energy potential based on these data. The assessed potential is a function of the geothermal gradient, the depth of porous Cambrian age sedimentary units and a variety of features thought to be related to deep fracturing and hence enhanced porosity and permeability. The completion history of a selected set of plugged and abandoned deep wells was examined to determine the feasibility and advisability of re-entering these holes for geothermal development. All wells showed extensive cement plugging and uncertain materials introduced for bridging. It was recommended that no attempt be made to re-enter these wells. The hydro-geothermal energy potential in Western New York State is largely comparable to that of other regions possessing porous/permeable units of sedimentary rock at sufficient depth to contain formation waters of useful temperatures (>140/sup 0/F). A comparison of geothermal reservoirs in New York to similar sites now under development in Canada and France has revealed that potential resources in New York State are slightly hotter, though somewhat thicker and less permeable with significantly higher proportions of dissolved constituents.

Pferd, J.W.

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource potential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Potential hydrologic effects of developing coal and other geoenergy resources in Oregon: a review  

DOE Green Energy (OSTI)

Geoenergy resources in Oregon, in addition to coal, include noncommercial deposits of oil shale, natural gas, and geothermal heat. Commercial quantities of natural gas were discovered at Mist in northwestern Oregon in 1979. Gas presently is being produced from five wells and additional exploratory drilling is underway. More than 2 million acres of Oregon land is under lease for petroleum and natural gas exploration, mostly in the Astoria embayment-Willamette syncline, central (Oregon) Paleozoic-Mesozoic basin, and eastern Tertiary nonmarine basin. The Cascade Range and eastern Oregon contain sizable resources of geothermal heat, of which a small part has been developed for space heating at Klamath Falls and Lakeview. Thirteen Known Geothermal Resource Areas (KGRA's) comprising 432,000 acres have been identified, 422,000 acres are currently leased for geothermal development. KGRA's judged to have potential for generation of electrical power are Newberry Crater, Crump Geyser, and Alvord Desert. No adverse hydrologic effects have been noted to date from coal or other geoenergy exploration or development in Oregon, and no effects are expected if federal and state regulations are adhered to. The southwestern Oregon coals would have to be mined by underground methods. Potential hydrologic impacts would be local increases in sedimentation, turbidity, and mineralization of surface and ground water. Water-quality degradation, including both thermal pollution and increased concentrations of dissolved minerals, could result from geothermal development. Other potential problems include land subsidence and consumptive use of water associated with both coal and geothermal development. 53 refs., 3 figs., 1 tab.

Sidle, W.C.

1981-01-01T23:59:59.000Z

422

Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling  

SciTech Connect

This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 400???????????????????????????????¢????????????????????????????????????????????????????????????????1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity aquifer test completed in 2009 within fracture Paleozoic sandstones near the water table (3000 D). Flow rates measured during drilling were measured using a v-notch weir. Flow rates were consistently around 1000 gpm. While the temperatures are lower than we had anticipated, this geothermal resource can still be developed to heat the NM Tech campus using heat pump technology.

Mark Person, Lara Owens, James Witcher

2010-02-17T23:59:59.000Z

423

Rock properties in support of geothermal resource development  

DOE Green Energy (OSTI)

Geothermal rock mechanics needs have been defined and subsequently a test system was designed and built for providing appropriate material properties. The development areas identified as requiring rock mechanics were stimulation, reservoir engineering, subsidence prediction, surface exploration and subsurface evaluation, and drilling. The resulting test system provides mechanical, electrical, thermal and physical properties on 2 and 4 inch diameter cores at confining pressures and pore fluid pressures to 200 MPa (30,000 psi) and temperatures to 535/sup 0/C (1000/sup 0/F). The test system development was continued and site specific rock mechanics requirements were identified. (MHR)

Butters, S.W.

1979-01-01T23:59:59.000Z

424

Utilization of geothermal energy for agribusiness development in southwestern New Mexico. Technical completion report, July 19, 1978-May 30, 1980  

DOE Green Energy (OSTI)

An evaluation is presented of the direct heat utilization from geothermal resources for agribusiness uses in the Animas Valley, Southwestern New Mexico. The analysis includes an evaluation of the groundwater and geothermal resources in the Animas Valley, monitoring of an existing geothermal greenhouse, and evaluation of two potential agribusiness applications of geothermal waters (greenhouses and meat precooking).

Landsford, R.R.; Abernathy, G.H.; Gollehon, N.R.

1981-01-01T23:59:59.000Z

425

Mineral resource potential and geology of the Challis National Forest, Idaho  

SciTech Connect

This book presents an assessment of the mineral potential of the Challis National Forest based on geological, geochemical, and geophysical data compiled at a 1:250,000 scale and on published information on mineral deposits and occurrences. More than half of the forest has a high to moderate resource potential for one or more of the following commodities: Ag, Au, Ba, Bi, Cu, Mo, Nb, Pb, REE, Ta, Th, Sb, Sn, U, V, W, Zn, fluorspar, geothermal energy, and common variety minerals.

Worl, R.G.; Wilson, A.B.; Smith, C.L.; Kleinkopf, M.D.

1989-01-01T23:59:59.000Z

426

Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979-1980  

DOE Green Energy (OSTI)

Phase I studies included updating and completing the USGS GEOTHERM file for California and compiling all data needed for a California Geothermal Resources Map. Phase II studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

1980-11-10T23:59:59.000Z

427

State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report  

DOE Green Energy (OSTI)

Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

Icerman, L.; Starkey, A.; Trentman, N. (eds.)