Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Final Technical Report, Geothermal Resource Evaluation And Definitioni  

Open Energy Info (EERE)

Technical Report, Geothermal Resource Evaluation And Definitioni Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Details Activities (9) Areas (1) Regions (0) Abstract: This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource

2

Geothermal resource evaluation of the Yuma area  

SciTech Connect (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

3

Comprehensive Evaluation of the Geothermal Resource Potential within the  

Open Energy Info (EERE)

Comprehensive Evaluation of the Geothermal Resource Potential within the Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed project will provide state-of-the-art characterization information and a detailed analysis of the geothermal resource potential at the Astor Pass site. The information gained during this study will allow the Pyramid Lake Paiute Tribe to make informed decisions regarding construction of a geothermal power plant. Additional benefits include the transfer of new technologies and geothermal data to the geothermal industry and to create and preserve nearly three dozen jobs that will serve to stimulate the economy in accordance with the American Recovery and Reinvestment Act of 2009.

4

Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open  

Open Energy Info (EERE)

Baltazor Known Geothermal Resources Area, Nevada Baltazor Known Geothermal Resources Area, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evaluation Of Baltazor Known Geothermal Resources Area, Nevada Details Activities (3) Areas (1) Regions (0) Abstract: By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the

5

Comprehensive Evaluation of the Geothermal Resource Potential...  

Open Energy Info (EERE)

American Recovery and Reinvestment Act of 2009. State Nevada Objectives Characterize the geothermal reservoir, the Astor Pass Site, using novel technologies and integrating this...

6

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

7

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

8

Evaluation of the St. Lucia geothermal resource: macroeconomic models  

SciTech Connect (OSTI)

A macroeconometric model describing the St. Lucian economy was developed using 1970 to 1982 economic data. Results of macroeconometric forecasts for the period 1983 through 1985 show an increase in gross domestic product (GDP) for 1983 and 1984 with a decline in 1985. The rate of population growth is expected to exceed GDP growth so that a small decline in per capita GDP will occur. We forecast that garment exports will increase, providing needed employment and foreign exchange. To obtain a longer-term but more general outlook on St. Lucia's economy, and to evaluate the benefit of geothermal energy development, we applied a nonlinear programming model. The model maximizes discounted cumulative consumption.

Burris, A.E.; Trocki, L.K.; Yeamans, M.K.; Kolstad, C.D.

1984-08-01T23:59:59.000Z

9

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

10

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

11

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

12

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

Geothermal Resource Exploration And Definition Project Geothermal Resource Exploration And Definition Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Project Details Activities (23) Areas (8) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) project is a cooperative DOEhdustry project to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to aid in the development of geographically diverse geothermal resources and increase electrical power generation from geothermal resources in the continental United States. The project was initiated in April 2000 with a solicitation for industry participation in the project, and this solicitation resulted in seven successful awards in

13

Geothermal resources of Montana  

SciTech Connect (OSTI)

The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

Metesh, J.

1994-06-01T23:59:59.000Z

14

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

15

A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation  

SciTech Connect (OSTI)

Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is mined. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

Erdlac, Richard J., Jr.

2006-10-12T23:59:59.000Z

16

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume I.  

SciTech Connect (OSTI)

The objective was to consolidate and evaluate all geologic, environmental, and legal and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of sites to allow the making of creditable forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. A total of 1265 potential geothermal resource sites were identified from existing literature. Site selection was based upon the presence of thermal and mineral springs or wells and/or areas of recent volcanic activity and high heat flow. 250 sites were selected for detailed analysis. A methodology to rank the sites by energy potential, degree of developability, and cost of energy was developed. Resource developability was ranked by a method based on a weighted variable evaluation of resource favorability. Sites were ranked using an integration of values determined through the cost and developability analysis. 75 figs., 63 tabs.

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

17

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

18

Sustainable Energy Resources for Consumers (SERC) -Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

19

NREL: Geothermal Technologies - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help...

20

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

22

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

23

Eastern Geothermal Resources: Should We Pursue Them?  

Science Journals Connector (OSTI)

...for each application. Geothermal resources, where techni-In...there are no known geothermal re-sources that can...heat-ing, agriculture, district heating, and in-dustrial...Of all the forms of geothermal energy, this moderate...

J. E. Tillman

1980-11-07T23:59:59.000Z

24

Geothermal resource data base: Arizona  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

25

South Dakota geothermal resources  

SciTech Connect (OSTI)

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

26

State Geothermal Resource Assessment and Data Collection Efforts  

Broader source: Energy.gov [DOE]

HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

27

Geothermal Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

28

Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

29

Geothermal-resource verification for Air Force bases  

SciTech Connect (OSTI)

This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

Grant, P.R. Jr.

1981-06-01T23:59:59.000Z

30

Geothermal Energy Resources  

Science Journals Connector (OSTI)

Geothermal energy, the heat in the interior of the Earth is an energy that is not related to the solar energy but ultimately has been created by gravitational energy and radioactive decay of unstable atoms. It .....

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

31

Geothermal Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

32

Hot-dry-rock geothermal resource 1980  

SciTech Connect (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

33

National Geothermal Resource Assessment and Classification  

Broader source: Energy.gov [DOE]

National Geothermal Resource Assessment and Classification presentation at the April 2013 peer review meeting held in Denver, Colorado.

34

Sustainable Energy Resources for Consumers (SERC) -Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

dsourceheatpumps.pdf More Documents & Publications DOE Webinar Residential Geothermal Heat Pump Retrofits (Presentation) Sustainable Energy Resources for Consumers (SERC) -...

35

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

36

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

37

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

38

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Resource Assessment and Classification National Geothermal Resource Assessment and Classification This work will enable lower riskcost deployment of conventional and EGS...

39

Geothermal: Sponsored by OSTI -- Assessment of Geothermal Resource...  

Office of Scientific and Technical Information (OSTI)

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range?South (UTTR?S)...

40

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

GETEM - Geothermal Electricity Technology Evaluation Model |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GETEM - Geothermal Electricity Technology Evaluation Model GETEM - Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal...

42

A New Geothermal Resource Map Of Nicaragua | Open Energy Information  

Open Energy Info (EERE)

Map Of Nicaragua Map Of Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: A New Geothermal Resource Map Of Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: A recently completed Geothermal Master Plan Study of Nicaragua assesses the geothermal resource potential of the identified fields and prospects in the country. During the course of the 18-month study, existing data were compiled and evaluated and new exploration work was conducted to determine, for each of ten geothermal resource areas studied: 1) the current level of knowledge about the resource; 2) its exploration or development status; 3) a conceptual model of the geothermal system or systems (incorporating geology, volcanology, geophysics, hydrology, fluid chemistry and geothermometry); 4) estimated recoverable energy reserves; 5)

43

Favourability Map of British Columbia Geothermal Resources  

E-Print Network [OSTI]

Favourability Map of British Columbia Geothermal Resources by Sarah Kimball A THESIS SUBMITTED carbon economy stipulates that power supply must be from renewable and low emission sources. Geothermal energy offers significant benefits to British Columbia which hosts Canadas best geothermal resources

Pedersen, Tom

44

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

45

National Geothermal Resource Assessment and Classification  

Broader source: Energy.gov [DOE]

This work will enable lower risk/cost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource assessment data by geothermal region as input to GTP supply curves.

46

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

47

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

48

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Executive Summary  

SciTech Connect (OSTI)

In 1983, the Bonneville Power Administration contracted for an evaluation and ranking of all geothermal resource sites in the states of Idaho, Montana, Oregon, and Washington which have a potential for electrical generation and/or electrical offset through direct utilization of the resource. The objective of this program was to consolidate and evaluate all geologic, environmental, legal, and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of all known geothermal sites. This data base would enhance the making of credible forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. The four states, working together under a cooperative agreement, identified a total of 1,265 potential geothermal sites. The 1,265 sites were screened to eliminate those with little or no chance of providing either electrical generation and/or electrical offset. Two hundred and forty-five of the original 1,265 sites were determined to warrant further study. The Four-State team proceeded to develop a methodology which would rank the sites based upon an estimate of development potential and cost. Development potential was estimated through the use of weighted variables selected to approximate the attributes which a geothermal firm might consider in its selection of a site for exploration and possible development. Resource; engineering; and legal, institutional, and environmental factors were considered. Cost estimates for electrical generation and direct utilization sites were made using the computer programs CENTPLANT, WELLHEAD, and HEATPLAN. Finally, the sites were ranked utilizing a technique which allowed for the integration of development and cost information. On the basis of the developability index, 78 high temperature sites and 120 direct utilization sites were identified as having ''good'' or ''average'' potential for development and should be studied in detail. On the basis of cost, at least 29 of the high temperature sites appear to be technically capable of supporting a minimum total of at least 1,000 MW of electrical generation which could be competitive with the busbar cost of conventional thermal generating technologies. Sixty direct utilization sites have a minimum total energy potential of 900+ MW and can be expected to provide substantial amounts of electrical offset at or below present conventional energy prices. The combined development and economic rankings can be used to assist in determining sites with superior characteristics of both types. Five direct utilization sites and eight high temperature sites were identified with both high development and economic potential. An additional 27 sites were shown to have superior economic characteristics, but development problems. The procedure seems validated by the fact that two of the highest ranking direct utilization sites are ones that have already been developed--Boise, Idaho and Klamath Falls, Oregon. Most of the higher ranking high temperature sites have received serious examination in the past as likely power production candidates.

Bloomquist, R.G.; Black, G.L.; Parker, D.S.; Sifford, A.; Simpson, S.J.; Street, L.V.

1985-06-01T23:59:59.000Z

49

Geothermal Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

50

Geothermal Resources (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Conservation and Survey Division School of Natural Resources This section establishes the support of the state for the efficient development of Nebraska's geothermal resources, as well as permitting

51

Detachment Faulting and Geothermal Resources - An Innovative...  

Open Energy Info (EERE)

Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on...

52

Geothermal Energy Resource Investigations, Chocolate Mountains...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range,...

53

Assessment of Inferred Geothermal Resource: Longavi Project,...  

Open Energy Info (EERE)

Project, Chile Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Inferred Geothermal Resource: Longavi Project, Chile Organization Hot...

54

Final Scientific - Technical Report, Geothermal Resource Exploration...  

Open Energy Info (EERE)

Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Abstract With financial support from the U.S. Department of Energy (DOE), Layman Energy...

55

Geothermal Resource Analysis And Structure Of Basin And Range Systems,  

Open Energy Info (EERE)

Analysis And Structure Of Basin And Range Systems, Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Details Activities (12) Areas (5) Regions (0) Abstract: Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy

56

Hammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 Exploring the Relationship between Geothermal Resources and  

E-Print Network [OSTI]

Laboratory University of Nevada, Reno Keywords: geothermal, energy resources, Great Basin, GPS, geodesy in future models. Introduction Geothermal energy resources have long been associated with the presenceHammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 - 1 - Exploring

Tingley, Joseph V.

57

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

58

DOE - Geothermal Energy Resources Map - Tribal | Open Energy...  

Open Energy Info (EERE)

DOE - Geothermal Energy Resources Map - Tribal Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: DOE - Geothermal Energy Resources Map - Tribal Abstract...

59

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

60

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

BLM Notice of Completion of Geothermal Resource Exploration Operations...  

Open Energy Info (EERE)

of Geothermal Resource Exploration Operations.pdf Retrieved from "http:en.openei.orgwindex.php?titleBLMNoticeofCompletionofGeothermalResourceExplorationOperations&old...

62

Geothermal resources of southern Idaho  

SciTech Connect (OSTI)

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01T23:59:59.000Z

63

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic

64

Geothermal Resources Act (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Buying & Making Electricity Program Info State Texas Program Type Siting and Permitting Provider Railroad Commission of Texas The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide a dependable supply of energy in an efficient manner that avoids waste of the energy resources. Secondary considerations will be afforded to the protection of the environment, the protection of correlative rights, and the conservation of

65

Geothermal Resources Council Annual Meeting - Doug Hollett Presentatio...  

Energy Savers [EERE]

Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Geothermal Resources Council Annual Meeting - Doug Hollett Presentation, October 2011 Keynote...

66

Low Enthalpy Geothermal Energy Resources in Denmark  

Science Journals Connector (OSTI)

The deep oil exploration drillings in Denmark have shown that especially the Danish Embayment contains low enthalpy geothermal resources associated with warm aquifers. The most promising reservoirs have been f...

Niels Balling; Svend Saxov

1979-01-01T23:59:59.000Z

67

Low enthalpy geothermal energy resources in Denmark  

Science Journals Connector (OSTI)

The deep oil exploration drillings in Denmark have shown that especially the Danish Embayment contains low enthalpy geothermal resources associated with warm aquifers. The most promising reservoirs have been f...

Niels Balling; Svend Saxov

68

3D Mt Resistivity Imaging For Geothermal Resource Assessment...  

Open Energy Info (EERE)

Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

69

NREL: Learning - Student Resources on Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy The following resources can provide you with information on geothermal energy - heat from the earth. Geothermal direct use - Producing heat directly from hot water within the earth. Geothermal electricity production - Generating electricity from the earth's heat. Geothermal heat pumps - Using the shallow ground to heat and cool buildings. Printable Version Learning About Renewable Energy Home Renewable Energy Basics Using Renewable Energy Energy Delivery & Storage Basics Advanced Vehicles & Fuels Basics Student Resources Biomass Geothermal Direct Use Electricity Production Heat Pumps Hydrogen Solar Wind Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback.

70

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

71

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

72

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

73

Geothermal Resources Council | Open Energy Information  

Open Energy Info (EERE)

Council Council Jump to: navigation, search Logo: Geothermal Resources Council Name Geothermal Resources Council Address 2001 Second Street, Suite 5 Place Davis, California Zip 95617 Sector Geothermal energy, Renewable Energy, Services Product Global Geothermal Community Membership Stock Symbol Resources Council Geothermal Resources Council Year founded 1970 Number of employees 1-10 Phone number (530) 758-2360 Website http://www.geothermal.org Coordinates 38.547241°, -121.725533° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.547241,"lon":-121.725533,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Virginia Geothermal Resources Conservation Act (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Buying & Making Electricity Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia Department of Mines, Minerals, and Energy It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to the resource, protect existing high quality state waters and safeguard potable waters from pollution, safeguard the natural environment, and promote geothermal and

75

Developments in geothermal resources in 1982  

SciTech Connect (OSTI)

The total number of geothermal wells drilled in 1982 decreased to 79 from 99 wells in 1981. Total footage drilled in 1982 decreased to 559,326 ft from 676,127 ft in 1981. An increase in average well depth from 6,830 ft in 1981 to 7,080 ft in 1982 indicated that operators are having to drill deeper in their efforts to extend the productive limits of proven geothermal reservoirs. Of the 79 geothermal wells completed in 1982, about 80% were drilled in California. Two major acquisitions occurred during 1982 in The Geysers geothermal field in northern California. Geothermal Resources International, Inc. then entered into agreements for the exploration and development of the acreage with the Central California Power Agency. Other achievements included the accelerated federal geothermal leasing program reaching its goal of offering about 600,000 acres in 14 sales held by the U.S. Bureau of Land Management. Finally, the dedication of several district heating projects highlighted the direct-use application of geothermal resources in 1982.

Combs, J.; Anderson, D.N.; Berge, C.W.; Lund, J.W.; Parmentier, P.P.

1983-10-01T23:59:59.000Z

76

Pinpointing America's Geothermal Resources with Open Source Data |  

Broader source: Energy.gov (indexed) [DOE]

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

77

Pinpointing America's Geothermal Resources with Open Source Data |  

Broader source: Energy.gov (indexed) [DOE]

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

78

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

79

Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History  

Open Energy Info (EERE)

in Dixie Valley, Nevada- Case History in Dixie Valley, Nevada- Case History Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Exploration for Geothermal Resources in Dixie Valley, Nevada- Case History Abstract After several years of reconnaissance geology in Nevada, an exploration program to evaluate the geothermal resource potential of Dixie Valley was begun in 1974. Between 1974 and 1978 Sunoco Energy Development Co. conducted two heat-flow drilling programs, a resistivity survey, a seismic emission study, a ground noise survey, two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led to the acquisition of geothermal resource leases from fee property owners,

80

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

82

Geothermal Technology Advancement for Rapid Development of Resources...  

Energy Savers [EERE]

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011 Geothermal Technology Advancement for Rapid Development of Resources in the U.S....

83

NRS Chapter 534A - Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: NRS Chapter 534A - Geothermal ResourcesLegal Published NA...

84

Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)  

Broader source: Energy.gov [DOE]

This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

85

A geothermal resource data base: New Mexico  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in New Mexico up to 1993. Economically important geothermal direct-use development in New Mexico and the widespread use of personal computers (PC) in recent years attest to the need for an easily used and accessible data base of geothermal data in a digital format suitable for the PC. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-07-01T23:59:59.000Z

86

Detachment Faulting & Geothermal Resources- Pearl Hot Spring, NV  

Broader source: Energy.gov [DOE]

Detachment Faulting & Geothermal Resources - Pearl Hot Spring, NV presentation at the April 2013 peer review meeting held in Denver, Colorado.

87

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

88

The 1980-1982 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

1983-08-01T23:59:59.000Z

89

A Review of Geothermal Resource Estimation Methodology | Open...  

Open Energy Info (EERE)

to library Conference Paper: A Review of Geothermal Resource Estimation Methodology Abstract The reliability of resource estimation methodology has become increasingly...

90

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

91

Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources  

Broader source: Energy.gov [DOE]

Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

92

Geothermal Exploration Best Practices: A Guide to Resource Data Collection,  

Open Energy Info (EERE)

Exploration Best Practices: A Guide to Resource Data Collection, Exploration Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Exploration Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Details Activities (0) Areas (0) Regions (0) Abstract: Exploration best practices for any natural resource commodity should aim to reduce the resource risk prior to significant capital investment, for a fraction of the cost of the planned investment. For geothermal energy, the high risks cost of proving the resource is one of the key barriers facing the industry. This guide lays out best practices for geothermal exploration to assist geothermal developers and their

93

Outstanding Issues For New Geothermal Resource Assessments | Open Energy  

Open Energy Info (EERE)

Outstanding Issues For New Geothermal Resource Assessments Outstanding Issues For New Geothermal Resource Assessments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Outstanding Issues For New Geothermal Resource Assessments Details Activities (1) Areas (1) Regions (0) Abstract: A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS)

94

Pinpointing America's Geothermal Resources with Open Source Data...  

Office of Environmental Management (EM)

Source Data January 7, 2013 - 4:04pm Addthis When it comes to harnessing America's vast geothermal energy resources, knowing where to look is half the battle. Geothermal...

95

Category:Geothermal Resource Areas | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal Resource Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Areas page? For detailed information on Geothermal Areas, click here. Category:Geothermal Resource Areas Add.png Add a new Geothermal Resource Area Please be sure the area does not already exist in the list below before adding - perhaps under a different name. Pages in category "Geothermal Resource Areas" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) A Abraham Hot Springs Geothermal Area

96

Energy Department Announces $3 Million to Identify New Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with...

97

Geothermal resource assessment, South Dakota: Final report  

SciTech Connect (OSTI)

Seven geothermal aquifers in South Dakota contain an accessible resource base of about 11,207 x 10/sup 18/ J. The potentially productive geothermal aquifers are: Deadwood Formation (Cambrian), Winnipeg Formation + Red River Formation + Englewood Limestone (Ordovician through Devonian), Madison Limestone (Mississippian), Minnelusa Formation (Mississippian-Permian), Inyan Kara Group (Cretaceous), and Newcastle Sandstone (Cretaceous). The resource estimate was obtained by first using heat flow, thermal conductivity, temperature gradient, and stratigraphic data to estimate aquifer temperatures. The heat content of each aquifer was determined from the product of the volumetric heat capacity, aquifer volume, and temperature difference between the aquifer and the mean annual temperature for a 14 x 14 grid of 240 km/sup 2/ cells. Geothermal fluid temperatures range from about 120/sup 0/C in the Deadwood Formation in the Williston Basin to about 30/sup 0/C for the Newcastle Sandstone in south-central South Dakota. The area containing the resource lies largely west of the Missouri River. About 10,000 km/sup 2/ of the resource area is characterized by anomalously high heat flow values greater than 100 mW m/sup -2/.

Gosnold, W.D. Jr.

1987-07-01T23:59:59.000Z

98

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

99

Toward The Development Of Occurrence Models For Geothermal Resources In The  

Open Energy Info (EERE)

Toward The Development Of Occurrence Models For Geothermal Resources In The Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Details Activities (6) Areas (2) Regions (0) Abstract: Simplified geothermal occurrence models using attributes identified at Coso and elsewhere were developed and applied in preparing the recently completed Department of Defensefunded evaluation of geothermal potential on U.S. military bases. An interpretation of the spatial associations between selected characteristics was used to direct field investigations. Several potential targets were identified using this method, and field investigations at two bases provided evidence supporting

100

Template:GeothermalResourceArea | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:GeothermalResourceArea Jump to: navigation, search This is the GeothermalResourceArea template. To define a new Geothermal Resource Area, please use the Geothermal Resource Area form. Contents 1 Parameters 2 Dependencies 3 Usage 4 Example Parameters Map - The map of the resource area. Place - The city or state in which the resource area is located. GeothermalRegion - The geothermal exploration region in which the resource area is located. GEADevelopmentPhase - The phase of plant construction, as defined by GEA (can have more than one phase if more than one project)

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

GETEM-Geothermal Electricity Technology Evaluation Model  

Broader source: Energy.gov [DOE]

A guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of Energy in estimating some of the technical and economic values of its research projects and subprograms. The tool is intended to estimate and summarize the performance and cost of various geothermal electric power systems at geothermal reservoirs with a wide variety of physical characteristics.

102

Economic review of the geopressured-geothermal resource with recommendations  

SciTech Connect (OSTI)

This report presents the results of an economic study conducted by the INEL under DOE Contract No. AC07-76ID01570 to evaluate the breakeven price to market energy from a geopressured-geothermal resource. A breakeven price is a minimum, per unit charge required for the developer to recover all direct and indirect costs and a rate of return sufficient to compensate the developer for depreciation, the time value of money, and the risk of failure. The DOE Geopressured-Geothermal Research Program and the DOE well testing and operations at three locations in the Gulf Coast region provide the bulk of resource and economic characteristics for this study. A menu-driven model was developed in LOTUS-123 to calculate the breakeven price to market gas and electricity from a geopressured-geothermal resource. This model was developed using the present value methodology and conservative assumptions. Assuming present well constraints and current off-the-shelf conversion technology, the breakeven price for electricity is about $0.26/kWh using only the thermal energy from a Hulin-type resource. Assuming identical resource and technology constraints, the breakeven price is reduced to about $0.15/kWh when using all available energy forms (methane, hydraulic, and thermal). Assuming the use of available advanced technologies, the breakeven price is reduced to about $0.10/kWh. Assuming the higher quality resource (with higher temperature and gas content) in the South Texas cases, the breakeven cost is about $0.095/kWh. Using advanced technology, this cost is further reduced to about $0.05/kWh. Both costs are within program goals. The results of this study suggest that the future direction of the Geopressured-Geothermal Program emphasize (a) selection of higher quality resource, (b) advanced energy conversion technology, and (c) total energy utilization.

Plum, M.M.; Negus-de Wys, J.; Faulder, D.D.; Lunis, B.C.

1989-11-01T23:59:59.000Z

103

Geothermal Resources Exploration And Assessment Around The Cove  

Open Energy Info (EERE)

Geothermal Resources Exploration And Assessment Around The Cove Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Details Activities (4) Areas (1) Regions (0) Abstract: The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the Basin and Range to the west and the Colorado Plateau to the east. We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different

104

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

105

Relating Geothermal Resources To Great Basin Tectonics Using Gps | Open  

Open Energy Info (EERE)

Relating Geothermal Resources To Great Basin Tectonics Using Gps Relating Geothermal Resources To Great Basin Tectonics Using Gps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Relating Geothermal Resources To Great Basin Tectonics Using Gps Details Activities (8) Areas (4) Regions (0) Abstract: The Great Basin is characterized by non-magmatic geothermal fields, which we hypothesize are created, sustained, and controlled by active tectonics. In the Great Basin, GPS-measured rates of tectonic "transtensional" (shear plus dilatational) strain rate is correlated with geothermal well temperatures and the locations of known geothermal fields. This has led to a conceptual model in which non-magmatic geothermal systems are controlled by the style of strain, where shear (strike-slip faulting)

106

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

107

NREL: Learning - Student Resources on Geothermal Direct Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Use Direct Use Photo of flowers in a greenhouse. Johnson County High School in Tennessee features a geothermally heated greenhouse, where students can learn about agriculture. The following resources will help you learn more about the direct use of geothermal energy. If you are unfamiliar with this technology, see the introduction to geothermal direct use. High School and College Level U.S. Department of Energy Geothermal Technologies Program: Direct Use Has more basic information Oregon Institute of Technology Geo-Heat Center Features information on research in direct use technologies, including resource maps. Geothermal Resources Council Provides information about and for the geothermal industry. Renewable Energy Policy Project Provides in-depth coverage on geothermal resources, technologies and

108

The United Nations' Approach To Geothermal Resource Assessment | Open  

Open Energy Info (EERE)

United Nations' Approach To Geothermal Resource Assessment United Nations' Approach To Geothermal Resource Assessment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The United Nations' Approach To Geothermal Resource Assessment Details Activities (2) Areas (1) Regions (0) Abstract: Although the emphasis of United Nations' assisted geothermal projects has been on demonstrating the feasibility of producing geothermal fluids, the potential capacity of individual fields has been estimated by both the energy in place and decline curve methods. The energy in place method has been applied to three geothermal fields resulting in total resource estimates ranging from 380 to 16,800 MW-yr. The results of these studies must be considered highly tentative, however, due to inadequate reservoir data and a poor knowledge of producing mechanisms. The decline

109

Direct Confirmation of Commercial Geothermal Resources in Colorado  

Open Energy Info (EERE)

Direct Confirmation of Commercial Geothermal Resources in Colorado Direct Confirmation of Commercial Geothermal Resources in Colorado Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Direct Confirmation of Commercial Geothermal Resources in Colorado Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The program is phased in three segments: -Phase 1: Acquisition, Processing and Analysis of Remote Sensing Data -Phase 2: Conduct on site Temperature Surveys and Map results -Phase 3: Drill and Test Geothermal Resource -minimum of Two Wells The direct benefits of a successful Program will be application of new processing of existing of Remote Sensing Data as a means to identify other commercial geothermal resouces throughout the United States.

110

The Geothermal System Near Paisley Oregon: A Tectonomagmatic Framework for Understanding the Geothermal Resource Potential of Southeastern Oregon.  

E-Print Network [OSTI]

??The tectonic and magmatic framework of southeast Oregon provides the conditions necessary for the existence of geothermal energy resources. However, few detailed studies of geothermal (more)

Makovsky, Kyle Aaron

2013-01-01T23:59:59.000Z

111

Analysis of Low-Temperature Utilization of Geothermal Resources  

Broader source: Energy.gov [DOE]

Project objectives: Techno-economic analysis of the potential of low-temperature (90-150C) geothermal sources. Perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. Develop a regionalized model of the utilization of low-temperature geothermal resources.

112

NMOCD - Form G-107 - Geothermal Resources Well History | Open...  

Open Energy Info (EERE)

Reference LibraryAdd to library General: NMOCD - Form G-107 - Geothermal Resources Well History Author State of New Mexico Energy and Minerals Department Published New Mexico Oil...

113

Geothermal Resources Council Annual Meeting- Doug Hollett Presentation, October 2011  

Broader source: Energy.gov [DOE]

Keynote presentation by Doug Hollett at the Geothermal Resources Council 35th Annual Meeting on October 24, 2011 in San Diego, California.

114

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

115

Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources  

Broader source: Energy.gov [DOE]

Novel Energy Conversion Equipment for Low Temperatures Geothermal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

116

Recovery Act:Direct Confirmation of Commercial Geothermal Resources...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Direct Confirmation of Commercial Geothermal Resources in Colorado using Remote Sensing and On- Site Exploration, Testing and Analysis F. Lee Robinson - PI Flint...

117

Geothermal Energy Resource Assessment of Parts of Alaska | Open...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Energy Resource Assessment of Parts of Alaska Abstract Under the sponsorship of...

118

Evaluation of the Geothermal Public Power Utility Workshops in California  

SciTech Connect (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

119

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

120

Geothermal Energy Production from Low Temperature Resources, Coproduced  

Open Energy Info (EERE)

Energy Production from Low Temperature Resources, Coproduced Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded Projects for Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana  

Open Energy Info (EERE)

Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Indicators Of Low-Temperature Geothermal Resources In Northern Louisiana And Central Mississippi Details Activities (2) Areas (1) Regions (0) Abstract: Measurements of heat flow and near-surface (< 500 m) geothermal gradients in the Gulf Coastal Plain suggest a zone of low-grade geothermal resources extending from northern Louisiana across south-central Mississippi. Subsurface temperatures exceeding 50°C, suitable for space-heating use, seem probable at depths of 1 km. Thermal conditions within the zone are comparable to those known for areas having attractive thermal energy prospects on the Atlantic Coastal Plain.

122

U.S. Department of Energy Geothermal Electricity Technology Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar...

123

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation...

124

Geothermal resource conceptual models using surface exploration data | Open  

Open Energy Info (EERE)

Geothermal resource conceptual models using surface exploration data Geothermal resource conceptual models using surface exploration data Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal resource conceptual models using surface exploration data Abstract The most important element of an analysis to target a geothermal well or assess resource capacity is a resource conceptual model consistent with the available information. A common alternative approach to both targeting and assessment is to focus on a data anomaly or, in some cases, several stacked anomalies. However, even stacked anomalies are commonly misleading without support from a conceptual model. The most important element of a geothermal conceptual model is a predicted natural state isotherm pattern, especially in section view. Although inferring such an isotherm pattern at an

125

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |  

Open Energy Info (EERE)

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Abstract Demonstrating the effectiveness of hyperspectral sensors to explore for geothermal resources will be critical to our nation's energy security plans. Discovering new geothermal resources will contribute to established renewable energy capacity and lower our dependence upon fuels that contribute to green house gas emissions. The use of hyperspectral data and derived imagery products is currently helping exploration managers gain greater efficiencies and drilling success. However, more work is needed as geologists continue to learn about hyperspectral imaging and, conversely,

126

National Assessment Of Us Geothermal Resources- A Perspective | Open Energy  

Open Energy Info (EERE)

Assessment Of Us Geothermal Resources- A Perspective Assessment Of Us Geothermal Resources- A Perspective Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: National Assessment Of Us Geothermal Resources- A Perspective Details Activities (2) Areas (1) Regions (0) Abstract: The U.S. Department of Interior has assigned to the US Geological Survey ('USGS') the task of conducting an updated assessment of the geothermal resources in the United States. In that connection, we offer an objective analysis of the last such national assessment, made in 1978, and presented in USGS Circular 790, in view of the industry experience accumulated over the intervening 26 years. Based on this analysis we offer our perspective on how such assessment may be improved. Our analysis was largely based on a comparison of the results of assessment of resources in

127

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain,  

Open Energy Info (EERE)

Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Epithermal Gold Mineralization and a Geothermal Resource at Blue Mountain, Humboldt County, Nevada Abstract Shallow exploration drilling on the west flank of Blue Mountain discovered sub economic gold mineralization and a spatially associated active geothermal system. The gold mineralization is an unusual example of an acid sulfate type epithermal system developed in pre Tertiary sedimentary host rocks. The geothermal system is largely unexplored but is unusual in that surface manifestation s typically associated with active geothermal system are not present. Authors Andrew J. Parr and Timothy J. Percival

128

Geothermal Resource Analysis and Structure of Basin and Range Systems,  

Open Energy Info (EERE)

Analysis and Structure of Basin and Range Systems, Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Citation David D. Blackwell,Kenneth W. Wisian,Maria C. Richards,Mark Leidig,Richard Smith,Jason McKenna. 2003. Geothermal Resource Analysis and Structure of

129

Energy Department Announces $3 Million to Identify New Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with no obvious surface expression by mapping the most favorable intersections of heat, permeability, and fluid. While commonly used in oil and gas exploration, play fairway analysis is not yet widely used in the geothermal industry. By improving success rates for exploration drilling, this data-mapping tool could help attract investment in geothermal energy projects and significantly lower the costs of geothermal energy.

130

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect (OSTI)

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

131

Targeting Of Potential Geothermal Resources In The Great Basin From  

Open Energy Info (EERE)

Targeting Of Potential Geothermal Resources In The Great Basin From Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Targeting Of Potential Geothermal Resources In The Great Basin From Regional To Basin-Scale Relationship Between Geodetic Strain And Geological Structures Details Activities (9) Areas (3) Regions (0) Abstract: We apply a new method to target potential geothermal resources on the regional scale in the Great Basin by seeking relationships between geologic structures and GPS-geodetic observations of regional tectonic strain. First, we establish a theoretical basis for underst~dingh ow the rate of fracture opening can be related to the directional trend of faults

132

Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource  

Open Energy Info (EERE)

Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Locations In The Us Basin And Range With A Focus On Dixie Meadows, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geobotanical Remote Sensing Applied To Targeting New Geothermal Resource Locations In The Us Basin And Range With A Focus On Dixie Meadows, Nv Details Activities (1) Areas (1) Regions (0) Abstract: This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be

133

West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report  

SciTech Connect (OSTI)

The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

Gilliland, M.W.; Fenner, L.B.

1980-01-01T23:59:59.000Z

134

Geothermal power in Italy: A social multi-criteria evaluation  

Science Journals Connector (OSTI)

Abstract Italy was the first country in the world to exploit geothermal resources for electricity production. In Europe it is still the first country in terms of installed capacity. Currently, the only region in Italy with geothermal power plants is Tuscany. This study focuses on Mt. Amiata, one of the two geothermal areas in Tuscany. In Mt. Amiata a strong opposition to the exploitation of geothermal resources is rising. The context is characterized by contested scientific results regarding crucial issues such as the impact of geothermal exploitation on human health and the conservation of water resources. A social multi-criteria evaluation is proposed to explore the different legitimate perspectives of the actors involved. Scenarios are distinguished in terms of their technology, plant site and installed capacity. Criteria reflect economic considerations, social aspects and environmental concerns. A Condorcet consistent aggregation algorithm is applied and results are analyzed using a sensitivity analysis. The alternative scenarios are evaluated by attaching different weights to the criteria reflecting divergent points of view.

Matteo Borzoni; Francesco Rizzi; Marco Frey

2014-01-01T23:59:59.000Z

135

Nevada low-temperaure geothermal resource assessment: 1994. Final report  

SciTech Connect (OSTI)

Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

Garside, L.J.

1994-12-31T23:59:59.000Z

136

Geothermal resource area 6: Lander and Eureka Counties. Area development plan  

SciTech Connect (OSTI)

Geothermal Resource Area 6 includes Lander and Eureka Counties. There are several different geothermal resources ranging in temperature from 70/sup 0/F to in excess of 400/sup 0/F within this two country area. Eleven of these resources are considered major and have been selected for evaluation in this Area Development Plan. The various potential uses of the energy found at each of the 11 resource sites were determined after evaluating the study area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities. These were then compared with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 11 geothermal sites considered are summarized.

Pugsley, M.

1981-01-01T23:59:59.000Z

137

GEOTHERMAL RESOURCES AT NPR-3, WYOMING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RESOURCES AT NPR-3 Mark Milliken March 2006 The Naval Petroleum Reserves NPR-3 Teapot Dome NPR-3 LOCATION Salt Creek Anticline Trend NPR-3 WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to provide a test site for technologies that to reduce energy-related operational costs. * Energy efficiency * Energy conservation * Alternative energy sources KEY CHALLENGES * Acceptance by Industry * Creation of a Joint Industry Partnership (JIP) * Consensus on best technologies * Funding for infrastructure support * Funding of Projects Teapot Dome Wyoming Depositional Basin Settings NPR-3 STRATIGRAPHY 1000 2000 3000 4000 5000 6000 7000 DEPTH PRECAMBRIAN BASEMENT CAMBRIAN SS MISSISSIPPIAN MADSION LS PENNSYLVANIAN TENSLEEP PERMIAN GOOSE EGG TRIASSIC CHUGWATER

138

Geothermal Resource Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Geothermal Resource Technologies Place Asheville, North Carolina Zip 28806 4229 Sector Services Product String representation "GRTI has evolve ... ign assistance." is too long. Coordinates 35.59846°, -82.553144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.59846,"lon":-82.553144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Toward The Development Of Occurrence Models For Geothermal Resources...  

Open Energy Info (EERE)

evaluation of geothermal potential on U.S. military bases. An interpretation of the spatial associations between selected characteristics was used to direct field...

140

3D Mt Resistivity Imaging For Geothermal Resource Assessment And  

Open Energy Info (EERE)

Resistivity Imaging For Geothermal Resource Assessment And Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Details Activities (3) Areas (2) Regions (0) Abstract: MT and TDEM surveys acquired in 2005 were integrated with existing MT and TDEM data recovered from obsolete formats to characterize the geometry of the geothermal reservoir. An interpretation based on the correlation of the 3D MT resistivity with well properties indicated that most of the previous exploration wells had been tarted close to but not in the center of areas tha appeared most likely to be permeable. Such

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geothermal Resources Assessment In Hawaii | Open Energy Information  

Open Energy Info (EERE)

Assessment In Hawaii Assessment In Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Resources Assessment In Hawaii Details Activities (78) Areas (14) Regions (0) Abstract: The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRAs) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques. A total of 15 PGRAs on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The results of these studies have allowed us to attempt an estimate of the

142

Geothermal energy, site specificity, and resource reserves  

Science Journals Connector (OSTI)

The site specific nature of geothermal energy places a great emphasis on land use ... use planning. A survey of the operating geothermal generating stations around the world reveals many ... agricultural use of t...

M. J. Pasqualetti

1981-01-01T23:59:59.000Z

143

Geothermal Resources on State Lands (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources on State Lands (Montana) Geothermal Resources on State Lands (Montana) Geothermal Resources on State Lands (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Savings Category Buying & Making Electricity Program Info State Montana Program Type Leasing Program This chapter authorizes the leasing of state-owned lands for the development of geothermal resources, and provides regulations pertaining to the nature of the resources, compensation, and water rights, as well as for

144

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

SciTech Connect (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

145

Geothermal energy resource investigations at Mt. Spurr, Alaska  

SciTech Connect (OSTI)

Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

Turner, D.L.; Wescott, E.M. (eds.)

1986-12-01T23:59:59.000Z

146

Exploration for Hot Dry Rock geothermal resources in the Midcontinent USA. Volume 1. Introduction, geologic overview, and data acquisition and evaluation  

SciTech Connect (OSTI)

The Midcontinent of North America is commonly characterized as a stable cratonic area which has undergone only slow, broad vertical movements over the past several hundreds of millions of years. This tectonically stable crust is an unfertile area for hot dry rock (HDR) exploration. However, recent geophysical and geological studies provide evidence for modest contemporary tectonic activity in limited areas within the continent and, therefore, the possibility of localized thermal anomalies which may serve as sites for HDR exploration. HDR, as an energy resource in the Midcontinent, is particularly appealing because of the high population density and the demand upon conventional energy sources. Five generalized models of exploration targets for possible Midcontinent HDR sites are identified: (1) radiogenic heat sources, (2) conductivity-enhanced normal geothermal gradients, (3) residual magnetic heat, (4) sub-upper crustal sources, and (5) hydrothermal generated thermal gradients. Three potential sources of HDR, each covering approximately a 2/sup 0/ x 2/sup 0/ area, were identified and subjected to preliminary evaluation. In the Mississippi Embayment test site, lateral thermal conductivity variations and subcrustal heat sources may be involved in producing abnormally high subsurface temperatures. Studies indicate that enhanced temperatures are associated primarily with basement rift features where vertical displacement of aquifers and faults cause the upward migration of hot waters leading to anomalously high local upper crustal temperatures. The Western Nebraska test site is a potential low temperature HDR source also related, at least in part, to groundwater movement. The Southeast Michigan test site was selected for study because of the possible presence of radiogenic plutons overlain by a thickened sedimentary blanket.

Hinze, W.J.; Braile, L.W.; von Frese, R.R.B.; Lidiak, E.G.; Denison, R.E.; Keller, G.R.; Roy, R.F.; Swanberg, C.A.; Aiken, C.L.V.; Morgan, P.

1986-02-01T23:59:59.000Z

147

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

148

GEM Resources III Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEM Resources III Geothermal Facility GEM Resources III Geothermal Facility General Information Name GEM Resources III Geothermal Facility Facility GEM Resources III Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.776035405529°, -115.26321172714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.776035405529,"lon":-115.26321172714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Geothermal Resources Leasing Programmatic EIS | Open Energy Information  

Open Energy Info (EERE)

Geothermal Resources Leasing Programmatic EIS Geothermal Resources Leasing Programmatic EIS Jump to: navigation, search The Bureau of Land Management (BLM) and the United States Forest Service (USFS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and USFS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska.[1] Objectives of the PEIS Programmatically assess the direct, indirect, and cumulative effects of leasing, exploration and development of geothermal resources on high priority areas (critical locations) on BLM- and USFS-administered lands in order to expedite leasing. Additional environmental documentation would be required prior to actual exploration drilling and development.

150

California PRC Section 6903, Definitions for Geothermal Resources...  

Open Energy Info (EERE)

the purposes of this chapter, 'geothermal resources' shall mean the natural heat of the earth, the energy, in whatever form, below the surface of the earth present in, resulting...

151

Assessment of Geothermal Resources of the United States - 1978...  

Open Energy Info (EERE)

1978 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Geothermal Resources of the United States - 1978 Author Leroy J. Patrick Muffler...

152

GEM Resources II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEM Resources II Geothermal Facility GEM Resources II Geothermal Facility General Information Name GEM Resources II Geothermal Facility Facility GEM Resources II Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.77605344699°, -115.26323318481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.77605344699,"lon":-115.26323318481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

154

Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Our Evolving Knowledge Of Nevada'S Geothermal Resource Potential Details Activities (16) Areas (9) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing

155

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

156

Finding Large Aperture Fractures in Geothermal Resource Areas Using a  

Open Energy Info (EERE)

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Because fractures and faults with sub-commercial permeability can propagate hot fluid and hydrothermal alteration throughout a geothermal reservoir, potential field geophysical methods including resistivity, gravity, heatflow and magnetics cannot distinguish between low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter synthetic aperture radar interferometry (PSInSAR) and structural kinematic analysis as an integrated method for locating and 3-D mapping of LAF's in shallow to intermediate depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing production field and find a new production field in a separate but related resource area. A full diameter production well will be drilled into each of the two lease blocks covered by the geophysical exploration program.

157

Geothermal resource requirements for an energy self-sufficient spaceport  

SciTech Connect (OSTI)

Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

Kruger, P.; Fioravanti, M. [Stanford Univ., CA (United States). Civil Engineering Dept.; Duchane, D.; Vaughan, A. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1997-01-01T23:59:59.000Z

158

National Geothermal Resource Assessment and Classification  

Broader source: Energy.gov (indexed) [DOE]

not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov RelevanceImpact of Research * Overall Summary -...

159

Geothermal Technologies Office Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September  

Broader source: Energy.gov [DOE]

GTO Director Doug Hollett took the stage this week at the Geothermal Resources Council industry meeting in Portland, Oregon to address barriers to geothermal development and how the office is...

160

Spatial data analysis for exploration of regional scale geothermal resources  

Science Journals Connector (OSTI)

Abstract Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100C/km and heat flow over 100mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

Majid Kiavarz Moghaddam; Younes Noorollahi; Farhad Samadzadegan; Mohammad Ali Sharifi; Ryuichi Itoi

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Detachment Faulting and Geothermal Resources - An Innovative Integrated  

Open Energy Info (EERE)

Detachment Faulting and Geothermal Resources - An Innovative Integrated Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Detachment Faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program is designed to provide valuable new subsurface information about one of the Nation's arguably most promising high-temperature geothermal targets. Until now, the Emigrant Geothermal Prospect has been tested by only shallow and relatively shallow thermal-gradient boreholes and a small number of exploration wells, all of which have lacked any detailed 2-D or 3-D structural context. The applicants propose to conduct an innovative integration of detailed 2- D and 3-D structural reconstructions (structural mapping and reflection/refraction source seismology integrated with available data).

162

Geothermal Well Testing and Evaluation | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Testing and Evaluation Geothermal Well Testing and Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geothermal Well Testing and Evaluation Author Jon Ragnarsson Published Iceland Geosurvey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Well Testing and Evaluation Citation Jon Ragnarsson. Geothermal Well Testing and Evaluation [Internet]. 2013. Iceland Geosurvey. [cited 2013/10/18]. Available from: http://www.geothermal.is/geothermal-well-testing-and-evaluation Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Well_Testing_and_Evaluation&oldid=688939" Categories: References Geothermal References Uncited References What links here Related changes Special pages

163

Our Evolving Knowledge Of Nevada's Geothermal Resource Potential | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Our Evolving Knowledge Of Nevada's Geothermal Resource Potential Abstract The Great Basin Center for Geothermal Energy (GBCGE) is conducting site-specific and regional geothermal research both in direct collaboration with industry (typically site-specific) and independently (typically regional exploration), communicating findings with public and industrial partners. These studies are research-oriented and are developing new tools

164

Geothermal Resource Conceptual Models Using Surface Exploration Data | Open  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Geothermal Resource Conceptual Models Using Surface Exploration Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resource Conceptual Models Using Surface Exploration Data Abstract The most important element of an analysis to target a geothermal well or assess resource capacity is a resource conceptual model consistent with the available information. A common alternative approach to both targeting and assessment is to focus on a data anomaly or, in some cases, several stacked anomalies. However, even stacked anomalies are commonly misleading without

165

California low-temperature geothermal resources update: 1993  

SciTech Connect (OSTI)

The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

Youngs, L.G.

1994-12-31T23:59:59.000Z

166

An analysis of geothermal resource development on Unalaska Island, Alaska  

SciTech Connect (OSTI)

A rapid expansion in the seafood industry and projected oil, gas and mining developments have resulted in a shortage of power on Unalaska Island. Currently, all power is supplied by small diesel generators at a cost of 340 mills/kwh for the local utility system. Available data indicate the potential for a significant high temperature geothermal resource on Makushin Volcano, west of the town of Unalaska. A summary of the considerations affecting the development of the Makushin resource to supply power to Unalaska is presented. A preliminary economic analysis of various resource and development assumptions indicated that geothermal power can be competitive with diesel power even though capital investment is high.

Spencer, S.G.; Chapman-Riggsbee, W.; Long, G.A.

1982-10-01T23:59:59.000Z

167

Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot  

Open Energy Info (EERE)

Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Details Activities (1) Areas (1) Regions (0) Abstract: The well, Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled at the China Lake Naval Weapons Center. Drilling was started on 2 September 1977, and the well completed on 1 December 1977 to 4845 ft. The well is an exploratory hole to determine geological and hydrothermal characteristics of the Coso Hot Springs KGRA (Known Geothermal Resource Area). During drilling, numerous geophysical and temperature surveys were performed to evaluate the geological characteristics of CGEH-1. LBL

168

Stratabound geothermal resources in North Dakota and South Dakota  

SciTech Connect (OSTI)

Analysis of all geothermal aquifers in North Dakota and South Dakota indicates an accessible resource base of approximately 21.25 exajoules (10{sup 18} J = 1 exajoule, 10{sup 18} J{approximately}10{sup 15} Btu=1 quad) in North Dakota and approximately 12.25 exajoules in South Dakota. Resource temperatures range from 40{degree}C at depths of about 700 m to 150{degree}C at 4500 m. This resource assessment increases the identified accessible resource base by 31% over the previous assessments. These results imply that the total stratabound geothermal resource in conduction-dominated systems in the United States is two-to-three times greater than some current estimates. The large increase in the identified accessible resource base is primarily due to inclusion of all potential geothermal aquifers in the resource assessment and secondarily due to the expanded data base compiled in this study. These factors were interdependent in that the extensive data base provided the means for inclusion of all potential geothermal aquifers in the analysis. Previous assessments included only well-known aquifer systems and were limited by the amount of available data. 40 refs., 16 figs., 8 tabs.

Gosnold, W.D. Jr.

1991-08-01T23:59:59.000Z

169

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

of geothermal resources in the Imperial Valley ofO N GEOTHERMAL RESOURCE INVESTIGATIONS IMPERIAL VALLEY. C Ageothermal reservoir underlying the East Mesa area, Imperial Valley,

2009-01-01T23:59:59.000Z

170

California Division of Oil, Gas, and Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Geothermal Resources Geothermal Resources Jump to: navigation, search State California Name California Division of Oil, Gas, and Geothermal Resources (CDOGGR) Address 801 K Street, MS 20-20 City, State Sacramento, CA Zip 95814-3530 Website http://www.consrv.ca.gov/dog/O Coordinates 38.580104°, -121.496008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.580104,"lon":-121.496008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

GRR/Section 3-UT-a - State Geothermal Resource Leasing | Open Energy  

Open Energy Info (EERE)

UT-a - State Geothermal Resource Leasing UT-a - State Geothermal Resource Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-UT-a - State Geothermal Resource Leasing 03UTAStateGeothermalResourceLeasing.pdf Click to View Fullscreen Contact Agencies Utah Department of Natural Resources Regulations & Policies UC 73-22 Utah Geothermal Resources Conservation Act Triggers None specified Click "Edit With Form" above to add content 03UTAStateGeothermalResourceLeasing.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative In 1981, the Utah Geothermal Resource Conservation Act established the

172

Analysis Of Geothermal Resources In Northern Switzerland | Open Energy  

Open Energy Info (EERE)

In Northern Switzerland In Northern Switzerland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Analysis Of Geothermal Resources In Northern Switzerland Details Activities (0) Areas (0) Regions (0) Abstract: In Europe, geothermal energy becomes an attractive alternative for many conventional fuel based energy scenarios. In a time when actual political discussion favors regenerative energies, geothermal energy is an essential option since it offers the advantage of providing band energy. Recent studies provide evidence for large economical competitiveness of low-enthalpy, direct-use systems for heating and high-enthalpy systems for cogeneration (combined heat and power, CHP) or pure power generation. The study presented herein develops a detailed subsurface model of possible

173

Advances In Geothermal Resource Exploration Circa 2007 | Open Energy  

Open Energy Info (EERE)

Exploration Circa 2007 Exploration Circa 2007 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Advances In Geothermal Resource Exploration Circa 2007 Details Activities (8) Areas (1) Regions (0) Abstract: At the outset of the 21st centry, the geothermal community at-large is essentially attempting to use available exploration tools and techniques to find needles (geothermal occurrences) in very large haystacks (expanses of unexplored territory). Historically teh industry has relied on teh presence of surface manifestations of subsurface heat, such as hot springs, fumaroles, or geyers as a firt-order exploration tool., Regrettably, even when such surface manifestations are investigated more closely, there is no proven technique or techniques that can bve used with

174

Pinpointing America's Geothermal Resources with Open Source Data  

Broader source: Energy.gov [DOE]

National Geothermal Data System addresses barriers to geothermal deployment by aggregating millions of geoscience datapoints and legacy geothermal research into a nationwide system that serves the geothermal community.

175

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

on the Republic geothermal wells, East Mesa, California.evalu- ation of five geothermal wells, Proc. second UNhydrologic continuity Geothermal Well Inferred barrier

2009-01-01T23:59:59.000Z

176

Geothermal energy resource assessment of parts of Alaska. Final report  

SciTech Connect (OSTI)

The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

Wescott, E.M.; Turner, D.L.; Kienle, J.

1982-08-01T23:59:59.000Z

177

Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...  

Open Energy Info (EERE)

ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

178

1979-1980 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

Korosec, M.A.; Schuster, J.E.

1980-01-01T23:59:59.000Z

179

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to standardize the technology.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100130C range, while the return temperature of the brine is assumed to be between 70 and 100C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

180

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GRR/Section 3-MT-a - State Geothermal Resource Lease | Open Energy  

Open Energy Info (EERE)

3-MT-a - State Geothermal Resource Lease 3-MT-a - State Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-MT-a - State Geothermal Resource Lease 03MTAStateGeothermalResourceLease.pdf Click to View Fullscreen Contact Agencies Montana Department of Natural Resources & Conservation Regulations & Policies Rule 36.25.404 Triggers None specified Click "Edit With Form" above to add content 03MTAStateGeothermalResourceLease.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart is intended to document the process behind the geothermal resource lease in Montana. The procedure is outlined in Rule 36.25.404.

182

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

183

GRC Transactions, Vol. 31, 2007 Geothermal, energy resources, Great Basin, GPS, geodesy,  

E-Print Network [OSTI]

GRC Transactions, Vol. 31, 2007 391 Keywords Geothermal, energy resources, Great Basin, GPS, and will be incorporated in future models. Introduction Geothermal energy resources have long been associated of active crustal deformation and its spatial relationship to active geothermal systems in the northern

184

Status of Nevada Geothermal Resource Development - Spring 2011 | Open  

Open Energy Info (EERE)

Resource Development - Spring 2011 Resource Development - Spring 2011 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Nevada Geothermal Resource Development - Spring 2011 Abstract Recent increases in geothermal exploration and power plant construction in Nevada are the first significant activities since the Steamboat II/III and Brady plants came on line in 1992.Exploration activity on existing projects grew between 2005 and 2010, culminating in the construction of several new power plants. The BLM's 2007 lease auction (first since the 2005 Energy Policy Act revisions) opened the door to exploration on green field properties. The number of wells permitted and drilled remained low from 1994 through 2003, but rose sharply to peak in 2009.However, over 760,000

185

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

SciTech Connect (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

186

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Broader source: Energy.gov [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

187

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Broader source: Energy.gov (indexed) [DOE]

1 Greg Mines Idaho National Laboratory June 30, 2011 U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar EERE Business Administration...

188

Geothermal: Sponsored by OSTI -- Generic Natural Systems Evaluation...  

Office of Scientific and Technical Information (OSTI)

Generic Natural Systems Evaluation - Thermodynamic Database Development and Data Management Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

189

GIS-based energy-economic model of low temperature geothermal resources: A case study in the Italian Marche region  

Science Journals Connector (OSTI)

This paper presents a computational procedure designed to derive a regional model of the low temperature geothermal potential and its economic exploitability. The model was applied to the Italian Marche region and developed with the support of a Geographic Information System (GIS), which highlights the spatial dependencies in the distribution of geothermic resources. The Low Temperature Geothermal Energy has already gained attention as a renewable energy resource for domestic heating and represents a growing opportunity for investment. Although it is common practice to conduct an accurate evaluation of the geothermal potential and its exploitability on a site during the construction of a single installation, there is not an established practice or guidelines for estimating this resource over large territories. This information could support an institutions ability to conduct regional energy planning and guide private entrepreneurship to meet new economic opportunities. To address these issues, the main contribution of this work is a model that reduces the distance between the physical knowledge of the territory/environment and economic analysis. The model is based on a useful assessment of low temperature geothermal potential obtained from physical parameters on a regional scale, from which a set of economic indicators are calculated to evaluate the actual economic accessibility to the geothermal energy resource.

Alberto Gemelli; Adriano Mancini; Sauro Longhi

2011-01-01T23:59:59.000Z

190

Evaluation of testing and reservoir parameters in geothermal wells at Raft  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge

191

Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report  

SciTech Connect (OSTI)

The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

Pilger, R.H. Jr. (ed.)

1985-01-01T23:59:59.000Z

192

Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Project objective: to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources.

193

Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps  

Broader source: Energy.gov [DOE]

Transcript of a presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

194

Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

195

BLM/DOI - Notice of Intent to Conduct Geothermal Resource Exploration...  

Open Energy Info (EERE)

BLMDOI - Notice of Intent to Conduct Geothermal Resource Exploration Operations < BLM Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: BLMDOI - Notice of...

196

Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners  

Broader source: Energy.gov [DOE]

Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners presentation at the April 2013 peer review meeting held in Denver, Colorado.

197

Sustainable Energy Resources for Consumers (SERC)- Geothermal/Ground-Source Heat Pumps  

Broader source: Energy.gov [DOE]

This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of Geothermal/Ground-Source Heat Pumps.

198

Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources  

SciTech Connect (OSTI)

This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

Heiken, G.; Sayer, S.

1980-02-01T23:59:59.000Z

199

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The size and low resistivity of the clay cap associated with a geothermal system create a target well suited for electromagnetic (EM) methods and also make electrical detection of the underlying geothermal reservoir a challenge. Using 3-D numerical models, we evaluate four EM techniques for use in geothermal exploration: magnetotellurics (MT), controlled-source audio magnetotellurics (CSAMT), long-offset time-domain EM (LOTEM), and short-offset time-domain EM (TEM). Our results show that all of these techniques can delineate the clay cap, but none can be said to unequivocally detect the reservoir. We do find, however, that the EM

200

GRR/Section 3-CA-a - State Geothermal Resource Leasing | Open Energy  

Open Energy Info (EERE)

3-CA-a - State Geothermal Resource Leasing 3-CA-a - State Geothermal Resource Leasing < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-CA-a - State Geothermal Resource Leasing 03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Click to View Fullscreen Contact Agencies California State Lands Commission California Division of Oil, Gas, and Geothermal Resources Regulations & Policies Geothermal Resources Act - Cal. Pub. Res. Code. § 6901-6925.2 CCR Title 2, 1900-2980.9 Triggers None specified Click "Edit With Form" above to add content 03CAAStateLandLeasingProcessAndLandAccessROWs.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The 2004 Geothermal Map Of North America Explanation Of Resources And  

Open Energy Info (EERE)

The 2004 Geothermal Map Of North America Explanation Of Resources And The 2004 Geothermal Map Of North America Explanation Of Resources And Applications Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: The 2004 Geothermal Map Of North America Explanation Of Resources And Applications Details Activities (1) Areas (1) Regions (0) Abstract: The first Geothermal Map of North America was published in 1992 by the Geological Society of America (GSA). The American Association of Petroleum Geologist (AAPG) is publishing the 2004 Geothermal Map of North America (Blackwell and Richards, 2004a). Southern Methodist University Geothermal Lab produced the map over the last three years in conjunction with numerous collaborators. New data and cartographic techniques allow for greater detail and new data layers to be added to the 2004map. Thus the

202

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

SciTech Connect (OSTI)

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

2014-06-10T23:59:59.000Z

203

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

Evaluation Of Electromagnetic Methods In Geothermal Exploration Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996 Document Number: Unavailable DOI: 10.1016/S0148-9062(97)87449-9 Source: View Original Journal Article Retrieved from "http://en.openei.org/w/index.php?title=A_Numerical_Evaluation_Of_Electromagnetic_Methods_In_Geothermal_Exploration_-_L_Pellerin,_J_M_Johnston_%26_G_W_Hohmann,_Geophysics,_61(1),_1996,_Pp_121-130&oldid=3883

204

Geothermal resource assessment of the New England states  

SciTech Connect (OSTI)

With the exception of Sand Springs in Williamstown, Massachusetts, there are no identifiable hydrothermal geothermal resources in the New England region. The radioactive plutons of the White Mountains of New Hampshire do not, apparently, contain sufficient stored heat to make them a feasible target for an induced hydrothermal system such as exists at Fenton Hill near Los Alamos, New Mexico. The only potential source of low grade heat is the large volume of ground water contained within the unconsolidated sediments related to the Pleistocene glaciation of the region. During the course of the survey an unusual and unexplained thermal anomaly was discovered in St. Johnsbury, Vermont, which is described.

Brophy, G.P.

1982-01-01T23:59:59.000Z

205

Geothermal resources in Southwestern Utah: gravity and magnetotelluric investigations.  

E-Print Network [OSTI]

??Recent geothermal studies on sedimentary basins in Western Utah suggest the possibility of significant geothermal reservoirs at depths of 3 to 5 km. This research (more)

Hardwick, Christian Lynn

2013-01-01T23:59:59.000Z

206

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

207

Pinpointing America's Geothermal Resources with Open Source Data...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and direct-use through an open source data...

208

GRR/Section 3-OR-a - Geothermal Resource Lease | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 3-OR-a - Geothermal Resource Lease GRR/Section 3-OR-a - Geothermal Resource Lease < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 3-OR-a - Geothermal Resource Lease 03ORAGeothermalResourceLease (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Land Conservation and Development Oregon Department of State Lands Oregon Coastal Management Program Regulations & Policies Geothermal Lease Regulations ORS 273.775 to 273.790 Coastal Zone Management Act Triggers None specified Click "Edit With Form" above to add content 03ORAGeothermalResourceLease (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

209

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical  

Open Energy Info (EERE)

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Details Activities (21) Areas (4) Regions (0) Abstract: For many years, there has been speculation about "hidden" or "blind" geothermal systems- reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose

210

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona  

Open Energy Info (EERE)

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Details Activities (1) Areas (1) Regions (0) Abstract: The U.S Department of Energy's "Geopowering the West" initiative seeks to double the number of states (currently 4) that generate geothermal electric power over the next few years. Some states, like New Mexico and Oregon, have plentiful and conspicuous geothermal manifestations, and are thus likely to further DOE'S goal relatively easily. Other states, including Arizona, demonstrate less geothemal potential, but nevertheless

211

The xerolithic geothermal (``hot dry rock``) energy resource of the United States: An update  

SciTech Connect (OSTI)

This report presents revised estimates, based upon the most current geothermal gradient data, of the xerolithic geothermal (``hot dry rock`` or HDR) energy resources of the United States. State-by-state tabular listings are provided of the HDR energy resource base, the accessible resource base, and the potentially useful resource base. The latter further subdivided into components with potential for electricity generation, process heat, and space heat. Comparisons are made with present estimates of fossil fuel reserves. A full-sized geothermal gradient contour map is provided as a supplement in a pocket inside the back cover of the report.

Nunz, G.J.

1993-07-01T23:59:59.000Z

212

Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations  

SciTech Connect (OSTI)

The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this wellthe most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

2013-03-01T23:59:59.000Z

213

Geothermal resource assessment of the Animas Valley, Colorado. Resource Series 17  

SciTech Connect (OSTI)

The Colorado Geological Survey, has been engaged in assessing the nature and extent of Colorado's geothermal resources. The program has included geologic and hydrogeologic reconnaissance, and geophysical and geochemical surveys. In the Animas Valley, in southwestern Colorado, two groups of thermal springs exist: Pinkerton Springs to the north, and Tripp-Trimble-Stratten Springs about 5 miles (8.1 Km) south of Pinkerton. The geothermal resources of the Animas Valley were studied. Due to terrain problems in the narrow valley, a soil mercury survey was conducted only at Tripp-Trimble Stratten, while an electrical D.C. resistivity survey was limited to the vicinity of Pinkerton. Although higher mercury values tended to be near a previously mapped fault, the small extent of the survey ruled out conclusive results. Consistent low resistivity zones interpreted from the geophysical data were mapped as faults near Pinkerton, and compared well with aerial photo work and spring locations. This new information was added to reconnaissance geology and hydrogeology to provide several clues regarding the geothermal potential of the valley. Hydrothermal minerals found in faults in the study area are very similar to ore mined in a very young mountain range, nearby. Groundwater would not need to circulate very deeply along faults to attain the estimated subsurface temperatures present in the valley. The water chemistry of each area is unique. Although previously incompletely manned, faulting in the area is extensive. The geothermal resources in the Animas Valley are fault controlled. Pinkerton and Tripp-Trimble-Stratten are probably not directly connected systems, but may have the same source at distance. Recharge to the geothermal system comes from the needle and La Plata Mountains, and the latter may also be a heat source. Movement of the thermal water is probably primarily horizontal, via the Leadville Limestone aquifer.

McCarthy, K.P.; Zacharakis, T.G.; Ringrose, C.D.

1982-01-01T23:59:59.000Z

214

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation-  

Open Energy Info (EERE)

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Details Activities (6) Areas (1) Regions (0) Abstract: This paper presents the results of analysis of a state of the art set of wireline petrophysical and wellbore image logs recorded in the Alum 25-29 well, southwestern Nevada. The Alum well penetrated nearly 2000 ft (610 m) of volcano-clastic rocks and more than 1000 ft of basement, separated from the sediments by a shallowly dipping detachment fault. The logs were acquired both to characterize the site and also to select the

215

Summary of the planning, management, and evaluation process for the Geothermal Program Review VI conference  

SciTech Connect (OSTI)

The purpose of this document is to present an overview of the planning, facilitation, and evaluation process used to conduct the Geothermal Program Review VI (PR VI) conference. This document was also prepared to highlight lessons learned from PR VI and, by utilizing the evaluation summaries and recommendations, be used as a planning tool for PR VII. The conference, entitled Beyond Goals and Objectives,'' was sponsored by the US Department of Energy's (DOE) Geothermal Technology Division (GTD), PR VI was held in San Francisco, California on April 19--21, 1988 and was attended by 127 participants. PR VI was held in conjunction with the National Geothermal Association's (NGA) Industry Round Table. This document presents a brief summary of the activities, responsibilities, and resources for implementing the PR VI meeting and provides recommendations, checklists, and a proposed schedule for assisting in planning PR VII.

Not Available

1988-10-01T23:59:59.000Z

216

The Monitoring and Evaluation of Geothermal Systems.  

E-Print Network [OSTI]

??With the heightened importance of green engineering in todays society, harnessing the Earths internal energy has become ever more important. Specifically, the use of geothermal (more)

Maynard, Whitney E.

2010-01-01T23:59:59.000Z

217

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

218

Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County,  

Open Energy Info (EERE)

Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Exploration Of The Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some

219

Pinpointing America's Geothermal Resources with Open Source Data  

Broader source: Energy.gov [DOE]

Geothermal energythe heat contained within the earthrepresents a growing part of the country's clean energy mix. Still, for continued growth of this industry, gaining easy access to reliable, comprehensive geothermal data remains a critical barrier.

220

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network [OSTI]

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed...

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal energyA sustainable resource of enormous potential  

Science Journals Connector (OSTI)

Geothermal energy is available at many locations on the earths surface. This clean and reliable energy has enormous potential and can be used ... of the fossil and uranium reserves worldwide. Geothermal energy w...

P. M. Wright

1998-01-01T23:59:59.000Z

222

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains with geothermal power. GeothermalResourcesgains with geothermal power. GeothermalResourcesofTables: Table1:GeothermalPowerPlantsOperatingat

Brophy, P.

2012-01-01T23:59:59.000Z

223

Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.  

SciTech Connect (OSTI)

The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

Taranik, James V.; Oppliger, Gary; Sawatsky, Don

2002-04-10T23:59:59.000Z

224

Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program  

SciTech Connect (OSTI)

Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

Ruscetta, C.A. (ed.)

1982-07-01T23:59:59.000Z

225

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

SciTech Connect (OSTI)

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

226

Mining geothermal resources in the Salton Sea KGRA: products and values  

SciTech Connect (OSTI)

Exploration for and production of geothermal resources closely parallels mining ventures. The winning of energy from geothermal resources is mining steam, or in other cases mining the resource to upgrade secondary (binary) fluid streams. The techniques and expertise of those familiar with mining, the turning of a resource to a reserve for beneficial use, are necessary to enable production from which the benefits of geothermal resources may be realized. There is no better identified resource illustrating these observations than the high temperature and highly mineralized Salton Sea KGRA in the Imperial Valley of California. A review of the development history of this resource together with the successes and failures evident today reveals a lack of cooperation among the industrial segments necessary for its successful development.

Schilling, J.R.

1984-12-01T23:59:59.000Z

227

File:03MTAStateGeothermalResourceLease.pdf | Open Energy Information  

Open Energy Info (EERE)

MTAStateGeothermalResourceLease.pdf MTAStateGeothermalResourceLease.pdf Jump to: navigation, search File File history File usage File:03MTAStateGeothermalResourceLease.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 40 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:01, 25 January 2013 Thumbnail for version as of 11:01, 25 January 2013 1,275 × 1,650 (40 KB) Dfitzger (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 3-MT-a - State Geothermal Resource Lease

228

File:03UTAStateGeothermalResourceLeasing.pdf | Open Energy Information  

Open Energy Info (EERE)

UTAStateGeothermalResourceLeasing.pdf UTAStateGeothermalResourceLeasing.pdf Jump to: navigation, search File File history File usage File:03UTAStateGeothermalResourceLeasing.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 17 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 12:12, 30 August 2012 Thumbnail for version as of 12:12, 30 August 2012 1,275 × 1,650 (17 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 3-UT-a - State Geothermal Resource Leasing

229

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

230

I.C. 47-1605 - Geothermal Resources - Leases--Rental and Royalty...  

Open Energy Info (EERE)

1605 - Geothermal Resources - Leases--Rental and Royalty Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: I.C. 47-1605 -...

231

State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report  

SciTech Connect (OSTI)

This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

Icerman, Larry

1983-08-01T23:59:59.000Z

232

Comparison of subcritical and supercritical Rankine cycles for application to the geopressured geothermal resource  

SciTech Connect (OSTI)

There are several features unique to the geopressure geothermal resource which narrow the range of power cycle alternatives. The thermodynamic and operating restrictions which appear to favor the application of a supercritical Rankine power cycle utilizing propane for the recovery of thermal energy from the geopressure geothermal resource are described. This power cycle can be integrated into a natural gas recovery scheme that conserves reservoir pressure for brine disposal and produces gas at pipeline pressure.

Goldsberry, F.L.

1981-10-01T23:59:59.000Z

233

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

234

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

235

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal...  

Office of Environmental Management (EM)

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D...

236

Finding Large Aperture Fractures in Geothermal Resource Areas...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Survey DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with...

237

The 2004 Geothermal Map Of North America Explanation Of Resources...  

Open Energy Info (EERE)

in 1992 by the Geological Society of America (GSA). The American Association of Petroleum Geologist (AAPG) is publishing the 2004 Geothermal Map of North America (Blackwell...

238

Analysis of Low-Temperature Utilization of Geothermal Resources...  

Open Energy Info (EERE)

water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to...

239

A Code for Geothermal Resources and Reserves Reporting | Open...  

Open Energy Info (EERE)

and Reserves Reporting Abstract Geothermal companies are increasingly using both equity markets and the finance sector to raise funds to develop their projects. At the same time,...

240

Integrated Geophysical Exploration of a Known Geothermal Resource...  

Open Energy Info (EERE)

in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Seismic Methods For Resource Exploration In Enhanced Geothermal...  

Open Energy Info (EERE)

propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a...

242

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

243

Direct Confirmation of Commercial Geothermal Resources in Colorado...  

Open Energy Info (EERE)

benefits of a successful Program will be application of new processing of existing of Remote Sensing Data as a means to identify other commercial geothermal resouces throughout...

244

Indicators Of Low-Temperature Geothermal Resources In Northern...  

Open Energy Info (EERE)

attractive thermal energy prospects on the Atlantic Coastal Plain. Authors Douglas L. Smith and William T. Dees Published Journal Journal of Volcanology and Geothermal Research,...

245

Geothermal Resources of Rifts- a Comparison of the Rio Grande...  

Open Energy Info (EERE)

(> 200C). Greenschist facies metamorphism has been observed in several of the geothermal wells. Localized upper crustal melting is a distinct possibility and there is...

246

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

247

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

248

A Detailed Approach To Low-Grade Geothermal Resources In The Appalachian Basin Of New York And Pennsylvania: Heterogeneities Within The Geologic Model And Their Effect On Geothermal Resource Assessment .  

E-Print Network [OSTI]

??The potential to utilize widespread low -grade geothermal resources of the Northeastern U.S. for thermal direct use and combined heat and power applications can be (more)

Shope, Elaina

2012-01-01T23:59:59.000Z

249

Assessment of the geothermal resources of Kansas. Final report  

SciTech Connect (OSTI)

The following regional geological and geophysical studies are reported: establishment of a geothermal gradient data base from approximately 45,000 bottom hole temperatures recorded from well logs and interpretation of this data in terms of regional geology and establishment and interpretation of a second data base of geothermal gradients from thermal logging data from 144 holes of opportunity in the state. (MHR)

Steeples, D.W.; Stavnes, S.A.

1982-06-01T23:59:59.000Z

250

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

251

Utilization of geothermal energy in the mining and processing of tungsten ore. Final report  

SciTech Connect (OSTI)

The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

1981-01-01T23:59:59.000Z

252

State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report  

SciTech Connect (OSTI)

The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

Icerman, L.; Starkey, A.; Trentman, N. (eds.) [eds.

1980-10-01T23:59:59.000Z

253

Interactive Map Shows Geothermal Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(AP) - With the click of a mouse, anyone from geologists to school kids can now explore geothermal energy potential in Oregon. The free interactive online map posted recently by...

254

Geothermal Resource Analysis And Structure Of Basin And Range...  

Open Energy Info (EERE)

US alone. Authors D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published Geothermal Technologies Legacy Collection, 2003 DOI Not...

255

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

256

Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics  

SciTech Connect (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

257

Environmental overview for the development of geothermal resources in the State of New Mexico. Final report  

SciTech Connect (OSTI)

A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

1980-06-01T23:59:59.000Z

258

Exergoeconomic evaluation on the optimum heating circuit system of Simav geothermal district heating system  

Science Journals Connector (OSTI)

Simav is one of the most important 15 geothermal areas in Turkey. It has several geothermal resources with the mass flow rate ranging from 35 to 72kg/s and temperature from 88 to 148C. Hence, these geothermal resources are available to use for several purposes, such as electricity generation, district heating, greenhouse heating, and balneological purposes. In Simav, the 5000 residences are heated by a district heating system in which these geothermal resources are used. Beside this, a greenhouse area of 225,000m2 is also heated by geothermal. In this study, the working conditions of the Simav geothermal district heating system have been optimized. In this paper, the main characteristics of the system have been presented and the impact of the parameters of heating circuit on the system are investigated by the means of energy, exergy, and life cycle cost (LCC) concepts. As a result, the optimum heating circuit has been determined as 60/49C.

Oguz Arslan; M.Arif Ozgur; Ramazan Kose; Abtullah Tugcu

2009-01-01T23:59:59.000Z

259

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

260

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

EXCHANGERS; GEOTHERMAL ENERGY: GEOTHERMAL SPACE HEATING;Well INFORMATION OWNER-- GEOTHERMAL ENERGY AND tUNERAL CORP.ION OhNEf. -- GEOTHERMAL ENERGY AND MINERAL CORP. DRILLING

Cosner, S.R.

2010-01-01T23:59:59.000Z

262

A PLAUSIBLE TWO-DIMENSIONAL VERTICAL MODEL OF THE EAST MESA GEOTHERMAL FIELD, CALIFORNIA, U.S.A  

E-Print Network [OSTI]

Geothermal resource investigations, Imperial Valley,Geothermal resource investigations, Imperial Valley,Geothermal resource :i.nvestigations, Imperial Valley

Goyal, K.P.

2013-01-01T23:59:59.000Z

263

Feasibility study: Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes  

SciTech Connect (OSTI)

This study presents a preliminary evaluation of the technical and economic feasibility of selected conceptual processes for pyrolytic conversion of organic feedstocks or the decomposition/detoxification of hazardous wastes by coupling the process to the geopressured-geothermal resource. The report presents a detailed discussion of the resource and of each process selected for evaluation including the technical evaluation of each. A separate section presents the economic methodology used and the evaluation of the technically viable process. A final section presents conclusions and recommendations. Three separate processes were selected for evaluation. These are pyrolytic conversion of biomass to petroleum like fluids, wet air oxidation (WAO) at subcritical conditions for destruction of hazardous waste, and supercritical water oxidation (SCWO) also for the destruction of hazardous waste. The scientific feasibility of all three processes has been previously established by various bench-scale and pilot-scale studies. For a variety of reasons detailed in the report the SCWO process is the only one deemed to be technically feasible, although the effects of the high solids content of the geothermal brine need further study. This technology shows tremendous promise for contributing to solving the nation's energy and hazardous waste problems. However, the current economic analysis suggests that it is uneconomical at this time. 50 refs., 5 figs., 7 tabs.

Propp, W.A.; Grey, A.E.; Negus-de Wys, J.; Plum, M.M.; Haefner, D.R.

1991-09-01T23:59:59.000Z

264

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

265

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

SciTech Connect (OSTI)

A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

Hays, Lance G

2014-07-07T23:59:59.000Z

266

Seismic methods for resource exploration in enhanced geothermal systems  

SciTech Connect (OSTI)

A finite-difference modeling study of seismic wave propagation was conducted to determine how to best investigate subsurface faults and fracture zones in geothermal areas. The numerical model was created based on results from a previous seismic reflection experiment. A suite of fault models was investigated including blind faults and faults with surface expressions. The seismic data suggest that blind faults can be detected by a sudden attenuation of seismic wave amplitudes, as long the fault is located below the receiver array. Additionally, a conversion from P- to S-waves indicates the reflection and refraction of the P-waves while propagating across the fault. The drop in amplitudes and the excitation of S-waves can be used to estimate the location of the fault at depth. The accuracy of the numerical modeling depends on the availability of a priori in situ information (velocity and density) from borehole experiments in the geothermal area.

Gritto, Roland; Majer, Ernest L.

2002-06-12T23:59:59.000Z

267

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using 'hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well characterized * Known/proven temperature gradients from oil and gas well records * Drilling and reservoir fracturing techniques proven in sedimentary environment - Disadvantages: * Great depths required to encounter high temperatures * Emerging industry Photo by Warren Gretz, NREL/PIX 00450

268

Comprehensive Evaluation of the Geothermal Potential within the Pyramid Lake Paiute Reservation  

Broader source: Energy.gov [DOE]

Comprehensive Evaluation of the Geothermal Potential within the Pyramid Lake Paiute Reservationpresentation at the April 2013 peer review meeting held in Denver, Colorado.

269

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

270

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

271

Geothermal energy resources in Trans-Pecos Texas - characteristics and potential for development  

SciTech Connect (OSTI)

Convective geothermal systems in Trans-pecos Texas, and Chihuahua and Coahuila, Mexico, are potential energy resources. The geothermal systems, which lie along a narrow belt near the Rio Grand River, are characterized by hot springs and shallow hot wells located along normal faults. The hot water is meteoric water that has circulated to depths of 2-3 km (1-2 mi), been heated, and risen to the surface through fractures along fault zones. The heat source is the Earth's normal thermal gradient, which as high as 40/sup 0/C/km (202/sup 0/F/100 ft); no young magma bodies are involved. Maximum measured temperatures are 90/sup 0/C (194/sup 0/F) at a hot spring in Chihuahua, about 80/sup 0/C (176/sup 0/F) in 2 well in the Sierra Vieja, and about 75/sup 0/C (167/sup 0/F) in several wells east of El Paso. Many springs have temperature in the range 35-50/sup 0/C (95-122/sup 0/F). Maximum subsurface temperatures estimated from chemical geothermometers are 100-160/sup 0/C (212-320/sup 0/F); most are considerably lower. Chemical constraints on use should be negligible except for the El Paso-area waters, which have moderately high dissolved solids (10,000 mg/L). Hydrologic data to evaluate possible production rates are generally sparse. None of the waters are hot enough to generate electricity by currently available technology. The highest temperature waters could be used for industrial or space heating, but, except for the area near El Paso, they are too far from population centers.

Henry, C.D.

1984-04-01T23:59:59.000Z

272

West Texas geothermal resource assessment. Part I. Geothermal exploration in Trans-Pecos, Texas. Final report  

SciTech Connect (OSTI)

All of the new drilling for geothermal gradient and heat flow studies have been concentrated in an area near Hueco Tanks State Park. Interest in the area was raised by the silica geothermometry map of Hoffer (1979) and its proximity to El Paso, which is less than 25 miles away and expanding rapidly toward the area of geothermal interest. Several industries in El Paso appear to be potential users of non-electrical grade hot waters. A total of 14 holes have been drilled for geothermal gradient and heat-flow measurements. Of these, 12 were 50 meters deep and all but two had gradients in excess of 100/sup 0/C/km, one having a gradient as high as 306/sup 0/C/km. Of the remaining two, one penetrated bedrock at about 50 meters and was drilled to a total depth of 125 meters. The gradient in the limestone bedrock is 170/sup 0/C/km and the heat flow is about 11 x 10/sup -6/cal/cm/sup 2/ sec. This is the highest heat flow thus far reported for a locality in the Rio Grande Rift. The last hole is 300 meters deep and has a gradient of 142/sup 0/C/km and a heat flow of 9 x 10/sup -6/cal/cm/sup 2/ sec. The Hueco Tanks site is very promising for at least space heating applications of hot water. Based on the 300 meter hole the potential for electricity grade temperatures still exist, but the tight limestone bedrock may require hot dry rock extraction technology.

Roy, R.F.; Taylor, B.

1980-01-01T23:59:59.000Z

273

Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995  

SciTech Connect (OSTI)

The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

NONE

1995-05-01T23:59:59.000Z

274

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energygeo (earth) + thermal (heat)is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

275

Simulation analysis of the unconfined aquifer, Raft River Geothermal...  

Open Energy Info (EERE)

the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined...

276

Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979-1980  

SciTech Connect (OSTI)

Phase I studies included updating and completing the USGS GEOTHERM file for California and compiling all data needed for a California Geothermal Resources Map. Phase II studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

1980-11-10T23:59:59.000Z

277

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

278

State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report  

SciTech Connect (OSTI)

Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

Icerman, L.; Starkey, A.; Trentman, N. (eds.)

1981-08-01T23:59:59.000Z

279

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011  

Broader source: Energy.gov [DOE]

Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

280

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

lPTORS- IMPERIAL VALLEY; GEOTHERMAL ENERGY CONVERSION; TOTALTELEPHONE COMMUNICATION. IMPERIAL VALLEY: GEOTHERMAL WELLS.OF SEVERAL IMPERIAL VALLEY GEOTHERMAL WELLS. AUTHOR- LANOE,

Cosner, S.R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

CORROS ION; METALLURGY; GEOTHERMAL POWER PLANTS; GEOTHERMALOF MATERIALS FOR GEOTHERMAL POWER PLANT APPLICATIONS. PAPERu AIDLIN 71 1 ITlE- GEOTHERMAL POWER IN THE WEST. TALK GIVEN

Cosner, S.R.

2010-01-01T23:59:59.000Z

282

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

SECONO GEOPRESSURED GEOTHERMAL ENERGY CONFERENCE. VOLUME 2--15 TITLE- THE LLL GEOTHERMAL ENERGY OEVELOPMENT PROGRAM.J. REFERENCE" THE LLL GEOTHERMAL ENERGY DEVELOPMENT PROGRAM.

Cosner, S.R.

2010-01-01T23:59:59.000Z

283

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Heating and Cooling Technologies Geothermal Heating and Cooling Technologies The Policymakers' Guidebook for Geothermal Heating and Cooling Technologies outlines fives steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal heating and cooling technologies such as ground source heat pumps and direct-use geothermal applications. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential Step 1: Assess the Local Industry and Resource Potential for Geothermal Heating and Cooling Increasing technology deployment requires a baseline level of knowledge

284

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

NO. 1i GEOLOGY; GEOTHERMAL WELLS; GEOTHERMAL DRILLING. BLAKEHOT SPRINGS; hELLS; GEOTHERMAL WELLS; QUANTIT AT IVE CHEMDATA ON WATER WEllS, GEOTHERMAL WElLS, AND OIL TESTS IN

Cosner, S.R.

2010-01-01T23:59:59.000Z

285

Industrial Consortium for the Utilization of the Geopressured-Geothermal Resource. Volume 1  

SciTech Connect (OSTI)

The Geopressured-Geothermal Program, now in its fifteenth year, is entering the transition period to commercial use. The industry cost-shared proposals to the consortium, represented in the presentations included in these proceedings, attest to the interest developing in the industrial community in utilizing the geopressured-geothermal resource. Sixty-five participants attended these sessions, two-thirds of whom represented industry. The areas represented by cost-shared proposals include (1) thermal enhanced oil recovery, (2) direct process use of thermal energy, e.g., aquaculture and agriculture, (3) conversion of thermal energy to electricity, (4) environment related technologies, e.g., use of supercritical processes, and (5) operational proposals, e.g., a field manual for scale inhibitors. It is hoped that from this array of potential use projects, some will persist and be successful in proving the viability of using the geopressured-geothermal resource. Such industrial use of an alternative and relatively clean energy resource will benefit our nation and its people.

Negus-deWys, J. (ed.)

1990-03-01T23:59:59.000Z

286

Reconnaissance of geothermal resources near US naval facilities in the San Diego area, California  

SciTech Connect (OSTI)

A reconnaissance study has found little evidence of potential geothermal resources useful at naval facilities in the greater San Diego metropolitan area. However, there is a zone of modest elevated water well temperatures and slightly elevated thermal gradients that may include the eastern portion of the Imperial Beach Naval Air Station south of San Diego Bay. An increase of 0.3/sup 0/ to 0.4/sup 0/F/100 ft over the regional thermal gradient of 1.56/sup 0/F/100 ft was conservatively calculated for this zone. The thermal gradient can be used to predict 150/sup 0/F temperatures at a depth of approximately 4000 ft. This zone of greatest potential for a viable geothermal resource lies within a negative gravity anomaly thought to be caused by a tensionally developed graben, approximately centered over the San Diego Bay. Water well production in this zone is good to high, with 300 gpm often quoted as common for wells in this area. The concentration of total dissolved solids (TDS) in the deeper wells in this zone is relatively high due to intrusion of sea water. Productive geothermal wells may have to be drilled to depths economically infeasible for development of the resource in the area of discussion.

Youngs, L.G.

1984-01-01T23:59:59.000Z

287

Consolidation of geologic studies of geopressured-geothermal resources in Texas. 1990 Annual report  

SciTech Connect (OSTI)

In a five-county area of South Texas, geopressured-geothermal reservoirs in the upper Wilcox Group colocated with heavy-oil reservoirs in the overlying Jackson Group. In 1990, research at the Bureau of Economic Geology concentrated on evaluating the potential of using geopressured-geothermal water for hot-water flooding of heavy-oil reservoirs. Favorable geothermal reservoirs are defined by thick deltaic sandstones and growth-fault-bounded compartments. Potential geothermal reservoirs are present at a depth of 11,000 ft (3,350 m) to 15,000 ft (4,570 m) and contain water at temperatures of 350 F (177 C) to 383 F (195 C) in Fandango field, Zapata County. One potential geothermal reservoir sandstone in the upper Wilcox (R sandstone) is composed of a continuous sand body 100 ft (30 m) to greater than 200 ft (>61 m) thick. Fault blocks average 2 to 4 mi{sup 2} (5.2 to 10.4 km{sup 2}) in area.

Raney, J.A.; Seni, S.J.; DuBar, J.R.; Walter, T.G.

1991-03-01T23:59:59.000Z

288

Evaluation of geothermal energy in desalination by vacuum membrane distillation  

Science Journals Connector (OSTI)

This paper presents the energy evaluation of the cross-flow vacuum membrane distillation (VMD) for three types of lab-fabricated polyvinylidene fluoride (PVDF) membranes and the commercial Westran S PVDF membrane. Membranes with the effective area 23.5cm2 are tested with distilled water and geothermal water as the feed solutions. Results show that the membrane porosity controlled the flux through the fabricated membranes and the commercial membrane. The commercial membrane with porosity of approximately 76.5%, which was the most porous among the tested membranes, gave the highest flux at 9.28kg/m2 h under the optimum conditions of 33.2L/h feed flow rate and 30kPa downstream pressure. The corresponding specific energy consumption was 66.03kW/kgh?1 when distilled water was examined. Heating energy of 8789kW/kgh?1, which is approximately 95% of the total energy consumption, could be saved when the warm geothermal water is fed directly into the VMD system. The water produced meets the drinking water quality with the TDS varying between 102 and 119ppm, thus the geothermal water desalination using the VMD system to produce the drinking water is satisfactory. An economic analysis for a 20,000m3/d VMD desalination plant finds that the water production costs are $0.50/m3 and $1.22/m3 respectively for the plant operated with and without geothermal energy (GE). Compare to the plant without GE utilisation, the water production costs of the plant operated with GE are less than $0.50/m3 that is at least $0.72/m3 or approximately 59% in cost saving when the water fluxes are larger than 6.6kg/m2h. The specific membrane cost reduced from $0.058/m3 to $0.035/m3 when the membrane life extended from 3 to 5years.

Rosalam Sarbatly; Chel-Ken Chiam

2013-01-01T23:59:59.000Z

289

Exploration for geothermal resources in the Capital District of New York. Volume 1. Final report  

SciTech Connect (OSTI)

Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

Not Available

1981-11-01T23:59:59.000Z

290

Exploration for geothermal resources in the Capital District of New York. Final report  

SciTech Connect (OSTI)

Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

Sneeringer, M.R.; Dunn, J.R.

1981-11-01T23:59:59.000Z

291

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Communitys supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

292

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

293

Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994  

SciTech Connect (OSTI)

The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

Not Available

1994-12-31T23:59:59.000Z

294

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

into sustainable geothermal energy: The S.E. Geysersseismicityandgeothermal energy. GeothermalResourcesinto sustainable geothermal energy: The S.E. Geysers

Brophy, P.

2012-01-01T23:59:59.000Z

295

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

296

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

297

Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii  

SciTech Connect (OSTI)

The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transect lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.

Miller, S.E.; Burgett, J.; Bruegmann, M.

1995-04-01T23:59:59.000Z

298

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

299

Geothermal energy market study on the Atlantic Coastal Plain: Ocean City, Maryland geothermal energy evaluation  

SciTech Connect (OSTI)

This report is one of a series of studies that have been made by the Applied Physics Laboratory, or its subcontractors, to examine the technical and economic feasibility of the utilization of geothermal energy at the request of potential users.

Schubert, C.E.

1981-08-01T23:59:59.000Z

300

Evaluation of testing and reservoir parameters in geothermal...  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

An Evaluation Of Exploration Methods For Low-Temperature Geothermal...  

Open Energy Info (EERE)

Geothermal Systems In The Artesian-City Area, Idaho Authors E. M. Struhsacker, C. Smith and R. M. Capuano Published Journal Geological Society of America Bulletin, 1983 DOI...

302

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recoverable Resource Estimate of Identified Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana AAPG 2012 Annual Convention and Exhibition Ariel Esposito and Chad Augustine April 24, 2012 NREL/PR-6A20-54999 2 * Geopressured Geothermal o Reservoirs characterized by pore fluids under high confining pressures and high temperatures with correspondingly large quantities of dissolved methane o Soft geopressure: Hydrostatic to 15.83 kPa/m o Hard geopressure: 15.83- 22.61 kPa/m (lithostatic pressure gradient) * Common Geopressured Geothermal Reservoir Structure o Upper thick low permeability shale o Thin sandstone layer o Lower thick low permeability shale * Three Potential Sources of Energy o Thermal energy (Temperature > 100°C - geothermal electricity generation)

303

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

Division of Geothermal Energy (ERDA-DGE) to do energy costEnergy Cost Resource Utilization Efficiency-Resource Temp- erature Surface for GeothermalEnergy Cost Resource Utilization Efficiency-Resource Temp- erature Surface for Geothermal

Pope, W.L.

2011-01-01T23:59:59.000Z

304

Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii  

SciTech Connect (OSTI)

Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

1993-10-01T23:59:59.000Z

305

Geothermal Energy Photos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Geothermal Energy Photos Geothermal Energy Photos Image of the Week: Energy Department investments are exploring for geothermal power from abundant natural...

306

2012 Geothermal Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Webinar 2012 Geothermal Webinar January 10, 2012 - 12:47pm Addthis This Office of Indian Energy webinar provides information on developing geothermal resources on tribal...

307

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

308

Geothermal Evaluation of The Hosston Formation Lackland Air Force Base, San Antonio, Texas Phase II Report  

SciTech Connect (OSTI)

This report summarizes the results of a phased program to test the geothermal characteristics of the Hosston Formation at Lackland Air Force Base, San Antonio, Texas. The geothermal resource evaluation was made possible through drilling and preliminary testing of a large diameter well, Lackland AFB No.1, at the south portion of the base. Phase I of the program had 3 major components: (1) compilation and interpretation of surface and subsurface geologic data to site the well; (2) design of the well; and (3) permitting the well. Phase II consisted of well drilling and preliminary development. The goal of the program was to identify water temperature, water quality, and productivity characteristics of the Hosston aquifer, which preliminary studies suggested might be favorable for direct applications on the base. Results reported herein suggest that heat pumps or other engineering alternatives might be needed for such applications. Results of the well drilling give data on water productivity, quality and temperature. Air-lift testing shows that, although the well does not flow to surface, good artesian pressure exists. Water quality appears acceptable, with about 2200 parts per million total dissolved solids. Equilibrated reservoir temperatures appear to be slightly less than 108 F (42 C).

Zeisloft, Jon; Foley, Duncan

1984-05-30T23:59:59.000Z

309

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

310

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

311

Enhancement of existing geothermal resource utilization by cascading to intensive aquaculture  

SciTech Connect (OSTI)

A demonstration high rate aquaculture production system utilizing a cascaded geothermal resource was designed, constructed and operated to fulfill the objectives of this project. Analysis of the energy and water balances for the system indicated that the addition of an Aquaculture Facility expanded the use of the existing resource. This expanded use in no way affected the up- stream processes. Analysis of the system`s energy and water requirements indicated that the present resource was under-utilized and could be expanded. Energy requirements appeared more limiting than water use, but the existing system could be expanded to a culture volume of 72,000 gal. This system would have a potential production capacity of 93,600 lb/yr with a potential market value of $280,00/yr. Based on the results of this study, the heat remaining in the geothermal fluid from one square foot of operating greenhouse is sufficient to support six gallons of culture water for a high density aquaculture facility. Thus, the over 1.5M ft{sup 2} of existing greenhouse space in New Mexico, has the potential to create an aquaculture industry of nearly 9M gal. This translates to an annual production potential of 11.7M lb with a market value of $35.lM.

Zachritz, W.H., II; Polka, R.; Schoenmackers

1996-04-01T23:59:59.000Z

312

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

PRIETC GEOTHERMAL HELD B.C MEXICO WEll DATA IEMPERATUfGEOTHERMAL FIELD B,C'f MEXICO WELL INFORHATlONPRIETO GEOThERMAL FIELD B.C _, MEXICO WELL DATA TEMPERATURE

Cosner, S.R.

2010-01-01T23:59:59.000Z

313

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

CORROSION; ECCNCMICS; IMPERIAL VALLEY. TITLE- LASL HOT DRY1975, DESCf;..lPTORS- IMPERIAL VALLEY; GEOTHERMAL ENERGYGECTHERMAL ANOMALY; IMPERIAL VALLEY; GEOTHERMAL flUIDS;

Cosner, S.R.

2010-01-01T23:59:59.000Z

314

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

315

Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993  

SciTech Connect (OSTI)

Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

Lienau, P.

1993-06-01T23:59:59.000Z

316

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published...

317

Geothermal Literature Review (Majer, 2003) | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review (Majer, 2003) Geothermal Literature Review (Majer, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review (Majer, 2003) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

318

File:Hawaii rules on leasing and drilling of geothermal resources.pdf |  

Open Energy Info (EERE)

File File Edit History Facebook icon Twitter icon » File:Hawaii rules on leasing and drilling of geothermal resources.pdf Jump to: navigation, search File File history File usage File:Hawaii rules on leasing and drilling of geothermal resources.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 339 KB, MIME type: application/pdf, 52 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:43, 23 October 2012 Thumbnail for version as of 09:43, 23 October 2012 1,275 × 1,650, 52 pages (339 KB) Dklein2012 (Talk | contribs)

319

Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S.  

Broader source: Energy.gov [DOE]

In early June 2011, the U.S. Department of Energy's Geothermal Technologies Program (GTP) intends to issue a Funding Opportunity Announcement to expand its partnership with the geothermal community on geothermal systems research and development throughout the United States in order to support GTP's goal of lowering the cost of geothermal energy to 6 /kWh.

320

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Overview of Geothermal Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

322

Advances In The Past 20 Years- Geochemistry In Geothermal Exploration  

Open Energy Info (EERE)

Advances In The Past 20 Years- Geochemistry In Geothermal Exploration Advances In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Advances In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Details Activities (8) Areas (2) Regions (0) Abstract: Most theoretical fundamentals of geothermal geochemistry were established by the mid-1980s, as were numerous practical applications of these fundamentals to geothermal resource evaluation and management. Since that time, these geeochmical tools have been refined to various degrees. Noted developments include: widespread use of high-performance liquid chromatography (HPLC); advances in spectral analysis; new and refined

323

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

324

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

325

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

326

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments  

Broader source: Energy.gov [DOE]

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments: Impacts of a Cluster of Energy Technologies, August 2010.

327

Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...  

Office of Scientific and Technical Information (OSTI)

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

328

Geopressured Geothermal Resource and Recoverable Energy Estimate for the Wilcox and Frio Formations, Texas (Presentation)  

SciTech Connect (OSTI)

An estimate of the total and recoverable geopressured geothermal resource of the fairways in the Wilcox and Frio formations is made using the current data available. The flow rate of water and methane for wells located in the geopressured geothermal fairways is simulated over a 20-year period utilizing the TOUGH2 Reservoir Simulator and research data. The model incorporates relative permeability, capillary pressure, rock compressibility, and leakage from the bounding shale layers. The simulations show that permeability, porosity, pressure, sandstone thickness, well spacing, and gas saturation in the sandstone have a significant impact on the percent of energy recovered. The results also predict lower average well production flow rates and a significantly higher production of natural gas relative to water than in previous studies done from 1975 to 1980. Previous studies underestimate the amount of methane produced with hot brine. Based on the work completed in this study, multiphase flow processes and reservoir boundary conditions greatly influence the total quantity of the fluid produced as well as the ratio of gas and water in the produced fluid.

Esposito, A.; Augustine, C.

2011-10-01T23:59:59.000Z

329

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

330

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

E-Print Network [OSTI]

of Kamchatka. Nauka, Moscow, Russia, 149 pp. (in Russian).geothermal field, Kamchatka, Russia. Geothermics 33, 421geothermal field, Kamchatka, Russia. Geothermal Resources

Kiryukhin, A.V.

2008-01-01T23:59:59.000Z

331

Preliminary plan for the development of geothermal energy in the town of Gabbs, Nevada  

SciTech Connect (OSTI)

Characteristics of the site significant to the prospect for geothermal development are described, including: physiography, demography, economy, and the goals and objectives of the citizens as they relate to geothermal development. The geothermal resource evaluation is described, including the depth to reservoir, production rates of existing water wells, water quality, and the resource temperature. Uses of the energy that seem appropriate to the situation both now and in the foreseeable future at Gabbs are described. The essential institutional requirements for geothermal energy development are discussed, including the financial, environmental, legal, and regulatory requirements. The main resource, engineering and institutional considerations involved in a geothermal district heating system for Gabbs are summarized.

Not Available

1981-11-09T23:59:59.000Z

332

Geothermal initiatives in Central America  

SciTech Connect (OSTI)

The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

1986-01-01T23:59:59.000Z

333

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

334

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

SciTech Connect (OSTI)

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

335

Flora of the Mayacmas Mountains. [Listing of 679 species in the Geysers Geothermal Resource area  

SciTech Connect (OSTI)

This flora describes the plants that occur within the Mayacmas Mountain Range of northern California. It is the result of ten years of environmental assessment by the author in the Geysers Geothermal Resource area, located in the center of the Mayacmas Range. The flora includes notes on plant communities and ecology of the area, as well as habitat and collection data for most of the 679 species covered. Altogether 74 families, 299 genera and 679 species are included in the flora. The work is divided into eight subdivisions: trees; shrubs; ferns and fern allies; aquatic plants; tules, sedges, and rushes; lilies and related plants; dicot herbs; and grasses. Within each subdivision, family, genera and species are listed alphabetically. Keys are provided at the beginning of each subdivision. A unique combination of physical, environmental and geologic factors have resulted in a rich and diverse flora in the Mayacmas. Maps have been provided indicating known locations for species of rare or limited occurrence.

Neilson, J.A.

1981-09-01T23:59:59.000Z

336

Hot dry rock geothermal energy -- a renewable energy resource that is ready for development now  

SciTech Connect (OSTI)

Hot dry rock (HDR) geothermal energy, which utilizes the natural heat contained in the earth's crust, is a very large and well-distributed resource of nonpolluting, and essentially renewable, energy that is available globally. Its use could help mitigate climatic change and reduce acid rain, two of the major environmental consequences of our ever-increasing use of fossil fuels for heating and power generation. In addition, HDR, as a readily available source of indigenous energy, can reduce our nations's dependence on imported oil, enhancing national security and reducing our trade deficit. The earth's heat represents an almost unlimited source of energy that can begin to be exploited within the next decade through the HDR heat-mining concept being actively developed in the United States, Great Britain, Japan, and several other countries. On a national scale we can begin to develop this new source, using it directly for power generation or for direct-heat applications, or indirectly in hybrid geothermal/fossil-fuel power plants. In the HDR concept, which has been demonstrated in the field in two different applications and flow- tested for periods up to one year, heat is recovered from the earth by pressurized water in a closed-loop circulation system. As a consequence, minimal effluents are released to the atmosphere, and no wastes are produced. This paper describes the nature of the HDR resource and the technology required to implement the heat-mining concept. An assessment of the requirements for establishing HDR feasibility is presented in the context of providing a commercially competitive energy source.

Brown, D.W.; Potter, R.M.; Myers, C.W.

1990-01-01T23:59:59.000Z

337

Assessment of the geothermal resources of Indiana based on existing geologic data  

SciTech Connect (OSTI)

The general geology of Indiana is presented including the following: physiography, stratigraphy, and structural features. The following indicators of geothermal energy are discussed: heat flow and thermal gradient, geothermal occurrences, seismic activity, geochemistry, and deep sedimentary basins. (MHR)

Vaught, T.L.

1980-12-01T23:59:59.000Z

338

Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979 to 1980 of the US Department of Energy-California State-Coupled Program for reservoir assessment and confirmation  

SciTech Connect (OSTI)

Statewide assessment studies included updating and completing the USGS GEOTHERM File for California and compiling all data needed for a California Geothermal Resources Map. Site specific assessment studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

1980-11-10T23:59:59.000Z

339

Sustainable Energy Resources for Consumers Webinar on Residential Geothermal Heat Pump Retrofit Transcript  

Broader source: Energy.gov [DOE]

Transcript for a U.S. Department of Energy Webinar on Dec. 14, 2010, about residential geothermal heat pump retrofits

340

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

342

RAPID/Geothermal/Exploration/Colorado | Open Energy Information  

Open Energy Info (EERE)

Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us Geothermal Exploration in Colorado Geothermal...

343

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

Til, C. J. Van

2012-01-01T23:59:59.000Z

344

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

Churchman, C.W.

2011-01-01T23:59:59.000Z

345

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

346

Finding Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis  

Broader source: Energy.gov [DOE]

Fining Large Aperture Fractures in Geothermal Resource Areas Using A Three-Component Long-Offset Surface Seismic Survey, PSInSAR, and Kinematic Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

347

Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis  

Broader source: Energy.gov [DOE]

Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

348

NREL: Geothermal Technologies - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) assembled a panel of geothermal experts to identify the obstacles to geothermal energy growth and more. May 9, 2011 Department of Energy to Issue Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S. In early June 2011, the U.S. Department of Energy's Geothermal Technologies

349

Geothermal energy in Nevada: development and utilization  

SciTech Connect (OSTI)

The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

Not Available

1982-01-01T23:59:59.000Z

350

Protection policy for Hawaii's native wildlife during geothermal energy development  

Science Journals Connector (OSTI)

Hawaii possesses abundant geothermal resources and rare native wildlife. Geothermal energy development has not posed a threat to...

Lee Hannah

1986-01-01T23:59:59.000Z

351

Geothermal development plan: Pima County  

SciTech Connect (OSTI)

The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

352

Geothermal-well completions: a survey and technical evaluation of existing equipment and needs  

SciTech Connect (OSTI)

The geothermal environment and associated well completion problems are reviewed. Existing well completion equipment is surveyed and limitations are identified. A technical evaluation of selected completion equipment is presented. The technical evaluation concentrates on well cementing equipment and identifies potential failure mechanisms which limit the effectiveness of these tools. Equipment employed in sand control, perforating, and corrosion control are identified as potential subjects for future technical evaluation.

Nicholson, J.E.; Snyder, R.E.

1982-07-01T23:59:59.000Z

353

Geothermal Energy on Mars  

Science Journals Connector (OSTI)

This contribution will concentrate on the implications of data from new studies of Mars during the past decade or so in terms of martian geothermal resources, and the potential differences in exploiting geothermal

Paul Morgan

2009-01-01T23:59:59.000Z

354

Operation of a mineral-recovery unit on brine from the Salton Sea known geothermal resource area  

SciTech Connect (OSTI)

The Bureau of Mines operated a mineral recovery unit to recover metal values from post-flash geothermal brines from the Salton Sea known geothermal resource area as part of its research into the use of plentiful resources. The brine was available for metals recovery after its heat content had been used to generate electricity. The brine source was treated with lime to precipitate the contained iron, manganese, lead, and zinc before injection of the heat-depleted brine into the underground reservoir. Data are presented on the effects of process variables, such as rate and method of lime addition and air oxidation versus air exclusion. Variations in precipitation of metal values, composition of precipitates, effectiveness of slurry thickeners, and methods of treating the precipitates to recover metal values are discussed.

Schultze, L.E.; Bauer, D.J.

1982-01-01T23:59:59.000Z

355

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

356

Geothermal development plan: Maricopa County  

SciTech Connect (OSTI)

The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

357

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

358

Geothermal Energy Market Study on the Atlantic Coastal Plain. GRITS (Version 9): Model Description and User's Guide  

SciTech Connect (OSTI)

The Geothermal Resource Interactive Temporal Simulation (GRITS) model calculates the cost and revenue streams for the lifetime of a project that utilizes low to moderate temperature geothermal resources. With these estimates, the net present value of the project is determined. The GRITS model allows preliminary economic evaluations of direct-use applications of geothermal energy under a wide range of resource, demand, and financial conditions, some of which change over the lifetime of the project.

Kroll, Peter; Kane, Sally Minch [eds.

1982-04-01T23:59:59.000Z

359

Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach  

Broader source: Energy.gov [DOE]

This project entails finding and assessing geothermal systems to: Increase geothermal development through research and outreach; Reduce risk in drill target selection, thus reducing project development costs; and Recent research includes development of shallow temperature surveys, seismic methods, aerial photography, field structural geology.

360

Geothermal Properties Measurement Tool | Open Energy Information  

Open Energy Info (EERE)

Geothermal Properties Measurement Tool Geothermal Properties Measurement Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Properties Measurement Tool Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Geothermal Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ornl.gov/sci/ees/etsd/btric/ground-source.shtml Cost: Free References: Geothermal Properties Measurement Tool [1] Logo: Geothermal Properties Measurement Tool The Geothermal Properties Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a certain location. The Geothermal Properties Measurement Excel tool was developed at Oak Ridge

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

362

Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981  

SciTech Connect (OSTI)

Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

Not Available

1981-01-01T23:59:59.000Z

363

DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources  

Broader source: Energy.gov [DOE]

Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy (DOE) today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields. DOE's Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy will combine efforts to have experts test and validate low temperature geothermal power generation technologies at the Rocky Mountain Oilfield Testing Center (RMOTC) near Casper, Wyoming.

364

Geothermal Technologies Program Coproduction Fact Sheet | Department...  

Office of Environmental Management (EM)

& Publications Low TemperatureCoproducedGeopressured Subprogram Overview Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal...

365

Utility Geothermal Development Strategies | Department of Energy  

Energy Savers [EERE]

hosted by the Geothermal Resources Council (GRC) and sponsored by the U.S. Department of Energy Geothermal Technologies Office. The Webinar focused on ways utilities can include...

366

Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...  

Office of Scientific and Technical Information (OSTI)

ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

367

CDC DOGGR Geothermal Publications | Open Energy Information  

Open Energy Info (EERE)

PublicationsLegal Abstract The California Department of Conservation (CDC) Division of Oil, Gas, and Geothermal Resources (DOGGR) provides publications related to geothermal...

368

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training RangeSouth (UTTRS)  

SciTech Connect (OSTI)

Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2012-04-01T23:59:59.000Z

369

Stanford Geothermal Workshop  

Energy Savers [EERE]

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

370

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

371

Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana  

SciTech Connect (OSTI)

The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

1998-03-01T23:59:59.000Z

372

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

373

Geothermal Energy Production with Co-produced and Geopressured...  

Broader source: Energy.gov (indexed) [DOE]

and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet),...

374

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

375

Conceptual Model of the Klamath Falls, Oregon Geothermal Area  

SciTech Connect (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed. 1 tab., 8 figs., 21 refs.

Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

1987-01-20T23:59:59.000Z

376

Conceptual model of the Klamath Falls, Oregon geothermal area  

SciTech Connect (OSTI)

Over the last 50 years significant amounts of data have been obtained from the Klamath Falls geothermal resource. To date, the complexity of the system has stymied researchers, leading to the development of only very generalized hydrogeologic and geothermal models of the area. Recently, the large quantity of available temperature data have been re-evaluated, revealing new information on subsurface heat flow and locations of faults in the system. These inferences are supported by borehole, geochemical, geophysical, and hydrologic data. Based on re-evaluation of all available data, a detailed conceptual model for the Klamath Falls geothermal resource is proposed.

Prucha, R.H.; Benson, S.M.; Witherspoon, P.A.

1987-01-01T23:59:59.000Z

377

Geothermal energy development  

SciTech Connect (OSTI)

This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

Butler, E.W.; Pick, J.B.

1983-01-01T23:59:59.000Z

378

South Dakota geothermal handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

379

University Competition Leads to Geothermal Breakthroughs | Department of  

Broader source: Energy.gov (indexed) [DOE]

University Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs March 8, 2013 - 11:57am Addthis Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Apply for the 2013 National Geothermal Student Competition by

380

University Competition Leads to Geothermal Breakthroughs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Competition Leads to Geothermal Breakthroughs Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs March 8, 2013 - 11:57am Addthis Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Apply for the 2013 National Geothermal Student Competition by visiting the contest page.

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

382

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

383

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

SciTech Connect (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

384

Revisiting the "Buy versus Build" Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources  

E-Print Network [OSTI]

levelized costs of wind and geothermal power to one another.the costs of buying wind or geothermal power to the costs of

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

385

Revisiting the "Buy versus Build" decision for publicly owned utilities in California considering wind and geothermal resources  

E-Print Network [OSTI]

levelized costs of wind and geothermal power to one another.costs of buying wind or geothermal power to the costs of

Bolinger, Mark; Wiser, Ryan; Golove, William

2001-01-01T23:59:59.000Z

386

Geothermal direct use engineering and design guidebook  

SciTech Connect (OSTI)

The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

Lienau, P.J.; Lunis, B.C. (eds.)

1991-01-01T23:59:59.000Z

387

Geothermal direct use engineering and design guidebook  

SciTech Connect (OSTI)

The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

1989-03-01T23:59:59.000Z

388

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

389

Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995  

SciTech Connect (OSTI)

The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

NONE

1996-02-01T23:59:59.000Z

390

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect (OSTI)

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

391

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

392

RAPID/Geothermal/Well Field/New Mexico | Open Energy Information  

Open Energy Info (EERE)

Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us Geothermal Well Field in New Mexico Geothermal ...

393

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

394

Investigation and evaluation of geopressured-geothermal wells  

SciTech Connect (OSTI)

Over the life of the project, 1143 wildcat wells were screened for possible use. Although many did not meet the program's requirement for sand development, a surprisingly large number were abandoned because of downhole mechanical problems. Only 94 of these wells were completed as commercial hydrocarbon producers. Five wells of opportunity were funded for testing. Of these, two were evaluated for their hydraulic energy, thermal energy, and recoverable methane, and three were abandoned because of mechanical problems. (MHR)

Hartsock, J.H.; Rodgers, J.A.

1980-09-01T23:59:59.000Z

395

EA-1893: Canby Cascaded Geothermal Development System, Canby, California |  

Broader source: Energy.gov (indexed) [DOE]

93: Canby Cascaded Geothermal Development System, Canby, 93: Canby Cascaded Geothermal Development System, Canby, California EA-1893: Canby Cascaded Geothermal Development System, Canby, California Summary This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: NOTE: This EA has been cancelled.

396

Hawaii Energy Resource Overviews. Volume 5. Social and economic impacts of geothermal development in Hawaii  

SciTech Connect (OSTI)

The overview statement of the socio-economic effects of developing geothermal energy in the State of Hawaii is presented. The following functions are presented: (1) identification of key social and economic issues, (2) inventory of all available pertinent data, (3) analysis and assessment of available data, and (4) identification of what additional information is required for adequate assessment.

Canon, P.

1980-06-01T23:59:59.000Z

397

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

398

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

geology of three geothermal wells, Klamath Falls, Oregon,evaluation of five geothermal wells: in Proceedings Second

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

399

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

400

Blind Geothermal System | Open Energy Information  

Open Energy Info (EERE)

Blind Geothermal System Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a geothermal heat source, but no modern surface manifestations. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Many geothermal areas show no signs of geothermal activity at the surface if the heated water is too far below or no conduits to the surface are available. An area of geothermal activity with no surface features is referred to as a "blind geothermal system." Examples Want to add an example to this list? Select a Geothermal Resource Area to

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energetic and economic evaluations of geothermal district heating systems by using ANN  

Science Journals Connector (OSTI)

This paper proposes an artificial neural network (ANN) technique as a new approach to evaluate the energy input, losses, output, efficiency, and economic optimization of a geothermal district heating system (GDHS). By using ANN, an energetic analysis is evaluated on the Afyon geothermal district heating system (AGDHS) located in the city of Afyonkarahisar, Turkey. Promising results are obtained about the economic evaluation of that system. This has been used to determine if the existing system is operating at its optimal level, and will provide information about the optimal design and profitable operation of the system. The results of the study show that the ANN model used for the prediction of the energy performance of the AGDHS has good statistical performance values: a correlation coefficient of 0.9983 with minimum RMS and MAPE values. The total cost for the AGDHS is profitable when the PWF is higher than 7.9. However, the PWF of the AGDHS was found to be 1.43 for the given values. As a result, while installing a GDHS, one should take into account the influences of the PWF, ambient temperature and flow rate on the total costs of the system in any location where it is to be established.

Ali Keeba?; Mehmet Ali Alkan; ?smail Yabanova; Mehmet Yumurtac?

2013-01-01T23:59:59.000Z

402

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

403

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

404

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

405

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties,

406

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

407

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

408

Geothermal Site Assessment Using the National Geothermal Data System  

Open Energy Info (EERE)

Geothermal Site Assessment Using the National Geothermal Data System Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Jump to: navigation, search Tool Summary Name: Geothermal Site Assessment Using the National Geothermal Data System (NGDS), with Examples from the Hawthorne Ammunition Depot Area Agency/Company /Organization: University of Nevada-Reno Sector: Energy Focus Area: Renewable Energy, Geothermal Topics: Resource assessment Resource Type: Case studies/examples, Publications Website: www.unr.edu/geothermal/pdffiles/PenfieldGRC2010_GeothermalSiteAssessme Cost: Free Language: English References: Paper[1] "This paper examines the features and functionality of the existing database, its integration into the 50-state NGDS, and its usage in

409

Management plan for fiscal year 1981: Environmental Control Technology Project, geothermal development  

SciTech Connect (OSTI)

The management of the following four assessment tasks are discussed: current progress in H/sub 2/S abatement technology; solid wastes from geothermal power production operations: characterization, handling, and disposal; problems associated with the use of agricultural drainage water for geothermal power plant cooling in the Imperial Valley; and liquid dominated, low total dissolved solids geothermal resources: characterization and evaluation of potential problems due to composition. (MHR)

Morris, W.F.; Stephens, F.B.

1980-10-14T23:59:59.000Z

410

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

411

Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984  

SciTech Connect (OSTI)

Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

1984-08-01T23:59:59.000Z

412

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

413

Energetic, exergetic, economic and environmental evaluations of geothermal district heating systems: An application  

Science Journals Connector (OSTI)

This study deals with an energetic and exergetic analysis as well as economic and environmental evaluations of Afyon geothermal district heating system (AGDHS) in Afyon, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. And, for economic and environmental evaluations, actual data are obtained from the Technical Departments. The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. For system performance analysis and improvement, both energy and exergy efficiencies of the overall AGDHS are determined to be 34.86% and 48.78%, respectively. The efficiency improvements in heat and power systems can help achieving energy security in an environmentally acceptable way by reducing the emissions that might otherwise occur. Present application has shown that in Turkey, geothermal energy is much cheaper than the other energy sources, like fossil fuels, and makes a significant contribution towards reducing the emissions of air pollution.

Ali Keeba?

2013-01-01T23:59:59.000Z

414

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

415

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

416

Alaska Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Geothermal Region Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alaska Geothermal Region Details Areas (54) Power Plants (1) Projects (2) Techniques (0) Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[1] Assessment of Moderate- and High-Temperature Geothermal Resources of the United States[2] References ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" ↑ "Assessment of Moderate- and High-Temperature Geothermal Resources of the United States" Geothermal Region Data State(s) Alaska Area 1,717,854 km²1,717,854,000,000 m² 663,091.644 mi² 18,490,808,670,600 ft² 2,054,553,384,000 yd² 424,490,312.67 acres USGS Resource Estimate for this Region Identified Mean Potential 677 MW677,000 kW

417

Consolidation of geologic studies of geopressured geothermal resources in Texas. 1982 annual report  

SciTech Connect (OSTI)

Detailed structural mapping at several horizons in selected study areas within the Frio growth-fault trend demonstrates a pronounced variability in structural style. At Sarita in South Texas, shale mobilization produced one or more shale ridges, one of which localized a low-angle growth fault trapping a wedge of deltaic sediments. At Corpus Christi, shale mobilization produced a series of large growth faults, shale-cored domed anticlines, and shale-withdrawal basins, which become progressively younger basinward. At Blessing, major growth faults trapped sands of the Greta/Carancahua barrier system with little progradation. At Pleasant Bayou, a major early growth-fault pattern was overprinted by later salt tectonics - the intrusion of Danbury Dome and the development of a salt-withdrawal basin. At Port Arthur, low-displacement, long-lived faults formed on a sand-poor shelf margin contemporaneously with broad salt uplifts and basins. Variability in styles is related to the nature and extent of Frio sedimentation and shelf-margin progradation and to the presence or absence of salt. Structural styles that are conducive to the development of large geothermal reservoirs include blocks between widely spaced growth faults having dip reversal, salt-withdrawal basins, and shale-withdrawal basins. These styles are widespread on the Texas Gulf Coast. However, actually finding a large reservoir depends on demonstrating the existence of sufficient sandstone with adequate quality to support geopressured geothermal energy production.

Morton, R.A.; Ewing, T.E.; Kaiser, W.R.; Finley, R.J.

1983-03-01T23:59:59.000Z

418

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

419

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

420

California PRC Section 21065.5, Definitions for Geothermal Exploratory...  

Open Energy Info (EERE)

Section 21065.5, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "'Geothermal exploratory project' means a project as...

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

geothermal reservoirs (except those in the Imperial Valley)Geothermal resource and reservoir investigation of U.S. Bureau of Reclamation Leaseholds at East Mesa, Imperial Valley,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

422

Geothermal Technologies Program Peer Review Program June 6 -...  

Broader source: Energy.gov (indexed) [DOE]

highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplenary...

423

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search...

424

Purchase and Installation of a Geothermal Power Plant to Generate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation....

425

Grid-Connected Renewable Energy Generation Toolkit-Geothermal...  

Open Energy Info (EERE)

Geothermal AgencyCompany Organization: United States Agency for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website:...

426

Development of an Improved Cement for Geothermal Wells  

Broader source: Energy.gov (indexed) [DOE]

temperature fluctuation. * Facilitate the development of geothermal resources in remote locations. 7 | US DOE Geothermal Program eere.energy.gov ScientificTechnical...

427

Low Cost Exploration, Testing, and Development of the Chena Geothermal...  

Open Energy Info (EERE)

Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensivelyexplored, tested, and...

428

Navy 1 Geothermal Area | Department of Energy  

Energy Savers [EERE]

Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the...

429

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

430

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

431

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

432

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

433

Direct utilization of geothermal resources at Warm Springs State Hospital, Warm Springs, Montana. Final report, January 31, 1979-June 30, 1983  

SciTech Connect (OSTI)

Several decades ago the water from a natural hot spring was piped to the Warm Springs State Hospital barn and greenhouse and eventually into the domestic water supply for showers. The Montana Department of Natural Resources and Conservation (DNRC) funded a feasibility study on potential development of the geothermal resource from monies originating from coal severence taxes. The results of the feasibility study were subsequently utilized in obtaining a $721,122 award from the Department of Energy Program Opportunity Notice (PON) program to identify and develop the geothermal resource at Warm Springs. The study included environmental and legal considerations, geophysical surveys, and the subsequent development of the resource. The well produces 60 to 64 gpm of 154/sup 0/F geothermal water which is utilized in a heat exchanger to heat domestic water. The system became fully operational on January 13, 1983 and the calculated yearly energy savings represent approximately 17.6 million cubic feet of natural gas which is equivalent to $77,000, based on current prices.

Not Available

1984-01-01T23:59:59.000Z

434

Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation  

SciTech Connect (OSTI)

Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

1981-08-01T23:59:59.000Z

435

Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177  

SciTech Connect (OSTI)

In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

2007-05-17T23:59:59.000Z

436

Assessing the Rye Patch geothermal field, a classic Basin-and...  

Open Energy Info (EERE)

Rye Patch geothermal field, a classic Basin-and-Range Resource: Geothermal Resources Council Transactions Jump to: navigation, search OpenEI Reference LibraryAdd to library...

437

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

438

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

439

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

440

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

442

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

443

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

444

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Broader source: Energy.gov (indexed) [DOE]

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

445

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

446

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Broader source: Energy.gov (indexed) [DOE]

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

447

South Dakota Geothermal Energy Handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

Not Available

1980-06-01T23:59:59.000Z

448

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

449

Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems  

SciTech Connect (OSTI)

Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectiveness in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus injecting fluid below fracturing gradients) (section 4.1 on page 50); b) zonal isolation methods (by use of perforated casing or packers) (section 4.2 on page 57); c) fracture re-orientation and fracture network growth techniques (e.g., by use of alternating high- and low-rate injections) (section 4.4 on page 74); and d) fluid diversion methods (by use of the SurgiFrac technique, the StimGun perforation technique, or stress shadowing). This project task is to be completed in the first project year, enabling the most promising techniques to be field tested and evaluated in the second project year. 3) Study the applicability of the methods listed above by utilizing several techniques (section 5 on page 75) including, but not limited to: a) Hydraulic Impedance Testing (HIT) to determine the location of open hydraulic fractures along a open-hole interval; b) pressure transient testing to determine reservoir permeability, pore pressure, and closure stress; and c) treatment well tilt mapping or microseismic mapping to evaluate fracture coverage. These techniques were reviewed for their potential application for EGS in the first project year (section 5.1 on page 75). This study also includes further analysis of any field testing that will be conducted in the Desert Peak area in Nevada for ORMAT Nevada, Inc. (section 5.2 on page 86), with the aim to close the loop to provide reliable calibrated fracture model results. Developed through its hydraulic fracture consulting business, techniques of Pinnacle Technologies, Inc. for stimulating and analyzing fracture growth have helped the oil and gas industry to improve hydraulic fracturing from both a technical and economic perspective. In addition to more than 30 years of experience in the development of geothermal energy for commercial power generation throughout the world, GeothermEx, Inc. brings to the project: 1) Detailed information about specific developed and potential EGS reservoirs, 2) experience with geothermal well design, completion, and testing practices, and 3) a direct connection to the Desert Peak EGS project.

Peter Van Dyke; Leen Weijers; Ann Robertson-Tait; Norm Warpinski; Mike Mayerhofer; Bill Minner; Craig Cipolla

2007-10-17T23:59:59.000Z

450

Geothermal utilization at Castle Oaks Subdivision, Castle Rock, Colorado  

SciTech Connect (OSTI)

Designs of geothermal systems for using warm water from four aquifers of the Denver Basin are presented. Advantages of using heat pumps with the geothermal resource are discussed. Two design cases-one with separate heat load and heat pump, and the other with the heat pump and heat load located at the well site-are evaluated in terms of pump costs, operating costs, and payback periods. The 20-year delivered energy costs for the two geothermal systems would be slightly less than those for natural gas ($5.64 to $6.42 versus $6.70 per million Btu).

Garing, K.L.; Coury, G.E.; Goering, S.W.

1982-04-01T23:59:59.000Z

451

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

452

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

453

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

454

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

455

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

456

Evaluation of Current and Feasible Future Use of Geothermal Energy at Chinyunyu Hot Spring, Zambia.  

E-Print Network [OSTI]

?? The main source of geothermal energy is the heat flow from the mantle beneath the Earths surface, generated by the gradual decay of radioactive (more)

Kapasa, Christopher

2014-01-01T23:59:59.000Z

457

RAPID/Geothermal/Well Field/Colorado | Open Energy Information  

Open Energy Info (EERE)

the Use of Wells, "Geothermal Well" means a well that is constructed for the purpose of exploration, use of a geothermal resource, or reinjection of a geothermal fluid. A permit...

458

Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability  

SciTech Connect (OSTI)

The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

Not Available

1980-09-01T23:59:59.000Z

459

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

SciTech Connect (OSTI)

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

460

Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration  

SciTech Connect (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect (OSTI)

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

462

Chapter 12 - Geothermal Energy  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses where the earth's thermal energy is sufficiently concentrated for economic use, the various types of geothermal systems, the production and utilization of the resource, and the environmental benefits and costs of geothermal production. Earth scientists quantify the energy and temperature in the earth in terms of heat flow and temperature gradient. The heat of the earth is derived from two components: the heat generated by the formation of the earth, and heat generated by radioactive decay of elements in the upper parts of the earth. The word geothermal comes from the combination of the Greek words go, meaning earth, and thrm, meaning heat. Geothermal resources are concentrations of the earth's heat, or geothermal energy, that can be extracted and used economically now or in the reasonable future. The earth contains an immense amount of heat but the heat generally is too diffuse or deep for economic use. Hence, the search for geothermal resources focuses on those areas of the earth's crust where geological processes have raised temperatures near enough to the surface that the heat contained can be utilized. Currently, only concentrations of heat associated with water in permeable rocks can be exploited economically. These systems are known as hydrothermal geothermal systems. All commercial geothermal production is currently restricted to geothermal systems that are sufficiently hot for the use and that contain a reservoir with sufficient available water and productivity for economic development. Geothermal energy is one of the cleaner forms of energy now available in commercial quantities. Use of geothermal energy avoids the problems of acid rain and greatly reduces greenhouse gas emissions and other forms of air pollution.

Joel L. Renner

2008-01-01T23:59:59.000Z

463

Geothermal development plan: Maricopa county  

SciTech Connect (OSTI)

Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

White, D.H.

1981-01-01T23:59:59.000Z

464

The Future of Geothermal Energy  

Broader source: Energy.gov [DOE]

The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise...

465

Evaluation of hydrothermal resources of North Dakota. Phase II. Final technical report  

SciTech Connect (OSTI)

This evaluation of the hydrothermal resources of North Dakota is based on existing data on file with the North Dakota Geological Survey (NDGS) and other state and federal agencies, and field and laboratory studies conducted. The principal sources of data used during the Phase II study were WELLFILE, the computer library of oil and gas well data developed during the Phase I study, and WATERCAT, a computer library system of water well data assembled during the Phase II study. A field survey of the shallow geothermal gradients present in selected groundwater observation holes was conducted. Laboratory determinations of the thermal conductivity of core samples is being done to facilitate heat-flow calculations on those hole-of-convenience cased.

Harris, K.L.; Howell, F.L.; Winczewski, L.M.; Wartman, B.L.; Umphrey, H.R.; Anderson, S.B.

1981-06-01T23:59:59.000Z

466

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013  

SciTech Connect (OSTI)

Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energys Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining who owns and who maintains the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, the invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and contracts (agencies, foundations, pri- vate sector), membership, fees for services (consulting, training, customization, app development), repository services (data, services, apps, models, documents, multimedia), advertisements, fees for premier services or applications, subscriptions to value added services, licenses, contributions and donations, endow- ments, and sponsorships.

Allison, Lee [Arizona Geological Survey; Chickering, Cathy [Southern Methodist University; Anderson, Arlene [U. S. Department of Energy, Geothermal Technologies Office; Richard, Stephen M. [Arizona Geological Survey

2013-10-01T23:59:59.000Z

467

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofThe resource base for geothermal energy is enormous, but

Pruess, Karsten

2006-01-01T23:59:59.000Z

468

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept UtilizingThe resource base for geothermal energy is enormous, butproduction of geothermal energy is currently limited to

Pruess, Karsten

2006-01-01T23:59:59.000Z

469

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques for identifying and precisely mapping LAFsin 3-D will greatly reduce dry hole risk and the overall number of wells required for reaching a particular geothermal field power capacity.

470

Outside a Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Outside a Geothermal Region Outside a Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do not fall within an existing geothermal region. As a number of these accumulate on OpenEI, new regions can be created and areas moved into those regions accordingly. Geothermal Regions Map[1] References ↑ "Geothermal Regions Map" Geothermal Region Data State(s) Wyoming, Colorado Area USGS Resource Estimate for this Region Identified Mean Potential Undiscovered Mean Potential Planned Capacity Planned Capacity Plants Included in Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Outside a Geothermal Region

471

Thermodynamic and economic evaluations of a geothermal district heating system using advanced exergy-based methods  

Science Journals Connector (OSTI)

Abstract In this paper, a geothermal district heating system (GDHS) is comparatively evaluated in terms of thermodynamic and economic aspects using advanced exergy-based methods to identify the potential for improvement, the interactions among system components, and the direction and potential for energy savings. The actual operational data are taken from the Sarayky GDHS, Turkey. In the advanced exergetic and exergoeconomic analyses, the exergy destruction and the total operating cost within each component of the system are split into endogenous/exogenous and unavoidable/avoidable parts. The advantages of these analyses over conventional ones are demonstrated. The results indicate that the advanced exergy-based method is a more meaningful and effective tool than the conventional one for system performance evaluation. The exergetic efficiency and the exergoeconomic factor of the overall system for the Sarayky GDHS were determined to be 43.72% and 5.25% according to the conventional tools and 45.06% and 12.98% according to the advanced tools. The improvement potential and the total cost-savings potential of the overall system were also determined to be 2.98% and 14.05%, respectively. All of the pumps have the highest improvement potential and total cost-savings potential because the pumps were selected to have high power during installation at the Sarayky GDHS.

Mehmet Tan; Ali Keeba?

2014-01-01T23:59:59.000Z

472

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

473

A New Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal  

Open Energy Info (EERE)

Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal Steam Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Zealand Test Of The Track-Etch Method Of Prospecting For Geothermal Steam Details Activities (0) Areas (0) Regions (0) Abstract: The Track Etch® system for radon detection was evaluated as a geothermal exploration technique in a known geothermal resource area in New Zealand called the Craters of the Moon (previously known as "Karapiti"). Very strong radon anomalies spaced along mapped fault traces were detected using 60-m sample spacings. Such radon anomalies may indicate good areas to drill for steam. The anomalies detected in these tests were located inside a larger area known to have above-back-ground concentrations of radon and

474

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010  

E-Print Network [OSTI]

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 1 The ENGINE Coordination Action (ENhanced Geothermal Innovative Network for Europe) Philippe Calcagno1 , Albert Genter2 Geothermal System, resource investigation, resource assessment, exploitation, European Commission

Paris-Sud XI, Université de

475

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

Karr, D.J. , 1977, Geothermal energy and water resources:review, 1977 outlook: Geothermal Energy Magazine, v.5, no.6,G. , 1966, Energy and power of geothermal resources: Dept. o

Stark, M.

2011-01-01T23:59:59.000Z

476

Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of a ranch in the mountains. As part of a geothermal exploration effort to search for geothermal resources nationwide, a 5 million U.S. Department of Energy investment to...

477

Lost circulation in geothermal wells: survey and evaluation of industry experience  

SciTech Connect (OSTI)

Lost circulation during drilling and completion of geothermal wells can be a severe problem, particularly in naturally fractured and/or vugular formations. Geothermal and petroleum operators, drilling service companies, and independent consultants were interviewed to assess the lost circulation problem in geothermal wells and to determine general practices for preventing lost circulation. This report documents the results and conclusions from the interviews and presents recommendations for needed research. In addition, a survey was also made of the lost circulation literature, of currently available lost circulation materials, and of existing lost circulation test equipment.

Goodman, M.A.

1981-07-01T23:59:59.000Z

478

International Geothermal Association | Open Energy Information  

Open Energy Info (EERE)

Logo: International Geothermal association Name International Geothermal association Place Bochum, Germany Website http://www.geothermal-energy.o References IGA website[1] LinkedIn Connections International Geothermal Association is an organization based in Bochum, Germany. The International Geothermal Association (IGA), founded in 1988, is a scientific, educational and cultural organization established to operate worldwide. It has more than 5,200 members in over 65 countries. The IGA is a non-political, non-profit, non-governmental organization. The objectives of the IGA are to encourage research, the development and utilization of geothermal resources worldwide through the publication of scientific and technical information among the geothermal specialists, the

479

A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And  

Open Energy Info (EERE)

Strategy For Geothermal Exploration With Emphasis On Gravity And Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Details Activities (4) Areas (2) Regions (0) Abstract: As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. The residual

480

An Evaluation of the Effects of Geothermal Energy Development on Aquatic Biota in the Gysers Area of California  

E-Print Network [OSTI]

28. White, J . 1974. Geothermal energy i s not nonpolluting.required t o develop geothermal energy. American Water WorksOF THE EFFECTS OF GEOTHERMAL ENERGY DEVELOPMENT ON AQUATIC

Resh, Vincent H.; Flynn, Thomas S.; Lamberti, Gary A; McElravy, Eric

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal resource evaluation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

482

Computing and Sustainability: Evaluating Resources for Samuel Mann  

E-Print Network [OSTI]

Computing and Sustainability: Evaluating Resources for Educators Samuel Mann Otago Polytechnic Zealand +6498154321 lmuller@unitec.ac.nz Janet Davis Grinnell College Grinnell Iowa, USA +16412694306 Computing has a significant impact on sustainable outcomes and computing education for sustainability has

Corran, Ruth

483

Geothermal Technologies Office Annual Report 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho State Wins National Student Competition Students at Idaho State University display their poster at the annual meeting of the Geothermal Resources Council in Reno, Nevada this year, as one of 3 top finalists in the National Geothermal Student Competition hosted by the Energy Department's Geothermal Technologies Office. The group won the competition with their study on Development of an Integrated, Testable Conceptual Model of Blind Geothermal Resources in the Eastern

484