Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of testing and reservoir parameters in geothermal...  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation...

2

Transient well testing in two-phase geothermal reservoirs  

DOE Green Energy (OSTI)

A study of well test analysis techniques in two-phase geothermal reservoirs has been conducted using a three-dimensional, two-phase, wellbore and reservoir simulation model. Well tests from Cerro Prieto and the Hawaiian Geothermal project have been history matched. Using these well tests as a base, the influence of reservoir permeability, porosity, thickness, and heat capacity, along with flow rate and fracturing were studied. Single and two-phase transient well test equations were used to analyze these tests with poor results due to rapidly changing fluid properties and inability to calculate the flowing steam saturation in the reservoir. The injection of cold water into the reservoir does give good data from which formation properties can be calculated.

Aydelotte, S.R.

1980-03-01T23:59:59.000Z

3

Well-test data from geothermal reservoirs  

DOE Green Energy (OSTI)

Extensive well testing in geothermal resources has been carried out throughout the western United States and in northern Mexico since 1975. Each resource tested and each well test conducted by LBL during the eight-year period are covered in brief. The information, collected from published reports and memoranda, includes test particulars, special instrumentation, data interpretation when available, and plots of actual data. Brief geologic and hydrologic descriptions of the geothermal resources are also presented. The format is such that well test descriptions are grouped, in the order performed, into major sections according to resource, each section containing a short resource description followed by individual test details. Additional information regarding instrumentation is provided. Source documentation is provided throughout to facilitate access to further information and raw data.

Bodvarsson, M.G.; Benson, S.M.

1982-09-01T23:59:59.000Z

4

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal...  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE...

5

Geothermal Reservoir Dynamics - TOUGHREACT  

E-Print Network (OSTI)

Swelling in a Fractured Geothermal Reservoir, presented atTHC) Modeling Based on Geothermal Field Data, Geothermics,and Silica Scaling in Geothermal Production-Injection Wells

2005-01-01T23:59:59.000Z

6

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

7

Hot dry rock geothermal reservoir testing: 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. This report traces reservoir growth as demonstrated during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266 m/sup 3/. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D.; Cremer, G.M. (eds.)

1981-11-01T23:59:59.000Z

8

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal  

Open Energy Info (EERE)

evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data

9

Evaluation of testing and reservoir parameters in geothermal wells at Raft  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge

10

Reservoir evaluation tests on RRGE 1 and RRGE 2, Raft River Geothermal Project, Idaho  

DOE Green Energy (OSTI)

Results of the production and interference tests conducted on the geothermal wells RRGE 1 and RRGE 2 in Raft River Valley, Idaho during September--November, 1975 are presented. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. In addition to providing estimates on the permeability and storage parameters of the geothermal reservoir, the tests also indicated the possible existence of barrier boundaries. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the sun and the moon. Overall, the results of the tests indicate that the geothermal reservoir in southern Raft River valley is fairly extensive and significantly permeable and merits further exploration.

Narasimhan, T.N.; Witherspoon, P.A.

1977-05-01T23:59:59.000Z

11

1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California  

DOE Green Energy (OSTI)

The phases of the 1974 geothermal field tests at the Niland Reservoir in the Imperial Valley of California are documented. The following tests are included: separator, steam scrubber, steam turbine, heat exchanger, packed heat exchanger, corrosion, chemical cleaning, and control and instrumentation. (MHR)

Not Available

1974-01-01T23:59:59.000Z

12

Geothermal reservoir technology  

DOE Green Energy (OSTI)

A status report on Lawrence Berkeley Laboratory's Reservoir Technology projects under DOE's Hydrothermal Research Subprogram is presented. During FY 1985 significant accomplishments were made in developing and evaluating methods for (1) describing geothermal systems and processes; (2) predicting reservoir changes; (3) mapping faults and fractures; and (4) field data analysis. In addition, LBL assisted DOE in establishing the research needs of the geothermal industry in the area of Reservoir Technology. 15 refs., 5 figs.

Lippmann, M.J.

1985-09-01T23:59:59.000Z

13

Geothermal Reservoir Dynamics - TOUGHREACT  

DOE Green Energy (OSTI)

This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

2005-03-15T23:59:59.000Z

14

Analysis of injection tests in liquid-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

The objective was to develop procedures for analyzing nonisothermal injection test data during the early phases of injection. In particular, methods for determining the permeability-thickness of the formation, skin factor of the well and tracking the movement of the thermal front have been developed. The techniques developed for interpreting injection pressure transients are closely akin to conventional groundwater and petroleum techniques for evaluating these parameters. The approach taken was to numerically simulate injection with a variety of temperatures, reservoir parameters and flowrates, in order to determine the characteristic responses due to nonisothermal injection. Two characteristic responses were identified: moving front dominated behavior and composite reservoir behavior. Analysis procedures for calculating the permeability-thickness of the formation and the skin factor of the well have been developed for each of these cases. In order to interpret the composite reservior behavior, a new concept has been developed; that of a ''fluid skin factor'', which accounts for the steady-state pressure buildup due to the region inside the thermal front. Based on this same concept, a procedure for tracking the movement of the thermal front has been established. The results also identify the dangers of not accounting the nonisothermal effects when analyzing injection test data. Both the permeability-thickness and skin factor of the well can be grossly miscalculated if the effects of the cold-region around the well are not taken into consideration. 47 refs., 30 figs., 14 tabs.

Benson, S.M.

1984-12-01T23:59:59.000Z

15

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon ┬╗ Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

16

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network (OSTI)

that well blocks must geothermal reservoir sĚtudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

17

Hydrologic properties of the Dixie Valley, Nevada, geothermal reservoir from well-test analyses  

DOE Green Energy (OSTI)

Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in methodologies was used to decouple interrelated terms. The methods were (1) step-drawdown, variable-discharge test; (2) recovery analysis; (3) damped-oscillation response; and (4) injection test. To date, TPS logs from five wells have been examined and results fall into two distinct categories. Productive, economically viable wells have permeability-thickness values on the order of 10{sup 5} millidarcy-meter (mD-m) and storativities of about 10{sup {minus}3}. Low-productivity wells, sometimes located only a few kilometers from their permeable counterparts, are artesian and display a sharp reduction in permeability-thickness to about 10 mD-m with storativities on the order of 10{sup {minus}4}. These results demonstrate that the hydrologic characteristics of this liquid-dominated geothermal system exhibit a significant spatial variability along the range-bounding normal fault that forms the predominant aquifer. A large-scale, coherent model of the Dixie Valley Geothermal Reservoir will require an understanding of the nature of this heterogeneity and the parameters that control it.

Morin, R.H. [Geological Survey, Denver, CO (United States); Hickman, S.H. [Geological Survey, Menlo Park, CA (United States); Barton, C.A. [Stanford Univ., CA (United States). Dept. of Geophysics; Shapiro, A.M. [Geological Survey, Reston, VA (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Sass, J.H. [Geological Survey, Flagstaff, AZ (United States)

1998-08-01T23:59:59.000Z

18

Chemical tracer test at the Dixie Valley geothermal field, Nevada. Geothermal Reservoir Technology research program  

DOE Green Energy (OSTI)

In the injection test described, chemical tracers established the fluid flow between one injection well and one production well. Measured tracer concentrations, calculated flow rates, sampling schedules, and the daily events of the tracer test are documented. This experiment was designed to test the application of organic tracers, to further refine the predictive capability of the reservoir model, and to improve the effectiveness of Oxbow`s injection strategy.

Adams, M.C.; Moore, J.N. [Utah Univ. Research Inst., Salt Lake City, UT (United States); Benoit, W.R. [Oxbow Geothermal Corp., Reno, NV (United States); Doughty, C.; Bodvarsson, G.S. [Lawrence Berkeley Lab., CA (United States)

1993-10-01T23:59:59.000Z

19

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

Bibliography Definition of Geothermal Reservoir EngineeringDevelopment of Geothermal Reservoir Engineering. * 1.4 DataF i r s t Geopressured Geothermal Energy Conference. Austin,

Sudo!, G.A

2012-01-01T23:59:59.000Z

20

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

and Pruess, K. , Analysis of injection testing of geothermalreservoirs: Geothermal Resoures Council, Vol. 4. , (into a fractured geothermal reservoir: Transactions, Vol. 4,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

22

Reinjection into geothermal reservoirs  

DOE Green Energy (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

23

Testing geopressured geothermal reservoirs in existing wells. Annual report  

DOE Green Energy (OSTI)

This contract called for the acquisition and testing of Wells of Opportunity. Wells of Opportunity are located by screening published information on oil industry activity and through personal contacts with oil operators. This process resulted in recommendation of 21 candidate wells to the DOE for the WOO program. Of the 21 wells recommended, 7 were accepted. Six of these 7 were acquired for testing. Three wells have been tested, and the fourth and fifth will be tested early in 1981. Preliminary test results are briefly described and are shown in a table. The actual testing schedule and the originally proposed schedule matched very closely. Cumulative costs through November 1980 were approximately $6.5 million and compare to an estimate of $8.5 million for the same period. A graphical comparison of actual versus estimated costs is given.

Not Available

1980-01-01T23:59:59.000Z

24

Significant test results, energy potential, and geology of some Gulf Coast geopressured-geothermal sandstone reservoirs  

Science Conference Proceedings (OSTI)

Geopressured-geothermal reservoir found in the northern Gulf of Mexico basin represent a large potential future energy resource. Three reservoirs in various stages of developmental testing are of current interest. Over a four-year testing period the Gladys McCall 1 (Cameron Parish, Louisiana) produced 27.3 million bbl of brine and 676 million scf of gas at an average rate of 20,000 bbl/day from perforations between 15,158 and 15,490 ft. This lower Miocene sandstone section forms part of a genetic unit of interconnected channel and point-bar sandstones deposited in a lower shelf environment. Pleasant Bayou 2 well (Brazoria County, Texas) is currently being flow-tested at 20,000 bbl/day and has a gas/brine ratio of approximately 23 scf/stb and a temperature of 291/degrees/F. An electric energy conversion system being set up here will test potential for electric generation from geopressured-geothermal energy. Superior Hulin 1 (Vermilion Parish, Louisiana) is a deep (21,549 ft) former gas well proposed to be completed as a geopressured-geothermal well. Initial log analysis indicates that a 570-ft thick sandstone, of probable submarine fan origin, may contain free gas in addition to solution gas and may thus represent an economically feasible geopressured-geothermal well. Gas-separated brine is disposed by subsurface injection into disposal wells. However, in areas where hydrocarbon fields with wells penetrating geopressured sands are present, hot brines could be injected into depleted hydrocarbon zones to aid secondary recovery.

John, C.J.; Stevenson, D.A.

1989-03-01T23:59:59.000Z

25

The LBL geothermal reservoir technology program  

DOE Green Energy (OSTI)

The main objective of the DOE/GD-funded Geothermal Reservoir Technology Program at Lawrence Berkeley Laboratory is the development and testing of new and improved methods and tools needed by industry in its effort to delineate, characterize, evaluate, and exploit hydrothermal systems for geothermal energy. This paper summarizes the recent and ongoing field, laboratory, and theoretical research activities being conducted as part of the Geothermal Reservoir Technology Program. 28 refs., 4 figs.

Lippmann, M.J.

1991-03-01T23:59:59.000Z

26

Session 4: Geothermal Reservoir Definition  

DOE Green Energy (OSTI)

The study of geothermal reservoir behavior is presently in a state of change brought about by the discovery that reservoir heterogeneity--fractures in particular--is responsible for large scale effects during production. On the other hand, some parts of a reservoir, or some portions of its behavior. may be unaffected by fractures and behave, instead, as if the reservoir were a homogeneous porous medium. Drilling has for many years been guided by geologists prospecting for fractures (which have been recognized as the source of production), but until recently reservoir engineers have not studied the behavior of fractured systems under production. In the last three years research efforts, funded by the Department of Energy and others, have made significant progress in the study of fractures. The investigations into simulation of fracture flow, tracer analysis of fractured systems, and well test analysis of double porosity reservoirs are all advancing. However, presently we are at something of a conceptual impasse in defining a reservoir as fractured or porous. It seems likely that future directions will not continue to attempt to distinguish two separate reservoir types, but will focus instead on defining behavior types. That is, certain aspects of reservoir behavior may be considered to be generally of the porous medium type (for example, field wide decline), while others may be more frequently fracture type (for example, breakthrough of reinjected water). In short, our overall view of geothermal reservoir definition is becoming a little more complex, thereby better accommodating the complexities of the reservoirs themselves. Recent research results already enable us to understand some previously contradictory results, and recognition of the difficulties is encouraging for future progress in the correct direction.

Horne, Roland N.

1983-12-01T23:59:59.000Z

27

Geothermal reservoir management  

DOE Green Energy (OSTI)

The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

Scherer, C.R.; Golabi, K.

1978-02-01T23:59:59.000Z

28

Slimholes for geothermal reservoir evaluation - An overview  

DOE Green Energy (OSTI)

The topics covered in this session include: slimhole testing and data acquisition, theoretical and numerical models for slimholes, and an overview of the analysis of slimhole data acquired by the Japanese. The fundamental issues discussed are concerned with assessing the efficacy of slimhole testing for the evaluation of geothermal reservoirs. the term reservoir evaluation is here taken to mean the assessment of the potential of the geothermal reservoir for the profitable production of electrical power. As an introduction to the subsequent presentations and discussions, a brief summary of the more important aspects of the use of slimholes in reservoir evaluation is given.

Hickox, C.E.

1996-08-01T23:59:59.000Z

29

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network (OSTI)

.A. Hsieh 1e$ Pressure Buildup Monitoring of the Krafla Geothermal Field, . . . . . . . . 1'1 Xceland - 0 Initial Chemical and Reservoir Conditions at Lo6 Azufres Wellhead Power Plant Startup - P. Kruger, LSGP-TR-92 - Injection Technology - Geothermal Reservoir Engineering Research at Stanford Principal

Stanford University

30

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network (OSTI)

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

31

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #2  

DOE Green Energy (OSTI)

A geopressured-geothermal test of Martin Exploration Company's Crown Zellerbach Well No. 2 will be conducted in the Tuscaloosa Trend. The Crown Zellerbach Well No. 1 will be converted to a saltwater disposal well for disposal of produced brine. The well is located in the Satsuma Area, Livingston parish, Louisiana. Eaton proposes to test the Tuscaloosa by perforating the 7 inch casing from 16,718 feet to 16,754 feet. The reservoir pressure at an intermediate formation depth of 16,736 feet is anticipated to be 12,010 psi and the temperature is anticipated to be 297 F. Calculated water salinity is 16,000 ppm. The well is expected to produce a maximum of 16,000 barrels of water a day with a gas content of 51 SCF/bbl. Eaton will re-enter the test well, clean out to 17,000 feet, run production casing and complete the well. The disposal well will be re-entered and completed in the 9-5/8 inch casing for disposal of produced brine. Testing will be conducted similar to previous Eaton annular flow WOO tests. An optional test from 16,462 feet to 16,490 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous tests will be utilized on this test. The equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. Weatherly Engineering will operate the test equipment. The Institute of Gas Technology (IGT) and Mr. Don Clark will handle sampling, testing and reservoir engineering evaluation, respectively. wireline work required will be awarded on basis of bid evaluation. At the conclusion of the test period, the D.O.E. owned test equipment will be removed from the test site, the test and disposal wells plugged and abandoned and the sites restored to the satisfaction of all parties.

None

1981-03-01T23:59:59.000Z

32

Second workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Arab oil embargo of 1973 focused national attention on energy problems. A national focus on development of energy sources alternative to consumption of hydrocarbons led to the initiation of research studies of reservoir engineering of geothermal systems, funded by the National Science Foundation. At that time it appeared that only two significant reservoir engineering studies of geothermal reservoirs had been completed. Many meetings concerning development of geothermal resources were held from 1973 through the date of the first Stanford Geothermal Reservoir Engineering workshop December 15-17, 1975. These meetings were similar in that many reports dealt with the objectives of planned research projects rather than with results. The first reservoir engineering workshop held under the Stanford Geothermal Program was singular in that for the first time most participants were reporting on progress inactive research programs rather than on work planned. This was true for both laboratory experimental studies and for field experiments in producing geothermal systems. The Proceedings of the December 1975 workshop (SGP-TR-12) is a remarkable document in that results of both field operations and laboratory studies were freely presented and exchanged by all participants. With this in mind the second reservoir engineering workshop was planned for December 1976. The objectives were again two-fold. First, the workshop was designed as a forum to bring together researchers active in various physical and mathematical branches of the developing field of geothermal reservoir engineering, to give participants a current and updated view of progress being made in the field. The second purpose was to prepare this Proceedings of Summaries documenting the state of the art as of December 1976. The proceedings will be distributed to all interested members of the geothermal community involved in the development and utilization of the geothermal resources in the world. Many notable occurrences took place between the first workshop in December 1975 and this present workshop in December 1976. For one thing, the newly formed Energy Research and Development Administration (ERDA) has assumed the lead role in geothermal reservoir engineering research. The second workshop under the Stanford Geothermal Program was supported by a grant from ERDA. In addition, two significant meetings on geothermal energy were held in Rotarua, New Zealand and Taupo, New Zealand. These meetings concerned geothermal reservoir engineering, and the reinjection of cooled geothermal fluids back into a geothermal system. It was clear to attendees of both the New Zealand and the December workshop meetings that a great deal of new information had been developed between August and December 1976. Another exciting report made at the meeting was a successful completion of a new geothermal well on the big island of Hawaii which produces a geothermal fluid that is mainly steam at a temperature in excess of 600 degrees F. Although the total developed electrical power generating capacity due to all geothermal field developments in 1976 is on the order of 1200 megawatts, it was reported that rapid development in geothermal field expansion is taking place in many parts of the world. Approximately 400 megawatts of geothermal power were being developed in the Philippine Islands, and planning for expansion in production in Cerro Prieto, Mexico was also announced. The Geysers in the United States continued the planned expansion toward the level of more than 1000 megawatts. The Second Workshop on Geothermal Reservoir Engineering convened at Stanford December 1976 with 93 attendees from 4 nations, and resulted in the presentation of 44 technical papers, summaries of which are included in these Proceedings. The major areas included in the program consisted of reservoir physics, well testing, field development, well stimulation, and mathematical modeling of geothermal reservoirs. The planning forth is year's workshop and the preparation of the proceedings was carried out mainly by my associate Paul

Kruger, P.; Ramey, H.J. Jr. (eds.)

1976-12-03T23:59:59.000Z

33

Summary of hot dry rock geothermal reservoir testing 1978 to 1980  

DOE Green Energy (OSTI)

Experimental results and re-evaluation of the Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site are summarized. Reservoir growth is traced. Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m/sup 2/ and reservoir fracture volume grew from 11 to 266/sup 3/m. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure conditions, the flow impedance (a measure of the resistance to circulation of water through the reservoir) remained essentially unchanged, and if reproduced in the Phase II reservoir under development, could result in self pumping. Geochemical and seismic hazards have been nonexistent in the Phase I reservoirs. The produced water is relatively low in total dissolved solids and shows little tendency for corrosion or scaling. The largest microearthquake associated with heat extraction measures less than -1 on the extrapolated Richter scale.

Dash, Z.V.; Murphy, H.D. (eds.)

1981-01-01T23:59:59.000Z

34

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network (OSTI)

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

35

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

36

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

37

Geotechnical studies of geothermal reservoirs  

DOE Green Energy (OSTI)

It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot Springs, Utah, (4) Bacca Ranch, Valle Grande, New Mexico, (5) Jemez Caldera, New Mexico, (6) Raft River, Idaho, and (7) Marysville, Montona. (MHR)

Pratt, H.R.; Simonson, E.R.

1976-01-01T23:59:59.000Z

38

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Open Energy Info (EERE)

Facebook icon Twitter icon Mapping Diffuse Seismicity for Geothermal Reservoir Management with Matched Field Processing Geothermal Lab Call Project Jump to: navigation,...

39

Third workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Third Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 14, 1977, with 104 attendees from six nations. In keeping with the recommendations expressed by the participants at the Second Workshop, the format of the Workshop was retained, with three days of technical sessions devoted to reservoir physics, well and reservoir testing, field development, and mathematical modeling of geothermal reservoirs. The program presented 33 technical papers, summaries of which are included in these Proceedings. Although the format of the Workshop has remained constant, it is clear from a perusal of the Table of Contents that considerable advances have occurred in all phases of geothermal reservoir engineering over the past three years. Greater understanding of reservoir physics and mathematical representations of vapor-dominated and liquid-dominated reservoirs are evident; new techniques for their analysis are being developed, and significant field data from a number of newer reservoirs are analyzed. The objectives of these workshops have been to bring together researchers active in the various physical and mathematical disciplines comprising the field of geothermal reservoir engineering, to give the participants a forum for review of progress and exchange of new ideas in this rapidly developing field, and to summarize the effective state of the art of geothermal reservoir engineering in a form readily useful to the many government and private agencies involved in the development of geothermal energy. To these objectives, the Third Workshop and these Proceedings have been successfully directed. Several important events in this field have occurred since the Second Workshop in December 1976. The first among these was the incorporation of the Energy Research and Development Administration (ERDA) into the newly formed Department of Energy (DOE) which continues as the leading Federal agency in geothermal reservoir engineering research. The Third Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh (Lloyd's Bank of California), Stephen Lipman (Union Oil), Mark Mathisen (PG&E), Patrick M

Ramey, H.J. Jr.; Kruger, P. (eds.)

1977-12-15T23:59:59.000Z

40

Stanford Geothermal Program, reservoir and injection technology  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Physical processes of subsidence in geothermal reservoirs  

DOE Green Energy (OSTI)

The objectives of this project were to acquire core and fluid from producing geothermal reservoirs (East Mesa, United States, and Cerro Prieto, Mexico); to test specimens of this core for their short-term and long-term (creep) compaction response; and to develop a compaction constitutive model that would allow future analysis of reservoir compaction and a surface subsidence. A total of approximately two hundred feet of core was obtained from eleven wells in the two geothermal fields. Depths and porosities ranged from 3500 to 11,000 feet and 15 to 40 percent, respectively. Several samples of geothermal fluids were also obtained. After geologically and geochemically describing the materials obtained, selected specimens were tested for their response to the pressures and temperatures of the geothermal environment and to simulated changes in those conditions that would be caused by production. Short-term tests (for example, tests for compressibility extending over a time interval of an hour or less in the laboratory) indicated that these sedimentary materials behaved normally with respect to the expected behavior of reservoir sandstones of these depths and porosities. Compressibilities were of the order 1 x 10/sup 6/ psi. Long-term tests, extending up to several weeks in duration, indicated that pore pressure reduction, simulating reservoir production, tended to cause creep compaction at an initial rate of about 1 x 10/sup -7/ percent porosity reduction per second.

Schatz, J.F.

1982-06-01T23:59:59.000Z

42

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

43

Fourteenth workshop geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

44

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

DOE Green Energy (OSTI)

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

45

Testing geopressured geothermal reservoirs in existing wells: Detailed completions prognosis for geopressured-geothermal well of opportunity, prospect #1  

SciTech Connect

This prospective well of opportunity was originally drilled and completed as a gas producer by Wrightsman Investment Company in early 1973. The original and present producing interval was from 15,216 to 15,238 feet. IMC Exploration Company, Inc. acquired the property from Wrightsman and is the present owner operator. The well is presently shut in s a non-economic producer and IMC proposed to perform plug and abandonment operations in April, 1980. This well has a good geopressured-geothermal water sand behind the 5-1/2 inch casing that has 94 feet of net sand thickness. Pursuant to DOE/NVO authorization of March 11,1980, Eaton negotiated an option agreement with IMC whereby IMC would delay their abandonment operations for a period of 90 days to permit DOE to evaluate the well for geopressure-geothermal testing. The IMC-Eaton option agreements provide that IMG will delay plugging the well until June 15, 1980. If Eaton exercises its option to acquire the well, IMC will sell the well bore, and an adjacent salt water disposal well, to Eaton for the sole consideration of Eaton assuming the obligation to plug and abandon the wells in accordance with lease and regulatory requirements. If Eaton does not exercise its option, then Eaton will pay IMC $95,000 cash and IMC will proceed with plugging and abandonment at the termination of the option period.

Kennedy, Clovis A.

1980-04-03T23:59:59.000Z

46

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

47

Testing geopressured geothermal reservoirs in existing wells: Detailed completion prognosis for geopressured-geothermal well of opportunity, prospect #7  

DOE Green Energy (OSTI)

This book is a detailed prognosis covering the acquisition, completion, drilling, testing and abandonment of the Frank A. Godchaux, III, Well No. 1 under the Wells of Opportunity Program. The well is located approximately 12 miles southeast of the city of Abbeville, Louisiana. Eaton Operating Company proposes to test a section of the Planulina sand at a depth ranging from 15,584 to 15,692 feet. The reservoir pressure is estimated to be 14,480 psi and the temperature of the formation water is expected to be 298 F. The water salinity is calculated to be 75,000 ppm. The well is expected to produce 20,000 barrels of water per day with a gas content of 44 standard cubic feet pre barrel. The well was acquired from C and K Petroleu, Inc. on March 20, 1981. C and K abandoned the well at a total depth of 16,000 feet. The well has a 7-5/8 inches liner set at 13,387 feet. Eaton proposes to set 5-1/2 inch casing at 16,000 feet and produce the well through the casing using a 2-3/8 inch tubing string for wireline protection and for pressure control. A 4,600 foot saltwater disposal well will be drilled on the site and testing will be conducted similar to previous Eaton tests. The total estimated cost to perform the work is $2,959,000. An optional test from 14,905 to 15,006 feet may be performed after the original test and will require a workover with a rig on location to perform the plugback. The surface production equipment utilized on previous Eaton WOO tests will be utilized on this test. This equipment has worked satisfactorily and all parties involved in the testing are familiar with its operation. The Institute of Gas Technology and Mr. Don Clark will handle the sampling and testing and reservoir evaluation, respectively, as on the previous Eaton tests.

Godchaux, Frank A.

1981-06-01T23:59:59.000Z

48

The Influence of Reservoir Heterogeneity on Geothermal Fluid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Alliance for Sustainable Energy, LLC. THE INFLUENCE OF RESERVOIR HETEROGENEITY ON GEOTHERMAL FLUID AND METHANE RECOVERY FROM A GEOPRESSURED GEOTHERMAL RESERVOIR Ariel Esposito...

49

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

50

Statistical study of seismicity associated with geothermal reservoirs...  

Open Energy Info (EERE)

reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California...

51

Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,  

Open Energy Info (EERE)

model for possible geothermal reservoir, Coso Hot Springs KGRA, model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Details Activities (1) Areas (1) Regions (0) Abstract: The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with the geology of the area, which is well known. An east-west trending Bouguer gravity profile was constructed through the center of the heat flow anomaly described by Combs (1976). The best fit model for the observed gravity at

52

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of...

53

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

54

Sixth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

55

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

56

Heat deliverability of homogeneous geothermal reservoirs  

DOE Green Energy (OSTI)

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

57

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

58

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

59

Eighteenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1993-01-28T23:59:59.000Z

60

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network (OSTI)

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

DOE Green Energy (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

63

Geothermal reservoir at Tatapani Geothermal field, Surguja district, Madhya Pradesh, IN  

SciTech Connect

The Tatapani Geothermal field, located on the Son-Narmada mega lineament is one of the most intense geothermal manifestation, with hot spring temperature of 98░c. in Central India. 21 Exploratory and thermal gradient boreholes followed by 5 production wells for proposed 300 KWe binary cycle power plant, have revealed specific reservoir parameters of shallow geothermal reservoir of 110░c in upper 350 m of geothermal system and their possible continuation to deeper reservoir of anticipated temperature of 160 ▒ 10░c. Testing of five production wells done by Oil and Natural Gas Corporation concurrently with drilling at different depths and also on completion of drilling, have established feeder zones of thermal water at depth of 175-200 m, 280-300 m, maximum temperature of 112.5░c and bottom hole pressure of 42 kg/cm▓. Further interpretation of temperature and pressure profiles, injection test, well head discharges and chemical analysis data has revealed thermal characteristics of individual production wells and overall configuration of .thermal production zones with their permeability, temperature, and discharge characteristics in the shallow thermal reservoir area. Well testing data and interpretation of reservoir parameters therefrom, for upper 350 m part of geothermal system and possible model of deeper geothermal reservoir at Tatapani have been presented in the paper.

Pitale, U.L.; Sarolkar, P.B.; Rawat, H.S.; Shukia, S.N.

1996-01-24T23:59:59.000Z

64

Testing geopressured geothermal reservoirs in existing wells. Final report P. R. Girouard Well No. 1, Lafayette Parish, Louisiana. Volume I. Completion and testing  

DOE Green Energy (OSTI)

The P.R. Girouard No. 1 Well, located approximately 10 miles southeast of Lafayette, Louisiana, was the fourth successful test of a geopressured-geothermal aquifer under the Wells of Opportunity program. The well was tested through 3-1/2 inch tubing set on a packer at 14,570 feet without major problems. The geological section tested was the Oligocene Marginulina Texana No. 1 sand of upper Frio age. The interval tested was from 14,744 to 14,819 feet. Produced water was piped down a disposal well perforated from 2870 to 3000 feet in a Miocene saltwater sand. Four flow tests were conducted for sustained production rates of approximately 4000 BWPD to approximately 15,000 BWPD. The highest achieved, during a fifth short test, was 18,460 BWPD. The test equipment was capable of handling higher rates. The gas-to-water ratio was relatively uniform at approximately 40 SCF/bbl. The heating value of the gas is 970 Btu/SCF. The reservoir tests show that is is doubtful that this well would sustain production rates over 10,000 BWPD for any lengthy period from the sand zone in which it was completed. This limited flow capacity is due to the well's poor location in the reservoir and is not a result of any production deficiencies of the Marginulina Texana sand.

Not Available

1981-01-01T23:59:59.000Z

65

Geothermal reservoir insurance study. Final report  

DOE Green Energy (OSTI)

The principal goal of this study was to provide analysis of and recommendations on the need for and feasibility of a geothermal reservoir insurance program. Five major tasks are reported: perception of risk by major market sectors, status of private sector insurance programs, analysis of reservoir risks, alternative government roles, and recommendations.

Not Available

1981-10-09T23:59:59.000Z

66

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

67

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings:...

68

Thirteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

1988-01-21T23:59:59.000Z

69

Fractured geothermal reservoir growth induced by heat extraction  

DOE Green Energy (OSTI)

Field testing of a hydraulically-stimulated, hot dry rock geothermal system at the Fenton Hill site in northern New Mexico has indicated that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for documenting the increases in accessible reservoir volume and fractured rock surface area that were observed during energy extraction operations which caused substantial thermal drawdown in portions of the reservoir. These temporal increases suggest that augmentation of reservoir heat production capacity in hot dry rock systems may be possible.

Tester, J.W.; Murphy, H.D.; Grigsby, C.O.; Robinson, B.A.; Potter, R.M.

1986-01-01T23:59:59.000Z

70

Status of geothermal reservoir engineering research projects supported by USDOE/Division of Geothermal Energy  

DOE Green Energy (OSTI)

In the fall of 1977, the US Department of Energy (DOE), Division of Geothermal Energy (DGE) proposed that Lawrence Berkeley Laboratory (LBL) assume lead responsibility, on DGE's behalf, for geothermal reservoir engineering. This summary discusses briefly the DOE/DGE-sponsored geothermal reservoir engineering research program which includes LBL in-house research and research done by others through LBL. LBL in-house research has emphasized improvement of well test analysis methods and the development of geothermal reservoir performance simulators. Work by others has included 18 separate contracts on a variety of technical and scientific projects. Altogether, 29 distinguishable research topics have been addressed. Fourteen institutions, including eight private companies, have interacted with the program. Table 1, along with figures 2 and 3 summarized the status of the work.

Howard, J.H.; Schwarz, W.J.

1979-07-01T23:59:59.000Z

71

Interpretation of pre- and post-fracturing well tests in a geothermal reservoir  

SciTech Connect

Pre- and post-fracturing well tests in TG-2 well drilled next to the Matsukawa field are interpreted for evaluating effects of a massive hydraulic fracturing treatment. The interpreted data include multiple-step rate tests, a two-step rate test, and falloff tests. Pressure behaviors of massive hydraulic fracturing are matched by a simulator of dynamic fracture option. Fracture parting pressures can be evaluated from the multiple-step rate test data. The multiple-step rates during the massive hydraulic fracturing treatment show that multiple fractures have been induced in sequence. Although the pre-fracturing falloff tests are too short, fracture propagation can be evaluated qualitatively from the falloff data. Interpretation of the falloff test immediately after the MHF suggests that extensive fractures have been created by the MHF, which is verified by simulation. The post-fracturing falloff tests show that the fractures created by the MHF have closed to a great degree.

Arihara, Norio; Fukagawa, Hiroshi; Hyodo, Masami; Abbaszadeh, Maghsood

1995-01-26T23:59:59.000Z

72

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

73

Ninth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

1983-12-15T23:59:59.000Z

74

Ninth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

The attendance at the Workshop was similar to last year's with 123 registered participants of which 22 represented 8 foreign countries. A record number of technical papers (about 60) were submitted for presentation at the Workshop. The Program Committee, therefore, decided to have several parallel sessions to accommodate most of the papers. This format proved unpopular and will not be repeated. Many of the participants felt that the Workshop lost some of its unique qualities by having parallel sessions. The Workshop has always been held near the middle of December during examination week at Stanford. This timing was reviewed in an open discussion at the Workshop. The Program Committee subsequently decided to move the Workshop to January. The Tenth Workshop will be held on January 22-24, 1985. The theme of the Workshop this year was ''field developments worldwide''. The Program Committee addressed this theme by encouraging participants to submit field development papers, and by inviting several international authorities to give presentations at the Workshop. Field developments in at least twelve countries were reported: China, El Salvador, France, Greece, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, the Philippines, and the United States. There were 58 technical presentations at the Workshop, of which 4 were not made available for publication. Several authors submitted papers not presented at the Workshop. However, these are included in the 60 papers of these Proceedings. The introductory address was given by Ron Toms of the U.S. Department of Energy, and the banquet speaker was A1 Cooper of Chevron Resources Company. An important contribution was made to the Workshop by the chairmen of the technical sessions. Other than Stanford Geothermal Program faculty members, they included: Don White (Field Developments), Bill D'Olier (Hydrothermal Systems), Herman Dykstra (Well Testing), Karsten Pruess (Well Testing), John Counsil (Reservoir Chemistry), Malcolm Mossman (Reservoir Chemistry), Greg Raasch (Production), Manny Nathenson (Injection), Susan Petty (Injection), Subir Sanyal (Simulation), Marty Molloy (Petrothermal), and Allen Moench (Reservoir Physics). The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Jean Cook, Joanne Hartford, Terri Ramey, Amy Osugi, and Marilyn King for their valued help with the Workshop arrangements and the Proceedings. We also owe thanks to the program students who arranged and operated the audio-visual equipment. The Ninth Workshop was supported by the Geothermal and Hydropower Technologies Division of the U . S . Department of Energy through contract DE-AT03-80SF11459. We deeply appreciate this continued support. H. J. Ramey, Jr., R. N. Horne, P. Kruger, W. E. Brigham, F. G. Miller, J. S . Gudmundsson -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Gudmundsson, J.S. (Stanford Geothermal Program)

1983-12-15T23:59:59.000Z

75

Geothermal reservoir engineering code: comparison and validation  

DOE Green Energy (OSTI)

INTERCOMP has simulated six geothermal reservoir problems. INTERCOMP's geothermal reservoir model was used for all problems. No modifications were made to this model except to provide tabular output of the simulation results in the units used in RFP No. DE-RP03-80SF-10844. No difficulty was encountered in performing the problems described herein, although setting up the boundary and grid conditions exactly as specified were sometimes awkward, and minor modifications to the grid system were necessitated. The results of each problem are presented in tabular and (for many) graphical form.

Not Available

1981-02-27T23:59:59.000Z

76

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

Not Available

1980-05-01T23:59:59.000Z

77

Modeling of geothermal reservoirs: Fundamental processes, computer simulation, and field applications  

DOE Green Energy (OSTI)

This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. Then we examine applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation technology on geothermal energy development are pointed out. We conclude with considerations on possible future developments in the mathematical modeling of geothermal fields. 45 refs., 4 figs., 2 tabs.

Pruess, K.

1988-09-01T23:59:59.000Z

78

Stanford Geothermal Program, reservoir and injection technology. Fourth annual report  

DOE Green Energy (OSTI)

This annual report of the Stanford Geothermal Program presents major projects in reservoir and injection technology. The four include: (1) an application of the boundary element method to front tracking and pressure transient testing; (2) determination of fracture aperture, a multi-tracer approach; (3) an analysis of tracer and thermal transients during reinjection; and, (4) pressure transient modeling of a non-uniformly fractured reservoir. (BN)

Horne, R.; Ramey, H.J. Jr.; Miller, F.G.; Brigham, W.E.; Kruger, P.

1988-12-01T23:59:59.000Z

79

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests require information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates is necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

80

Evaluation of testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho  

DOE Green Energy (OSTI)

Evaluating the Raft River and Boise, Idaho, resources by pump and injection tests requires information on the geology, geochemistry, surficial and borehole geophysics, and well construction and development methods. Nonideal test conditions and a complex hydrogeologic system prevent the use of idealized mathematical models for data evaluation in a one-phase fluid system. An empirical approach is successfully used since it was observed that all valid pump and injection well pressure data for constant discharge tests plotted as linear trends on semilogarithmic plots of borehole pressure versus time since pumping or injection began. Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. Replicate instrumentation for pressure, temperature, and flow rates are necessary to ensure quality data. Water quality and monitor well data are also collected.

Allman, D.W.; Goldman, D.; Niemi, W.L.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985  

DOE Green Energy (OSTI)

The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1985-09-01T23:59:59.000Z

82

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

83

Geothermal reservoir temperatures estimated from the oxygen isotope  

Open Energy Info (EERE)

reservoir temperatures estimated from the oxygen isotope reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Details Activities (3) Areas (3) Regions (0) Abstract: The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above

84

Collection and Analysis of Reservoir Data from Testing and Operation...  

Open Energy Info (EERE)

and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

85

MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION  

E-Print Network (OSTI)

and momentum transfer i n a geothermal reservoir, Summaries2nd Work- shop Geothermal Reservoir Engineering, StanfordSchroeder, W e l l tests, Geothermal Resource and Reservoir

Bodvarsson, G.S.

2010-01-01T23:59:59.000Z

86

Thermodynamic behaviour of simplified geothermal reservoirs  

DOE Green Energy (OSTI)

Starting from the basic laws of conservation of mass and energy, the differential equations that represent the thermodynamic behavior of a simplified geothermal reservoir are derived. Its application is limited to a reservoir of high permeability as it usually occurs in the central zone of a geothermal field. A very practical method to solve numerically the equations is presented, based on the direct use of the steam tables. The method, based in one general equation, is extended and illustrated with a numerical example to the case of segregated mass extraction, variable influx and heat exchange between rock and fluid. As it is explained, the method can be easily coupled to several influx models already developed somewhere else. The proposed model can become an important tool to solve practical problems, where like in Los Azufres Mexico, the geothermal field can be divided in an inner part where flashing occurs and an exterior field where storage of water plays the main role.

Hiriart, G.; Sanchez, E.

1985-01-22T23:59:59.000Z

87

Seventeenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1992-01-31T23:59:59.000Z

88

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 1: Analytical Method  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

89

Geothermal Reservoir Assessment Based on Slim Hole Drilling, Volume 2: Application in Hawaii  

Science Conference Proceedings (OSTI)

EPRI tested and documented slim hole drilling as a geothermal resource evaluation method. The results of this work confirm that lower cost reservoir evaluations can be performed using slim hole methods. On the basis of this report's probabilistic reservoir size estimate, the Kilauea East Rift Zone on the island of Hawaii could support 100-300 MWe of geothermal power capacity.

1994-01-01T23:59:59.000Z

90

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network (OSTI)

the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

Howard, J.H.

2011-01-01T23:59:59.000Z

91

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir  

Open Energy Info (EERE)

Humeros Geothermal Reservoir Humeros Geothermal Reservoir (Mexico) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir (Mexico) Details Activities (0) Areas (0) Regions (0) Abstract: An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300-330┬░C boiling water column and a deeper low-liquid-saturation reservoir located between

92

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

Earthquakes in a Geothermal Steam Reservoir, The Geysersanalysis of the geothermal steam production and cold waterAs a result of high rate of steam withdrawal, the reservoir

Rutqvist, J.

2008-01-01T23:59:59.000Z

93

Borehole temperature survey analysis hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has been actively investigating the potential for extracting geothermal energy from hot dry rock. A man-made geothermal reservoir has been formed at the Fenton Hill Test Site in northern New Mexico. The 10-MW (thermal) prototype energy extraction circulation loop has been completed and has been continuously operating since January 28 of this year. The performance of the Phase I 1000-h circulation experiment would establish technological assessment of the particular hot dry rock geothermal reservoir. The major parameters of interest include equipment operations, geochemistry, water loss, and reservoir thermal drawdown. Temperature measurements were used extensively as one method to study the man-made geothermal reservoir. The temperature probe is one of the less complex wellbore survey tools that is readily fielded to allow on-line analysis of changing conditions in the hydraulic-fracture system. Several downhole temperature instruments have been designed and fabricated for use in the GT-2/EE-1 wellbores.

Dennis, B.R.; Murphy, H.D.

1978-01-01T23:59:59.000Z

94

DESCRIPTION OF THE THREE-DIMENSIONAL TWO-PHASE SIMULATOR SHAFT78 FOR USE IN GEOTHERMAL RESERVOIR STUDIES  

E-Print Network (OSTI)

i n Vapor-Dominated Geothermal Reservoirs, I' Report No. 76-G. : Three- . Dimensional Geothermal Reservoir Simulation,f1161. Coats, K. H. : "Geothermal Reservoir Modeling," paper

Pruess, K.

2011-01-01T23:59:59.000Z

95

G. M. Koelemay well No. 1, Jefferson County, Texas. Volume I. Completion and testing: testing geopressured geothermal reservoirs in existing wells. Final report  

DOE Green Energy (OSTI)

The acquisition, completion, and testing of a geopressured-geothermal well are described. The following are covered: geology; petrophysics; re-entry and completion operations - test well; drilling and completion operations - disposal well; test objectives; surface testing facilities; pre-test operations; test sequence; test results and analysis; and return of wells and location to operator. (MHR)

Not Available

1980-01-01T23:59:59.000Z

96

Fracture network modeling of a Hot Dry Rock geothermal reservoir  

DOE Green Energy (OSTI)

Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Robinson, B.A.

1988-01-01T23:59:59.000Z

97

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon ┬╗ Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

98

Improved energy recovery from geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical simulation methods are used to study how the exploitation of different horizons affects the behavior of a liquid-dominated geothermal reservoir. The reservoir model is a schematic representation of the Olkaria field in Kenya. The model consists of a two-phase vapor-dominated zone overlying the main liquid dominated reservoir. Four different cases were studied, with fluid produced from: 1) the vapor zone only, 2) the liquid zone only, 3) both zones and 4) both zones, but assuming lower values for vertical permeability and porosity. The results indicate that production from the shallow two-phase zone, although resulting in higher enthalpy fluids, may not be advantageous in the long run. Shallow production gives rise to a rather localized depletion of the reservoir, whereas production from deeper horizons may yield a more uniform depletion proces, if vertical permeability is sufficiently large.

Boedvarsson, G.S.; Pruess, K.; Lippmann, M.; Bjoernsson, S.

1981-06-01T23:59:59.000Z

99

Tenth workshop on geothermal reservoir engineering: proceedings  

DOE Green Energy (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

100

Geothermal reservoir engineering, second workshop summaries, December 1-3, 1976  

DOE Green Energy (OSTI)

Workshop proceedings included the following: (1) During the Overview Session some papers, among others, discussed 'Geothermal Reservoir Engineering Research' and 'Geothermal Reservoir Engineering in Industry'; (2) Session I, Reservoir Physics, included papers on 'Steam Zone Temperature Gradients at the Geysers' and 'Water Influx in a Steam Producing Well'; (3) Session II, Well Testing, included papers on 'Borehole Geophysics in Geothermal Wells--Problems and Progress' and 'Herber-Pressure Interference Study'; (4) Session III, Field Development, included papers on 'A Reservoir Engineering Study of the East Mesa KGRA' and 'Determining the Optimal Rate of Geothermal Energy Extraction'; (5) Session IV, Well Stimulation, included papers on 'Fluid Flow Through a Large Vertical Crack in the Earth's Crust' and 'Explosive Stimulation of Geothermal Wells'; and (6) Session V, Modeling, included papers on 'Steam Transport in Porous Media' and 'Large-Scale Geothermal Field Parameters and Convection Theory.'

Kruger, P.; Ramey, H.J. Jr.

1976-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Injection into a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A detailed study is made on the movement of the thermal fronts in the fracture and in the porous medium when 100{sup 0}C water is injected into a 300{sup 0}C geothermal reservoir with equally spaced horizontal fractures. Numerical modeling calculations were made for a number of thermal conductivity values, as well as different values of the ratio of fracture and rock medium permeabilities. One important result is an indication that although initially, the thermal front in the fracture moves very fast relative to the front in the porous medium as commonly expected, its speed rapidly decreases. At some distance from the injection well the thermal fronts in the fracture and the porous medium coincide, and from that point they advance together. The implication of this result on the effects of fractures on reinjection into geothermal reservoirs is discussed.

Bodvarsson, G.S.; Tsang, C.F.

1980-05-01T23:59:59.000Z

102

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

103

geothermal_test.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

104

RMOTC - Testing - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

105

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

106

Geothermal Well Completion Tests | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Completion Tests Geothermal Well Completion Tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Completion Tests Abstract This paper reviews the measurements that are typically made in a well immediately after drilling is completed - the Completion Tests. The objective of these tests is to determine the properties of the reservoir, and of the reservoir fluid near the well. A significant amount of information that will add to the characterisation of the reservoir and the well, can only be obtained in the period during and immediately after drilling activities are completed. Author Hagen Hole Conference Petroleum Engineering Summer School; Dubrovnik, Croatia; 2008/06/09 Published N/A, 2008 DOI Not Provided Check for DOI availability: http://crossref.org

107

Comparison of two hot dry rock geothermal reservoirs  

DOE Green Energy (OSTI)

Two hot dry rock (HDR) geothermal energy reservoirs were created by hydraulic fracturing of granite at 2.7 to 3.0 km (9000 to 10,000 ft) at the Fenton Hill site, near the Valles Caldera in northern New Mexico. Both reservoirs are research reservoirs, in the sense that both are fairly small, generally yielding 5 MWt or less, and are intended to serve as the basic building blocks of commercial-sized reservoirs, consisting of 10 to 15 similar fractures that would yield approximately 35 MWt over a 10 to 20 yr period. Both research reservoirs were created in the same well-pair, with energy extraction well number 1 (EE-1) serving as the injection well, and geothermal test well number 2 (GT-2) serving as the extraction, or production, well. The first reservoir was created in the low permeability host rock by fracturing EE-1 at a depth of 2.75 km (9020 ft) where the indigenous temperature was 185/sup 0/C (364/sup 0/F). A second, larger reservoir was formed by extending a small, existing fracture at 2.93 km (9620 ft) in the injection well about 100 m deeper and 10/sup 0/C hotter than the first reservoir. The resulting large fracture propagated upward to about 2.6 km (8600 ft) and appeared to Rave an inlet-to-outlet spacing of 300m (1000 ft), more then three times that of the first fracture. Comparisons are made with the first reservoir. Evaluation of the new reservoir was accomplished in two steps: (1) with a 23-day heat extraction experiment that began October 23, 1979, and (2) a second, longer-term heat extraction experiment still in progress, which as of November 25, 1980 has been in effect for 260 days. The results of this current experiment are compared with earlier experiments.

Murphy, H.D.; Tester, J.W.; Potter, R.M.

1980-01-01T23:59:59.000Z

108

Geothermal Reservoir Assessment Case Study, Northern Basin and...  

Open Energy Info (EERE)

GLO2386 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range...

109

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

110

Twentieth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

None

1995-01-26T23:59:59.000Z

111

Geothermal reservoir categorization and stimulation study  

DOE Green Energy (OSTI)

Analyses of the fraction of geothermal wells that are dry (dry-hole fraction) indicate that geothermal reservoirs can be fitted into four basic categories: (i) Quaternary to late Tertiary sediments (almost no dry holes); (ii) Quaternary to late Tertiary extrusives (approximately 20 percent dry holes); (iii) Mesozoic or older metamorphic rocks (approximately 25-30 percent dry holes); and (iv) Precambrian or younger rocks (data limited to Roosevelt Springs where 33 percent of the wells were dry). Failure of geothermal wells to flow economically is due mainly to low-permeability formations in unfractured regions. Generally the permeability correlates inversely with the temperature-age product and directly with the original rock porosity and pore size. However, this correlation fails whenever high-stress fields provide vertical fracturing or faulting, and it is the high-stress/low-permeability category that is most amenable to artificial stimulation by hydraulic fracturing, propellant fracturing, or chemical explosive fracturing. Category (i) geothermal fields (e.g., Cerro Prieto, Mexico; Niland, CA; East Mesa, CA) are not recommended for artificial stimulation because these younger sediments almost always produce warm or hot water. Most geothermal fields fit into category (ii) (e.g., Wairakei, New Zealand; Matsukawa, Japan; Ahuachapan, El Salvador) and in the case of Mt. Home, ID, and Chandler, AZ, possess some potential for stimulation. The Geysers is a category (iii) field, and its highly stressed brittle rocks should make this site amenable to stimulation by explosive fracturing techniques. Roosevelt Springs, UT, well 9-1 is in category (iv) and is a flow failure. It represents a prime candidate for stimulation by hydraulic fracturing because it has a measured temperature of 227/sup 0/C, is cased and available for experimentation, and is within 900 m of an excellent geothermal producing well.

Overton, H.L.; Hanold, R.J.

1977-07-01T23:59:59.000Z

112

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

113

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

114

Logging, Testing and Monitoring Geothermal Wells | Open Energy Information  

Open Energy Info (EERE)

Logging, Testing and Monitoring Geothermal Wells Logging, Testing and Monitoring Geothermal Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Logging, Testing and Monitoring Geothermal Wells Abstract Wells or boreholes are essential components in both geothermal research and utilization as they enable a drastic increase in geothermal energy production beyond natural out-flow as well as providing access deep into the systems, not otherwise possible. Wells also play a vital role in all geothermal reservoir physics (also called reservoir engineering) research, which would be particularly ineffec-tive without the access into geothermal systems provided by wells. During drilling the main reservoir physics research is performed through logging of different parameters as functions

115

Program predicts reservoir temperature and geothermal gradient  

Science Conference Proceedings (OSTI)

This paper reports that a Fortran computer program has been developed to determine static formation temperatures (SFT) and geothermal gradient (GG). A minimum of input data (only two shut-in temperature logs) is required to obtain the values of SFT and GG. Modeling of primary oil production and designing enhanced oil recovery (EOR) projects requires knowing the undisturbed (static) reservoir temperature. Furthermore, the bottom hole circulating temperature (BHCT) is an important factor affecting a cement's thickening time, rheological properties, compressive strength, development, and set time. To estimate the values of BHCT, the geothermal gradient should be determined with accuracy. Recently we obtained an approximate analytical solution which describes the shut-in temperature behavior.

Kutasov, I.M.

1992-06-01T23:59:59.000Z

116

Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal  

E-Print Network (OSTI)

a Challenging Water Dominated Geothermal System: the CerroSixteenth Workshop on Geothermal Reservoir Engineering,Simulation, Uenotai Geothermal Field, Akita Prefecture,

Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

2002-01-01T23:59:59.000Z

117

Pressure analysis of the hydromechanical fracture behaviour in stimulated tight sedimentary geothermal reservoirs  

E-Print Network (OSTI)

in jointed and layered rocks in geothermal fields.of Volcanology and Geothermal Research 116, 257- 278.fracturing in a sedimentary geothermal reservoir: Results

Wessling, S.

2009-01-01T23:59:59.000Z

118

Application of inverse modeling to geothermal reservoir simulation  

DOE Green Energy (OSTI)

The authors have developed inverse modeling capabilities for the non-isothermal, multiphase, multicomponent numerical simulator TOUGH2 to facilitate automatic history matching and parameter estimation based on data obtained during testing and exploitation of geothermal fields.The ITOUGH2 code allows one to estimate TOUGH2 input parameters based on any type of observation for which a corresponding simulation output can be calculated. Furthermore, a detailed residual and error analysis is performed, and the uncertainty of model predictions can be evaluated. Automatic history matching using ITOUGH2 is robust and efficient so that model parameters affecting geothermal field performance can reliably be estimated based on a variety of field measurements such as pressures, temperatures, flow rates, and enthalpies. The paper describes the methodology of inverse modeling and provides a detailed discussion of sample problems to demonstrate the application of the method to data from geothermal reservoirs.

Finsterle, S.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Bullivant, D.P.; O`Sullivan, M.J. [Univ. of Auckland (New Zealand). Dept. of Engineering Science

1997-01-01T23:59:59.000Z

119

Nineteenth workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Nineteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 18-20, 1994. This workshop opened on a sad note because of the death of Prof. Henry J. Ramey, Jr. on November 19, 1993. Hank had been fighting leukemia for a long time and finally lost the battle. Many of the workshop participants were present for the celebration of his life on January 21 at Stanford's Memorial Church. Hank was one of the founders of the Stanford Geothermal Program and the Geothermal Reservoir Engineering Workshop. His energy, kindness, quick wit, and knowledge will long be missed at future workshops. Following the Preface we have included a copy of the Memorial Resolution passed by the Stanford University Senate. There were one hundred and four registered participants. Participants were from ten foreign countries: Costa Rica, England, Iceland, Italy, Japan, Kenya, Mexico, New Zealand, Philippines and Turkey. Workshop papers described the performance of fourteen geothermal fields outside the United States. Roland N. Home opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a presentation about the future of geothermal development. The banquet speaker was Jesus Rivera and he spoke about Energy Sources of Central American Countries. Forty two papers were presented at the Workshop. Technical papers were organized in twelve sessions concerning: sciences, injection, production, modeling, and adsorption. Session chairmen are an important part of the workshop and our thanks go to: John Counsil, Mark Walters, Dave Duchane, David Faulder, Gudmundur Bodvarsson, Jim Lovekin, Joel Renner, and Iraj Ershaghi. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Xianfa Deng who coordinated the meeting arrangements for the Workshop. Roland N. Home Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1994-01-20T23:59:59.000Z

120

Application of stress corrosion to geothermal reservoirs  

DOE Green Energy (OSTI)

There are several alternative equations which describe slow crack growth by stress corrosion. Presently available data suggest that an alternative form may be preferable to the form which is most often used, but the issue cannot be clearly decided. Presently available stress corrosion data on glasses and ceramics suggest that rocks in a proposed geothermal reservoir will crack readily over long time periods, thus seriously limiting the operation of this type of power source. However, in situ hydrofracturing measurements together with a theoretical treatment suggest that such a reservoir will contain a relatively high pressure over a long period of time without further cracking. Further experimentation is desirable to measure directly the critical stresses for crack growth rates on the order of 10/sup -7/ m/sec.

Demarest, H.H. Jr.

1975-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Eleventh workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect

The Eleventh Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 21-23, 1986. The attendance was up compared to previous years, with 144 registered participants. Ten foreign countries were represented: Canada, England, France, Iceland, Indonesia, Italy, Japan, Mexico, New Zealand and Turkey. There were 38 technical presentations at the Workshop which are published as papers in this Proceedings volume. Six technical papers not presented at the Workshop are also published and one presentation is not published. In addition to these 45 technical presentations or papers, the introductory address was given by J. E. Mock from the Department of Energy. The Workshop Banquet speaker was Jim Combs of Geothermal Resources International, Inc. We thank him for his presentation on GEO geothermal developments at The Geysers. The chairmen of the technical sessions made an important contribution to the Workshop. Other than Stanford faculty members they included: M. Gulati, E. Iglesias, A. Moench, S. Prestwich, and K. Pruess. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank J.W. Cook, J.R. Hartford, M.C. King, A.E. Osugi, P. Pettit, J. Arroyo, J. Thorne, and T.A. Ramey for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment. The Eleventh Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract DE-AS03-80SF11459. We deeply appreciate this continued support. January 1986 H.J. Ramey, Jr. P. Kruger R.N. Horne W.E. Brigham F.G. Miller J.R. Counsil

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Counsil, J.R. (Stanford Geothermal Program)

1986-01-23T23:59:59.000Z

122

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

123

Characterization of geothermal reservoir crack patterns using shear-wave  

Open Energy Info (EERE)

geothermal reservoir crack patterns using shear-wave geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Characterization of geothermal reservoir crack patterns using shear-wave splitting Details Activities (1) Areas (1) Regions (0) Abstract: Microearthquakes recorded by a downhole, three-component seismic network deployed around the Coso, California, geothermal reservoir since 1992 display distinctive shear-wave splitting and clear polarization directions. From the polarizations the authors estimated three predominant subsurface fracture directions, and from the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics, 3/1/1997

124

Tectonic setting of the Coso geothermal reservoir | Open Energy Information  

Open Energy Info (EERE)

Tectonic setting of the Coso geothermal reservoir Tectonic setting of the Coso geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tectonic setting of the Coso geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal reservoir is being developed in Sierran-type crystalline bedrock of the Coso Mountains, a small desert mountain range just to the east of the Sierra Nevada and Rose Valley, which is the southern extension of the Owens Valley of eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal sources. An interpreted, conceptually balanced regional cross section that extends from the Sierra

125

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

126

Testing geopressured geothermal reservoirs in existing wells: Pauline Kraft Well No. 1, Nueces County, Texas. Final report  

DOE Green Energy (OSTI)

The Pauline Kraft Well No. 1 was originally drilled to a depth of 13,001 feet and abandoned as a dry hole. The well was re-entered in an effort to obtain a source of GEO/sup 2/ energy for a proposed gasohol manufacturing plant. The well was tested through a 5-inch by 2-3/8 inch annulus. The geological section tested was the Frio-Anderson sand of Mid-Oligocene age. The interval tested was from 12,750 to 12,860 feet. A saltwater disposal well was drilled on the site and completed in a Micocene sand section. The disposal interval was perforated from 4710 to 4770 feet and from 4500 to 4542 feet. The test well failed to produce water at substantial rates. Initial production was 34 BWPD. A large acid stimulation treatment increased productivity to 132 BWPD, which was still far from an acceptable rate. During the acid treatment, a failure of the 5-inch production casing occurred. The poor production rates are attributed to a reservoir with very low permeability and possible formation damage. The casing failure is related to increased tensile strain resulting from cooling of the casing by acid and from the high surface injection pressure. The location of the casing failure is now known at this time, but it is not at the surface. Failure as a result of a defect in a crossover joint at 723 feet is suspected.

Not Available

1981-01-01T23:59:59.000Z

127

Artificial geothermal reservoirs in hot volcanic rock  

SciTech Connect

S>Some recent results from the Los Alamos program in which hydraulic fracturing is used for the recovery of geothermal energy are discussed. The location is about 4 kilometers west and south of the ring fault of the enormous Jemez Caldera in the northcentral part of New Mexico. It is shown that geothermal energy may be extracted from hot rock that does not contain circulating hot water or steam and is relatively impermeable. A fluid is pumped at high pressure into an isolated section of a wellbore. If the well is cased the pipe in this pressurized region is perforated as it is in the petroleum industry, so that the pressure may be applied to the rock, cracking it. A second well is drilled a few hundred feet away from the first. Cold water is injected through the first pipe, circulates through the crack, and hot water returns to the surface through the second pipe. Results are described and circumstances are discussed under which artiflcial geothermal reservoirs might be created in the basaltic rock of Hawaii. (MCW)

Aamodt, R.L.

1974-02-08T23:59:59.000Z

128

Alternate operating strategies for Hot Dry Rock geothermal reservoirs  

DOE Green Energy (OSTI)

Flow testing and heat extraction experiments in prototype Hot Dry Rock (HDR) geothermal reservoirs have uncovered several challenges which must be addressed before commercialization of the technology is possible. Foremost among these is the creation of a reservoir which simultaneously possesses high permeability pathways and a large volume of fractured rock. The current concept of heat extraction -- a steady state circulation system with fluid pumping from the injection well to a single, low pressure production well -- may limit our ability to create heat extraction systems which meet these goals. A single injection well feeding two production wells producing fluid at moderate pressures is shown to be a potentially superior way to extract heat. Cyclic production is also demonstrated to have potential as a method for sweeping fluid through a larger volume of rock, thereby inhibiting flow channeling and increasing reservoir lifetime. 10 refs., 4 figs., 2 tabs.

Robinson, B.A.

1991-01-01T23:59:59.000Z

129

Geothermal reservoir well stimulation program. First-year progress report  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

130

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Nevada Test And Training Range Geothermal Area Nevada Test And Training Range Geothermal Area (Redirected from Nevada Test And Training Range Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

131

History match simulation of Serrazzano geothermal reservoir  

DOE Green Energy (OSTI)

The simulator SHAFT79 of Lawrence Berkeley Laboratory has been applied to field-wide distributed parameter simulation of the vapor-dominated geothermal reservoir at Serrazzano, Italy. Using a three-dimensional geologically accurate mesh and detailed flow rate data from 19 producing wells, a period of 15.5 years (from 1959 to 1975) has been simulated. The reservoir model used is based on field measurements of temperatures and pressures, laboratory data for core samples, and available geological and hydrological information. The main parameters determined (adjusted) during development of the simulation are permeabilities and much of the initial conditions. Simulated patterns of pressure decline show semi-quantitative agreement with field observations. The simulation suggests that there is cold water recharge and/or incomplete heat transfer from he rock due to fractures in the margins of the reservoir, and some steam flowing to the main well field originates from deep fractures rather than from boiling in the two-phase zones modeled. Simulation methodology and ambiguity of parameter determination is discussed.

Pruess, K.; Weres, O.; Schroeder, R.; Marconcini, R.; Neri, G.

1980-08-01T23:59:59.000Z

132

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

133

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR  

Open Energy Info (EERE)

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids. This method is being studied for application to geothermal wells and is funded by the California Energy Commission. Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow

134

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The  

Open Energy Info (EERE)

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews the use of earthquake studies in the field of geothermal exploration. Local, regional and teleseismic events can all provide useful information about a geothermal area on various scales. It is imperative that data collection is conducted in properly designed, realistic experiments. Ground noise is still of limited usefulness as a prospecting tool. The utility of the method cannot yet be assessed because of its undeveloped methodology and the paucity of case histories.

135

Geothermal reservoir technology research at the DOE Idaho Operations Office  

SciTech Connect

Geothermal reservoir technology research projects managed at the Department of Energy Idaho Falls Operations office (DOE-ID) account for a large portion of the Department of Energy funding for reservoir technology research (approximately 7 million dollars in FY-95). DOE-ID managed projects include industry coupled geothermal exploration drilling, cooperative research projects initiated through the Geothermal Technology Organization (GTO), and other geothermal reservoir technology research projects. A solicitation for cost-shared industry coupled drilling has been completed and one zward has been made in FY-95. Another solicitation for industry coupled drilling may be conducted in the spring of 1996. A separate geothermal research technology research, development and demonstration solicitation will result in multiple year awards over the next 2 years. The goals of these solicitations are to ensure competition for federal money and to get the Government and the geothermal industry the most useful information for their research dollars.

Creed, Bob

1996-01-24T23:59:59.000Z

136

Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir  

E-Print Network (OSTI)

be close to the produced reservoir water without surfaceinjection. Mixing the produced geothermal water with large

Xu, Tianfu; Pruess, Karsten

2004-01-01T23:59:59.000Z

137

A Review of the Geothermal Reservoir Well Stimulation Program  

DOE Green Energy (OSTI)

Republic Geothermal, Inc., and its subcontractors have planned and executed four experimental fracture stimulation treatments under the Department of Energy-funded Geothermal Reservoir Well Stimulation Program (GRWSP). The 2-year program, begun in February 1979, is Ultimately to include six full-scale field hydraulic and chemical stimulation experiments in geothermal wells. This paper describes the overall program and the four treatments completed to date. The GRWSP is organized into two phases. Phase I consists of literature and theoretical studies, laboratory investigations, and numerical work. The main purpose of this work is to establish the technological bases for geothermal well stimulation design. Phase I1 will include the planning, execution, and evaluation of six well stimulation treatments which utilize the technology developed in Phase I. Two stimulation experiments were performed at the Raft River, Idaho, known geothermal resource area (KGRA) in late 1979. This is a naturally fractured, hard rock reservoir with a relatively low geothermal resource temperature 149 C {+-} (300 F{+-}). A conventional planar hydraulic fracture job was performed in Well RRGP-5 and a ''Kiel'' dendritic, or reverse flow, technique was utilized in Well RRGP-4. In mid-1980, two stimulation experiments were performed at the East Mesa, California, KGRA. The stimulation of Well 58-30 provided the first geothermal well fracturing experience in a moderate temperature, 177 C {+-} (350 F{+-}), reservoir with matrix-type rock properties. The two treatments consisted of a conventional hydraulic fracture of a deep, low-permeability zone and a mini-frac ''Kiel'' treatment of a shallow, high-permeability zone in the same well. The stimulation experiment results to date were evaluated using short-term production tests, conventional pressure transient analysis, interference pressure data, chemical and radioactive tracers, borehole acoustic televiewer surveys and numerical models. This combination of evaluation techniques yielded an interpretation of fracture geometry and productivity enhancement. However, the evaluation of artificially induced fractures in naturally fractured formations was found to lead to possibly non-unique solutions. In all the field experiments, artificial fractures were created and well productivity was increased. A discussion of the prestimulation and poststimulation data and their evaluation are provided for each experiment in this report.

Campbell, D. A.; Hanold, R. J.; Sinclair, A. R.; Vetter, O. J.

1981-01-01T23:59:59.000Z

138

Radon as an In Situ Tracer in Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

By measuring trace amounts of radon in geothermal steam, utilities can estimate changes in the properties of the fluid produced from a reservoir. These measurements provide a method to monitor the transition from a liquid-dominated reservoir to a boiling reservoir.

1987-08-26T23:59:59.000Z

139

Twenty-first workshop on geothermal reservoir engineering: Proceedings  

DOE Green Energy (OSTI)

PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

None

1996-01-26T23:59:59.000Z

140

Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Tracer Testing At East Mesa Geothermal Area (1983) Tracer Testing At East Mesa Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1983) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Group Zorlu Plaza, Avcilar stanbul, 34310, TURKEY e-mail: aygun.guney@zorlu.com ABSTRACT Geothermal well that Petroleum and Geothermal fluids have similar properties in terms of well testing. In this regard, almost

Stanford University

142

Testing geopressured geothermal reservoirs in existing wells. Final report: Saldana well No. 2, Zapata County, Texas. Volume II. Well test data  

DOE Green Energy (OSTI)

The following are included: field test data, compiled and edited raw data, time/pressure data, tentative method of testing for hydrogen sulfide in natural gas using length of stain tubes, combined sample log, report on reservoir fluids study, well test analysis, smoothing with weighted moving averages, chemical analysis procedures, scale monitoring report, sand detector strip charts, and analyses of water and gas samples. (MHR)

Not Available

143

Review of the geothermal reservoir well stimulation program  

SciTech Connect

The overall program and the four experimental fracture stimulation treatments completed to date are described. The GRWSP is organized into two phases. Phase I consists of studies (literature and theoretical), laboratory investigations, and numerical work. Phase II will include the planning, execution and evaluation of six well stimulation treatments which utilize the technology developed in Phase I. Two stimulation experiments were performed at the Raft River, Idaho, Known Geothermal Resource Area (KGRA) in late-1979. This is a naturally fractured, hard rock reservoir with a relatively low geothermal resource temperature (300/sup 0/F). A conventional planar hydraulic fracture job was performed in Well RRGP-5 and a Kiel dendritic (or reverse flow) technique was utilized in Well RRGP-4. In mid-1980, two stimulation experiments were performed at the East Mesa, California, KGRA. The stimulation of Well 58-30 provided the first geothermal well fracturing experience in a moderate temperature (350/sup 0/F/sup +/) reservoir with matrix type rock properties. The two treatments consisted of a conventional hydraulic fracture of a deep, low permeability zone and a minifrac Kiel treatment of a shallow, high permeability zone in the same well. The stimulation experiment results to date were evaluated using short-term production tests, conventional pressure transient analysis, interference pressure data, chemical and radioactive tracers, borehole acoustic televiewer surveys, and numerical models.

Campbell, D.A.; Hanold, R.J.; Sinclair, A.R.; Vetter, O.J.

1981-01-01T23:59:59.000Z

144

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

145

G. M. Koelemay well No. 1, Jefferson County, Texas. Volume II. Well test data: testing geopressured geothermal reservoirs in existing wells. Final report  

DOE Green Energy (OSTI)

The following are included in the appendices: field test data, combined and edited raw data, time/pressure data, sample log, reservoir fluid study, gas data, sample collection and analysis procedure, scale monitoring and water analysis, sand detector and strip charts, and Horner-type plot data. (MHR)

Not Available

1980-01-01T23:59:59.000Z

146

Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir  

Open Energy Info (EERE)

Patterns In The Geysers Geothermal Reservoir Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Details Activities (1) Areas (1) Regions (0) Abstract: The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the

147

True-Temperature Determination Of Geothermal Reservoirs | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ True-Temperature Determination Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: True-Temperature Determination Of Geothermal Reservoirs Details Activities (0) Areas (0) Regions (0) Abstract: Parameters governing the resistivity in geothermal areas are analyzed. A method for the calculation of the true temperature of geothermal reservoirs is explained, and the effectiveness of the method is evidenced. Author(s): Jin Doo Jung Published: Geoexploration, 1977 Document Number: Unavailable DOI: 10.1016/0016-7142(77)90002-3 Source: View Original Journal Article

148

3-D Seismic Methods For Geothermal Reservoir Exploration And  

Open Energy Info (EERE)

Methods For Geothermal Reservoir Exploration And Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Details Activities (5) Areas (1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally

149

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

150

Recent geothermal reservoir engineering activities at Lawrence Berkeley Laboratory  

DOE Green Energy (OSTI)

This paper briefly describes the most recent activities in reservoir engineering for the geothermal group of Lawrence Berkeley Laboratory (LBL). The primary emphasis of the geothermal program of LBL is dedicated to reservoir engineering including theoretical investigations, the development and application of mathematical models, and field studies. The objectives of these activities are to develop and validate methods and instruments which will be utilized in the determination of the parameters of geothermal systems, and the identification and evaluation of the importance of the distinct processes which occur in reservoirs. The ultimate goal of the program is the development of state of the art technologies which characterize geothermal reservoirs and evaluate their productive capacity and longevity.

Lippmann, M.J.; Bodvarsson, G.S.; Benson, S.M.; Pruess, K.

1987-09-01T23:59:59.000Z

151

The Ahuachapan geothermal field, El Salvador: Reservoir analysis  

DOE Green Energy (OSTI)

These are appendices A thru E of the Ahuachapan geothermal field reservoir analysis. The volume contains: mineralogy contours, ionic chlorine and silicon dioxide contours, well summaries, and temperature and pressure effects. (JEF)

Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA))

1989-08-01T23:59:59.000Z

152

Thermal Response Testing for Geothermal Heat Exchangers ...  

Science Conference Proceedings (OSTI)

Thermal Response Testing for Geothermal Heat Exchangers Begins. The Net-Zero house features a geothermal heat pump ...

2013-03-12T23:59:59.000Z

153

Testing geopressured geothermal reservoirs in existing wells. Saldana well No. 2, Zapata County, Texas. Volume I. Completion and testing. Final report  

DOE Green Energy (OSTI)

The Saldana Well No. 2, approximately 35 miles Southeast of the city of Laredo, Texas, was the sixth successful test of a geopressured-geothermal aquifer under the DOE Wells of Opportunity Program. The well was tested through the annulus between 7-inch casing and 2-3/8 inch tubing. The interval tested was from 9745 to 9820 feet. The geological section was the 1st Hinnant Sand, an upper member of the Wilcox Group. Produced water was injected into the Saldana Well No. 1, which was also acquired from Riddle Oil Company and converted to a disposal well. A Miocene salt water sand was perforated from 3005 to 3100 feet for disposal. One pressure drawdown flow test and one pressure buildup test were conducted during a 10-day period. A total of 9328 barrels of water was produced. The highest sustained flow rate was 1950 BWPD.

Not Available

1981-10-07T23:59:59.000Z

154

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

155

Heat Extraction Project, geothermal reservoir engineering research at Stanford  

DOE Green Energy (OSTI)

The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

Kruger, P.

1989-01-01T23:59:59.000Z

156

Geothermal reservoir engineering research at Stanford University. First annual report, October 1, 1980-September 30, 1981  

SciTech Connect

The work on energy extraction experiments concerns the efficiency with which the in-place heat and fluids can be produced. The work on noncondensable gas reservoir engineering covers both the completed and continuing work in these two interrelated research areas: radon emanation from the rock matrix of geothermal reservoirs, and radon and ammonia variations with time and space over geothermal reservoirs. Cooperative research programs with Italy and Mexico are described. The bench-scale experiments and well test analysis section covers both experimental and theoretical studies. The small core model continues to be used for the study of temperature effects on absolute permeability. The unconsolidated sand study was completed at the beginning of this contract period. The Appendices describe some of the Stanford Geothermal program activities that results in interactions with the geothermal community. These occur in the form of SGP Technical Reports, presentations at technical meetings and publications in the open literature.

Brigham, W.E.; Horne, R.N.; Kruger, P.; Miller, F.G.; Ramey, H.J. Jr.

1981-09-01T23:59:59.000Z

157

Depletion modeling of liquid dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Depletion models for liquid-dominated geothermal reservoirs are derived and presented. The depletion models are divided into two categories: confined and unconfined. For both cases depletion models with no recharge (or influx), and depletion models including recharge, are used to match field data from the Svartsengi high temperature geothermal field in Iceland. The influx models included with the mass and energy balances are adopted from the petroleum engineering literature. The match to production data from Svartsengi is improved when influx was included. The Schilthuis steady-state influx gives a satisfactory match. The finite aquifer method of Fetkovitch, and the unsteady state method of Hurst gave reasonable answers, but not as good. The best match is obtained using Hurst simplified solution when lambda = 1.3 x 10{sup -4} m{sup -1}. From the match the cross-sectional area of the aquifer was calculated as 3.6 km{sup 2}. The drawdown was predicted using the Hurst simplified method, and compared with predicted drawdown from a boiling model and an empirical log-log model. A large difference between the models was obtained. The predicted drawdown using the Hurst simplified method falls between the other two. Injection has been considered by defining the net rate as being the production rate minus the injection rate. No thermal of transient effects were taken into account. Prediction using three different net rates shows that the pressure can be maintained using the Hurst simplified method if there is significant fluid reinjection. 32 refs., 44 figs., 2 tabs.

Olsen, G.

1984-06-01T23:59:59.000Z

158

Stress Test At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Stress Test At Coso Geothermal Area (2004) Stress Test At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stress Test At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Stress Test Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes A hydraulic fracturing stress test at 3,703 feet TVD was used to constrain a normal faulting and strike-slip faulting stress tensor for this reservoir. The shear and normal stresses resolved on the fracture and fault planes were calculated and used to identify the subset of critically stressed planes that act to maintain permeability within the Coso Geothermal Field. References

159

Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior  

SciTech Connect

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

Lippmann, M.J.

1989-03-01T23:59:59.000Z

160

Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior  

SciTech Connect

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

Lippmann, Marcelo J.

1989-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal Reservoir Engineering Research. Fourth annual report, October 1, 1983-September 30, 1984  

DOE Green Energy (OSTI)

Reservoir definition research consisted of well test analysis and bench-scale experiments. Well testing included both single-well pressure drawdown and buildup testing, and multiple-well interference testing. The development of new well testing methods continued to receive major emphasis during the year. Work included a project on multiphase compressibility, including the thermal content of the rock. Several projects on double-porosity systems were completed, and work was done on relative-permeability. Heat extraction from rock will determine the long-term response of geothermal reservoirs to development. The work in this task area involved a combination of physical and mathematical modeling of heat extraction from fractured geothermal reservoirs. International cooperative research dealt with adsorption of water on reservoir cores, the planning of tracer surveys, and an injection and tracer test in the Los Azufres fields. 32 refs.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1984-09-01T23:59:59.000Z

162

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation-  

Open Energy Info (EERE)

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Details Activities (6) Areas (1) Regions (0) Abstract: This paper presents the results of analysis of a state of the art set of wireline petrophysical and wellbore image logs recorded in the Alum 25-29 well, southwestern Nevada. The Alum well penetrated nearly 2000 ft (610 m) of volcano-clastic rocks and more than 1000 ft of basement, separated from the sediments by a shallowly dipping detachment fault. The logs were acquired both to characterize the site and also to select the

163

State of Seismic Methods For Geothermal Reservoir Exploration and Assessment  

Office of Scientific and Technical Information (OSTI)

3-D Seismic Methods For Geothermal Reservoir Exploration 3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the

164

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

165

Methods for geothermal reservoir detection emphasizing submerged environments  

DOE Green Energy (OSTI)

This report has been prepared for the California State Lands Commission to aid them in evaluating exploration programs for geothermal reservoirs, particularly in submerged land environments. Three charts show: (1) a logical progression of specific geologic, geochemical, and geophysical exploration techniques for detecting geothermal reservoirs in various geologic environments with emphasis on submerged lands, (2) various exploration techniques which can be used to develop specific information in geothermal areas, and (3) if various techniques will apply to geothermal exploration according to a detailed geologic classification. A narrative in semi-outline form supplements these charts, providing for each technique; a brief description, advantages, disadvantages, special geologic considerations, and specific references. The specific geologic situation will control the exploration criterion to be used for reservoir detection. General guidelines are established which may be of use in evaluating such a program, but the optimum approach will vary with each situation.

Case, C.W.; Wilde, P.

1976-05-21T23:59:59.000Z

166

Method of extracting heat from dry geothermal reservoirs  

DOE Patents (OSTI)

Hydraulic fracturing is used to interconnect two or more holes that penetrate a previously dry geothermal reservoir, and to produce within the reservoir a sufficiently large heat-transfer surface so that heat can be extracted from the reservoir at a usefully high rate by a fluid entering it through one hole and leaving it through another. Introduction of a fluid into the reservoir to remove heat from it and establishment of natural (unpumped) convective circulation through the reservoir to accomplish continuous heat removal are important and novel features of the method. (auth)

Potter, R.M.; Robinson, E.S.; Smith, M.C.

1974-01-22T23:59:59.000Z

167

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

168

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

169

Analysis of Production Decline in Geothermal Reservoirs  

DOE Green Energy (OSTI)

Data and analysis methods were gathered from the petroleum, geothermal, and hydrological literature. The data sets examined include: Wairakei, New Zealand -141 wells; Cerro Prieto, Mexico - 18 wells; The Geysers, USA - 27 wells; Larderello, Italy - 9 wells and groups; Matsukawa and Otake, Japan - 8 wells; and Olkaria, Kenya - 1 well. The analysis methods tested were; Arps's equations, Fetkovich type curves, Slider's method for Arps, Gentry's method for Arps, Gentry's and McCray's method, other type curves, P/z vs. Q method, Coats' influence function method, and Bodvarsson's Linearized Free Surface Green's Function method. The conclusions are: (1) The exponential equation fit is satisfactory for geothermal data. (2) The hyperbolic equation should be used only if the data fit well on a hyperbolic type curve. (3) The type curve methods are useful if the data are not too scattered. They work well for vapor dominated systems and poorly for liquid dominated systems. (4) Coats' influence function method can be used even with very scattered data. (5) Bodvarsson's method is still experimental but it shows much promise as a useful tool.

Byrns, R.

1980-09-01T23:59:59.000Z

170

Geothermal reservoir engineering computer code comparison and validation calculations using MUSHRM and CHARGR geothermal reservoir simulators  

DOE Green Energy (OSTI)

The essential features of the reservoir codes CHARGR and MUSHRM are described. Solutions obtained for the problem set posed by DOE are presented. CHARGR was used for all six problems; MUSHRM was used for one. These problems are: the 1-D Avdonin solution, the 1-D well test analysis, 2-D flow to a well in fracture/block media, expanding two-phase system with drainage, flow in a 2-D areal reservoir, and flow in a 3-D reservoir. Results for the last problem using both codes are compared. (MHR)

Pritchett, J.W.

1980-11-01T23:59:59.000Z

171

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network (OSTI)

document. LBL-7094 UC-66~1 GEOTHERMAL RESOURCE AND RESERVOIRInc. , 1976. Study of the geothermal reservoir underlyingtest, 1976, East Mesa geothermal field in California.

2009-01-01T23:59:59.000Z

172

Evaluation of a geothermal well logging, DST and Pit test  

DOE Green Energy (OSTI)

This paper briefly discusses logging and testing operations and certain related physical aspects in geothermal well evaluations. A good understanding of thermal and hydrological characteristics of geothermal reservoirs are essential in geothermal well evaluations. Within geothermal reservoirs, in evaluating the wells, the two most important parameters that first could be estimated, then measured or calculated, are temperature and productivity. Well logs and wireline surveys are means of measuring formation temperatures. Drill Stem Tests (DST's) or Pit Tests are means of determining formation productivity. Geochemistry and Petrology are currently accepted as two evaluation yardsticks in geothermal well evaluations. investigations of cuttings and cores during drilling operations, along with studies on formation waters could be used in a predictive nature for temperature and productivity and could yield useful information on the resource.

Tansev, Erdal O.

1978-01-01T23:59:59.000Z

173

Precise Gravimetry and Geothermal Reservoir Management | Open Energy  

Open Energy Info (EERE)

Precise Gravimetry and Geothermal Reservoir Management Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal Reservoir Management Abstract Modern portable gravimeters can routinely achieve a5 ugal uncertainty with careful measurementprocedures involving multiple station occupations inthe same day, and stacking of readings over at least15 minutes during each occupation. Although furtherimprovements in gravimeter accuracy are feasible,other practical factors relating to repeat surveys ofgeothermal fields make such improvements oflimited value. The two most important factors arebenchmark elevation variations (3 ugal/cm) andgroundwater level fluctuations (5-10 ugal/m). Dualfrequency GPS receivers can give elevations

174

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

175

West Valley Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Valley Reservoir Geothermal Area Valley Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: West Valley Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.19166667,"lon":-120.385,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Geysers Hi-T Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geysers Hi-T Reservoir Geothermal Area Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8,"lon":-122.8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Raft River well stimulation experiments: geothermal reservoir well stimulation program  

DOE Green Energy (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.

Not Available

1980-08-01T23:59:59.000Z

178

Prediction of thermal front breakthrough due to fluid reinjection in geothermal reservoirs  

DOE Green Energy (OSTI)

Chemically reactive tracers can be used to measure reservoir temperature distributions because of their extreme sensitivity to temperature. If a reactive tracer flows through a reservoir from an injection well to a production well, then early in the production history the tracer will contact mostly high temperatures and experience a high percentage of decomposition. As more energy is extracted from the reservoir, subsequent reactive tracer tests will show less decomposition. Tracers must be chosen which have reaction kinetics appropriate to the temperature patterns expected in the reservoir under consideration. If kinetics are too slow, no significant reaction occurs. If kinetics are too fast, essentially all of the tracer will react. In neither case can useful information be obtained. Seventeen chemically reactive tracers have been identified which are appropriate for geothermal reservoirs in the 70 to 275/sup 0/C range. Of the 17 tracer reactions investigated, 5 are hydrolysis of esters, 3 are hydrolysis of amines, and 9 are hydrolysis of aryl halides. A method for choice of the appropriate reactive tracer for a given reservoir is also presented. The method requires measurement of the residence time distribution (from a conservative tracer test), an estimate of reservoir temperature, and some simple geochemistry measurements and calculations. Several examples of choosing reactive tracers for existing geothermal reservoirs are given.

Birdsell, S.A.; Robinson, B.A.

1987-01-01T23:59:59.000Z

179

Geothermal reservoir assessment: Northern Basin and Range Province, Stillwater prospect, Churchill County, Nevada. Final report, April 1979-July 1981  

DOE Green Energy (OSTI)

Union Oil Company of California drilled two exploratory geothermal wells in the Stillwater geothermal prospect area in northwestern Nevada to obtain new subsurface data for inclusion in the geothermal reservoir assessment program. Existing data from prior investigations, which included the drilling of four earlier deep temperature gradient wells in the Stillwater area, was also provided. The two wells were drilled to total depths of 6946 ft and 10,014 ft with no significant drilling problems. A maximum reservoir temperature of 353 F was measured at 9950 ft. The most productive well flow tested at a rate of 152,000 lbs/hr with a wellhead temperature of 252 F and pressure of 20 psig. Based upon current economics, the Stillwater geothermal prospect is considered to be subcommercial for the generation of electrical power. This synopsis of the exploratory drilling activities and results contains summary drilling, geologic, and reservoir information from two exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1981-08-01T23:59:59.000Z

180

Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

Robinson, Bruce A.; Birdsell, Stephen A.

1989-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hot Dry Rock geothermal reservoir model development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

Robinson, B.A.; Birdsell, S.A.

1989-01-01T23:59:59.000Z

182

The Ahuachapan geothermal field, El Salvador: Reservoir analysis  

DOE Green Energy (OSTI)

The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

1989-08-01T23:59:59.000Z

183

The Tiwi geothermal reservoir: Geology, geochemistry, and response to production  

Science Conference Proceedings (OSTI)

The Tiwi geothermal field is located on the Bicol Peninsula of Southern Luzon in the Philippines. The field is associated with the extinct Quaternary stratovolcano Mt. Malinao, one of a chain of volcanos formed as a result of crustal subduction along the Philippine Trench to the east. The geothermal reservoir is contained within a sequence of interlayered andesite flows and pyroclastic deposits that unconformably overlie a basement complex of marine sediments, metamorphic, and intrusive rocks. In its initial state, the Tiwi reservoir was an overpressured liquid-filled system containing near-neutral sodium chloride water at temperatures exceeding 260{degree}C. The reservoir is partially sealed at its top and sides by hydrothermal argillic alteration products and calcite deposition. Isolated portions of the reservoir contain a corrosive acid chloride-sulfate water associated with a distinctive advanced argillic mineral assemblage. Withdrawal of fluid for electricity generation has caused widespread boiling in the reservoir and the formation of steam zones. The resultant solids deposition in wellbores and near-wellbore formation has been mitigated by a combination of mechanical and chemical well stimulation. Mass withdrawal from the reservoir has also caused invasion of cold groundwater into the reservoir through former fluid outflow channels. During 1983-1987, several wells were flooded with cold water and ceased flowing. In response, PGI moved development drilling west to largely unaffected areas and undertook recompletion and stimulation programs. These programs effectively halted the decline in generation by 1988.

Hoagland, J.R.; Bodell, J.M. (Unocal Geothermal Div., Santa Rosa, CA (USA))

1990-06-01T23:59:59.000Z

184

geothermal_test.cdr  

Office of Legacy Management (LM)

F A C T S H E E T Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S....

185

AN ASSESSMENT OF PRECISE SURFACE GRAVITY MEASUREMENTS FOR MONITORING THE RESPONSE OF A GEOTHERMAL RESERVOIR TO EXPLOITATION  

E-Print Network (OSTI)

the Response of a Geothermal Reservoir to Exploitation R. B,THE RESPONSE OF A GEOTHERMAL RESERVOIR T EXPLOITATION O R.D i v i s i o n o f Geothermal and Hydropower Technologies o

Grannell, R.B.

2010-01-01T23:59:59.000Z

186

A Reservoir Assessment of the Geysers Geothermal Field  

SciTech Connect

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Upon moderately dipping, fracture network. Condensed steam at the steep reservoir flank drains back to the hot water table. These flanks are defined roughly by marginally-producing geothermal wells. Field extensions are expected to be on the southeast and northwest. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably represent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resitivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. Monitoring gravity and geodetic changes with time and mapping microearthquake activity are methods that show promise for determining reservoir size, possible recharge, production lifetime, and other characteristics of the known stream field. Seismic reflection data may contribute to the efficient exploitation of the field by identifying fracture zones that serve as conduits for the steam. (DJE-2005)

Thomas, Richard P.; Chapman, Rodger H.; Dykstra, Herman; Stockton, A.D.

1981-01-01T23:59:59.000Z

187

A STUDY ON GEOTHERMAL RESERVOIR ENGlNEERING APPROACH COMBINED WITH GEOLOGICAL INFORMATIONS  

SciTech Connect

This paper presents the combined approaches of reservoir geology and engineering to a geothermal field where geological characteristics are highly complex and heterogeneous.Especially,the concrete approaches are discussed for the case of geothermal reservoir performance studies with a developed numerical model, by showing example cases accompanied with reinjection of produced disposal hot water into underground in an object geothermal reservoir. This combined approach will be a great help in solving complicated problems encountered during the development of a geothermal field.

Hirakawa, S.; Yamaguchi, S.; Yoshinobu, F.

1985-01-22T23:59:59.000Z

188

Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal  

DOE Green Energy (OSTI)

Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

2002-06-15T23:59:59.000Z

189

Fracturing operations in a dry geothermal reservoir  

DOE Green Energy (OSTI)

Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh downhole environment. Two deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures are in excess of 600/sup 0/F (315/sup 0/C). The wells were drilled during 1979 to 1981, inclined at 35 degrees, one above the other, and directionally drilled in an azimuthal direction orthogonal to the least principal in-situ crustal stress field. Hydraulic fracturing experiments to connect the two wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in insolation liners and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of three-dimensional fracture growth that requires very large volumes of injected water. Two fractured zones have been formed by hydraulic fracturing and defined by close-in, borehole deployed, microseismic detectors. Initial operations were focused in the injection wellbore near total depth, where water injection treatments totalling 51,000 bbls (8100 m/sup 3/) were accomplished by pumping through a cemented-in 4-1/2 in. liner/PBR assembly. Retrievable casing packers were used to inject 26,000 bbls (4100 m/sup 3/) in the upper section of the open hole. Surface injection pressures (ISIP) varied from 4000 to 5900 psi (27 to 41 MPa) and the fracture gradient ranged from 0.7 to 0.96 psi/ft.

Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.

1983-01-01T23:59:59.000Z

190

PROCEEDINGS TWENTIETH WORKSHOP GEOTHERMAL RESERVOIR ENGINEERING  

NLE Websites -- All DOE Office Websites (Extended Search)

a global reservoir value of the amount of adsorbed liquid water per kg of rock (called ADS in the present paper). We simulated the natural state with different values of ADS,...

191

Characterization of geothermal reservoir crack patterns using...  

Open Energy Info (EERE)

the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics,...

192

Geothermal Reservoir Well Stimulation Program: technology transfer  

DOE Green Energy (OSTI)

To assess the stimulation technology developed in the oil and gas industry as to its applicability to the problems of geothermal well stimulation, a literature search was performed through on-line computer systems. Also, field records of well stimulation programs that have worked successfully were obtained from oil and gas operators and service companies. The results of these surveys are presented. (MHR)

Not Available

1980-05-01T23:59:59.000Z

193

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network (OSTI)

t h e v a p r phase. I n a vapor-dominated geothermal r e s e r v o i r , t h e only "non-vapor" f l u when adsorbed water is the only "non-vapor" f l u i d present. There is a f u r t h e r consideration

Stanford University

194

Geothermal Reservoir Well Stimulation Program: technology transfer  

Science Conference Proceedings (OSTI)

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

Not Available

1980-05-01T23:59:59.000Z

195

State-of-the-art review of geothermal reservoir modelling  

DOE Green Energy (OSTI)

The state-of-the-art in geothermal reservoir modelling is summarized and evaluated. Only those models which have been developed exclusively for geothermal simulation are considered. Attention is focused primarily on the two and three dimensional distributed parameter models. The general porous flow theory is formulated. For each model, the governing equations, method of approximation, treatment of the convection term, treatment of the nonlinear coefficients, solution of the resulting algebraic equations, and representation of the well-bore are presented. Example problems that have been treated are discussed briefly. (MHR)

Pinder, G.F.

1979-03-01T23:59:59.000Z

196

US Gulf Coast geopressured-geothermal reservoir simulation. Final report (Year 3)  

DOE Green Energy (OSTI)

Several reservoir model improvements incorporated into the UTA model are described. The most significant modification to the model was the inclusion of semiimplicit treatment of transmissibilities so as to better handle two-phase flow problems associated with flow near the wellbore. A description of the reservoir mechanics presumed operative in geopressured-geothermal reservoirs is included. A mathematical model describing two-dimensional flow in compacting porous media is developed from the Lagrangian point of view. A description of the way the differential equations are approximated by finite differences and subsequently solved by means of numerical procedures is presented. Various sensitivity studies made with the reservoir model are described. Particular emphasis was given to the study of potential shale dewatering effects on reservoir depletion and the effects of compaction on fluid recovery. To study shale dewatering, the shale thickness and the shale vertical permeability were treated as variables in several simulation experiments. The effects of compaction were modeled with optimistic and pessimistic values for the uniaxial compaction coefficient in an attempt to define a region of expected reservoir performance. Laboratory analysis of core samples obtained from the geopressured-geothermal test well was completed by the end of year 3. These data indicate that the uniaxial compaction coefficient is of the same order of magnitude as the pessimistic value used on the sensitivity studies. Because of this the expected fluid recovery from geopressured reservoirs has been reduced to a nominal 5% of the in-place volumes rather than the previously reported 10%.

MacDonald, R.C.; Ohkuma, H.; Sepehrnoori, K.; Chang, M.M.

1979-01-01T23:59:59.000Z

197

Sweet Lake Geopressured-geothermal Project, Magma Gulf-Technadril/DOE Amoco Fee. Volume II. Surface installations reservoir testing. Annual report, February 28, 1981-February 10, 1982  

DOE Green Energy (OSTI)

The Magma Gulf-Technadril/Department of Energy Amoco Fee No. 1 (production) and salt water disposal wells were drilled in the period from August, 1980 to February 1981. Surface facilities were designed and constructed during March-June 1981. Flow testing began in June 1981 and continued until February, 1982. The Miogypsinoides interval contains seven discrete sands in the test well. These sands have been numbered 1 to 7, beginning at the top of the sequence. Data from wireline logs and core samples suggested that the first zone to be perforated should be Sand 5. Because of its high porosity and permeability, Sand 5 was thought to contain almost 50% of the total hydraulic capacity of the well. Flow testing of Sand 5 was performed in three stages, each of which is fully described in this report. Phase I was designed as an initial clean-up flow and a reservoir confirmation test. Phase II consisted of the reservoir limit determination test and lasted 17 days. Boundaries were confirmed which suggest that the Sweet Lake reservoir is fairly narrow, with boundaries on three sides, but is open in one direction with no closure for at least 4-1/4 miles. These boundaries approximate the shape of the graben in which the test well was drilled, but may or may not be directly related to the major faults forming the graben. Phase III testing was planned to be a long-term test at commercial design rates. Although Sand 5 alone would not support such rates, long-term production was demonstrated. Additional research not supported by DOE funding was also performed during the period covered by this report. This research, consisting of mud logging, micropaleontology, organic geochemistry, core analysis, and rock mechanics, is summarized in this report.

Hoffman, K.S. (ed.)

1984-01-01T23:59:59.000Z

198

Numerical simulation of reservoir compaction in liquid dominated geothermal systems  

DOE Green Energy (OSTI)

A numerical model is introduced which simulates the effects of fluid production as well as reinjection on the vertical deformation of water dominated geothermal reservoirs. This program, based on an Integrated Finite Difference technique and Terzaghi's one-dimensional consolidation model, computes the transport of heat and water through porous media, and resulting pore volume changes. Examples are presented to show the effects of reservoir heterogeneities on the compaction of these hot water systems, as well as the effects of different production-injection schemes. The use of isothermal models to simulate the deformation of non-isothermal systems was also investigated.

Lippmann, M.J.; Narasimhan, T.N.; Witherspoon, P.A.

1976-12-01T23:59:59.000Z

199

Reservoir studies of the Seltjarnarnes geothermal field, Iceland  

DOE Green Energy (OSTI)

The Seltjarnarnes geothermal field in Iceland has been exploited for space heating for the last 16 years. A model of the field has been developed that integrates all available data. The model has been calibrated against the flow rate and pressure decline histories of the wells and the temperature and chemical changes of the produced fluids. This has allowed for the estimation of the permeability and porosity distribution of the system, and the volume of the hot reservoir. Predictions of future reservoir behavior using the model suggest small pressure and temperature changes, but a continuous increase in the salinity of the fluids produced.

Tulinius, H.; Spencer, A.L.; Bodvarsson, G.S.; Kristmannsdottir, H.; Thorsteinsson, T.; Sveinbjornsdottir, A.E.

1986-10-01T23:59:59.000Z

200

ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS  

Science Conference Proceedings (OSTI)

Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modeling of fluid and heat flow in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.

Pruess, K.

1988-08-01T23:59:59.000Z

202

Simple numerical simulation for liquid dominated geothermal reservoir  

SciTech Connect

A numerical model for geothermal reservoir has been developed. The model used is based on an idealized, two-dimensional case, where the porous medium is isotropic, nonhomogeneous, filled with saturated liquid. The fluids are assumed to have constant and temperature dependent viscosity. A Boussinesq approximation and Darcyĺs law are used. The model will utilize a simple hypothetical geothermal system, i.e. graben within horsts structure, with three layers of different permeabilities. Vorticity plays an importance roles in the natural convection process, and its generation and development do not depend only on the buoyancy, but also on the magnitude and direction relation between the flow velocity and the local gradient of permeability to viscosity ratio. This model is currently used together with a physical, scaled-down reservoir model to help conceptual modeling.

Wintolo, Djoko; Sutrisno; Sudjatmiko; Sudarman, S.

1996-01-24T23:59:59.000Z

203

A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development  

DOE Green Energy (OSTI)

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are defined from the numerical solution of a complex hypersingular integral equation written for a given fracture configuration and loading. The fracture propagation studies include modeling interaction of induced fractures with existing discontinuities such as faults and joints. In addition to the fracture propagation studies, two- and three-dimensional heat extraction solution algorithms have been developed and used to estimate heat extraction and the variations of the reservoir stress with cooling. The numerical models have been developed in a user-friendly environment to create a tool for improving fracture design and investigating single or multiple fracture propagation in rock.

Ahmad Ghassemi

2003-06-30T23:59:59.000Z

204

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir |  

Open Energy Info (EERE)

Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Three-Dimensional Seismic Imaging Of The Rye Patch Geothermal Reservoir Details Activities (3) Areas (1) Regions (0) Abstract: A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The

205

Geothermal reservoir assessment: Cove Fort-Sulphurdale Unit. Final report, September 1977-July 1979  

DOE Green Energy (OSTI)

Three exploratory geothermal wells were drilled in the Cove Fort-Sulphurdale geothermal resource area in southwestern Utah to obtain new subsurface data for inclusion in the US DOE's geothermal reservoir assessment program. Existing data from prior investigations which included the drilling of an earlier exploratory well at the Cove Fort-Sulphurdale area was also provided. Two of the wells were abandoned before reaching target depth because of severe lost circulation and hole sloughing problems. The two completed holes reached depths of 5221 ft. and 7735 ft., respectively, and a maximum reservoir temperature of 353/sup 0/F at 7320 ft. was measured. The deepest well flow was tested at the rate of 47,000 lbs/h with a wellhead temperature of 200/sup 0/F and pressure of 3 psig. Based upon current economics, the Cove Fort-Sulphurdale geothermal resource is considered to be sub-commercial for the generation of electrical power. A synopsis is given of the exploratory drilling activities and results containing summary drilling, testing, geologic and geochemical information from four exploratory geothermal wells.

Ash, D.L.; Dondanville, R.F.; Gulati, M.S.

1979-12-01T23:59:59.000Z

206

Use of slim holes for reservoir evaluation at the Steamboat Hills Geothermal Field, Nevada, USA  

SciTech Connect

Three slim holes were drilled at the Steamboat Hills Geothermal Field in northwestern Nevada about 15 km south of Reno. The slim holes were drilled to investigate the geologic conditions, thermal regime and productive characteristics of the geothermal system. They were completed through a geologic sequence consisting of alluvium cemented by geothermal fluids, volcaniclastic materials, and granodiorite. Numerous fractures, mostly sealed, were encountered throughout the drilled depth; however, several open fractures in the granodiorite, dipping between 65 and 90{degree}, had apertures up to 13 mm in width. The depths of the slim holes vary from 262 to 277 m with open-hole diameters of 76 mm. Pressure and temperature logs gave bottom-hole temperatures ranging from 163 to 166{degree} C. During injection testing, downhole pressures were measured using capillary tubing with a surface quartz transducer while temperatures were measured with a Kuster temperature tool located below the capillary tubing pressure chamber. No pressure increase was measured at reservoir depths in any of the three slim holes while injecting 11 kg/s of 29{degree}C water indicating a very high permeability in the geothermal reservoir. These injection test results suggested that productive geothermal fluids could be found at depths sufficient for well pumping equipment and at temperatures needed for electrical power production using binary-type conversion technology.

Combs, Jim; Goranson, Colin

1994-01-20T23:59:59.000Z

207

The U.S. Department of Energy's Geothermal Reservoir Technology Program  

Science Conference Proceedings (OSTI)

Geothermal reservoir engineering is an important aspect f the Department of Energyĺs Geothermal Technology Division, geothermal research and development program. Reservoir engineering-related research, a component of all geosciences activities, is of particular importance in the context of Hydrothermal Reservoir Research. Three closely related research activities (Brine Injection, Reservoir Definition, and Caldera Reservoir Investigations) are now combined under the more general heading of Reservoir Technology. Scientific investigations, as part of the Salton Sea Scientific Drilling Program, also contribute greatly to the understanding of the behavior of high-temperature hydrothermal convection systems. With the creation of the Geothermal Technology Organization, where geothermal research will be cost-shard with industry, it is anticipated that a number of research topics will be brought to the point where the geothermal industry can rapidly put new technology into use. 2 tabs., 2 figs.

Mock, John E.; Blackett, Robert E.

1987-01-20T23:59:59.000Z

208

Reservoir and injection technology: Geothermal reservoir engineering research at Stanford: Third annual report for the period October 1, 1986 through September 30, 1987: (Final report)  

DOE Green Energy (OSTI)

This paper discusses different aspects of geothermal reservoir engineering. General topics covered are: reinjection technology, reservoir technology, and heat extraction. (LSP)

Ramey, H.J. Jr.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

1988-02-01T23:59:59.000Z

209

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network (OSTI)

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

210

Formation evaluation in liquid-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Studies relative to some formation evaluation aspects of geothermal reservoirs are reported. The particular reservoirs considered were the liquid dominated type with a lithology of the sedimentary nature. Specific problems of interest included the resistivity behavior of brines and rocks at elevated temperatures and studies on the feasibility of using the well log resistivity data to obtain estimates of reservoir permeability. Several papers summarizing the results of these studies were presented at various technical meetings for rapid dissemination of the results to potential users. These papers together with a summary of data most recently generated are included. A brief review of the research findings precedes the technical papers. Separate abstracts were prepared for four papers. Five papers were abstracted previously for EDB.

Ershaghi, I.; Dougherty, E.E.; Handy, L.L.

1981-04-01T23:59:59.000Z

211

Large-scale three-dimensional geothermal reservoir simulation on small computer systems  

DOE Green Energy (OSTI)

The performance of TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport enhanced with the addition of a set of preconditioned conjugate gradient solvers, was tested on three PCs (486-33, 486-66, Pentium-90), a MacIntosh Quadra 800, and a workstation IBM RISC 6000. A two-phase, single porosity, 3-D geothermal reservoir model with 1,411 irregular grid blocks, with production from and injection into the reservoir was used as the test model. The code modifications to TOUGH2 and its setup in each machine environment are described. Computational work per time step and CPU time requirements are reported for each of the machines used. It is concluded that the current PCs provide the best price/performance platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers and high-end workstations.

Antunez, E.; Moridis, G.; Pruess, K.

1995-05-01T23:59:59.000Z

212

Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report  

DOE Green Energy (OSTI)

The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

2011-07-01T23:59:59.000Z

213

Fluid and heat flow in gas-rich geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical-simulation techniques are used to study the effects of noncondensible gases (CO/sub 2/) on geothermal reservoir behavior in the natural state and during exploitation. It is shown that the presence of CO/sub 2/ has large effects on the thermodynamic conditions of a reservoir in the natural state, especially on temperature distributions and phase compositions. The gas will expand two-phase zones and increase gas saturations to enable flow of CO/sub 2/ through the system. During exploitation, the early pressure drop is primarily due to degassing of the system. This process can cause a very rapid initial pressure drop, on the order of tens of bars, depending upon the initial partial pressure of CO/sub 2/. The following gas content from wells can provide information on in-place gas saturations and relative permeability curves that apply at a given geothermal resource. Site-specific studies are made for the gas-rich two-phase reservoir at the Ohaki geothermal field in New Zealand. A simple lumped-parameter model and a vertical column model are applied to the field data. The results obtained agree well with the natural thermodynamic state of the Ohaki field (pressure and temperature profiles) and a partial pressure of 15 to 25 bars is calculated in the primary reservoirs. The models also agree reasonably well with field data obtained during exploitation of the field. The treatment of thermophysical properties of H/sub 2/O-CO/sub 2/ mixtures for different phase compositions is summarized.

O'Sullivan, M.J.; Bodvarsson, G.S.; Pruess, K.; Blakeley, M.R.

1983-07-01T23:59:59.000Z

214

A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir  

Open Energy Info (EERE)

Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Hydro-Thermo-Mechanical Numerical Model For Hdr Geothermal Reservoir Evaluation Details Activities (0) Areas (0) Regions (0) Abstract: A two-dimensional numerical model of coupled fluid flow, heat transfer and rock mechanics in naturally fractured rock is developed. The model is applicable to assessments of hot dry rock (HDR) geothermal reservoir characterisation experiments, and to the study of hydraulic stimulations and the heat extraction potential of HDR reservoirs. Modelling assumptions are based on the characteristics of the experimental HDR reservoir in the Carnmenellis granite in Cornwall, S. W. England. In

215

Hawaii Geothermal Project; HGP-A Reservoir Engineering  

DOE Green Energy (OSTI)

The Hawaii Geothermal Project well HGP-A has undergone a two-year testing program which included cold water pumpdown tests, flashing flows with measurements of temperature and pressure profiles, and noise surveys. These tests and the data obtained are discussed in detail.

Yuen, P.C.; Chen, B.H.; Kihara, D.H.; Seki, A.S.; Takahashi, P.K.

1978-09-01T23:59:59.000Z

216

Geothermal probabilistic cost model with an application to a geothermal reservoir at Heber, California  

DOE Green Energy (OSTI)

A financial accounting model that incorporates physical and institutional uncertainties has been developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.

Orren, L.H.; Ziman, G.M.; Jones, S.C.

1981-12-15T23:59:59.000Z

217

Geothermal: Sponsored by OSTI -- Performance test of a bladeless...  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Performance test of a bladeless turbine for geothermal applications Geothermal Technologies Legacy Collection Help...

218

Stimulation and reservoir engineering of geothermal resources. Second annual report, July 1, 1978-September 30, 1979  

DOE Green Energy (OSTI)

Individual projects are grouped under four main areas of study: energy extraction, bench-scale flow experiments, radon tracer techniques, and well test analysis. The energy extraction experiments concern the efficiency with which the in-place heat and fluids can be produced in the most economical manner. The bench-scale flow experiments cover the results of three models used to examine the properties of flow through porous media at elevated temperature and pressures. Random tracer techniques describe accelerated efforts to field test several geothermal reservoirs by both transient and transect test procedures. The well test analysis section describes several new developments: analysis of earth-tide effects, pressure transient analysis of multilayered systems, interference testing with storage and skin effects, determination of steam-water relative permeability from wellhead data, well test analysis for wells produced at constant pressure, the parallelepiped model, slug test DST analysis, and pressure transient behavior in naturally fractured reservoirs. (MHR)

Kruger, P.; Ramey, H.J. Jr.

1979-09-01T23:59:59.000Z

219

Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab  

Open Energy Info (EERE)

Technologies and Tools for Supercritical Reservoirs Geothermal Lab Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and Tools for Supercritical Reservoirs Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 High-Temperature Downhole Tools Project Description Development of downhole tools capable of reliable operation in supercritical environments is a significant challenge with a number of technical and operational hurdles related to both the hardware and electronics design. Hardware designs require the elimination of all elastomer seals and the use of advanced materials. Electronics must be hardened to the extent practicable since no electronics system can survive supercritical temperatures. To develop systems capable of logging in these environments will require a number of developments. More robust packaging of electronics is needed. Sandia will design and develop innovated, highly integrated, high-temperature (HT) data loggers. These data loggers will be designed and developed using silicon-on-insulator/silicon carbide (SOI/SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and decreasing the size of the electronics package. Tools employing these electronics will be capable of operating continuously at temperatures up to 240 ┬░C and by using advanced Dewar flasks, will operate in a supercritical reservoir with temperatures over 450 ┬░C and pressures above 70 MPa. Dewar flasks are needed to protect the electronic components, but those currently available are only reliable in temperature regimes in the range of 350 ┬░C; promising advances in materials will be investigated to improve Dewar technologies. HT wireline currently used for logging operations is compromised at temperatures above 300 ┬░C; along with exploring the development of a HT wireline for logging purposes, alternative approaches that employ HT batteries (e.g., those awarded a recent R&D 100) will also be investigated, and if available will enable deployment using slickline, which is not subject to the same temperature limitations as wireline. To demonstrate the capability provided by these improvements, tools will be developed and fielded. The developed base technologies and working tool designs will be available to industry throughout the project period. The developed techniques and subsystems will help to further the advancement of HT tools needed in the geothermal industry.

220

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 ASSESSMENT OF LOW-TEMPERATURE GEOTHERMAL Fujimitsu and Sachio Ehara Geothermic Laboratory, Earth Resources Engineering Department, Kyushu University

Stanford University

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AND PDM SYSTEMS IMPROVE DRILLING PERFORMANCE IN A CALIFORNIA GEOTHERMAL WELL Dennis Lovett, Terra system allows data transmission without a continuous fluid column. Operating the Coso geothermal field

Stanford University

222

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1978) Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Flow tests of well CGEH No. 1 were conducted. LBL performed eight temperature surveys after completion of the well to estimate equilibrium reservoir temperatures. Downhole fluid samples were obtained by the U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory (LBL), and a static pressure profile was obtained. The first test began September 5, 1978 using nitrogen stimulation to initiate flow; this procedure resulted in small flow and subsequent filling of the bottom hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole,

223

CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied. . . . . . . . . . . . . . . . . . . . . . . 1 PRZVIOUS PIETHODS OF CALCLXATING STEAM/TtJATER RELATIVE PERPlEX3ILITIES IN GEOTHE?XAL XZSERVOIFG

Stanford University

224

New Heat Flow Models in Fractured Geothermal Reservoirs - Final Report  

DOE Green Energy (OSTI)

This study developed new analytical models for predicting the temperature distribution within a geothermal reservoir following reinjection of water having a temperature different from that of the reservoir. The study consisted of two parts: developing new analytical models for the heat conduction rate into multi-dimensional, parallelepiped matrix blocks and developing new analytical models for the advance of the thermal front through the geothermal reservoir. In the first part of the study, a number of semi-empirical models for the multi-dimensional heat conduction were developed to overcome the limitations to the exact solutions. The exact solution based on a similarity solution to the heat diffusion equation is the best model for the early-time period, but fails when thermal conduction fronts from opposing sides of the matrix block merge. The exact solution based on an infinite series solution was found not to be useful because it required tens of thousands of terms to be include d for accuracy. The best overall model for the entire conduction time was a semi-empirical model based on an exponential conduction rate. In the second part of the study, the early-time period exact solution based on similarity methods and the semi-empirical exponential model were used to develop new analytical models for the location of the thermal front within the reservoir during injection. These equations were based on an energy balance on the water in the fractured network. These convective models allowed for both dual and triple porosity reservoirs, i.e., one or two independent matrix domains. A method for incorporating measured fracture spacing distributions into these convective models was developed. It was found that there were only minor differences in the predicted areal extent of the heated zone between the dual and triple porosity models. Because of its simplicity, the dual porosity model is recommended. These new models can be used for preliminary reservoir studies. Although they are not as accurate as numerical simulators, they are simple, easy and inexpensive to use. These new models can be used to get general information about reservoir behavior before committing to the considerable greater expense of numerical simulation.

Reis, John

2001-03-31T23:59:59.000Z

225

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-WATER INJECTION INTO GEOTHERMAL RESERVOIRS: GEOTHERMAL ENERGY COMBINED WITH CO2 STORAGE Hamidreza Salimi Stevinweg 1 Delft, 2628 CN, The Netherlands e-mail: h.salimi@tudelft.nl ABSTRACT The Delft Geothermal

Stanford University

226

Two-dimensional simulation of the Raft River geothermal reservoir and  

Open Energy Info (EERE)

dimensional simulation of the Raft River geothermal reservoir and dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Two-dimensional simulation of the Raft River geothermal reservoir and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the

227

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Geothermal System (EGS) were coupled with wellbore flow simulations. The 3D reservoir simulations used at par with H2O based EGS. The total exergy that can be generated in 1 km2 area of a geothermal reservoir

Stanford University

228

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Germany iulia.ghergut@geo.uni-goettingen.de ABSTRACT In fluid-based geothermal reservoirs, thermal between "heat exchange area" and RTD features of a geothermal reservoir feel natural, but act highly

Stanford University

229

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Berkeley, California 94720 e-mail: Kboyle@lbl.gov ABSTRACT The Geysers Geothermal Reservoir experiences, and processing system. INTRODUCTION Geological Setting The Geysers geothermal reservoir is located just south

Stanford University

230

Reservoir simulation studies: Wairakei Geothermal Field, New Zealand. Final report  

DOE Green Energy (OSTI)

Numerical reservoir simulation techniques were used to perform a history-match of the Wairakei geothermal system in New Zealand. First, a one-dimensional (vertical) model was chosen; realistic stratigraphy was incorporated and the known production history was imposed. The effects of surface and deep recharge were included. Good matches were obtained, both for the reservoir pressure decline history and changes in average discharge enthalpy with time. Next, multidimensional effects were incorporated by treating with a two-dimensional vertical section. Again, good history matches were obtained, although computed late-time discharge enthalpies were slightly high. It is believed that this disparity arises from inherently three-dimensional effects. Predictive calculations using the two-dimensional model suggest that continued future production will cause little additional reservoir pressure drop, but that thermal degradation will occur. Finally, ground subsidence data at Wairakei was examined. It was concluded that traditional elastic pore-collapse models based on classical soil-mechanics concepts are inadequate to explain the observed surface deformation. It is speculated that the measured subsidence may be due to structural effects such as aseismic slippage of a buried reservoir boundary fault.

Pritchett, J.W.; Rice, L.F.; Garg, S.K.

1980-01-01T23:59:59.000Z

231

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511316"

232

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

233

Preliminary reservoir and subsidence simulations for the Austin Bayou geopressured geothermal prospect  

DOE Green Energy (OSTI)

For the last several years, the University of Texas at Austin (UTA) has analyzed the geopressured tertiary sandstones along the Texas Gulf Coast with the objective of locating prospective reservoirs from which geothermal energy could be recovered. Of the ''geothermal fairways'' (areas with thick sandstone bodies and estimated temperatures in excess of 300 F), the Brazoria fairway appears most promising and the Austin Bayou Prospect has been developed within this fairway. A test well (DOE 1 Martin Ranch) is currently being drilled in this area. Pending the availability of actual well test data, estimated reservoir properties have been employed in numerical simulations to study the effects of variations in reservoir properties on the projected long-term behavior of the Austin Bayou Prospect. The simulations assess the sensitivity of the reservoir behavior to variations is estimated sandstone/shale distribution, shale compressibility, and vertical shale permeability. Further, hypothetical properties for the stress-deformation behavior of the rock formations were employed in a very preliminary study of the potential ground surface displacements that might accompany fluid production.

Garg, S.K.; Riney, T.D.; Brownell, D.H., Jr.

1978-01-01T23:59:59.000Z

234

Measurement requirements and methods for geothermal reservoir system parameters: an appraisal  

DOE Green Energy (OSTI)

One of the key needs in the advancement of geothermal energy is the availability of adequate measurements to aid the reservoir and production engineer in the development and operation of geothermal reservoirs, wells and the overall process plant. This report documents the geothermal parameters and their measurement requirements and provides an appraisal of measurement methods and instruments capable of meeting the requirements together with recommendations on identified deficiencies.

Lamers, M.D.

1979-08-01T23:59:59.000Z

235

Methodology for ranking geothermal reservoirs in non-electric industrial applications  

DOE Green Energy (OSTI)

A large number of geothermal reservoirs exist and to perform a thorough study of each of these reservoirs to determine those most desirable for demonstration projects can be costly and time consuming. A methodology for assigning rankings to these reservoirs, given a limited amount of data, is presented. The top ranked reservoirs would then be studied more thoroughly. In addition, a methodology for ranking the large number of industries that could possibly utilize geothermal energy in nonelectric applications is given to determine those industries which will have the most impact on national energy demand if converted to geothermal use.

Farah, O.G.; Williams, F.

1976-05-01T23:59:59.000Z

236

Tracer Testing At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2004) Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the EGS potential of the Coso Geothermal Field Notes A dramatic decrease in the ratio of chloride to boron was observed in the liquid discharge of a well proposed for EGS development. The decrease appears to be related to the transformation of some feed zones in the well from liquid-dominated to vapor-dominated. High concentrations of boron are transported to the wellbore in the steam, where it fractionates to the liquid phase flowing in from liquid-dominated feed zones. The high-boron steam is created when the reservoir liquid in some of the feed zones boils

237

The use of tracers to analyze the effects of reinjection into fractured geothermal reservoirs  

DOE Green Energy (OSTI)

This paper discusses the use of tracers as a reservoir engineering tool in fractured geothermal reservoirs. The principle concern in injecting cooler spent fluids into a fractured reservoir is that the fluids may move through high permeability channels and return to the production wells after contacting a relatively small volume of rock. As a consequence of this rapid transport, the fluids will be only partially reheated and after a short period time will effectively mine the heat from the limited volume of rock. The production wells will then experience a rapid and premature reduction in thermal output. Tracers can be used to infer the existence of high mobility conduits between injection and production wells and to monitor chemical changes of an injected fluid. Since tracer arrival precedes thermal breakthrough, tracer tests are a very useful forecasting tool.

Horne, R.N.; Johns, R.A.; Adams, M.C.; Moore, J.N.; Stiger, S.G.

1987-01-01T23:59:59.000Z

238

Two-dimensional simulation of the Raft River geothermal reservoir and wells. [SINDA-3G program  

DOE Green Energy (OSTI)

Computer models describing both the transient reservoir pressure behavior and the time dependent temperature response of the wells at the Raft River, Idaho, Geothermal Resource were developed. A horizontal, two-dimensional, finite-difference model for calculating pressure effects was constructed to simulate reservoir performance. Vertical, two-dimensional, finite-difference, axisymmetric models for each of the three existing wells at Raft River were also constructed to describe the transient temperature and hydraulic behavior in the vicinity of the wells. All modeling was done with the use of the thermal hydraulics computer program SINDA-3G. The models are solved simultaneously with one input deck so that reservoir-well interaction may occur. The model predicted results agree favorably with the test data.

Kettenacker, W.C.

1977-03-01T23:59:59.000Z

239

Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field  

Science Conference Proceedings (OSTI)

Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

Barton, C.A.; Zoback, M.D. [Stanford Univ., CA (United States). Dept. of Geophysics; Hickman, S. [Geological Survey, Menlo Park, CA (United States); Morin, R. [Geological Survey, Denver, CO (United States); Benoit, D. [Oxbow Geothermal Corp., Reno, NV (United States)

1998-08-01T23:59:59.000Z

240

Large-scale three-dimensional geothermal reservoir simulation on PCs  

DOE Green Energy (OSTI)

TOUGH2, Lawrence Berkeley Laboratory`s general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000 + grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

Antunez, E.; Moridis, G.; Pruess, K.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Large-scale three-dimensional geothermal reservoir simulation on PCs  

Science Conference Proceedings (OSTI)

TOUGH2, Lawrence Berkeley Laboratory's general purpose simulator for mass and heat flow and transport was enhanced with the addition of a set of preconditioned conjugate gradient solvers and ported to a PC. The code was applied to a number of large 3-D geothermal reservoir problems with up to 10,000 grid blocks. Four test problems were investigated. The first two involved a single-phase liquid system, and a two-phase system with regular Cartesian grids. The last two involved a two-phase field problem with irregular gridding with production from and injection into a single porosity reservoir, and a fractured reservoir. The code modifications to TOUGH2 and its setup in the PC environment are described. Algorithms suitable for solving large matrices that are generally non-symmetric and non-positive definite are reviewed. Computational work per time step and CPU time requirements are reported as function of problem size. The excessive execution time and storage requirements of the direct solver in TOUGH2 limits the size of manageable 3-D reservoir problems to a few hundred grid blocks. The conjugate gradient solvers significantly reduced the execution time and storage requirements making possible the execution of considerably larger problems (10,000+ grid blocks). It is concluded that the current PCs provide an economical platform for running large-scale geothermal field simulations that just a few years ago could only be executed on mainframe computers.

Antunez, Emilio; Moridis, George; Pruess, Karsten

1994-01-20T23:59:59.000Z

242

A Test Of The Transiel Method On The Travale Geothermal Field | Open Energy  

Open Energy Info (EERE)

Of The Transiel Method On The Travale Geothermal Field Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Test Of The Transiel Method On The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest. Author(s): A. Duprat, M. Roudot, S. Spitz Published: Geothermics, 1985

243

Injection and energy recovery in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical studies of the effects of injection on the behavior of production wells completed in fractured two-phase geothermal reservoirs are presented. In these studies the multiple-interacting-continua (MINC) method is employed for the modeling of idealized fractured reservoirs. Simulations are carried out for a five-spot well pattern with various well spacings, fracture spacings, and injection fractions. The production rates from the wells are calculated using a deliverability model. The results of the studies show that injection into two-phase fractured reservoirs increases flow rates and decreases enthalpies of producing wells. These two effects offset each other so that injection tends to have small effects on the usable energy output of production wells in the short term. However, if a sufficiently large fraction of the produced fluids is injected, the fracture system may become liquid-filled and an increased steam rate is obtained. Our studies show that injection greatly increases the long-term energy output from wells, as it helps extract heat from the resrvoir rocks. If a high fraction of the produced fluids is injected, the ultimate energy recovery will increase manyfold.

Bodvarsson, G.S.; Pruess, K.; O'Sullivan, M.J.

1983-01-01T23:59:59.000Z

244

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 |  

Open Energy Info (EERE)

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal system has been widely studied and reported by scientists through the past several years, but there is still a considerable divergence of opinion regarding the structural setting, origin, and internal structure of this energy resource. Because of accelerating exploration and development drilling that is taking place, there is a need for a reservoir model that is consistent with the limited geologic facts available regarding the area. Author(s): Austin, C.F.; Durbin, W.F.

245

Use of slim holes for geothermal exploration and reservoir assessment: A preliminary report on Japanese experience  

DOE Green Energy (OSTI)

The publicly available Japanese data on the use of slim holes in geothermal exploration and reservoir assessment are reviewed in this report. Slim holes have been used for (1) obtaining core for geological studies, (2) delineating the stratigraphic structure, (3) characterizing reservoir fluid state (pressure, temperature, etc.), and (4) defining the permeability structure for reservoir assessment. Examples of these uses of slim hole data are presented from the Hohi Geothermal Area and the Sumikawa Geothermal Field. Discharge data from slim holes and production wells from the Oguni Geothermal Field indicate that it may be possible to infer the discharge rate of production wells based on slim hole measurements. The Japanese experience suggests that slim holes can provide useful data for cost-effective geothermal reservoir assessment. Therefore, plans for a full scale evaluation of Japanese slim hole data are outlined.

Garg, S.K. [S-Cubed, La Jolla, CA (United States); Combs, J. [Geo Hills Associates, Los Altos Hills, CA (United States)

1993-06-01T23:59:59.000Z

246

Reservoir engineering report for the magma-SDG and E geothermal experimental site near the Salton Sea, California  

DOE Green Energy (OSTI)

A description of the Salton Sea geothermal reservoir is given and includes approximate fault locations, geology (lithology), temperatures, and estimates of the extent of the reservoir. The reservoir's temperatures and chemical composition are also reviewed. The flow characteristics are discussed after analyses of drillstem tests and extended well tests. The field production, reserves and depletion are estimated, and the effects of fractures on flow and depletion are discussed. The reservoir is believed to be separated into an ''upper'' and ''lower'' portion by a relatively thick and continuous shale layer. The upper reservoir is highly porous, with high permeability and productivity. The lower reservoir is at least twice as large as the upper but has much lower storativity and permeability in the rock matrix. The lower reservoir may be highly fractured, and its temperatures and dissolved solids are greater than those of the upper reservoir. The proven reserves of heat in the upper reservoir are about /sup 1///sub 4/ GW.yr (in the fluid) and /sup 1///sub 3/ GW.yr (in the rock). In the lower reservoir the proven reserves of heat are 5/sup 3///sub 4/ GW.yr (in the fluid) and 17 GW.yr (in the rock). Unproven reserves greatly exceed these numbers. Injection tests following well completion imply that hydraulic fracturing has taken place in two of the SDG and E wells and at least one other well nearby.

Schroeder, R.C.

1976-07-12T23:59:59.000Z

247

Statistical study of seismicity associated with geothermal reservoirs in California  

DOE Green Energy (OSTI)

Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity are diffuse and appear unsuitable for defining the areal extent of the reservoir. However, from the temporal characteristics of the seismicity associated with these regions a general discriminant was constructed that combines several physical parameters for identifying the presence of a geothermal system.

Hadley, D.M.; Cavit, D.S.

1982-01-01T23:59:59.000Z

248

Summary of reservoir engineering data: Wairakei geothermal field, New Zealand  

DOE Green Energy (OSTI)

This is an abbreviated summary of the final project report on an extensive collection of fundamental field information concerning the history of the Wairakei geothermal field in New Zealand. The purpose of the effort was to accumulate any and all pertinent data so that various theoretical reservoir simulation studies may be carried out in the future in a meaningful way. Categories of data considered include electrical resistivity measurements, magnetic force surveys, surface heat flow data and a catalog of surface manifestations of geothermal activity, geological and stratigraphic information, residual gravity anomaly surveys, laboratory measurements of formation properties, seismic velocity data, measurements of fluid chemical composition, monthly well-by-well mass and heat production histories for 1953 through 1976, reservoir pressure and temperature data, and measurements of subsidence and horizontal ground deformation. The information is presented in three forms. A review of all the data is contained in the final project report. The present report summarizes that information. In addition, a magnetic tape suitable for use on a computer has been prepared. The magnetic tape contains a bank of information for each well in the field, on a well-by-well basis. For each well, the tape contains the completion date, the surface altitude, the bottomhole depth, the geographic location, the slotted and perforated interval locations, the bottomhole diameter, locations of known casing breaks, the geologic drilling log, fault intersections, shut-in pressure measurements, and month-by-month production totals of both mass and heat for each month from January 1953 through December 1976.

Pritchett, J.W.; Rice, L.F.; Garg, S.K.

1979-01-01T23:59:59.000Z

249

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network (OSTI)

Grange, L. I. (Compiler), Geothermal Steam for Power i n N eGeology of the Tauhara Geothermal Field, Lake Taupo,"DSIR Geological Survey Geothermal Report No. 4, 1966.

Pritchett, J.W.

2012-01-01T23:59:59.000Z

250

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

Lippmann, M.J.

2010-01-01T23:59:59.000Z

251

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network (OSTI)

at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

Feighner, Mark A.

2010-01-01T23:59:59.000Z

252

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network (OSTI)

Grange, L. I. (Compiler), Geothermal Steam for Power i n N eGeology of the Tauhara Geothermal Field, Lake Taupo,"DSIR Geological Survey Geothermal Report No. 4, 1966.

Pritchett, J.W.

2010-01-01T23:59:59.000Z

253

Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada  

DOE Green Energy (OSTI)

Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

Denton, J.M.; Bell, E.J.; Jodry, R.L.

1980-11-01T23:59:59.000Z

254

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University SAND PROPPANTS UNDER GEOTHERMAL CONDITIONS Daniel Brinton, Kristie McLin, Joseph Moore Energy@egi.utah.edu ABSTRACT Engineered Geothermal Systems (EGS) can be developed in reservoirs otherwise lacking sufficient

Stanford University

255

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University electrical generation capacity of a geothermal system. The methodology consists of combining probability of a geothermal reservoir to obtain the probability distribution function for the stored energy ("heat in place

Stanford University

256

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University RESERVOIR MODEL OF THE TAKIGAMI GEOTHERMAL FIELD, OITA, JAPAN Saeid Jalilinasrabady1 , Ryuichi Itoi1@kyudai.jp ABSTRACT The natural state model was developed in the Takigami geothermal field, using TOUGH2 simulator

Stanford University

257

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University ON OPTIMAL LOCATION AND SIZE OF A HEAT SINK IN A GEOTHERMAL RESERVOIR Y. Feng, M. Tyagi and C.D. White Louisiana State University Baton Rouge, LA, 70802, USA E-mail: yfeng1@tigers.lsu.edu ABSTRACT Geothermal

Stanford University

258

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University into fracture system geometry, fluid conduits and fluid compartmentalization critical to geothermal reservoir for the seismic velocity structure within the Coso Geothermal Field (CGF). The CGF has been continuously operated

Stanford University

259

Analysis of water reinjection at the Niland Geothermal Test Site  

DOE Green Energy (OSTI)

The problems associated with reinjecting spent geothermal brines are currently under investigation. This effort has included field tests of injection water to evaluate treating equipment effectiveness at the Niland Geothermal Test Loop. Membrane filter tests were conducted on fluids from the settling tanks, from the test loop, from the clarifier and at the injection well head (Magmamax No. 3). From this and other information concerning the injection interval, pressure, temperature and well history, an attempt to predict a well half life was made. The results of these calculations were not in agreement with observed well performance. An attempt with some apparent success has been made to understand the possible source of these discrepancies. The cyclic nature of the injection history dictated by need for descaling the test loop, followed by apparent partial recovery of injection acceptance, has led to a theory that is under investigation concerning effect of reheating the injection fluid containing amorphous particulate silica by the reservoir rock and fluid during well shut-in. Preliminary tests indicate some of this finely divided silica may be redisolving with consequent reduction in reservoir damage, and that two widely spaced injection wells in an alternating mode may provide low-cost, long-life injection capacity at Niland and similar geothermal projects.

Jorda, R.M.

1978-05-01T23:59:59.000Z

260

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF THE GEOTHERMAL PARAMETERS OF THE GROUND IN CYPRUS FOR THE EXPLOITATION OF GEOTHERMAL ENERGY AND THE IMPACT OF THE RESULTS IN THE DESIGN OF THE GEOTHERMAL SYSTEMS. G. Partasides1 , A. Lizides1 , S. Kassinis1 , G. Florides

Stanford University

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University THE SOLUTION OF GEOTHERMAL HEAT-CARRIER Belova .P. Research Geotechnological Centre, Far Eastern Branch of geothermal power plants operation. Silica extraction from the solution of geothermal plants and its cleaning

Stanford University

262

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-mail:john.lund@nrel.gov ABSTRACT A geothermal direct-use project utilizes a natural resource, a flow of geothermal fluid, aquaculture ponds, and industrial processes. Geothermal utilization requires matching the varied needs

Stanford University

263

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University BINARY POWER PLANTS IN REMOTE GEOTHERMAL AREAS OF INDONESIA Huenges E., K. Erbas, M. Jaya, and A. Saadat in remote areas. Geothermal is one of these and has huge resources in Indonesia. Today, geothermal provides

Stanford University

264

Mt. Hood geothermal exploratory drilling and testing plan. Old Maid Flat holes No. 1 and No. 7A  

DOE Green Energy (OSTI)

This plan has been prepared to establish the objectives and set forth the procedures and guidelines for conducting geothermal exploratory drilling and testing operations in the Old Maid Flat area of Mt. Hood, Oregon, approximately 50 miles east of Portland. The project will be conducted on lands within the Mt. Hood National Forest, which are currently under Federal Lease OR 13994 to the Northwest Geothermal Corporation. The exploratory geothermal operations will consist of (1) testing an existing 4,000-foot temperature gradient hole to determine the quality of geothermal fluids, and (2) drilling and testing a new 5,000-foot hole to determine overall geothermal reservoir characteristics.

Not Available

1980-05-01T23:59:59.000Z

265

Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal  

Open Energy Info (EERE)

Resource-Reservoir Investigations Based On Heat Flow And Thermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Resource-Reservoir Investigations Based On Heat Flow And Thermal Gradient Data For The United States Details Activities (2) Areas (2) Regions (0) Abstract: Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of

266

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration,...

267

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

268

Method of using in situ porosity measurements to place an upper bound on geothermal reservoir compaction  

DOE Green Energy (OSTI)

Placing an upper bound on reservoir compaction requires placing a lower bound on the reservoir effective compaction modulus. Porosity-depth data can be used to find that lower-bound modulus in a young sedimentary basin. Well-log and sample porosity data from a geothermal field in the Imperial Valley, CA, give a lower-bound modulus of 7.7 x 10{sup 3} psi. This modulus is used with pressure drops calculated for a reservoir to determine an upper bound on reservoir compaction. The effects of partial reinjection and aquifer leakage on upper-bound subsidence estimated from the compaction are illustrated for a hypothetical reservoir and well array.

Schatz, J.F.; Kasameyer, P.W.; Cheney, J.A.

1979-01-03T23:59:59.000Z

269

Collection and Analysis of Reservoir Data from Testing and Operation of the  

Open Energy Info (EERE)

Collection and Analysis of Reservoir Data from Testing and Operation of the Collection and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Collection and Analysis of Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River 5 MW power plant will be on-line some time this spring. During testing of the supply and injection system prior to plant start-up and during testing of the plant itself, data can be collected and used to calibrate computer models, refine predicted drawdowns and interference effects, monitor changing temperatures, and recalculate reservoir parameters. Analytic methods have been used during reservoir testing at Raft River to calculate reservoir coefficients. However,

270

Numerical Analysis Of Three Component Induction Logging In Geothermal Reservoirs  

DOE Green Energy (OSTI)

This project is supporting the development of the ''Geo-Bilt'', geothermal electromagnetic-induction logging tool that is being built by ElectroManetic Instruments, Inc. The tool consists of three mutually orthogonal magnetic field antennas, and three-component magnetic field receivers located at different distances from the source. In its current configuration, the source that has a moment aligned along the borehole axis consists of a 1m long solenoid, while the two trans-axial sources consist of 1m by 8cm loops of wire. The receivers are located 2m and 5m away from the center of the sources, and five frequencies from 2 kHz to 40 kHz are being employed. This study is numerically investigating (1) the effect of the borehole on the measurements, and (2) the sensitivity of the tool to fracture zone-geometries that might be encountered in a geothermal field. The benefits of the results are that they will lead to a better understanding of the data that the tool produces during its testing phase and an idea of what the limitations of the tool are.

Dr. David L. Alumbaugh

2002-01-09T23:59:59.000Z

271

Depletion and recovery behavior of the Gladys McCall geopressured geothermal reservoir  

DOE Green Energy (OSTI)

Many sedimentary basins throughout the world contain sealed fault blocks in which the pore fluids are at higher pressures and temperatures than normal as a consequence of their depositional environment. The U.S. Department of Energy has drilled, completed, and tested four deep research wells in selected geopressured geothermal prospects in the Texas-Louisiana Gulf Coast region to evaluate the recoverability of the thermal, hydraulic, and chemical (methane) energy in this potential energy resource. The wells are expensive and the specific energy of the fluids is relatively small, but the total recoverable energy from a single well can be extremely large. Long-term testing of the Gladys McCall No. 1 research well, located in Cameron Parish, Louisiana, U.S.A., has defined an impressively large geopressured geothermal reservoir. In this paper an integrated analysis of the test data is presented, and a numerical model is constructed that matches the available data for the 6.5-year test history of the well.

Riney, T.D. (S-CUBED, La Jolla, CA (USA))

1990-06-01T23:59:59.000Z

272

Modeling brine-rock interactions in an enhanced geothermal system deep fractured reservoir at Soultz-Sous-Forets (France): a joint approach using two geochemical codes: frachem and toughreact  

E-Print Network (OSTI)

rock interactions in enhanced geothermal systems (EGS).31 th Workshop on Geothermal Reservoir Engineering, 301998). Computer modeling for geothermal systems: predicting

Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz, Francois-D.; Pruess, Karsten.

2006-01-01T23:59:59.000Z

273

Study of Water Reinjection on the Kamojang Geothermal Reservoir Performance, Indonesia  

DOE Green Energy (OSTI)

A reservoir simulation model study was developed to investigate effects of water reinjection into the performance of Kamojang geothermal field. Several cases including the existing injection wells and rates, the effect of injection rates, location and depth of proposed injection wells were run to study the temperature, pressure and fluid distribution in the reservoir and its effect into the reservoir and production performance for 30 years of prediction. The results show that the reservoir pressure and temperature drops are very small (4 bar and 5 C, respectively) at the end of the prediction time; therefore, the production target of 140 MW for 30 years can still be accomplished.

Darwis, R.S.; Tampubolon, T.; Simatupang, R.; Asdassah, D.

1995-01-01T23:59:59.000Z

274

Recommendations of the industry advisory panel on geothermal reservoir definition  

DOE Green Energy (OSTI)

The objectives of the August 1984 meeting of the advisory panel are listed. The panel's comments on DOE's Geothermal Program and industry's needs and priorities are presented. (MHR)

Gulati, M.S.; Lippmann, M.J.

1985-01-01T23:59:59.000Z

275

Geothermal drill pipe corrosion test plan  

DOE Green Energy (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

276

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

DOE Green Energy (OSTI)

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

277

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

DOE Green Energy (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

278

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 GEOTHERMAL FLUID FLOW MONITORING BY THE REPEAT GRAVITY MEASUREMENT AT THE TAKIGAMI GEOTHERMAL FIELD, JAPAN -APPLICATION OF HYBRID GRAVITY

Stanford University

279

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF COSO GEOTHERMAL FIELD, CA Kelly Blake and Nicholas C. Davatzes Temple University 1901 North 13th Street structures in image logs of wells from the Coso Geothermal Field (CGF), CA record variation in the azimuth

Stanford University

280

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Talang geothermal field lies in Solok Regency- West Sumatra Province. Low gravity anomaly (bouguer source of the geothermal system in the area. The gravity anomaly leneament trending NW-SE coincident

Stanford University

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University OF KIZILDERE GEOTHERMAL FIELD IN TURKEY F├╝sun S. Tut Haklidir, Taylan Akin, Ayg├╝n G├╝ney, Aye Alpagut B├╝k├╝lmez In Kizildere Geothermal Field, there were 25 drilled wells until 2009, 9 of which are currently being produced

Stanford University

282

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AT THE PAILAS GEOTHERMAL FIELD - A RECENTLY DESIGNED DIGITAL BOREHOLE LOG DATA SHEET USING MICROSOFT EXCEL of the borehole log data compiled at the Pailas Geothermal Borehole Field (rate of penetration, weight on bit, mud

Stanford University

283

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University problems associated with geothermal utilization. Hellishei├░i Power Plant annually emits around 13000 tons of 2011. H2S will be separated from other geothermal gases at a pilot gas separation plant, dissolved

Stanford University

284

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University APPRAISAL SYSTEM FOR DEEP GEOTHERMAL ENERGY SYSTEMS IN AQUIFERS W.A. van Leeuwen, C.N.P.J. Maaijwee and N.a.vanleeuwen@geo.uu.nl ABSTRACT Pursuit and use of geothermal energy in the Netherlands is developing steadily. However, in order

Stanford University

285

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University AT OLKARIA I, KENYA Cornel O. Ofwona Geothermal Development Company Ltd., P. O. Box 100746 - 00101 Nairobi, Kenya e-mail: cofwona@gdc.co.ke ABSTRACT Exploitation of Olkaria geothermal field started in 1981 when

Stanford University

286

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-THERMAL INFRARED BAND AND MAGNETOTELLURIC METHOD TO SIMULATE A GEOTHERMAL SITTING AT MT. CIREMAI, WEST JAVA at surface is crucial for geothermal exploration. Since field observations to map surface manifestation

Stanford University

287

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-mail: sass@geo.tu-darmstadt.de ABSTRACT The investigation and exploration of potential deep geothermal important in the exploration of potentially engineered geothermal systems and of mid to low enthalpy

Stanford University

288

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University RIVER GEOTHERMAL SITE Earl Mattson1 , Mitchell Plummer1 , Carl Palmer1 , Larry Hull1 , Samantha Miller1 and Randy Nye2 1 Idaho National Laboratory PO Box 1625 Idaho Falls, ID 83415-2107 2 US Geothermal Inc 1505

Stanford University

289

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University TEMPERATURE DATA OBTAINED AT AND AROUND THE LAS PAILAS GEOTHERMAL PROJECT AND IN RINC├?N DE LA VIEJA NATIONAL the existence of subsoil thermal anomalies that may be correlated with local faults in the Pailas Geothermal

Stanford University

290

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University out in Salavatli geothermal field, Turkey. Since reinjection returns as relatively colder water seismometers at the Salavatli, K├Âk, Aydin, Turkey geothermal area was deployed in May 2010 in connection

Stanford University

291

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University FOR GEOTHERMAL EXPLORATION AT JEMEZ PUEBLO IN NEW MEXICO Lianjie Huang1 and Michael Albrecht2 1 Los Alamos Geothermal Technology Center 4200 West Jemez Road, Suite 301-13 Los Alamos, NM 87544, USA e-mail: michael

Stanford University

292

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University Keyan Zheng1 Fang He2 1 Geothermal Council of China Energy Society 20 Da Hui Si Road, Haidian District of Renewable Energy of PRC" had clearly explained that geothermal energy belongs to renewable energy

Stanford University

293

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 SUSTAINABILITY OF GEOTHERMAL DOUBLETS-in the natural energy flow will slowly replenish the geothermal system and it will again be available

Stanford University

294

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University CASING IN A HIGH TEMPERATURE GEOTHERMAL WELL Gunnar Sk├║lason Kaldal1 *, Magn├║s ├?. J├│nsson1 , Halld├│r@hi.is ABSTRACT The production casing of a high temperature geothermal well is subjected to multiple thermo

Stanford University

295

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL FIELD, SW-ICELAND Samuel W. Scott1 , Ingvi Gunnarsson2 , Andri Stefánsson1 , Stefán Arnórsson1 sampling campaign has recently been carried out at the Hellisheiði geothermal field in southwest Iceland

Stanford University

296

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 CONVERTING GEOTHERMAL PLAYS TO PROJECTS and Resources SA, Petroleum and Geothermal Group GPO Box 1671 Adelaide, South Australia, 5000, Australia e

Stanford University

297

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL SOFTWARE S. Alcaraz1 , R. Lane2 , K. Spragg2 , S. Milicich1,3 , F. Sepulveda4 and G. Bignall1 1 Geothermal is an innovative 3-D modelling visualisation software and resource management tool, developed

Stanford University

298

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 DISTRIBUTION OF ARSENIC IN GEOTHERMAL WATERS FROM SABALAN GEOTHERMAL FIELD, N-W IRAN Haeri A.,1 Strelbitskaya S., Porkhial S2 ., Ashayeri, A1 . 1

Stanford University

299

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 - February 2, 2011 SGP-TR-191 GEOTHERMAL RESOURCES IN THE PACIFIC ISLANDS their untapped geothermal resources) for cost effective power production and direct-use applications. As part

Stanford University

300

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University IN KOTAMOBAGU GEOTHERMAL FIELD, NORTH SULAWESI, INDONESIA Riogilang, H.1, 3 , Itoi, R.1 , Taguchi, S2 from thermal spring, river, and shallow well in Kotamobagu geothermal field. Temperature of waters

Stanford University

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

and is in a 250-260 ┬░C range. Under reservoir temperature and pressure conditions the geothermal fluid plant to 15 MWe (GB1+GB2) and was put into service in 2003. The consequent increase in geothermal fluid the geothermal fluid supplied to GB1. Over this period, the well-head pressures were monitored for each well

Stanford University

302

Geothermal Well Testing and Evaluation | Open Energy Information  

Open Energy Info (EERE)

Geothermal Well Testing and Evaluation Geothermal Well Testing and Evaluation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Geothermal Well Testing and Evaluation Author Jon Ragnarsson Published Iceland Geosurvey, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Well Testing and Evaluation Citation Jon Ragnarsson. Geothermal Well Testing and Evaluation [Internet]. 2013. Iceland Geosurvey. [cited 2013/10/18]. Available from: http://www.geothermal.is/geothermal-well-testing-and-evaluation Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Well_Testing_and_Evaluation&oldid=688939" Categories: References Geothermal References Uncited References What links here Related changes Special pages

303

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis  

Science Conference Proceedings (OSTI)

This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

Roland N. Horne, Kewen Li, Mohammed Alaskar, Morgan Ames, Carla Co, Egill Juliusson, Lilja Magnusdottir

2012-06-30T23:59:59.000Z

304

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

305

Geological control on the reservoir characteristics of Olkaria West Geothermal Field, Kenya  

SciTech Connect

The reservoir of the West Olkaria Geothermal Field is hosted within tuffs and the reservoir fluid is characterized by higher concentrations of reservoir CO{sub 2} (10,000-100,000 mg/kg) but lower chloride concentrations of about 200 mg/kg than the East and North East Fields. The West Field is in the outflow and main recharge area of the Olkaria geothermal system. Permeability is generally low in the West Field and its distribution is strongly controlled by the structures. Fault zones show higher permeability with wells drilled within the structures havin larger total mass outputs. However, N-S and NW-SE faults are mainly channels for cold water downflow into the reservoir. Well feeder zones occur mostly at lava-tuff contacts; within fractured lava flows and at the contacts of intrusives and host rocks.

Omenda, Peter A.

1994-01-20T23:59:59.000Z

306

Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system  

DOE Green Energy (OSTI)

Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells. 15 refs., 10 figs., 1 tab.

Truesdell, A.H. (Geological Survey, Menlo Park, CA (USA)); Lippmann, M.J. (Lawrence Berkeley Lab., CA (USA))

1990-04-01T23:59:59.000Z

307

Application of magnetic method to assess the extent of high temperature geothermal reservoirs  

DOE Green Energy (OSTI)

The extent of thermally altered rocks in high temperature geothermal reservoirs hosted by young volcanic rocks can be assessed from magnetic surveys. Magnetic anomalies associated with many geothermal field in New Zealand and Indonesia can be interpreted in terms of thick (up to 1 km) demagnetized reservoir rocks. Demagnetization of these rocks has been confirmed by core studies and is caused by hydrothermal alteration produced from fluid/rock interactions. Models of the demagnetized Wairakei (NZ) and Kamojang (Indonesia) reservoirs are presented which include the productive areas. Magnetic surveys give fast and economical investigations of high temperature prospects if measurements are made from the air. The magnetic interpretation models can provide important constraints for reservoir models. Magnetic ground surveys can also be used to assess the extent of concealed near surface alteration which can be used in site selection of engineering structures.

Soengkono, S.; Hochstein, M.P.

1995-01-26T23:59:59.000Z

308

Reservoir enhancement on the impermeable margins of productive geothermal fields  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). The overall goal of the project was to evaluate the performance of Los Alamos technology in selected geothermal fields, to adapt the technology to the existing industry infrastructure where necessary, and to facilitate its application through demonstration and communication. The primary specific objective was to identify, collaborate, and partner with geothermal energy- producing companies in an evaluation of the application of Los Alamos microseismic mapping technology for locating fracture permeability in producing geothermal fields.

Goff, S.; Gardner, J.; Dreesen, D.; Whitney, E.

1997-01-01T23:59:59.000Z

309

Modeling, design, and life performance prediction for energy production from geothermal reservoirs. Final report  

DOE Green Energy (OSTI)

System modeling supports the design and long-term, commercially successful operation of geothermal reservoirs. Modeling guides in the placement of the injection and production wells, in the stimulation of the reservoir, and in the operational strategies used to ensure continuing production. Without an understanding of the reservoir, it is possible to harm the reservoir by inappropriate operation (especially break-through of cold injection fluid) and the desired profitable lifetimes will not be reached. In this project the authors have continued to develop models for predicting the life of geothermal reservoirs. One of the goals has been to maintain and transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to begin the extension of the analysis concepts to three dimensions. Primary focus has been on interaction with industry, maintenance of Geocrack2D, and development of the Geocrack3D model. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on flow in fractured rock and on the coupled effect of thermal cooling. In the following sections the authors document activities as part of this research project: industry interaction; national and international collaboration; and model development.

Swenson, D.

1998-01-01T23:59:59.000Z

310

Mining earth's heat: development of hot-dry-rock geothermal reservoirs  

DOE Green Energy (OSTI)

The energy-extraction concept of the Hot Dry Rock (HDR) Geothermal Program, as initially developed by the Los Alamos National Laboratory, is to mine this heat by creating a man-made reservoir in low-permeability, hot basement rock. This concept has been successfully proven at Fenton Hill in northern New Mexico by drilling two holes to a depth of approximately 3 km (10,000 ft) and a bottom temperature of 200/sup 0/C (392/sup 0/F), then connecting the boreholes with a large-diametervertical hydraulic fracture. Water is circulated down one borehole, heated by the hot rock, and rises up the second borehole to the surface where the heat is extracted and the cooled water is reinjected into the underground circulation loop. This system has operated for a cumulative 416 days during engineering and reservoir testing. An energy equivalent of 3 to 5 MW(t) was produced without adverse environmental problems. During one test, a generator was installed in the circulation loop and produced 60 kW of electricity. A second-generation system, recently drilled to 4.5 km (15,000 ft) and temperatures of 320/sup 0/C (608/sup 0/F), entails creating multiple, parallel fractures between a pair of inclined boreholes. This system should produce 5 to 10 MW(e) for 20 years. Significant contributions to underground technology have been made through the development of the program.

Pettitt, R.A.; Becker, N.M.

1983-01-01T23:59:59.000Z

311

APPLICATIONS OF GEOTHERMALLY- PRODUCED COLLOIDAL SILICA IN RESERVOIR...  

NLE Websites -- All DOE Office Websites (Extended Search)

under Contract DE-AC52-07NA27344. Acknowledgment This work was sponsored by the Geothermal Technologies Office in the Department of Energy. 4 TABLE OF CONTENTS 1. Project...

312

3-D Seismic Methods For Geothermal Reservoir Exploration And...  

Open Energy Info (EERE)

(1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The...

313

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

mathematical models of land subsidence in geothermal areas:2nd Int. Symp. Land Subsidence, Anaheim, Ca. , Dec. 13-17,Symposium on Land Subsidence, Anaheim, CA, December 10-17,

Lippmann, M.J.

2010-01-01T23:59:59.000Z

314

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network (OSTI)

4 x 104 kg/day of water were produced and 3.2 x 104 kg/dayand water through a porous geothermal system, including the vertical deformations produced

Lippmann, M.J.

2010-01-01T23:59:59.000Z

315

Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada  

DOE Green Energy (OSTI)

To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability is that the Stillwater fault zone be critically stressed for frictional failure in the current stress field.

Hickman, S. [Geological Survey, Menlo Park, CA (United States); Zoback, M. [Stanford Univ., CA (United States). Dept. of Geophysics

1998-08-01T23:59:59.000Z

316

Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.

Miller, John D.; Allman, David W.

1986-01-21T23:59:59.000Z

317

Dual permeability modeling of flow in a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 ..mu..m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.

Miller, J.D.; Allman, D.W.

1986-01-01T23:59:59.000Z

318

Two-dimensional simulation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

and wells. (SINDA-3G program) Details Activities (1) Areas (1) Regions (0) Abstract: Computer models describing both the transient reservoir pressure behavior and the time...

319

Integrated Geothermal Well Testing: Test Objectives and Facilities  

DOE Green Energy (OSTI)

A new and highly integrated geothermal well test program was designed for three geothermal operators in the US (MCR, RGI and Mapco Geothermal). This program required the design, construction and operation of new well test facilities. The main objectives of the test program and facilities are to investigate the critical potential and worst problems associated with the well and produced fluids in a period of approximately 30 days. Field and laboratory investigations are required to determine and quantify the problems of fluid production, utilization and reinjection. The facilities are designed to handle a flow rate from a geothermal well of one million pounds per hour at a wellhead temperature of approximately 268 C (515 F). The facilities will handle an entire spectrum of temperature and rate conditions up to these limits. All pertinent conditions for future fluid exploitations can be duplicated with these facilities, thus providing critical information at the very early stages of field development. The new well test facilities have been used to test high temperature, liquid-dominated geothermal wells in the Imperial Valley of California. The test facilities still have some problems which should be solvable. The accomplishments of this new and highly integrated geothermal well test program are described in this paper.

Nicholson, R. W.; Vetter, O. J.

1981-01-01T23:59:59.000Z

320

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

to identify thermal characteristics in deep geothermal reservoirs during the long-term operation of a power at several stages during operation of the power plant to identify changes in the reservoir properties temperature changes in the reservoir during power plant operation. Based on the positive results

Stanford University

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nanosensors as Reservoir Engineering Tools to Map Insitu Temperature Distributions in Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

The feasibility of using nanosensors to measure temperature distribution and predict thermal breakthrough in geothermal reservoirs is addressed in this report. Four candidate sensors were identified: melting tin-bismuth alloy nanoparticles, silica nanoparticles with covalently-attached dye, hollow silica nanoparticles with encapsulated dye and impermeable melting shells, and dye-polymer composite time-temperature indicators. Four main challenges associated with the successful implementation of temperature nanosensors were identified: nanoparticle mobility in porous and fractured media, the collection and detection of nanoparticles at the production well, engineering temperature sensing mechanisms that are both detectable and irreversible, and inferring the spatial geolocation of temperature measurements in order to map temperature distribution. Initial experiments were carried out to investigate each of these challenges. It was demonstrated in a slim-tube injection experiment that it is possible to transport silica nanoparticles over large distances through porous media. The feasibility of magnetic collection of nanoparticles from produced fluid was evaluated experimentally, and it was estimated that 3% of the injected nanoparticles were recovered in a prototype magnetic collection device. An analysis technique was tailored to nanosensors with a dye-release mechanism to estimate temperature measurement geolocation by analyzing the return curve of the released dye. This technique was used in a hypothetical example problem, and good estimates of geolocation were achieved. Tin-bismuth alloy nanoparticles were synthesized using a sonochemical method, and a bench heating experiment was performed using these nanoparticles. Particle growth due to melting was observed, indicating that tin-bismuth nanoparticles have potential as temperature nanosensors

Morgan Ames

2011-06-15T23:59:59.000Z

322

Corrosion tests in Hawaiian geothermal fluids  

DOE Green Energy (OSTI)

Exposure tests were conductd in binary geothermal brine on the island of Hawaii. The steam which flashes from the high pressure, high temperature water as it is brought to ambient pressure contains substantial amounts of H{sub 2}S. In the absence of oxygen this steam is only moderately aggressive but in the aerated state it is highly aggressive to carbon steels and copper alloys. The liquid after flasing is intermediately aggressive. The Hawaiian fluid is unique in chemistry and corrosion behavior; its corrosiveness is relatively mild for a geothermal fluid falling close to the Iceland-type resources. 24 refs., 7 figs., 5 tabs.

Larsen-Basse, J.; Lam, Kam-Fai

1984-01-01T23:59:59.000Z

323

Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir  

DOE Green Energy (OSTI)

We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

M. D. Zoback

1999-03-08T23:59:59.000Z

324

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

325

Factors controlling reservoir quality in tertiary sandstones and their significance to geopressured geothermal production  

DOE Green Energy (OSTI)

Variable intensity of diagenesis is the factor primarily responsible for contrasting regional reservoir quality of Tertiary sandstones from the upper and lower Texas coast. Detailed comparison of Frio sandstone from the Chocolate Bayou/Danbury Dome area, Brazoria County, and Vicksburg sandstones from the McAllen Ranch Field area, Hidalgo County, reveals that extent of diagenetic modification is most strongly influenced by (1) detrital mineralogy and (2) regional geothermal gradients. The regional reservoir quality of Frio sandstones from Brazoria County is far better than that characterizing Vicksburg sandstones from Hidalgo County, especially at depths suitable for geopressured geothermal energy production. However, in predicting reservoir quality on a site-specific basis, locally variable factors such as relative proportions for porosity types, pore geometry as related to permeability, and local depositional environment must also be considered. Even in an area of regionally favorable reservoir quality, such local factors can significantly affect reservoir quality and, hence, the geothermal production potential of a specific sandstone unit.

Loucks, R.G.; Richmann, D.L.; Milliken, K.L.

1981-01-01T23:59:59.000Z

326

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

Rutqvist, J.

2008-01-01T23:59:59.000Z

327

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume I. Final report  

DOE Green Energy (OSTI)

The planning and design of additions to the ERDA East Mesa Geothermal Component Test Facility are discussed. The ERDA East Mesa Geothermal Component Test Facility will provide moderate temperature/low salinity fluids to facilitate comprehensive testing of conversion systems and components under realistic field conditions. The project objectives included development of designs of new wells and modifications to existing wells to improve definitive reservoir evaluations and design of additional test facilities integrated with the limited-scale facilities to accommodate diverse commercial utilization technology experiments. A reservoir utilization evaluation was conducted to establish locations and design drilling programs for three new wells and modifications to existing wells to improve reservoir definition and provide a comprehensive inventory of geothermal well fluids for testing. Ten test facility additions were developed as individual procurement packages of specifications and drawings to facilitate near term construction activation.

Pearson, R.O.

1976-10-01T23:59:59.000Z

328

Exploration model for possible geothermal reservoir, Coso Hot...  

Open Energy Info (EERE)

reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with...

329

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...  

Open Energy Info (EERE)

sea level (a.s.l.) the pressure profile of which corresponds to a 300-330C boiling water column and a deeper low-liquid-saturation reservoir located between 850 and 100 m...

330

Inverse Modelling of the Kawerau Geothermal Reservoir, NZ  

DOE Green Energy (OSTI)

In this paper we describe an existing model of the Kawerau geothermal field and attempts to improve this model using inverse modeling techniques. A match of model results to natural state temperatures and pressures at three reference depths are presented. These are used to form and ''objective function'' to be minimized by inverse modeling.

White, S.P.

1995-01-01T23:59:59.000Z

331

A critical evaluation of the deviation time method to calculate discontinuity radias from well tests in composite reservoirs  

SciTech Connect

Reservoirs with a fluid bank, or a burning front, reservoirs with a reduced or an increased permeability region around the wellbore, and geothermal reservoirs are often modeled as composite reservoirs. Reservoirs with a fluid bank include reservoirs undergoing waterflood, chemical flood, polymer flood, CO/sub 2/ flood, and steam injection. Eight well tests reported in the literature exhibiting composite reservoir behavior have been analyzed using the deviation time method. The dimensionless deviation times obtained from pressure and pressure derivative responses for a well in a composite reservoir are used for analyzing the well tests. Analysis shows the estimate of discontinuity radius to be sensitive to both the real and the dimensionless deviation times used. The estimate discontinuity radius from the deviation time method may represent a lower bound for discontinuity radius, if the swept region is not cylindrical. Also, obtaining an accurate deviation time for small mobility contrasts may be difficult.

Ambastha, A.K.; Ramey, H.J., Jr. (Stanford Univ., CA (USA))

1988-01-01T23:59:59.000Z

332

Three-dimensional seismic imaging of the Rye Patch geothermal reservoir  

DOE Green Energy (OSTI)

A 3-D surface seismic survey was conducted to explore the structure of the Rye Patch geothermal reservoir (Nevada), to determine if modern seismic techniques could be successfully applied in geothermal environments. Furthermore, it was intended to map the structural features which may control geothermal production in the reservoir. The seismic survey covered an area of 3.03 square miles and was designed with 12 north-south receiver lines and 25 east-west source lines. The receiver group interval was 100 feet and the receiver line spacing was 800 feet. The source interval was 100 feet while the source line spacing was 400 feet. The sources were comprised of 4 vibrator trucks arranged in a box array. Seismic processing involved, among other steps, the picking of over 700,000 of the possible one million traces to determine first arrival travel times, normal moveout correction, 3-D stack, deconvolution, time migration, and depth conversion. The final data set represents a 3-D cube of the subsurface structure in the reservoir. Additionally, the travel times were used to perform tomographic inversions for velocity estimates to support the findings of the surface seismic imaging. The results suggest the presence of at least one dominant fault responsible for the migration of fluids in the reservoir. Furthermore, it is suggested that this feature might be part of a fault system that includes a graben structure.

Feighner, M.; Gritto, R.; Daley, T.M.; Keers, H.; Majer, E.L.

1999-11-01T23:59:59.000Z

333

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

crucial step in developing enhanced geothermal system (EGS) for commercial production is "reservoir with a base-case temperature of 80o C, representing steam condensate, was used for injection. Conductive heat

Stanford University

334

Electromagnetic soundings over a geothermal reservoir in Dixie Valley, Nevada  

DOE Green Energy (OSTI)

An electromagnetic (EM) sounding survey was performed over a region encompassing the Dixie Valley geothermal field with the purpose of mapping the subsurface resistivity in the geothermal field and its surroundings. The EM survey consisted of 19 frequency-domain depth soundings made with the EM-60 system using three separate horizontal-loop transmitters, and was designed to explore a narrow region adjacent to the Stillwater Range to a depth of 2 to 3 k. Most sounding curves could be fitted to three-layer resistivity models. The surface layer is moderately conductive (10 to 15 ohm-m), has a maximum thickness of 500 m, and consists mainly of alluvial fan and lake sediments. More conductive zones are associated with hydrothermally altered rocks; a resistivity high may be associated with siliceous hot spring deposits. The conductive second layer (2 to 5 ohm-m) varies in thickness from 400 to 800 m and thickens toward the center of the valley. This layer probably consists of lacustrine sediments saturated with saline waters. Local resistivity lows observed in the second layer may be related to elevated subsurface temperatures. This layer may act as a cap rock for the geothermal system. Resistivities of the third layer are high (50 to 100 ohm-m) except in a narrow 5-km band paralleling the range front. This low-resistivity zone, within volcanic rocks, correlates well in depth and location with reported zones of geothermal fluid production. It also seems to correlate with the western margin of a concealed graben structure previously inferred from other geophysical data.

Wilt, M.J.; Goldstein, N.E.

1983-04-01T23:59:59.000Z

335

Artificial Geothermal Energy Potential of Steam-flooded Heavy Oil Reservoirs  

E-Print Network (OSTI)

This study presents an investigation of the concept of harvesting geothermal energy that remains in heavy oil reservoirs after abandonment when steamflooding is no longer economics. Substantial heat that has accumulated within reservoir rock and its vicinity can be extracted by circulating water relatively colder than reservoir temperature. We use compositional reservoir simulation coupled with a semianalytical equation of the wellbore heat loss approximation to estimate surface heat recovery. Additionally, sensitivity analyses provide understanding of the effect of various parameters on heat recovery in the artificial geothermal resources. Using the current state-of-art technology, the cumulative electrical power generated from heat recovered is about 246 MWhr accounting for 90percent downtime. Characteristics of heat storage within the reservoir rock were identified. The factors with the largest impact on the energy recovery during the water injection phase are the duration of the steamflood (which dictates the amount of heat accumulated in the reservoir) and the original reservoir energy in place. Outlet reservoir-fluid temperatures are used to approximate heat loss along the wellbore and estimate surface fluid temperature using the semianalytical approaches. For the injection well with insulation, results indicate that differences in fluid temperature between surface and bottomhole are negligible. However, for the conventional production well, heat loss is estimated around 13 percent resulting in the average surface temperature of 72 degrees C. Producing heat can be used in two applications: direct uses and electricity generation. For the electricity generation application that is used in the economic consideration, the net electrical power generated by this arrival fluid temperature is approximately 3 kW per one producing pattern using Ener-G-Rotors.

Limpasurat, Akkharachai

2010-08-01T23:59:59.000Z

336

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

2 injection wells, varying locations of injection/production segments of wells, and exploiting years. In absence of production/injection wells and presence of a uniform geothermal gradient of 18 C injection well that sequesters CO2 into the geothermal reservoir. This allows assessment of the effect

Stanford University

337

In situ heat transfer in man-made geothermal energy reservoirs  

DOE Green Energy (OSTI)

Two hot dry rock geothermal energy reservoirs were created by hydraulic fracturing of Precambrian granitic rock on the west flank of the Valles Caldera, a dormant volcanic complex, in the Jemez Mountains of northern New Mexico. Heat was extracted in a closed-loop mode of operation, injecting water into one well and extracting the heated water from a separate production well. The first reservoir was produced by fracturing the injection well at a depth of 2.75 km (9020 ft) where the indigenous rock temperature was 185/sup 0/C. The relatively rapid thermal drawdown of the water produced from the first reservoir, 100/sup 0/C in 74 days, indicated that its effective fracture radius was about 60 m (200 ft). Average thermal power extracted was 4 MW. A second, larger reservoir was created by refracturing the injection well 180 m (600 ft) deeper. Downhole measurements of the water temperature at the reservoir outlet as well as temperatures inferred from chemical geothermometry showed that the thermal drawdown of this reservoir was negligible; the effective heat transfer area of the new reservoir must be at least 45,000 m/sup 2/ (480,000 ft/sup 2/), nearly six times larger than the first reservoir. In addition reservoir residence time studies employing visible dye tracers indicated that the mean volume of the second reservoir is nine times larger. Other measurements showed that flow impedances were low, downhole water losses from these reservoirs should be manageable, that the geochemistry of the produced water was essentially benign, with no scaling problems apparent, and that the level of induced seismic activity was insignificantly small.

Murphy, H.D.; Tester, J.W.; Grigsby, C.O.; Potter, R.M.

1980-01-01T23:59:59.000Z

338

Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field  

DOE Green Energy (OSTI)

Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

Williams, Alan E.; Copp, John F.

1991-01-01T23:59:59.000Z

339

Heat Extraction Project, geothermal reservoir engineering research at Stanford. Fourth annual report, January 1, 1988--December 1, 1988  

DOE Green Energy (OSTI)

The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

Kruger, P.

1989-01-01T23:59:59.000Z

340

Calculation of geothermal reservoir temperatures and steam fractions from gas compositions  

DOE Green Energy (OSTI)

This paper deals with the chemical equilibria and physical characteristics of the fluid in the reservoir (temperature, steam fraction with respect to total water, gas/steam ratio, redox conditions), which seem to be responsible for the observed concentrations of some reactive species found in the geothermal fluids (CO2, H2, H2S and CH4). Gas geochemistry is of particular interest in vapor-dominated fields where the fluid discharged consists of almost pure steam containing a limited number of volatile chemical species. Considering several geothermal systems, a good correlation has been obtained among the temperatures calculated from the gas geothermometers and the temperatures measured in the reservoir of evaluated by other physical or chemical methods. 24 refs., 5 figs.

D'Amore, F.; Truesdell, A.H.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fracture Surface Area Effects on Fluid Extraction and the Electrical Resistivity of Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Laboratory measurements of the electrical resistivity of fractured analogue geothermal reservoir rocks were performed to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. Experiments were performed at confining pressures up to 10 h4Pa (100 bars) and temperatures to 170 C. Fractured samples show a larger resistivity change at the onset of boiling than intact samples. Monitoring the resistivity of fractured samples as they equilibrate to imposed pressure and temperature conditions provides an estimate of fluid migration into and out of the matrix. Measurements presented are an important step toward using field electrical methods to quantitatively search for fractures, infer saturation, and track fluid migration in geothermal reservoirs.

Roberts, J J; Detwiler, R L; Ralph, W; Bonner, B

2002-05-09T23:59:59.000Z

342

Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.  

Science Conference Proceedings (OSTI)

To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

Stephen L. Karner, Ph.D

2006-02-01T23:59:59.000Z

343

Characterization of injection wells in a fractured reservoir using PTS logs, Steamboat Hills Geothermal Field, Nevada, USA  

DOE Green Energy (OSTI)

The Steamboat Hills Geothermal Field in northwestern Nevada, about 15 km south of Reno, is a shallow (150m to 825m) moderate temperature (155 C to 168 C) liquid-dominated geothermal reservoir situated in highly-fractured granodiorite. Three injection wells were drilled and completed in granodiorite to dispose of spent geothermal fluids from the Steamboat II and III power plants (a 30 MW air-cooled binary-type facility). Injection wells were targeted to depths below 300m to inject spent fluids below producing fractures. First, quasi-static downhole pressure-temperature-spinner (PTS) logs were obtained. Then, the three wells were injection-tested using fluids between 80 C and 106 C at rates from 70 kg/s to 200 kg/s. PTS logs were run both up and down the wells during these injection tests. These PTS surveys have delineated the subsurface fracture zones which will accept fluid. The relative injectivity of the wells was also established. Shut-in interzonal flow within the wells was identified and characterized.

Goranson, Colin; Combs, Jim

1995-01-26T23:59:59.000Z

344

Geothermal: Sponsored by OSTI -- Applications of Geothermally...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Applications of Geothermally-Produced Colloidal Silica in Reservoir Management - Smart Gels Geothermal Technologies...

345

Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report  

DOE Green Energy (OSTI)

Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

Icerman, L.; Lohse, R.L.

1983-04-01T23:59:59.000Z

346

The effect of CO{sub 2} on reservoir behavior for geothermal systems  

Science Conference Proceedings (OSTI)

The purpose was to gain an understanding of the effects of non-condensible gases (CO/sub 2/) in fractured two-phase geothermal systems. A thorough review of previous work on non-condensible gases was carried out. In addition, since the flowing mass fraction of CO/sub 2/ is strongly controlled by the flowing saturation, the flowing enthalpy literature was also reviewed. Numerical techniques were employed to examine how non-condensible gases (CO/sub 2/) affect well transients and to determine the value of these effects as tools to evaluate in situ reservoir parameters. Simplified reservoir models were used to define the effects of CO/sub 2/ in the reservoir and the resulting transient behavior at the feedzones to the well. Furthermore, fracture-matrix interaction was studied in detail to identify the effects of CO/sub 2/ on recovery and flow patterns within the reservoir. The insight gained from the sensitivity studies for enthalpy and CO/sub 2/ transients was applied to interpret transient data from well BR21 at the Broadlands geothermal field of New Zealand.

Gaulke, S.W.

1986-12-01T23:59:59.000Z

347

Potential Impact of Reservoir Engineering R&D on Geothermal Energy Costs  

SciTech Connect

A tutorial program for use on personal computers is being developed to evaluate the sensitivity of geothermal energy costs to potential technological improvements. Reservoir engineering R&D will reduce risk to the funding organization and in turn reduce the risk premium paid on a loan. The use of a risk premium was described as an investment bankerĺs option at the November 1986 ôFuture of Geothermal Energy Conferenceö in San Diego, California. In the sensitivity analysis, we propose to calculate an energy cost: (1) at the predicted production parameters of temperature, drawdown rate, etc., and (2) at the most likely worse case values. The differential higher cost of the worse case over the predicted case is the risk premium. Thus R&D that improves reservoir definition will reduce the worse-case-minus-predicted-case difference and the financial risk premium. Improvements in reservoir engineering can then be quantified in terms of reduced energy costs. This paper will discuss the proposed approach to obtain critique of the procedure and provide the best logic for use in evaluating the potential impact of reservoir engineering R&D.

Traeger, Richard K.; Entingh, Daniel

1987-01-20T23:59:59.000Z

348

Interwell tracer analyses of a hydraulically fractured granitic geothermal reservoir  

DOE Green Energy (OSTI)

Field experiments using fluorescent dye and radioactive tracers (Br{sup 82} and I{sup 131}) have been employed to characterize a hot, low-matrix permeability, hydraulically-fractured granitic reservoir at depths of 2440 to 2960 m (8000 to 9700 ft). Tracer profiles and residence time distributions have been used to delineate changes in the fracture system, particularly in diagnosing pathological flow patterns and in identifying new injection and production zones. The effectiveness of one- and two-dimensional theoretical dispersion models utilizing single and multiple porous, fractured zones with velocity and formation dependent effects are discussed with respect to actual field data.

Tester, J.W.; Potter, R.M.; Bivins, R.L.

1979-01-01T23:59:59.000Z

349

Effects of non-condensible gases on fluid recovery in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

Numerical simulations are performed in order to investigate the effects of noncondensible gases (CO/sub 2/) on fluid recovery and matrix depletion in fractured geothermal reservoirs. The model used is that of a well producing at a constant bottomhole pressure from a two-phase fractured reservoir. The results obtained have received a complex fracture-matrix interaction due to the thermodynamics of H/sub 2/O-CO/sub 2/ mixtures. Although the matrix initially contributes fluids (liquid and gas) to the fractures, later on, the flow directions reverse and the fractures backflow fluids into the matrix. The amount of backflow depends primarily upon the flowing gas saturation in the fractures; the lower the flowing gas saturation in the fractures the more backflow. It is shown that the recoverable fluid reserves depend strongly on the amount of CO/sub 2/ present in the reservoir system.

Bodvarsson, G.S.; Gaulke, S.

1986-02-01T23:59:59.000Z

350

Quantitative model of vapor dominated geothermal reservoirs as heat pipes in fractured porous rock  

DOE Green Energy (OSTI)

We present a numerical model of vapor-dominated reservoirs which is based on the well-known conceptual model of White, Muffler, and Truesdell. Computer simulations show that upon heat recharge at the base, a single phase liquid-dominated geothermal reservoir in fractured rock with low matrix permeability will evolve into a two-phase reservoir with B.P.D. (boiling point-for-depth) pressure and temperature profiles. A rather limited discharge event through cracks in the caprock, involving loss of only a few percent of fluids in place, is sufficient to set the system off to evolve a vapor-dominated state. The attributes of this state are discussed, and some features requiring further clarification are identified. 26 refs., 5 figs.

Pruess, K.

1985-03-01T23:59:59.000Z

351

Geothermal reservoir well stimulation program. Final program summary report  

DOE Green Energy (OSTI)

Eight field experiments and the associated theoretical and laboratory work performed to develop the stimulation technology are described. A discussion of the pre-stimulation and post-stimulation data and their evaluation is provided for each experiment. Overall results have shown that stimulation is viable where adequate reservoirs are penetrated by wells encountering formation damage or locally tight formation zones. Seven of the eight stimulation experiments were at least technically successful in stimulating the wells. The two fracture treatments in East Mesa 58-30 more than doubled the producing rate of the previously marginal producer. The two fracture treatments at Raft River and the two at Baca were all successful in obtaining significant production from previously nonproductive intervals. However, these treatments failed to establish commercial production due to deficiencies in either fluid temperature or reservoir transmissivity. The Beowawe chemical stimulation treatment appears to have significantly improved the well's injectivity, but production data were not obtained because of well mechanical problems. The acid etching treatment in the well at the Geysers did not have any material effect on producing rate. Evaluations of the field experiments to date have suggested improvements in treatment design and treatment interval selection which offer substantial encouragement for future stimulation work.

Not Available

1984-01-01T23:59:59.000Z

352

Geothermal field tests: heat exchanger evaluation  

DOE Green Energy (OSTI)

Results of the heat exchanger tests conducted on a scale model of a heat exchanger that has been designed and fabricated for the Geothermal Test Facility show that this exchanger will lose 60% of its heat transfer capability and fall below design requirements after 92 hours of operation. When the test exchanger was clean and operating as close as possible to design conditions, its overall heat transfer coefficient was 426 BTU/hr-ft/sup 2/ - /sup 0/f. when calculating in the fouling factor of .0035 this gave a design coefficient of 171 BTU/hr-ft/sup 2/ - /sup 0/f which was reached after less than four days of steady state operation. Thermal shocking of the test heat exchanger once each hour while the exchanger was operating at design conditions had no effect on scale removal or heat transfer. Results of tube cleaning showed that chemical treatment with 30% hydrochloric acid followed by a high pressure water jet (6000 psig), was effective in removing scale from tubes contacted with geothermal brine. After cleaning, the tubes were examined and some pitting was observed throughout the length of one tube.

Felsinger, D.E.

1973-07-06T23:59:59.000Z

353

Tracer Testing At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (2006) Tracer Testing At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis To characterize the flow patterns of fluid injected into well 68-20RD. Notes A conservative liquid phase tracer, 2-naphthalene sulfonate, and a two-phase tracer, ethanol, were injected into well 68-20RD. Surrounding production wells were sampled over the subsequent 125 days and analyzed for the two tracers. The results demonstrate the efficacy of the simultaneous use of liquid-phase and two-phase tracers in fluid-depleted geothermal

354

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

355

Power Potential of Geothermal Wells Related to Reservoir Temperature  

DOE Green Energy (OSTI)

For equal flows of hot water wells, the electric power which can be generated increases with feed water temperature. However, high temperature wells discharge greater flows than that of lower temperature wells of similar permeability, with the result of enhanced power potential. In fact, where fluids are exploited utilizing two-stage flash, these factors combine to give a power potential which is proportional to the cube of the feed water temperature in degrees celsius. Hence a feed of 315 C would generate twice the power of that of water at 250 C for wells of good permeability and where the reservoir exists under conditions of boiling point with depth. Higher temperature water (exceeding 300 C) has, however, a commensurate higher tendency to mineral deposition in reinjection water lines and this disposes design to single-stage flash with slightly reduced power, compared with the two-stage alternative.

James, Russell

1986-01-21T23:59:59.000Z

356

Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico  

DOE Green Energy (OSTI)

The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

James C Witcher

2002-07-30T23:59:59.000Z

357

Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems  

Science Conference Proceedings (OSTI)

A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

2013-05-01T23:59:59.000Z

358

Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Testing Activity, Frio Formation, Texas and Louisiana  

DOE Green Energy (OSTI)

This Environmental Assessment (EA) has been prepared to provide the environmental input into the Division of Geothermal Energy's decisions to expand the geothermal well testing activities to include sites in the Frio Formation of Texas and Louisiana. It is proposed that drilling rigs be leased before they are removed from sites in the formation where drilling for gas or oil exploration has been unsuccessful and that the rigs be used to complete the drilling into the geopressured zone for resource exploration. This EA addresses, on a regional basis, the expected activities, affected environment, and the possible impacts in a broad sense as they apply to the Gulf Coast well testing activity of the Geothermal Energy Geopressure Subprogram of the Department of Energy. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay, Atlas) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. in the interim, existing well tests need to be made to help define and assess the resource.

None

1978-02-01T23:59:59.000Z

359

Economic modeling of electricity production from hot dry rock geothermal reservoirs: methodology and analyses. Final report  

DOE Green Energy (OSTI)

An analytical methodology is developed for assessing alternative modes of generating electricity from hot dry rock (HDR) geothermal energy sources. The methodology is used in sensitivity analyses to explore relative system economics. The methodology used a computerized, intertemporal optimization model to determine the profit-maximizing design and management of a unified HDR electric power plant with a given set of geologic, engineering, and financial conditions. By iterating this model on price, a levelized busbar cost of electricity is established. By varying the conditions of development, the sensitivity of both optimal management and busbar cost to these conditions are explored. A plausible set of reference case parameters is established at the outset of the sensitivity analyses. This reference case links a multiple-fracture reservoir system to an organic, binary-fluid conversion cycle. A levelized busbar cost of 43.2 mills/kWh ($1978) was determined for the reference case, which had an assumed geothermal gradient of 40/sup 0/C/km, a design well-flow rate of 75 kg/s, an effective heat transfer area per pair of wells of 1.7 x 10/sup 6/ m/sup 2/, and plant design temperature of 160/sup 0/C. Variations in the presumed geothermal gradient, size of the reservoir, drilling costs, real rates of return, and other system parameters yield minimum busbar costs between -40% and +76% of the reference case busbar cost.

Cummings, R.G.; Morris, G.E.

1979-09-01T23:59:59.000Z

360

Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica  

DOE Green Energy (OSTI)

The Earth Sciences Division of Lawrence Berkeley Laboratory in cooperation with the Instituto Costarricense de Electricidad is conducting a reservoir engineering study of the Miravalles geothermal field, Costa Rica. Using data from eight exploration wells a two-dimensional areal, natural-state model of Miravalles has been developed. The model was calibrated by fitting the observed temperature and pressure distributions and requires a geothermal upflow zone in the northern part of the field, associated with the Miravalles volcano and an outflow towards the south. The total hot (about 260{degrees}C) water recharge is 130 kg/s, corresponding to a thermal input of about 150 MWt. On the basis of the natural-state model a two-dimensional exploitation model was develope. The field has a production area of about 10 km{sup 2}, with temperatures exceeding 220{degrees}C. The model indicated that power generation of 55 MWe can be maintained for 30 years, with or without injection of the separated geothermal brine. Generation of 110 MWe could be problematic. Until more information becomes available on the areal extent of the field and the properties of the reservoir rocks, especially their relative permeability characteristics, it is difficult to ascertain if 110 MWe can be sustained during a 30-year period.

Haukwa, C.; Bodvarsson, G.S. Lippmann, M.J. [Lawrence Berkeley Lab., CA (United States); Mainieri, A. [Instituto Costarricense de Electricidad, San Jose (Costa Rica)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fractured reservoir characterization through injection, falloff, and flowback tests  

SciTech Connect

This paper presents the development of a multiphase pressure-transient-analysis technique for naturally fractured reservoirs and the analysis of a series of field tests performed to evaluate the water injection potential and the reservoir characteristics of a naturally fractured reservoir. These included step-rate, water-injectivity, pressure-falloff, and flowback tests. Through these tests, a description of the reservoir was obtained.

Peng, C.P.; Singh, P.K. (Amoco Production Co., Tulsa, OK (United States)); Halvorsen, H. (Amoco Norway Oil Co., Stavanger (NO)); York, S.D. (Amoco Production Co., Houston, TX (United States))

1992-09-01T23:59:59.000Z

362

Investigation and evaluation of geopressured-geothermal wells: Fairfax Foster Sutter No. 2 well, St. Mary Parish, Louisiana. Volume II. Well test data. Final report  

DOE Green Energy (OSTI)

The following data tables are included: pressure buildup, pressure survey, geothermal field test, analyses of reservoir brine, recombination analysis, analyses of separator gas, analyses of scale samples, H/sub 2/S in separator gas, and analysis of reservoir data. (MHR)

Willits, M.H.; McCoy, R.L.; Dobson, R.J.; Hartsock, J.H.

1979-12-01T23:59:59.000Z

363

Thermal stress cracking and the enhancement of heat extraction from fractured geothermal reservoirs  

DOE Green Energy (OSTI)

Given sufficient time, the extraction of heat from geothermal reservoirs formed by the hydraulic fracturing of competent rock will eventually result in the formation of thermal stress cracks in the reservoir. These cracks penetrate the rock in a manner such that the penetration-to-spacing ratio is approximately one. The penetration depends upon the extent of cooling and the square root of time. Initially then, the cracks are closely spaced and penetrate but little, so that a crazing pattern is apparent; but with increasing time some of these cracks, now more widely spaced, grow deeper. Eventually these larger cracks attain a critical aperture such that significant rates of water flow can be established within them and thus the newly created heat transfer area becomes useful for heat extraction. At the same time that cracks are forming within the main reservoir, thermal cracking also occurs in the wellbores that communicate with the reservoir. These cracks eventually convey water to and from the reservoir, thus leading to a decrease in the flow impedances that are often concentrated in the wellbore regions.

Murphy, H.D.

1978-04-01T23:59:59.000Z

364

Geothermal pump test facility. Final report, July 1977--July 1978  

DOE Green Energy (OSTI)

The design configuration and fabrication description of a transportable geothermal pump test facility are discussed. The test facility, consisting of a test rig and data acquisition system trailer, provides the user with the unique opportunity to develop and calibrate geothermal pumps with less liability and risk, and at lower cost than would be incurred by actually installing the pump in a geothermal well. Pump tests may be performed using either domestic water, heated by pumping energy, or by using actual geothermal brines supplied directly to the test rig which would be located adjacent to the well. The geothermal pump test facility is completely self supporting and requires only an electrical supply source to become fully operational. Information and discussion presented provide substantive background, design and operational capabilities, and pertinent fabrication details.

Blakemore, R.W.

1978-09-01T23:59:59.000Z

365

Gulf Coast Programmatic Environmental Assessment Geothermal Well Testing: The Frio Formation of Texas and Louisiana  

DOE Green Energy (OSTI)

In accordance with the requirements of 10 CFR Part 711, environmental assessments are being prepared for significant activities and individual projects of the Division of Geothermal Energy (DGE) of the Energy Research and Development Administration (ERDA). This environmental assessment of geopressure well testing addresses, on a regional basis, the expected activities, affected environments, and possible impacts in a broad sense. The specific part of the program addressed by this environmental assessment is geothermal well testing by the take-over of one or more unsuccessful oil wells before the drilling rig is removed and completion of drilling into the geopressured zone. Along the Texas and Louisiana Gulf Coast (Plate 1 and Overlay) water at high temperatures and high pressures is trapped within Gulf basin sediments. The water is confined within or below essentially impermeable shale sequences and carries most or all of the overburden pressure. Such zones are referred to as geopressured strata. These fluids and sediments are heated to abnormally high temperatures (up to 260 C) and may provide potential reservoirs for economical production of geothermal energy. The obvious need in resource development is to assess the resource. Ongoing studies to define large-sand-volume reservoirs will ultimately define optimum sites for drilling special large diameter wells to perform large volume flow production tests. In the interim, existing well tests need to be made to help define and assess the resource. The project addressed by this environmental assessment is the performance of a geothermal well test in high potential geothermal areas. Well tests involve four major actions each of which may or may not be required for each of the well tests. The four major actions are: site preparation, drilling a salt-water disposal well, actual flow testing, and abandonment of the well.

None

1977-10-01T23:59:59.000Z

366

Evaluation of potential geopressure geothermal test sites in southern Louisiana  

DOE Green Energy (OSTI)

Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

Bassiouni, Z.

1980-04-01T23:59:59.000Z

367

Evaluation of potential geothermal reservoirs in central and western New York state. Final report  

DOE Green Energy (OSTI)

Computer processes geophysical well logs from central and western New York State were analyzed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may be a viable alternative to other more conventional forms of energy that are not indigenous to New York State.

Not Available

1983-06-01T23:59:59.000Z

368

Evaluation of potential geothermal reservoirs in central and western New York State. Volume 3. Final report  

DOE Green Energy (OSTI)

Computer processed geophysical well logs from central and western New York State were analysed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may ba a viable alternative to other more conventional forms of energy that not indigenous to New York State.

Not Available

1983-06-01T23:59:59.000Z

369

Simulation of fluid-rock interactions in a geothermal basin. Final report. [QUAGMR (quasi-active geothermal reservoir)  

DOE Green Energy (OSTI)

General balance laws and constitutive relations are developed for convective hydrothermal geothermal reservoirs. A fully interacting rock-fluid system is considered; typical rock-fluid interactions involve momentum and energy transfer and the dependence of rock porosity and permeability upon the fluid and rock stresses. The mathematical model also includes multiphase (water/steam) effects. A simple analytical model is employed to study heat transfer into/or from a fluid moving in a porous medium. Numerical results show that for fluid velocities typical of geothermal systems (Reynolds number much less than 10), the fluid and the solid may be assumed to be in local thermal equilibrium. Mathematical formalism of Anderson and Jackson is utilized to derive a continuum species transport equation for flow in porous media; this method allows one to delineate, in a rigorous manner, the convective and diffusive mechanisms in the continuum representation of species transport. An existing computer program (QUAGMR) is applied to study upwelling of hot water from depth along a fault; the numerical results can be used to explain local temperature inversions occasionally observed in bore hole measurements.

Garg, S.K.; Blake, T.R.; Brownell, D.H. Jr.; Nayfeh, A.H.; Pritchett, J.W.

1975-09-01T23:59:59.000Z

370

Field study of tracer and geochemistry behavior during hydraulic fracturing of a hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

This study presents tracer and geochemistry data from several hydraulic fracturing experiments at the Fenton Hill, NM, HDR geothermal reservoir. Tracers have been injected at various times during these tests: (1) initially, before any flow communication existed between the wells; (2) shortly after a flow connection was established; and (3) after the outlet flow had increased to its steady state value. An idealized flow model consisting of a combination of main fracture flow paths and fluid leakoff into secondary permeability explains the different tracer response curves for these cases, and allows us to predict the fracture volume of the main paths. The geochemistry during these experiments supports our previously developed models postulating the existence of a high concentration indigenous ''pore fluid.'' Also, the quartz and Na-K-Ca geothermometers have been used successfully to identify the temperatures and depths at which fluid traveled while in the reservoir. The quartz geothermometer is somewhat more reliable because at these high temperatures (about 250/sup 0/C) the injected fluid can come to equilibrium with quartz in the reservoir. The Na-K-Ca geothermometer relies on obtaining a sample of the indigenous pore fluid, and thus is somewhat susceptible to problems of dilution with the injection fluid. 14 refs., 6 figs., 1 tab.

Robinson, B.A.

1986-01-01T23:59:59.000Z

371

Frio sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy  

DOE Green Energy (OSTI)

Detailed geological, geophysical, and engineering studies conducted on the Frio Formation have delineated a geothermal test well site in the Austin Bayou Prospect which extends over an area of 60 square miles. A total of 800 to 900 feet of sandstone will occur between the depths of 13,500 and 16,500 feet. At leat 30 percent of the sand will have core permeabilities of 20 to 60 millidarcys. Temperature at the top of the sandstone section will be 300/sup 0/F. Water, produced at a rate of 20,000 to 40,000 barrels per day, will probably have to be disposed of by injection into shallower sandstone reservoirs. More than 10 billion barrels of water are in place in these sandstone reservoirs of the Austin Bayou Prospect; there should be approximately 400 billion cubic feet of methane in solution in this water. Only 10 percent of the water and methane (1 billion barrels of water and 40 billion cubic feet of methane) will be produced without reinjection of the waste water into the producing formation. Reservoir simulation studies indicate that 90 percent of the methane can be produced with reinjection. 106 figures.

Bebout, D.G.; Loucks, R.G.; Gregory, A.R.

1983-01-01T23:59:59.000Z

372

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details Location Mccoy Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated...

373

1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico  

Science Conference Proceedings (OSTI)

Recent flow testing of the Fenton Hill HDR reservoir has demonstrated that engineered geothermal systems can be shut-in for extended periods of d= with apparently no adverse effects. However, when this particular reservoir at Venton Hill was shut-in for 2 years in a pressurized condition, natural convection within the open-jointed reservoir region appears to have leveled out the preexisting temperature gradient so that the gradient has now approached a condition more typical of liquid-dominated hydrothermal reservoirs which air invariably almost isothermal due to natural convection. As a result of the sudden flow impedance reduction that led to an almost 50% increase in Production flow new the end of the Second Phase of the LTFR in May 1993, we were uncertain as to the state of the reservoir after being shut-in for 2 years. The flow performance observed during the current testing was found to be intermediate between that at-the end of the Second Phase of the LTFT and that following, the subsequent sudden flow increase, implying that whatever caused the sudden reduction in impedance in the first place is probably somehow associated with the cooldown of the reservoir near the injection interval, since temperature recovery at the surfaces of the surrounding open joints is the most obvious phenomenon expected to occur over time within the reservoir.

Brown, D.

1995-01-01T23:59:59.000Z

374

Application of automatic differentiation for the simulation of nonisothermal, multiphase flow in geothermal reservoirs  

DOE Green Energy (OSTI)

Simulation of nonisothermal, multiphase flow through fractured geothermal reservoirs involves the solution of a system of strongly nonlinear algebraic equations. The Newton-Raphson method used to solve such a nonlinear system of equations requires the evaluation of a Jacobian matrix. In this paper we discuss automatic differentiation (AD) as a method for analytically computing the Jacobian matrix of derivatives. Robustness and efficiency of the AD-generated derivative codes are compared with a conventional derivative computation approach based on first-order finite differences.

Kim, Jong G.; Finsterle, Stefan

2002-01-08T23:59:59.000Z

375

Modeling, design, and life performance prediction for energy production from geothermal reservoirs. August 1997 progress report  

DOE Green Energy (OSTI)

The objective of this project is to both transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. In this quarter, the primary focus has been on interaction with industry, development of the Geocrack3D model, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on flow in fractured rock and on the coupled effect of thermal cooling, while a primary focus of current modeling technology is multi-phase flow.

Swenson, D.

1997-08-01T23:59:59.000Z

376

Modeling, design, and life performance prediction for energy production from geothermal reservoirs. First quarter progress report  

DOE Green Energy (OSTI)

The objective of this project is to both transfer existing Hot Dry Rock two-dimensional fractured reservoir analysis capability to the geothermal industry and to extend the analysis concepts to three dimensions. In this quarter, the primary focus has been on interaction with industry, development of the Geocrack3D model, and maintenance of Geocrack2D. It is important to emphasize that the modeling is complementary to current industry modeling, in that they focus on flow in fractured rock and on the coupled effect of thermal cooling, while a primary focus of current modeling technology is multi-phase flow.

Swenson, D.

1997-08-15T23:59:59.000Z

377

Geothermal reservoir engineering of HGP-A: a summary report of activities up to October 31, 1976. Technical report No. 19  

DOE Green Energy (OSTI)

The history of geothermal well drilling in Hawaii is reviewed briefly. The following are discussed: the geophysical program, pre-drilling speculative models, geothermal reservoir engineering, the drilling program, the measurement activities, a preliminary reservoir analysis of HGP-A well, and future activities. (MHR)

Chen, B.; Kihara, D.; Seki, A.; Takahashi, P.K.; Yuen, P.C.

1976-10-31T23:59:59.000Z

378

THE NATURAL THERMODYNAMIC STATE OF THE FLUIDS IN THE LOS AZUFRES GEOTHERMAL RESERVOIR  

DOE Green Energy (OSTI)

We have devised a simple method to assess the natural thermodynamic state of two-phase reservoirs. This is usually a complex task. The method is based on inferring sandface flowing pressures and enthalpies from production output (deliverability) curves, and then extrapolating to shutin conditions in the pressure-enthalpy plane. The method was applied to data from 10 wells of the Los Azufres geothermal field. Comparison of the results with measured pressures and temperatures showed that the method is reliable. We present detailed thermodynamic properties of the unperturbed reservoir fluid in the neighborhood of the wells studied, in tabular form. Moreover, we present a match to these results with a very simple model that allows reasonable estimates of natural thermodynamic conditions as functions of height above sea level. The present results have important implications for the assessment of the fluid reserves, which are suggested to be greater than previously thought.

Iglesias, E.R.; Arellano, V.M.; Gardias, A.

1985-01-22T23:59:59.000Z

379

Tracer Testing At Coso Geothermal Area (1993) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (1993) Tracer Testing At Coso Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (1993) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine the steam and water mass flow rate Notes The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of

380

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

382

3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary  

DOE Green Energy (OSTI)

A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of the effect of fractures on seismic wave propagation are now being applied to image fractures in gas and oil environments. It now may be appropriate to apply these methods, with modifications, to geothermal applications. It is assumed that to implement the appropriate methods an industry coupled program tightly linked to actual field cases, iterating between development and application will be pursued. The goal of this work is to evaluate the most promising methods and approaches that may be used for improved geothermal exploration and reservoir assessment. It is not a comprehensive review of all seismic methods used to date in geothermal environments. This work was motivated by a need to assess current and developing seismic technology that if applied in geothermal cases may greatly improve the chances for locating new geothermal resources and/or improve assessment of current ones.

Majer, E.L.

2003-07-14T23:59:59.000Z

383

Numerical Simulation of Injectivity Effects of Mineral Scaling and Clay Swelling in a Fractured Geothermal Reservoir  

DOE Green Energy (OSTI)

A major concern in the development of hot dry rock (HDR) and hot fractured rock (HFR) reservoirs is achieving and maintaining adequate injectivity, while avoiding the development of preferential short-circuiting flow paths such as those caused by thermally-induced stress cracking. Past analyses of HDR and HFR reservoirs have tended to focus primarily on the coupling between hydrology (flow), heat transfer, and rock mechanics. Recent studies suggest that rock-fluid interactions and associated mineral dissolution and precipitation effects could have a major impact on the long-term performance of HFR reservoirs. The present paper uses recent European studies as a starting point to explore chemically-induced effects of fluid circulation in HFR systems. We examine ways in which the chemical composition of reinjected waters can be modified to improve reservoir performance by maintaining or even enhancing injectivity. Chemical manipulations considered here include pH modification and dilution with fresh water. We performed coupled thermo-hydrologic-chemical simulations in which the fractured medium was represented by a one-dimensional MINC model (multiple interacting continua), using the non-isothermal multi-phase reactive geochemical transport code TOUGHREACT. Results indicate that modifying the injection water chemistry can enhance mineral dissolution and reduce clay swelling. Chemical interactions between rocks and fluids will change a HFR reservoir over time, with some changes favorable and others not. A detailed, quantitative understanding of processes and mechanisms can suggest chemical methods for reservoir management, which may be employed to improve the performance of the geothermal system.

Xu, Tianfu; Pruess, Karsten

2004-05-10T23:59:59.000Z

384

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

385

Fracture detection and mapping for geothermal reservoir definition: an assessment of current technology, research, and research needs  

DOE Green Energy (OSTI)

The detection and mapping of fractures and other zones of high permeability, whether natural or manmade, has been a subject of considerable economic and scientific interest to the pertroleum industry and to the geothermal community. Research related to fractured geothermal reservoirs has been conducted under several past DOE geothermal energy development programs. In this paper we review the present state of technology in fracture detection and mapping. We outline the major problems and limitations of the ''conventional'' techniques, and current research in new technologies. We also present research needs.

Goldstein, N.E.

1984-11-01T23:59:59.000Z

386

Well test analysis and reservoir modeling of geopressured-geothermal systems (includes topical reports on analyses for: Pleasant Bayou Well No. 2, Gladys McCall Well No.1). Final report  

DOE Green Energy (OSTI)

Automated inversion of pressure transient data from the Pleasant Bayou and Gladys McCall geopressured test wells has allowed the resolution of several outstanding questions concerning the two reservoirs. The added accuracy of the interpretation of the various data sets from each well provides convincing evidence that the formation response of each of the reservoirs behaved in an essentially linear fashion throughout its multi-year depletion/recovery test history. The only exception was in the immediate vicinity of the sandface; the skin factor in each of the wells varies during the course of its test history (see Appendices for detailed discussions of the variations and the likely causes of the variations for each well). (a) The six bottomhole pressure transient tests of Pleasant Bayou Well No.2 over a twelve year period (1980-1992) yield estimates for the permeability-thickness product that are in excellent agreement (kh = 3.665 D-m). Inversion of the 45-day buildup portion of the 1980 RLT yields an estimate of X{sub a} = 869 m as the distance from the well to the nearest boundary. The inversion of the data from the other five tests, of much shorter duration, yield estimates in the range X{sub a} = 427-503 m. The RLT estimate would normally be given much more credence. The failure, repair and resetting of the gauge after the first ten days of the start of the buildup test, however, may have affected the RLT data. Calculations are employed to estimate bottomhole pressures from surface recordings subsequent to removal of the bottomhole gauge following the 1992 70-hr buildup test. These estimated values were combined with the 70-hr data to form the 111-day (from September 12, 1992 through January 1, 1993) LTT buildup test data set. The LTT data were inverted to yield an estimate of X{sub a} = 452 m. Since this is in agreement with the range of estimates from the five short-term bottomhole test, we believe the range X{sub a} = 427-503 m to represent the best estimate for the distance from the well to the nearest boundary. The simulation model presented in Appendix B used L1 = 990 m (Figure 3 in Appendix B) as the distance from the test well to the nearest boundary. The simulation model could probably be improved using a smaller value for L1. The actual location of the boundary to the south of the well is not known from the available geological information. (b) The five bottomhole pressure transient tests of Gladys McCall Well No.2 over an eight-year period (1983-1991) yield estimates for the permeability-thickness product that differ significantly from each other. The differences, however, can be explained by the partial plugging of the near-well formation during an aborted attempt to inject a scale-inhibitor pill in May 1985, followed by subsequent scouring out the pill precipitates by the flowing fluid during the May 1985-August 1987 production testing. The partial plugging of the near-well formation in conjunction with a known shale stringer that prevents vertical communication in sand 8 (Figure 2 in Appendix A) would reduce the apparent value of kh to about sixty percent of the original RLT value of 13.44 D-m. Inversion of the 79-hr (1985) and 92-hr (1986) buildup tests yield kh estimates of 7.69 and 8.86 D-m, respectively. Inversions of the valid MRT (1987) and FDT (1991) pressure transient data yield estimates very near the original RLT value. The reinterpretation of the MRT data represents a correction of our earlier conclusion (in Appendix A); we now believe that the data from the first and second gauges employed during the MRT are incompatible. Data from the first (''old'') gauge during the drawdown portion of the MRT could not be adequately corrected for the observed drift in the recorded data. Only the second (''new'') gauge data are considered reliable and inversion of the buildup data it recorded yields the estimate for kh that is in agreement with estimates obtained from inversion of the RLT and FDT pressure transient data.

Riney, T.D.; Owusu, L.A.

1993-02-01T23:59:59.000Z

387

Geometry and reservoir heterogeneity of tertiary sandstones: a guide to reservoir continuity and geothermal resource development  

DOE Green Energy (OSTI)

External and internal continuity of Tertiary sandstones are controlled by various factors including structural trends, sand body geometry, and the distribution of mineral framework, matrix, and intersticies within the sand body. Except for the limits imposed by faults, these factors are largely inherited from the depositional environment and modified during sandstone compaction and cementation. Sandstone continuity affects energy exploration and production strategies. The strategies range in scope from regional to site-specific and closely parallel a sandstone hierarchy. The hierarchy includes subdivisions ranking from genetically related aquifer systems down to individual reservoirs within a fault-bounded sandstone. Volumes of individual reservoirs are 50% less to 200% more than estimated from conventional geologic mapping. In general, mapped volumes under-estimate actual volumes where faults are nonsealing and overestimate actual volumes where laterally continuous shale breaks cause reductions in porosity and permeability. Gross variations in these pore properties can be predicted on the basis of internal stratification and sandstone facies. Preliminary analyses indicate that large aquifers are found where barrier and strandplain sandstones parallel regional faults or where fluvial (meandering) channels trend normal to regional faults. Within these sand bodies, porosity and permeability are highest in large-scale crossbedded intervals and lowest in contorted, bioturbated, and small-scale ripple cross-laminated intervals.

Morton, R.A.; Ewing, T.E.

1981-01-01T23:59:59.000Z

388

SHAFT78: a two-phase multidimensional computer program for geothermal reservoir simulation  

DOE Green Energy (OSTI)

The computer program SHAFT78 was developed to compute two-phase flow phenomena in geothermal reservoirs. The program solves transient initial-value problems with prescribed boundary-conditions in up to three space dimensions. The solution method is an explicit-implicit IFD approach which does not distinguish between 1, 2, or 3-D coordinate systems and allows a flexible choice of the shape of the discrete grid elements. The mass-and-energy equations are formulated in conservative form. The stability and convergence of the algorithm is controlled by an automatic choice of time steps - partially controlled by the user. Although the program has been developed for use in simulating production and injection in geothermal reservoirs, there are other two-phase problems for which it is either immediately applicable, or for which it can be modified to be applicable. All fluid parameters, such as viscosity, heat capacity, heat conductivity, etc., can be specified as functions of temperature and pressure, and all parameters can vary with position. The program can handle up to seven different anisotropic rocks, with all rock parameters assumed to be independent of position, temperature, and pressure. (MHR)

Pruess, K.; Schroeder, R.C.; Witherspoon, P.A.; Zerzan, J.M.

1979-11-01T23:59:59.000Z

389

Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks  

DOE Green Energy (OSTI)

Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

2003-01-14T23:59:59.000Z

390

Electrical Resistivity as an Indicator of Saturation in Fractured Geothermal Reservoir Rocks: Experimental Data and Modeling  

DOE Green Energy (OSTI)

The electrical resistivity of rock cores under conditions representative of geothermal reservoirs is strongly influenced by the state and phase (liquid/vapor) of the pore fluid. In fractured samples, phase change (vaporization/condensation) can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring of geothermal reservoirs may provide a useful tool for remotely detecting the movement of water and steam within fractures, the development and evolution of fracture systems and the formation of steam caps. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction from the matrix. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

Detwiler, R L; Roberts, J J

2003-06-23T23:59:59.000Z

391

Well Test Analysis and Improved Models for Geopressured-Geothermal Systems  

DOE Green Energy (OSTI)

In accordance with the S-CUBED Subcontract Work Statement, S-CUBED has concentrated on the synthesis, correlation and analysis of all pertinent data from the Department of Energy (DOE) geopressured-geothermal research wells undergoing testing during the contract period. This work has included the development of reservoir simulation models for the geopressured-geothermal resource in hydrological connection with each well. Existing S-CUBED simulation techniques have been applied to develop, update and improve the models for the reservoirs tested. During the contract period, data have been available from the Gladys McCall, Pleasant Bayou and Hulin test wells. S-CUBED has also contributed to the design of the well tests and participated in DOE's planning and review meetings in support of the geopressured-geothermal program. Detailed technical Topical Reports have been prepared and issued as appropriate during the contract period as referenced in the following summary of the work performed during the final year of the S-CUBED Subcontract to UTA.

Riney, T.D.

1990-12-01T23:59:59.000Z

392

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

Science Conference Proceedings (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

393

Effects of capillarity and vapor adsorption in the depletion of vapor-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

Vapor-dominated geothermal reservoirs in natural (undisturbed) conditions contain water as both vapor and liquid phases. The most compelling evidence for the presence of distributed liquid water is the observation that vapor pressures in these systems are close to saturated vapor pressure for measured reservoir temperatures (White et al., 1971; Truesdell and White, 1973). Analysis of natural heat flow conditions provides additional, indirect evidence for the ubiquitous presence of liquid. From an analysis of the heat pipe process (vapor-liquid counterflow) Preuss (1985) inferred that effective vertical permeability to liquid phase in vapor-dominated reservoirs is approximately 10{sup 17} m{sup 2}, for a heat flux of 1 W/m{sup 2}. This value appears to be at the high end of matrix permeabilities of unfractured rocks at The Geysers, suggesting that at least the smaller fractures contribute to liquid permeability. For liquid to be mobile in fractures, the rock matrix must be essentially completely liquid-saturated, because otherwise liquid phase would be sucked from the fractures into the matrix by capillary force. Large water saturation in the matrix, well above the irreducible saturation of perhaps 30%, has been shown to be compatible with production of superheated steam (Pruess and Narasimhan, 1982). In response to fluid production the liquid phase will boil, with heat of vaporization supplied by the reservoir rocks. As reservoir temperatures decline reservoir pressures will decline also. For depletion of ''bulk'' liquid, the pressure would decline along the saturated vapor pressure curve, while for liquid held by capillary and adsorptive forces inside porous media, an additional decline will arise from ''vapor pressure lowering''. Capillary pressure and vapor adsorption effects, and associated vapor pressure lowering phenomena, have received considerable attention in the geothermal literature, and also in studies related to geologic disposal of heat generating nuclear wastes, and in the drying of porous materials. Geothermally oriented studies were presented by Chicoine et al. (1977), Hsieh and Ramey (1978, 1981), Herkelrath et al. (1983), and Nghiem and Ramey (1991). Nuclear waste-related work includes papers by Herkelrath and O'Neal (1985), Pollock (1986), Eaton and Bixler (1987), Pruess et al. (1990), Nitao (1990), and Doughty and E'ruess (1991). Applications to industrial drying of porous materials have been discussed by Hamiathy (1969) arid Whitaker (1977). This paper is primarily concerned with evaluating the impact of vapor pressure lowering (VPL) effects on the depletion behavior of vapor-dominated reservoirs. We have examined experimental data on vapor adsorption and capillary pressures in an effort to identify constitutive relationships that would be applicable to the tight matrix rocks of vapor-dominated systems. Numerical simulations have been performed to evaluate the impact of these effects on the depletion of vapor-dominated reservoirs.

Pruess, Karsten; O'Sullivan, Michael

1992-01-01T23:59:59.000Z

394

Geothermal: Sponsored by OSTI -- Using fully coupled hydro-geomechanic...  

Office of Scientific and Technical Information (OSTI)

Using fully coupled hydro-geomechanical numerical test bed to study reservoir stimulation with low hydraulic pressure Geothermal Technologies Legacy Collection HelpFAQ | Site Map...

395

Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach  

DOE Green Energy (OSTI)

The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks. In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

Joseph N. Moore

2007-12-31T23:59:59.000Z

396

Performance test of a bladeless turbine for geothermal applications  

DOE Green Energy (OSTI)

The Possell bladeless turbine was tested at the LLL Geothermal Test Facility to evaluate its potential for application in the total flow process. Test description and performance data are given for 3000, 3500, 4000, and 4500 rpm. The maximum engine efficiency observed was less than 7 percent. It is concluded that the Possell turbine is not a viable candidate machine for the conversion of geothermal fluids by the total flow process. (LBS)

Steidel, R.; Weiss, H.

1976-03-24T23:59:59.000Z

397

Preliminary study of discharge characteristics of slim holes compared to production wells in liquid-dominated geothermal reservoirs  

DOE Green Energy (OSTI)

There is current interest in using slim holes for geothermal exploration and reservoir assessment. A major question that must be addressed is whether results from flow or injection testing of slim holes can be scaled to predict large diameter production well performance. This brief report describes a preliminary examination of this question from a purely theoretical point of view. The WELBOR computer program was used to perform a series of calculations of the steady flow of fluid up geothermal boreholes of various diameters at various discharge rates. Starting with prescribed bottomhole conditions (pressure, enthalpy), the WELBOR code integrates the equations expressing conservation of mass, momentum and energy (together with fluid constitutive properties obtained from the steam tables) upwards towards the wellhead using numerical techniques. This results in computed profiles of conditions (pressure, temperature, steam volume fraction, etc.) as functions of depth within the flowing well, and also in a forecast of wellhead conditions (pressure, temperature, enthalpy, etc.). From these results, scaling rules are developed and discussed.

Pritchett, J.W. [S-Cubed, La Jolla, CA (United States)

1993-06-01T23:59:59.000Z

398

Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Flint Geothermal Area (DOE GTP) Exploration Activity Details Location Flint...

399

Pleasant Bayou geopressured/geothermal testing project, Brazoria County, Texas. Final report  

DOE Green Energy (OSTI)

Phase II-B production testing of the Pleasant Bayou No. 2 well began September 22, 1982. The test plan was designed to evaluate the capabilities of the geopressured-geothermal reservoir during an extended flow period. Tests were conducted to determine reservoir areal extent; aquifer fluid properties; fluid property change with production; information on reservoir production drive mechanism; long-term scale and corrosion control methods; and disposal well operations. Operatinal aspects of geopressured-geothermal production were also evaluated. The test was discontinued prematurely in May 1983 because of a production tubing failure. Most of the production tubing was recovered from the well and cause of the failure was determined. Plans for recompletion of the well were prepared. However, the well was not recompleted because of funding constraints and/or program rescheduling. In March 1984, the Department of Energy, Nevada Operations Office (DOE/NV) directed that the site be placed in a standby-secured condition. In August 1984, the site was secured. Routine site maintenance and security was provided during the secured period.

Ortego, P.K.

1985-07-01T23:59:59.000Z

400

Tracer test analysis of the Klamath Falls geothermal resource: a comparison of models  

DOE Green Energy (OSTI)

Two tracer tests on doublet systems in a fractured geothermal system were carried out in Klamath Falls, Oregon. The purpose of the tests were to obtain data which would lead to information about the reservoir and to test the applicability of current tracer flow models. The results show rapid breakthrough times and indicate fracture flow with vigorous mixing of injector fluid before production of same. This leads to the idea that thermal breakthrough is not directly related to tracer breakthrough in the Klamath Union doublet system. There has been no long-term enthalpy loss from exploiting the resource for 40 years. In order to reduce the data, models were developed to analyze the results. Along with a porous media flow model two mathematical models developed to analyze fractured geothermal systems are used to help decipher the various tracer return curves. The flow of tracers in doublet systems was investigated. A mathematical description is used for tracer flow through fractures as a function of time and various nonlinear parameters which can be found using a curve fitting technique. This allows the reservoir to be qualitatively defined. These models fit the data well, but point to the fact that future improvement needs to be considered for a clearer and more quantitative understanding of fractured geothermal systems. 22 refs., 32 figs., 11 tabs.

Johnson, S.E.

1984-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

a possible means of measuring thermal drawdown in a geothermal system before significant cooling occurs cooling. Results indicate that while the sensitivity of the method as generally proposed is low, it may- tracer breakthrough curves in EGS to reservoir and tracer properties and discuss alternative tracer

Stanford University

402

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

given by l v q q . 1 1 1 - + = . (5) Using numerical formulae for (1b) and for specific volumes was 23.4 m/s which occurred at 1.0=p MPa and 000626.0=q , i.e. at atmospheric pressure, when the vapour1 PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

403

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

, Stanford, California, February 1-3, 2010 SGP-TR-188 THERMAL ENERGY RECOVERY FROM ENHANCED GEOTHERMAL to the thermal energy contained in the fractured volume comprising the reservoir. One approach to EGS resource crustal heat flow is most favorable for EGS development (Figure 1), were included in the recent USGS

Stanford University

404

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

fluid (CO2- EGS). Numerical simulations of fluid dynamics and heat transfer indicate that CO2 may) for modeling heat transfer and fluid dynamics of a CO2-EGS system (Fig. 2). The EGS reservoir was modeled for Generating Renewable Energy With Simultaneous Sequestration of Carbon", Geothermics, 35, 351-367. Pruess, K

Stanford University

405

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

Fluid ┬ş A Novel Approach for Generation Renewable Energy with Simultaneous Sequestration of Carbon., and Horne, R.N. (2010), "CO2 as an EGS Working Fluid ┬ş The Effects of Dynamic Dissolution on CO2-Water IN GEOTHERMAL RESERVOIRS Sarah Pistone1 , Robert Stacey2 , and Roland Horne1 1 Energy Resources Engineering

Stanford University

406

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

fluids); ┬Ě Fluid loss from the reservoir does not change drying-out dynamics unless it affects other thermosiphon for competitive power generation." Energy & Fuels, 23, 553-557. Atrens, A. D., H. Gurgenci, et al for generating renewable energy with simultaneous sequestration of carbon." Geothermics, 35, 351┬ş367. Pruess, K

Stanford University

407

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

in a reservoir has been an essential part in the planning process for geothermal projects for the past 30 years attainable with it. MOTIVATION The planning phase for facilities with groundwater utilization, either the required flow rates. Two specific flow rates are essential for the site dimensioning: ┬Ě the annual maximum

Stanford University

408

GeoSys.Chem: Estimate of reservoir fluid characteristics as first step in geochemical modeling of geothermal systems  

Science Conference Proceedings (OSTI)

A computer code GeoSys.Chem for the calculation of deep geothermal reservoir fluid characteristics from the measured physical-chemical parameters of separated water and condensed vapor samples obtained from drilled wells is presented. It was written ... Keywords: GeoChem, GeoSys.Chem, Geochemical modeling, Los Azufres, VB.NET

Mahendra P. Verma

2012-12-01T23:59:59.000Z

409

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network (OSTI)

FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL RESERVOIRS Mitchell A. Plummer, Carl D. Palmer, Earl D. Mattson. Second, by identifying fracture geometries that are consistent with operating conditions (well pressures of the Laplace transformed equation of Gringarten et al. (1975) (Figure 3). Transport of a reactive tracer slug

Stanford University

410

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network (OSTI)

(Alternating Conditional Expectation) method was extended to different sectors of Leyte Geothermal Production about the underlying reservoir model. The method known as ACE (alternating conditional expectation by Breiman and Friedman (1985) for transformation/regression. It provides nonlinear transform functions which

Stanford University

411

Nonisothermal injection tests in fractured reservoirs  

DOE Green Energy (OSTI)

The paper extends the analysis of nonisothermal pressure transient data to fractured reservoirs. Two cases are considered: reservoirs with predominantly horzontal fractures and reservoirs with predominantly vertical fractures. Effects of conductive heat transfer between the fractures and the rock matrix are modeled, and the resulting pressure transients evaluated. Thermal conduction tends to retard the movement of the thermal front in the fractures, which significantly affects the pressure transient data. The purpose of the numerical simulation studies is to provide methods for analyzing nonisothermal injection/falloff data for fractured reservoirs.

Cox, B.L.; Bodvarsson, G.S.

1985-01-01T23:59:59.000Z

412

Using chemically reactive tracers to determine temperature characteristics of geothermal reservoirs  

DOE Green Energy (OSTI)

The rates of most chemical reactions are very sensitive to temperature, and this property can be used to measure temperature patterns in geothermal reservoirs. Two approaches are considered: reverse-flush and flow-through. Both of these can indicate thermal drawdown faster than the measurement of produced-fluid temperature. The reverse-flush approach is more difficult to carry out and interferes more with normal operation, but it gives the earlier indication of thermal drawdown and yields more information when using a single reaction. In both approaches, injecting a suite of reactants can yield bivariate time-temperature distributions which give temperature distributions as functions of fluid residence time. Applications to Hot Dry Rock systems are considered throughout the paper. Results of early kinetics studies of candidate tracer reactions also are reported.

Robinson, B.A.; Tester, J.W.; Brown, L.F.

1984-01-01T23:59:59.000Z

413

PROCEEDINGS, Thirty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 30 -February 1, 2012  

E-Print Network (OSTI)

with the scientific and technical monitoring of the power plant during geothermal exploitation between 2010 and 2012 plant is on-going with a scientific and technical monitoring. Several hydraulic circulation tests have conditions. Down-hole pump technology was also tested in various geothermal conditions during exploitation

Paris-Sud XI, Universit├ę de

414

Thermal depletion of a geothermal reservoir with both fracture and pore permeability  

DOE Green Energy (OSTI)

A method for estimating the useful lifetime of a reservoir in porous rock where the injection and production wells intersect a fracture system is presented. Equations were derived for the pore-fluid and fracture-fluid temperatures averaged over large regions of the geothermal field. Problems such as incomplete areal sweep and interfingering of cool and hot fluids are ignored. Approximate equations relating average temperatures to the heat flowing from rock to fluid were developed, and their use is justified by comparing the results with solutions of the exact equations. The equations for the temperature decline can be solved quickly. In the model, fractures are characterized by three parameters: aperture w, permeability k/sub fr/, and spacings between fractures D. For certain values of these parameters, cool reinjected fluid in fractures may reach the production wells long before all the warm pore fluid has been tapped, shortening the useful lifetime of the field. The traditional (and important) problems of reservoir engineering, flow rate determination, drawdown, sweep patterns, etc. were ignored. Thus the results are most useful in providing a correction factor which can be applied to lifetime estimates obtained from a detailed simulation of a field assuming porous rock. That correction factor is plotted for clean fractures (k/sub fr/ = w/sup 2//12) as a function of w and D for several lifetime ranges. Small-scale fractures seen in cores from the Salton Sea Geothermal Field are too closely spaced to reduce lifetime estimates. However, large-scale fault systems exist within that field, and they are attractive drilling targets because they produce large flow rates. If large scale faults communicate between injection and production wells, they may reduce the useful lifetime of those wells.

Kasameyer, P.W.; Schroeder, R.C.

1976-08-10T23:59:59.000Z

415

Geothermal-reservoir engineering research at Stanford University. Second annual report, October 1, 1981-September 30, 1982  

DOE Green Energy (OSTI)

Progress in the following tasks is discussed: heat extraction from hydrothermal reservoirs, noncondensable gas reservoir engineering, well test analysis and bench-scale experiments, DOE-ENEL Cooperative Research, Stanford-IIE Cooperative Research, and workshop and seminars. (MHR)

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.

1982-09-01T23:59:59.000Z

416

Characterization of Fracture Patterns in the Geysers Geothermal Reservoir by Shear-wave Splitting  

DOE Green Energy (OSTI)

The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the results. The main crack orientations within the steam field are predominantly in the N10{degree}E to N50{degree}E direction, consistent with expected fracture directions in a pull-apart basin created by sub-parallel right-lateral strike-slip faults related to the San Andreas fault system. Time delays range from 15--60 ms, similar to the time delays from previous studies at geothermal reservoirs. They have detected a significant increase in time delays between 1988 and 1994, which they attribute to widening of the cracks or filling of the cracks with fluid. Increase in production activities during this time also could have influenced this widening.

D. Erten; J. A. Rial

1999-09-15T23:59:59.000Z

417

HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE  

E-Print Network (OSTI)

1975. Heat Transfer in Geothermal Systems, 11 in Advances inHydrothermal Systems, Geothermal Resources (eds. L. RybackI. G. , The Simulation of Geothermal Systems with a Simple

Goyal, K.P.

2013-01-01T23:59:59.000Z

418

Geothermal reservoir assessment, Roosevelt Hot Springs. Final report, October 1, 1977-June 30, 1982  

DOE Green Energy (OSTI)

The geology, geophysics, and geothermal potential of the northern Mineral Mountains, located in Beaver and Millard Counties, Utah, are studied. More specifically, the commercial geothermal potential of lease holdings of the Geothermal Power Corporation is addressed.

Not Available

1982-01-01T23:59:59.000Z

419

Chemical stimulation treatment, The Geysers: Ottoboni State 22. Geothermal-reservoir well-stimulation program  

DOE Green Energy (OSTI)

Experiment No. 6 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed at The Geysers Field in Sonoma County, California. This well had low productivity (46,000 lb/hr), probably because it did not intersect the primary natural fracture system of the reservoir. Surrounding production wells are considered to be good wells with an average flow rate of about 100,000 lb/hr. The stimulation technique selected was an acid etching treatment (Halliburton Services' MY-T-ACID). A small water prepad was used to provide tubular cooling and fluid loss control. Following the water prepad were 500 to 750 bbl of high viscosity crosslinked gel fluid and 400 to 500 bbl of a hydrofluoric-hydrochloric (HF-HCl) acid solution. The frac fluids were expected to enter only a single or limited fracture zone within the open interval. Frac rates of 20 to 40 BPM and surface pressures of 3000 psig were estimated for this treatment. During the job, however, no significant surface pressure was recorded, and all fluids flowed easily into the interval. Subsequent evaluation of the well performance showed that no noticeable stimulation had been achieved even though the frac fluids were properly injected. Temperature and gamma ray surveys along with tracer studies indicated that the frac fluids entered natural fracture channels over a 650-foot zone of the open interval, which probably prevented the staged acid etching treatment from functioning as designed.

Not Available

1981-02-01T23:59:59.000Z

420

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "geothermal reservoir testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An Environmental Assessment of Proposed Geothermal Well Testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

This report is an environmental assessment of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. Oil and gas wells in coastal Louisiana have penetrated a potentially productive geothermal zone of abnormally high-pressured aquifers that also yield large volumes of natural gas. To evaluate the extent to which the geothermal-geopressured water can be used as an alternative energy source and to what extent withdrawal of geopressured water can enhance gas production, it is necessary that flow rates, composition and temperature of fluids and gases, recharge characteristics, pressures, compressibilities, and other hydrodynamic and boundary conditions of the reservoir be determined by means of production tests. Tests are further necessary to evaluate and seek solutions to technological problems.

None

1976-03-01T23:59:59.000Z

422

Geothermal: Sponsored by OSTI -- Fourteenth workshop geothermal...  

Office of Scientific and Technical Information (OSTI)

Fourteenth workshop geothermal reservoir engineering: Proceedings Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

423

Determining the 3-D fracture structure in the Geysers geothermal reservoir  

DOE Green Energy (OSTI)

The bulk of the steam at the Geysers geothermal field is produced from fractures in a relatively impermeable graywacke massif which has been heated by an underlying felsite intrusion. The largest of these fractures are steeply dipping right lateral strike-slip faults which are subparallel to the NW striking Collayomi and Mercuryville faults which form the NE and SW boundaries of the known reservoir. Where the graywacke source rock outcrops at the surface it is highly sheared and fractured over a wide range of scale lengths. Boreholes drilled into the reservoir rock encounter distinct ''steam entries'' at which the well head pressure jumps from a few to more than one hundred psi. This observation that steam is produced from a relatively small number of major fractures has persuaded some analysts to use the Warren and Root (1963) dual porosity model for reservoir simulation purposes. The largest fractures in this model are arranged in a regular 3-D array which partitions the reservoir into cubic ''matrix'' blocks. The net storage and transport contribution of all the smaller fractures in the reservoir are lumped into average values for the porosity and permeability of these matrix blocks which then feed the large fractures. Recent improvements of this model largely focus on a more accurate representation of the transport from matrix to fractures (e.g. Pruess et al., 1983; Ziminerman et al., 1992), but the basic geometry is rarely questioned. However, it has long been recognized that steam entries often occur in clusters separated by large intervals of unproductive rock (Thomas et al., 1981). Such clustering of fixtures at all scale lengths is one characteristic of self-similar distributions in which the fracture distribution is scale-independent. Recent studies of the geometry of fracture networks both in the laboratory and in the field are finding that such patterns are self-similar and can be best described using fractal geometry. Theoretical simulations of fracture development in heterogeneous media also produce fractal patterns. However, a physical interpretation of the mechanics which produce the observed fractal geometry remains an active area of current research. Two hypotheses for the physical cause of self-similarity are the Laplacian growth of fractures in a self-organized critical stress field, and the evolution of percolation clusters in a random medium. Each predicts a different, fractal dimension. The more important questions from a reservoir engineering point of view are: (1) is the network of fractures in the Geysers reservoir fractal and if so over what range of fracture sizes is the self-similarity observed and what is its fractal dimension, and (2) do the conventional dual porosity numerical simulation schemes provide an adequate description of flow and heat mining at the Geysers? Other papers in this volume by Acuna, Ershaghi, and Yortsos (1992) and Mukhopodhyoy and Sahimi (1992) address the second question. The primary objective of this paper is to try to answer the first. Toward this goal we have mapped fracture patterns in surface exposures of the graywacke source rock at the outcrop scale (meters), at the road-cut scale (tens of meters) and at the regional scale (kilometers). We have also examined cores collected at depth from the graywacke reservoir rocks, and analyzed drilling logs making use of the pattern of steam entries as well as the fluctuations in drilling rate.

Sammis, Charles G.; Linji An; Iraj Ershaghi

1992-01-01T23:59:59.000Z

424

Tuscarora area, Nevada: geothermal reservoir assessment case history, northern basin and range. Final report, 1 October 1978-9 September 1980  

DOE Green Energy (OSTI)

The Tuscarora prospect is located at the north end of Independence Valley approximately 90 km north-northwest of Elko, Nevada. Geothermal exploration on the prospect consisted of an integrated program of geologic, hydrogeochemical and soil geochemistry studies. Geophysical exploration included heatflow studies, aeromagnetic, self-potential, gravity, dipole-dipole resistivity and magnetotelluric surveys. Exploration drilling includes thirty-two shallow thermal gradient holes, six intermediate depth temperature gradient wells and one 5454 foot test for discovery well. Shallow low-temperature reservoirs were encountered in the Tertiary rocks and in the Paleozoic rocks immediately beneath the Tertiary. Drilling problems forced the deep well to be stopped before the high-temperature reservoir was reached.

Pilkington, H.D.

1981-08-01T23:59:59.000Z

425

Description of the three-dimensional two-phase simulator shaft78 for use in geothermal reservoir studies  

DOE Green Energy (OSTI)

The algorithm of SHAFT78 is based on mass and energy-balance equations for two-phase flow in a porous medium. The basic differential equations are converted into integrated finite-difference form. This allows regular and irregular reservoir shapes to be handled with the same ease. The equations are solved semi-implicitly for discrete time steps. The present version of SHAFT78 treats the coupling between mass and energy flow in a noniterative way. Special provisions are made to compute phase transitions with high accuracy. The program was verified by computing a number of sample problems that previously had been investigated by other authors. Model studies reveal that two-phase geothermal reservoirs are capable of a great variety of pressure responses upon production. It is shown that the standard technique of estimating reserves by extrapolating a plot of p/Z vs cumulative production is not applicable to two-phase geothermal reservoirs. A bulk model (lumped parameters) was developed for a two-phase reservoir that admits an analytical solution for pressure decline upon production. From this it is concluded that in many cases pressure will be a linear function of cumulative production, with the slope allowing an estimate of total reservoir volume. Reserve assessment requires knowledge of average porosity and vapor saturation, which cannot be obtained from pressure decline curves.

Pruess, K.; Zerzan, J.M.; Schroeder, R.C.; Witherspoon, P.A.