Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network [OSTI]

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

2

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD February 1 9 8 5 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

3

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract

Stanford University

4

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

Stanford University

5

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD the Stanford Geothermal Program, Department of Energy contract DE-AT03-80SFl1459 for their financial report Geothermal Program, Department of Energy contract DE-AT03-80SF11459 for their financial report. Also we would

Stanford University

6

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department and by the Geothermal & Hydrology Technologies Division of the U.S. Dept. of Energy, project No.: DE-AT03-80SF11459. -iv

Stanford University

7

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Departnent Geothermal Energy Extraction Scheme .............................................. 2 3.1 Experimental SetupStanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

8

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the DepartmentStanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR-81 TRACER TEST ANALYSIS OF THE KLAMATH FALLS GEOTHERMAL RESOURCE

Stanford University

9

. Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

. Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

Stanford University

10

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS

Stanford University

11

Geothermal Research and Development Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

12

New River Geothermal Research Program  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

13

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

14

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

15

Federal Geothermal Research Program Update, FY 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

16

Geothermal Research and Development Program  

SciTech Connect (OSTI)

Results are reported on adsorption of water vapor on reservoir rocks, physics of injection of water into vapor-dominated geothermal reservoirs, earth-tide effects on downhole pressures, injection optimization at the Geysers, effects of salinity in adsorption experiments, interpreting multiwell pressure data from Ohaaki, and estimation of adsorption parameters from transient experiments.

Not Available

1993-01-25T23:59:59.000Z

17

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

18

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program...

19

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

20

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

22

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

23

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

24

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

25

Stanford Geothermal Program Interd is c i p l inary Research  

E-Print Network [OSTI]

.E geothermal energy from artificially stimu- lated systems by in-place flashing was studied experimentally. Although improved geothermal energy recovery from stimulated reservoirs by in-place flashing appears promStanford Geothermal Program Interd is c i p l inary Research i n Engineering and Earth Sciences

Stanford University

26

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

27

Geothermal energy program summary: Volume 2, Research summaries, fiscal year 1988  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R&D) of technologies that will assist industry in economically exploiting the nation`s vast geothermal resources. The GTD R&D program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation`s energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. The Geothermal Energy Program Summary for Fiscal Year 1988 is a two-volume set designed to be an easily accessible reference to inform the US geothermal industry and other interested parties of the technological advances and progress achieved in the DOE geothermal program as well as to describe the thrust of the current R&D effort and future R&D directions. This volume, Volume II, contains a detailed compilation of each GTD-funded R&D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions. The Program Summary is intended as an important technology transfer vehicle to assure the wide and timely dissemination of information concerning the department`s geothermal research.

Not Available

1989-03-01T23:59:59.000Z

28

Geothermal Government Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

29

Geothermal Program Review IV: proceedings  

SciTech Connect (OSTI)

The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

Not Available

1985-01-01T23:59:59.000Z

30

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

31

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

32

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

33

Stanford Geothermal Program I n t e r d i s c i p l i n a r y Research  

E-Print Network [OSTI]

Stanford Geothermal Program I n t e r d i s c i p l i n a r y Research i n Engineering and Earth stimulation is expected to increase the productivity of geothermal reservoirs by providing increased

Stanford University

34

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

35

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

36

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

37

Sandia National Laboratories: Geothermal Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

38

Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research  

SciTech Connect (OSTI)

This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

2000-09-29T23:59:59.000Z

39

Geothermal Technologies Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Overview Geothermal Technologies Program Overview This overview of the Geothermal Technologies Program was given at the GTP Program Peer Review on May 18,...

40

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

42

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

43

Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop  

Broader source: Energy.gov [DOE]

General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses.

44

SGP-TR-32 STANFORD GEOTHERMAL PROGRAM  

E-Print Network [OSTI]

SGP- TR- 32 STANFORD GEOTHERMAL PROGRAM PROGRESS REPORT NO. 7 t o U. S. DEPARTMENT OF ENERGY Recent Radon Transient Experiments Energy Recovery from Fracture-Stimulated Geothermal Reservoirs 1 2 October 1, 1978 through December 31, 1978. Research is performed under t h e Department of Energy Contract

Stanford University

45

Fiscal Year 1992 Annual Operating Plan for the Geopressured-Geothermal Research Program ($4.3 Million Budget)  

SciTech Connect (OSTI)

This plan describes the Geopressured-Geothermal Research Program. A Geopressured well in Texas (Pleasant Bayou) will undergo a slow test and a pressure buildup test. A geopressured well in Louisiana (Gladys McCall) will be flow tested for a short period, logged, plugged and abandoned or turned over to industry early in FY 92. A second deep geopressured well in Louisiana, the Hulin Well, is being kept on standby. Related university research in geology, numerical reservoir modeling, subsidence, microseismicity, and water quality will continue, with program data reviews initiated in appropriate areas. Increased emphasis on integrated reservoir engineering will be implemented. The well activities coupled with the related university research are designed to improve the ability to forecast reservoir productive capacity, to verify the reliability of the resource as a long-term energy resource, and to determine the environmental effects of long-term production. By these means, the Geopressured-Geothermal Research Program is developing a solid technology base that private industry can use to evaluate the geopressured-geothermal resource. The Industrial Consortium for utilization of the resource will be continued. Use projects in Louisiana and Texas will be evaluated. A geopressured reservoir review will be managed by INEL. The DOE Field Office, Idaho will make preparations to complete the program. [DJE-2005

None

1991-08-01T23:59:59.000Z

46

Five year research plan, 1988--1992: Energy from the earth: Geothermal energy program  

SciTech Connect (OSTI)

Consistent with national energy policy guidance, the plan concentrates on research and development (R and D) and limits system experiments to only those necessary to stimulate industrial confidence in the validity of research findings. A key strategy element is the continuation of the government/industry partnership which is critical to successful development of geothermal technology. The primary near-term research emphasis is the extension of hydrothermal technology options for reservoir identification, reservoir analysis, hard rock penetration, and flash and binary electric plants. The advanced geothermal resources--geopressured, hot dry rock, and magma--are longer-term and higher-risk focal points, and research in these areas centers on establishing a technology base that will allow industry to make prudent and timely investment decisions with respect to the use of these resources. 13 figs.

Not Available

1988-10-01T23:59:59.000Z

47

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers [EERE]

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

48

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

49

NREL: Geothermal Technologies - Research Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stacee Foster Administrative Assistant Colorado Collaboration for Subsurface Research in Geothermal Energy (SURGE) Tom Williams, Executive Diretor Dag Nummedal, Colorado School of...

50

INEL Geothermal Environmental Program. Final environmental report  

SciTech Connect (OSTI)

An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

Thurow, T.L.; Cahn, L.S.

1982-09-01T23:59:59.000Z

51

Geothermal Technologies Program Fact Sheet | Department of Energy  

Office of Environmental Management (EM)

Geothermal Technologies Program Fact Sheet Geothermal Technologies Program Fact Sheet Overview of DOE Geothermal Technologies Program. geothermalfs.pdf More Documents &...

52

Navy Geothermal Program | Open Energy Information  

Open Energy Info (EERE)

Navy Geothermal Program Navy Geothermal Program Jump to: navigation, search Logo: Navy Geothermal Program Office Name Navy Geothermal Program Office Address 429 East Bowen Road Place China Lake, CA Zip 93555 Year founded 1978 Phone number (760) 939-2700 Website https://portal.navfac.navy.mil References Navy Facilities Engineering Command Website[1] Navy Geothermal Program is an organization based in China Lake, CA. The Navy Geothermal Program Office (GPO) is the Department of Defense's lead organization for the exploration, development, and management of geothermal resources on military controlled land, worldwide. The Department of Defense (DOD) established the GPO in 1978, and designated the Navy as the lead agency for geothermal exploration and development on military lands.

53

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

The California Energy Commission's Geothermal Resources Development Account Geothermal Planning Projects support of geothermal resource elements, or geothermal components of energy elements, for inclusion in the localPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT STRUCTURING A DIRECT

54

Gulf Coast geopressured-geothermal program summary report compilation. Volume 2-A: Resource description, program history, wells tested, university and company based research, site restoration  

SciTech Connect (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal resource description; Resource origin and sediment type; Gulf Coast resource extent; Resource estimates; Project history; Authorizing legislation; Program objectives; Perceived constraints; Program activities and structure; Well testing; Program management; Program cost summary; Funding history; Resource characterization; Wells of opportunity; Edna Delcambre No. 1 well; Edna Delcambre well recompletion; Fairfax Foster Sutter No. 2 well; Beulah Simon No. 2 well; P.E. Girouard No. 1 well; Prairie Canal No. 1 well; Crown Zellerbach No. 2 well; Alice C. Plantation No. 2 well; Tenneco Fee N No. 1 well; Pauline Kraft No. 1 well; Saldana well No. 2; G.M. Koelemay well No. 1; Willis Hulin No. 1 well; Investigations of other wells of opportunity; Clovis A. Kennedy No. 1 well; Watkins-Miller No. 1 well; Lucien J. Richard et al No. 1 well; and the C and K-Frank A. Godchaux, III, well No. 1.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

55

United States Gulf Coast geopressured geothermal program. Special projects research and coordination assistance. Final report, 1 December 1978-30 October 1980  

SciTech Connect (OSTI)

Work for the period, December 1, 1978 through October 31, 1980, is documented. The following activities are covered: project technical coordination assistance and liaison; technical assistance for review and evaluation of proposals and contract results; technical assistance for geopressured-geothermal test wells; technical assistance, coordination, and planning of surface utilization program; legal research; and special projects. (MHR)

Dorfman, M.H.; Morton, R.A.

1981-06-01T23:59:59.000Z

56

Puna Geothermal Venture Hydrologic Monitoring Program  

SciTech Connect (OSTI)

This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

None

1990-04-01T23:59:59.000Z

57

DOE Announces Geothermal Research Initiative | Department of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Announces Geothermal Research Initiative DOE Announces Geothermal Research Initiative October 2, 2009 - 1:58pm Addthis The U.S. Department of Energy (DOE) announces a new...

58

Geothermal: Sponsored by OSTI -- Geothermal Energy R&D Program...  

Office of Scientific and Technical Information (OSTI)

R&D Program - Annual Progress Report for Fiscal Year 1990 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

59

Colorado State Capitol Building Geothermal Program Geothermal Project |  

Open Energy Info (EERE)

State Capitol Building Geothermal Program Geothermal Project State Capitol Building Geothermal Program Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Colorado State Capitol Building Geothermal Program Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This building is approximately 100 years old, and much of the building is heated with expensive district steam and lacks sufficient central cooling. The requested funding pertains to Topic Area 1 Technology Demonstration Projects. Funding would be used for Phase I - Feasibility Study and Engineering Design, Phase II - Installation and Commissioning of Equipment, and Phase III - Operation, Data Collection, and Marketing. Geothermal energy provided by an open-loop ground source heat pump system and upgrades to the building HVAC systems will reduce consumption of electricity and utility steam created with natural gas. Additionally, comfort, operations and maintenance, and air quality will be improved as a result. It is anticipated that the open loop GHP system will require a 500-650 gpm water flow rate.

60

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT INTEGRATED GEOTHERMAL and the surface generation facilities in geothermal energy production. Please cite the report as follows, California Energy Commission, Geothermal Resources Development Account Program, CEC5002012006 #12;ii Table

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal Energy R&D Program Summary  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1988-11-18T23:59:59.000Z

62

Geothermal Technologies Program Annual Peer Review Presentation...  

Energy Savers [EERE]

Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett 2012 Peer Review presentation by Doug Hollett,...

63

Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981  

SciTech Connect (OSTI)

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

Not Available

1981-07-01T23:59:59.000Z

64

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014...  

Energy Savers [EERE]

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02112014 mineral-webinar.pdf More Documents & Publications LOW...

65

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

66

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

67

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

68

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office No. DE-AT03-80SF11459 Department of Energy Division of Geothermal Energy #12;#12;1 , .... TABLE n t e r e s t t o the geothermal energy community. The topic f o r panel analysis f o r the Sixth

Stanford University

69

2010 Geothermal Technology Program Peer Review Report | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Fielding of...

70

A History of Geothermal Energy Research and Development in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A History of Geothermal Energy Research and Development in the United States: Exploration 1976-2006 A History of Geothermal Energy Research and Development in the United States:...

71

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to...

72

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

RESEARCH PROJECPS SUPPORTED BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, California 94720 ABSTRACT

Howard, J.H.

2011-01-01T23:59:59.000Z

73

Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981  

SciTech Connect (OSTI)

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

None

1981-07-01T23:59:59.000Z

74

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Geothermal Fluids. California Energy Commission, PIER Renewables Research Technologies Program. CEC5002009 Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT PILOTSCALE GEOTHERMAL SILICA RECOVERY AT MAMMOTH LAKES MAY 2009 CEC5002009077 Prepared for: California

75

FY97 Geothermal R&D Program Plan  

SciTech Connect (OSTI)

This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

None

1996-09-01T23:59:59.000Z

76

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

77

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

78

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

79

Geothermal energy research and development  

Science Journals Connector (OSTI)

Thermal springs have been used for bathing, washing and cooking for thousands of years in many countries. At the beginning of this century, experiments started with piping the hot water to houses for space heating and with using geothermal steam for the production of electricity. Geothermal is a proven energy resource that uses mostly conventional technology. Commercial production on the scale of hundreds of MW has been undertaken for over three decades both for electricity generation and direct utilization. Today, electricity is generated from geothermal energy in 21 countries. The installed capacity is nearly 6300 MW-electric. Four developing countries (El Salvador 18%, Kenya 11%, Nicaragua 18% and Philippines 21%) produce over 10% of their total electricity from geothermal. Electric generation cost is commonly around 4 U.S.cents/kWh. Direct utilization of geothermal water (space heating, horticulture, fish farming, industry and/or bathing) is known in about 40 countries, thereof 14 countries have each an installed capacity of over 100 MW-thermal. The overall installed capacity for direct utilization is about 11,400 MW-thermal. The production cost/kWh for direct utilization is highly variable, but commonly under 2 U.S.cents/kWht. A worldwide survey shows that the total investments in geothermal energy between 1973 and 1992 amounted to approximately 22 billion U.S.$. During the two decades, 30 countries invested each over 20 million U.S.$, 12 countries over 200 million U.S.$, and 5 countries over 1 billion U.S.$. During the first decade, 1973–1982, public funding amounted to 4.6 billion U.S.$ and private funding to 3 billion U.S.$. During the second decade, 1983–1992, public funding amounted to 6.6 billion U.S.$ and private funding to 7.7 billion U.S.$. Geothermal development has in the past been much affected by the development of prices of the competing fuels, especially oil and natural gas. Assuming a continuation of the present oil prices, the annual growth rate in geothermal utilization is likely to be some 4% for electricity generation and 10% for direct utilization. This would imply installed capacities of 8900 \\{MWe\\} and 30,000 \\{MWt\\} in the year 2000. The total investment cost of geothermal in the world during the next decade can be expected to be some 15–20 billion U.S.$. Properly implemented, geothermal energy is a sustainable resource and benign to the environment. The emission of greenhouse gases is minimal compared to fossil fuels. The removal of hydrogen sulphide from high temperature steam and the reinjection of spent geothermal fluids into the ground make the potential negative environmental effects negligible. The relative economic viability of geothermal energy will improve significantly if and when a pollution tax is endorsed on power production using fossil fuels. Geothermal exploration and exploitation requires skills from many scientific and engineering disciplines. International geothermal training centres are operated in Iceland, Italy, Japan, Mexico, and New Zealand. The International Geothermal Association was founded in 1988 and has over 2000 members in all parts of the world.

Ingvar B. Fridleifsson; Derek H. Freeston

1994-01-01T23:59:59.000Z

80

Research and Development Activities in Geothermal Drilling, Completion, and Logging  

Science Journals Connector (OSTI)

Sandia National Laboratories manages the Geothermal Drilling and Completion Program for the US Department of Energy. The primary purpose of this program is to expand access to the geothermal resource by reduci...

John Finger

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

82

Geothermal direct heat applications program summary  

SciTech Connect (OSTI)

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

83

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

84

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

85

Federal Geothermal Program Plan for Fiscal Year 1983  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This is a report of the Interagency Geothermal Coordinating Committee (IGCC). (DJE 2005)

None

1983-03-01T23:59:59.000Z

86

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

87

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

88

Texas geothermal R D and D program planning support document. Final report  

SciTech Connect (OSTI)

Program planning support was provided by; developing a geothermal RD and D program structure, characterizing the status of geothermal RD and D through review of literature and interaction with the geothermal research community, developing a candidate list of future Texas geothermal projects, and prioritizing the candidate projects based on appropriate evaluation criteria. The method used to perform this study and the results thereof are presented. Summary reviews of selected completed and ongoing projects and summary descriptions and evaluations of the candidate RD and D projects ar provided. A brief discussion emerging federal RD and D policies is presented. References and independent project rankings by three of the GRP members are included. (MHR)

Davis, R.J.; Conover, M.F.; Keeney, R.C.; Personett, M.L.; Richmann, D.L.

1981-08-28T23:59:59.000Z

89

Geothermal direct heat applications program summary  

SciTech Connect (OSTI)

In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of geothermal direct use applications.

None

1982-08-01T23:59:59.000Z

90

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

91

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

f the Mesa Geothermal Anomaly, Imperial Valley, California.Pioneering Geothermal Test Work i n the Imperial Valley o f

Sudo!, G.A

2012-01-01T23:59:59.000Z

92

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

93

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

94

Geothermal energy systems: research perspective for domestic energy provision  

Science Journals Connector (OSTI)

This article is focused on research demand for the environmental and economic sustainable utilization of geothermal reservoirs for base load supply of heat and electricity by Enhanced Geothermal Sy...

Ernst Huenges; Thomas Kohl; Olaf Kolditz; Judith Bremer…

2013-12-01T23:59:59.000Z

95

A History or Geothermal Energy Research and Development in the...  

Energy Savers [EERE]

Energy Conversion 1976-2006 A History or Geothermal Energy Research and Development in the United States: Energy Conversion 1976-2006 A history of geothermal energy R&D in the...

96

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Broader source: Energy.gov [DOE]

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

97

Geothermal Technologies Program Coproduction Fact Sheet | Department...  

Office of Environmental Management (EM)

& Publications Low TemperatureCoproducedGeopressured Subprogram Overview Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal...

98

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

99

A History or Geothermal Energy Research and Development in the...  

Energy Savers [EERE]

Drilling 1976-2006 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 This report summarizes significant research projects performed...

100

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded  

Open Energy Info (EERE)

Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Navy's Geothermal Program Office: Overview of Recovery Act (ARRA) Funded Exploration in CA and NV and other Exploration Projects Details Activities (9) Areas (6) Regions (0) Abstract: The Navy's Geothermal Program Office (GPO) manages, explores for and supports the development of geothermal resources on Department of Defense (DoD) -managed lands. We are currently conducting exploration in 13 sites or regions on 6 military installations in Nevada and California. We also have tentative plans to expand our activities late this year or early next year into Utah as well as Guam and the Republic of Djibouti, northeast

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

102

Geothermal Heat Pump Grant Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pump Grant Program Geothermal Heat Pump Grant Program Geothermal Heat Pump Grant Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Residential Schools Maximum Rebate Residential: $3,000 Non-residential: $4,500 Program Info Funding Source Strategic Energy Investment Fund (SEIF) Start Date 2007 State Maryland Program Type State Rebate Program Rebate Amount Residential: $3,000 per project Non-residential: $90-$180 per ton (varies by system size) Provider Maryland Energy Administration The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential program offers a flat per system incentive ($3,000) for systems with up to 10 tons

103

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

104

Chelated Indium Activable Tracers for Geothermal Reservoirs  

E-Print Network [OSTI]

SGP-TR-99 Chelated Indium Activable Tracers for Geothermal Reservoirs Constantinos V. Chrysikopoulos Paul Kruger June 1986 Financial support was provided through the Stanford Geothermal Program under University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

105

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

106

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

Sudo!, G.A

2012-01-01T23:59:59.000Z

107

Enhanced Geothermal Systems (EGS) R&D Program  

SciTech Connect (OSTI)

The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report the meat of the Workshop. Section 4.0 describes the nomination and clarification of technical thrusts, and Section 5.0 reports the results of prioritizing those thrusts via voting by the participants. Section 6.0 contains two discussions conducted after the work on research thrusts. The topics were ''Simulation'' and ''Stimulation''. A number of technical points that emerged here provide important guidance for both practical field work on EGS systems and for research.

Entingh, Daniel J.

1999-08-18T23:59:59.000Z

108

NREL: Climate Neutral Research Campuses - Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

following documents are viewable as Adobe PDFs. Download Adobe Reader. Geothermal Basics: DOE explains the fundamentals of geothermal technologies. DOE Department of Energy...

109

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program < Back Eligibility Agricultural Commercial Industrial Residential Maximum Rebate 1,000/ton Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount $800 - $1,000/ton Provider Oklahoma Municipal Power Authority Program funds currently exhausted, additional funds have been requested. Visit the program website for the most up to date information on fund availability and to register for the waiting list for this program. The Oklahoma Municipal Power Authority (OMPA) and the Oklahoma Department of Commerce currently offer the Oklahoma Comfort Program for geothermal

110

Geothermal: Sponsored by OSTI -- Polymer materials basic research...  

Office of Scientific and Technical Information (OSTI)

Polymer materials basic research needs for energy applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

111

A History of Geothermal Energy Research and Development in the...  

Energy Savers [EERE]

Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant...

112

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

SciTech Connect (OSTI)

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Ezra Zemach

2010-01-01T23:59:59.000Z

113

Program planner's guide to geothermal development in California  

SciTech Connect (OSTI)

The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

1980-09-30T23:59:59.000Z

114

US Geothermal Energy Program Multiyear Plan, 1988-1992  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. The Five Year Plans and Multi-Year Plans usually included more detailed rationales and projections than other similar reports. This is a final report. It contains significant data on cost of power from geothermal power systems, and is of historical (history) interest in that regard. (DJE 2005)

None

1988-10-01T23:59:59.000Z

115

Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area, Iceland: Variation of temperature  

E-Print Network [OSTI]

Journal of Volcanology and Geothermal Research 65 ( 1995 ) 119-133 The Hengill geothermal area. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The likely measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up

Foulger, G. R.

116

Ecological Research Division, Marine Research Program  

SciTech Connect (OSTI)

This report presents program summaries of the various projects sponsored during 1979 by the Marine Research Program of the Ecological Research Division. Program areas include the effects of petroleum hydrocarbons on the marine environment; a study of the baseline ecology of a proposed OTEC site near Puerto Rico; the environmental impact of offshore geothermal energy development; the movement of radionuclides through the marine environment; the environmental aspects of power plant cooling systems; and studies of the physical and biological oceangraphy of the continental shelves bordering the United States.

Not Available

1980-05-01T23:59:59.000Z

117

Geothermal R&D Program FY 1988 Project Summaries  

SciTech Connect (OSTI)

This report summarizes DOE Geothermal R&D subprograms, major tasks, and projects. Contract funding amounts are shown. Many summaries have references (citations) to the researchers' previous related work. These can be useful. Geothermal budget actual amounts are shown for FY 1984 -1988. (DJE 2005)

None

1988-10-01T23:59:59.000Z

118

Geothermal Technologies Program Peer Review Program June 6 -...  

Broader source: Energy.gov (indexed) [DOE]

highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplenary...

119

LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM  

Broader source: Energy.gov [DOE]

This targeted initiative focuses on critical mineral extraction as a path to optimize the value stream of low-to-moderate temperature resources. The FOA aims to promote the advancement of thermal energy processes capable of converting geothermal heat sources into power, in conjunction with the development or exploitation of technologies capable of capturing, concentrating, and/or purifying valuable materials contained within geothermal brines to economically extract resources that can provide additional revenue streams to geothermal operators.

120

Preliminary Technical Risk Analysis for the Geothermal Technologies Program  

Broader source: Energy.gov [DOE]

This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program.

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Technologies Program Annual Peer Review Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal * In existing hydrothermal fields * Margins of existing hydrothermal fields * "Green Field" development 3 Energy Efficiency & Renewable Energy eere.energy.gov Industry...

122

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Result of Gas Extraction in Groningen, The Netherlands," inJapan, and a t t h e Groningen Gas F i e l d i n t h eto have been improved at Groningen. To avoid spurious peaks,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

123

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

in thick columns of unconsolidated and undercompacteddisplacements in unconsolidated or poorly consolidateddisplacements in unconsolidated or poorly consolidated

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

124

Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993  

SciTech Connect (OSTI)

In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

None

1994-04-01T23:59:59.000Z

125

Introduction to the Proceedings of the Sixth Geothermal Reservoir Engineering Workshop, Stanford Geothermal Program  

SciTech Connect (OSTI)

The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on thenumerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed i n these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented . Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey ( U.S.G.S.) , Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would l i k e t o thank Jean Cook and Joanne Hartford (Petroleum Engineering Department, Stanford University) without whom there may never have been a Sixth Workshop. Henry J. Ramey, Jr. Paul Kruger Ian G. Donaldson Stanford University December 31, 1980

Ramey, Henry J. Jr.; Kruger, Paul; Donaldson, Ian G.

1980-12-18T23:59:59.000Z

126

El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss  

Broader source: Energy.gov [DOE]

El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss presentation at the April 2013 peer review meeting held in Denver, Colorado.

127

Research Initiative Will Demonstrate Low Temperature Geothermal...  

Office of Environmental Management (EM)

configurations, which will be freely available for industry and public education about geothermal renewable energy possibilities. Read the DOE Progress Alert to learn more....

128

2010 Geothermal Technology Program Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validation of Geothermally- produced Electricity from Co-produced Water at Existing OilGas Wells in TX Alcorn, Universal GeoPower LLC Electric Power Generation from Co-produced...

129

The Krafla Geothermal System. A Review of Geothermal Research and Revision  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Authors Mortensen A.K., Gudmundsson Á., Steingrímsson B., Sigmundsson F., Axelsson G., Ármannsson H., Björnsson H., Ágústsson K., Saemundsson K., Ólafsson M., Karlsdóttir R., Halldórsdóttir S. and Hauksson T. Organization Iceland GeoSurvey Published Iceland GeoSurvey, 2009

130

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A...

131

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

132

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

SciTech Connect (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

133

Geothermal materials program: strategy. Final report  

SciTech Connect (OSTI)

The following topics are discussed: program goal and objectives, program organization, and program status. Current program projects are described. (MHR)

Crane, C.H.; Kenkeremath, D.C.

1980-10-01T23:59:59.000Z

134

Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics  

SciTech Connect (OSTI)

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

135

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

SciTech Connect (OSTI)

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

Not Available

1989-02-01T23:59:59.000Z

136

Wind and Geothermal Incentives Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Wind and Geothermal Incentives Program Wind and Geothermal Incentives Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential Schools Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million; also limited to 50% of eligible costs for residential systems. Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source

137

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

Howard, J. H.

2012-01-01T23:59:59.000Z

138

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

139

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT GEOTHERMAL EXPLORATION of a significant financial contribution to the project, at no cost to the Califor nia Energy Commission cation of ASTER scenes, at no cost to the Commission. Mark Coolbaugh (Great Basin Center for Geothermal

140

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .of the Division of Geothermal Energy and these directoratesof Energy, Division of Geothermal Energy effort is the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .of Energy, Division of Geothermal Energy effort is theMission of Division of Geothermal Energy The mission of the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

142

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

143

Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program  

SciTech Connect (OSTI)

Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

Ruscetta, C.A. (ed.)

1982-07-01T23:59:59.000Z

144

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to  

Open Energy Info (EERE)

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This "geothermal central plant" concept will provide ground source loop energy as a utility to be shared by the academic and residential buildings on the soon-to-be-constructed campus.

145

The 1980-1982 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

1983-08-01T23:59:59.000Z

146

Journal of Volcanology & Geothermal Research : 2007 Diversity of eruptive styles inferred from the microlites of Mt  

E-Print Network [OSTI]

Journal of Volcanology & Geothermal Research : 2007 Diversity of eruptive styles inferred from and Gardner, 2005]). This leads to a non-explosive open- #12;Journal of Volcanology & Geothermal Research

Boyer, Edmond

147

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

ment methods for geothermal well system param- eters,on calcite-fouled geothermal wells (Michaels, 1979). An

Howard, J. H.

2012-01-01T23:59:59.000Z

148

Geothermal Energy Development in the Eastern United States. A Program for Capital Recovery Assessment for the HP-97 and Other Desk Calculators  

SciTech Connect (OSTI)

The Johns Hopkins University Applied Physics Laboratory and the Center for Metropolitan Planning and Research support the Division of Geothermal Energy, U.S. Department of Energy, in the development of geothermal energy in the Eastern United States. In this role, many tools have been developed to assist in the analysis of the economics of the application of geothermal energy. This report documents one computer program that has proved useful.

Yu, Kwang; Briesen, Roy Von

1980-08-07T23:59:59.000Z

149

Geothermal: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

150

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

Howard, J.H.

2011-01-01T23:59:59.000Z

151

Meeting Report for Symposium on "China-US Collaborative Research on Life in Terrestrial Geothermal Springs"  

E-Print Network [OSTI]

Meeting Report for Symposium on "China-US Collaborative Research on Life in Terrestrial Geothermal on Life in Terrestrial Geothermal Springs" was organized collaboratively by the NSF-funded Tengchong PIRE

Ahmad, Sajjad

152

Geothermal Energy R&D Program: Annual Progress Report for Fiscal Year 1989  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1990-04-01T23:59:59.000Z

153

Geothermal Energy R&D Program Annual Progress Report for Fiscal Year 1989 Draft  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE -2005)

None

1990-04-01T23:59:59.000Z

154

Geothermal R&D Program Technology Transfer Outlook, FY-85 through FY-1989  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

None

1986-03-01T23:59:59.000Z

155

Geothermal Energy R&D Program: Annual Progress Report for Fiscal Year 1991  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1992-03-01T23:59:59.000Z

156

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .Nations Symposium on Geothermal Energy, Vol. 1 , p. 487-494.Nations Symposium on Geothermal Energy, Vol. 1 p . l i i i -

Bloomster, C.H.

2010-01-01T23:59:59.000Z

157

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

158

Wind and Geothermal Incentives Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Schools Schools Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source Alternative Energy Investment Fund (state-issued bonds) Start Date January 2009 State Pennsylvania Program Type State Grant Program Rebate Amount Varies by project, but program generally requires matching funds at least equivalent to DCED funding

159

Gulf Coast Geopressured-Geothermal Program Summary Report Compilation. Volume I, Executive Summary  

SciTech Connect (OSTI)

The significant accomplishments of this program included (1) identification of the geopressured-geothermal onshore fairways in Louisiana and Texas, (2) determination that high brine flow rates of 20,000--40,000 barrels a day can be obtained for long periods of time, (3) brine, after gas extraction can be successfully reinjected into shallow aquifers without affecting the surface waters or the fresh water aquifers, (4) no observable subsidence or microseismic activity was induced due to the subsurface injection of brine, and no detrimental environmental effects attributable to geopressured--geothermal well testing were noticed, (5) sanding can be controlled by reducing flow rates, (6) corrosion controlled with inhibitors, (7) scaling controlled by phosphonate scale inhibitors, (8) demonstrated that production of gas from saturated brine under pressure was viable and (9) a hybrid power system can be successfully used for conversion of the thermal and chemical energy contained in the geopressured-geothermal resource for generation of electricity. The U. S. Department of Energy's geopressured-geothermal research program in the Gulf Coast achieved many significant findings and disproved and clarified many historical perceptions that had previously limited industry's interest in developing this resource. Though in today's economic market it may not be commercially profitable to exploit this resource, the rapid advance of technology in all its different aspects could potentially make this resource attractive in the not too distant future. The ideal situation would involve the development of a total energy system in which all three associated forms of energy--chemical, thermal and mechanical are utilized. The extraction of gas from brine combined with the large number of potential direct and indirect uses of this resource will add to its economic profitability. This U.S. DOE's visionary research program has essentially laid the foundations for characterization of this resource and all aspects connected with its development.

Chacko, J. John; Maciasz, Gina; Harder, Brian J.

1998-06-01T23:59:59.000Z

160

Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)  

Broader source: Energy.gov [DOE]

This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wind and Geothermal Incentives Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Category Savings Category Buying & Making Electricity Wind Maximum Rebate Manufacturer loans: 35,000 per job created within 3 years Manufacturer grants: 5,000 per job created within 3 years Loans for geothermal systems: 3 per square foot of space served up to 5 million Loans for wind energy production projects: 5 million Grants for wind energy production projects: 1 million Grants for feasibility studies: 50% of cost up to 175,000 Loan guarantee grants: Up to 75% of deficient funds up to 5 million Program Info Funding Source Alternative Energy Investment Fund (state issued bonds) Start Date January 2009 State Pennsylvania Program Type Industry Recruitment/Support Rebate Amount Varies by project, but program generally requires matching funds at least equivalent to DCED funding

162

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

163

Geothermal reservoir well stimulation program. First-year progress report  

SciTech Connect (OSTI)

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

164

A History or Geothermal Energy Research and Development in the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Drilling for Geothermal Heat Pump Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95...

165

Informational Webinar: Frontier Observatory for Research in Geothermal Energy (FORGE) Funding Opportunity Announcement  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled “Frontier Observatory for Research in Geothermal Energy (FORGE) Funding Opportunity Announcement Informational Webinar," focusing on the...

166

Research Affiliate Program | Photosynthetic Antenna Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Affiliate Program Research Affiliate Program Research Affiliates are collaborators who are not current PARC principal investigators andor who are from academic or...

167

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Broader source: Energy.gov [DOE]

Doug Hollett's presentation at the Geothermal Resources Council (GRC) Annual Meeting on October 1, 2012 in Reno, Nevada.

168

Geothermal Energy R&D Program Annual Progress Report for Fiscal Year 1992  

SciTech Connect (OSTI)

Geothermal budget actual amounts are shown for FY 1989 -1992, broken down by about 15 categories. Here, the main Program categories are: Exploration Technology, Drilling Technology, Reservoir Technology, Conversion Technology (power plants and materials), Industry-Coupled Drilling, Drilling Applications, Reservoir Engineering Applications, Direct Heat, Geopressured Wells Operation, and Hot Dry Rock Research. Here the title--Industry-Coupled Drilling--covered case studies of the Coso, CA, and Dixie Valley, NV, fields, and the Long Valley Exploratory Well (which had started as a magma energy exploration project, but reported here as a hydrothermal prospect evaluation well). (DJE 2005)

None

1993-07-01T23:59:59.000Z

169

Stanford geothermal program. Final report, July 1990--June 1996  

SciTech Connect (OSTI)

This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

NONE

1998-03-01T23:59:59.000Z

170

Gasification Research BIOENERGY PROGRAM  

E-Print Network [OSTI]

Gasification Research BIOENERGY PROGRAM Description Researchers inthe@tamu.edu Skid-mounted gasifier: 1.8 tons-per-day pilot unit Gasification of cotton gin trash The new Texas A

171

Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994  

SciTech Connect (OSTI)

The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

Not Available

1994-12-31T23:59:59.000Z

172

Small Business Innovation Research Opportunity | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology TRansfer (STTR) Programs Geothermal Home About the Geothermal Technologies Office...

173

Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach  

Broader source: Energy.gov [DOE]

This project entails finding and assessing geothermal systems to: Increase geothermal development through research and outreach; Reduce risk in drill target selection, thus reducing project development costs; and Recent research includes development of shallow temperature surveys, seismic methods, aerial photography, field structural geology.

174

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

OF UNCONSOLIDATED AND CONSOLIDATED SANDS BY Mark A. Miller June 1983 Financial support was provided through measurements were made on both unconsolidated and consolidated sand cores, using water and a refined white

Stanford University

175

Stanford Geothermal Program Interdisciplinary Research i n  

E-Print Network [OSTI]

s Semprini throughout t h i s study. Maruyama of the Geology Department f o r h i s assistance with the petro . . . . . . . . . . . . . . . . 6 2 . 2 . 1 Radioactive decay of uranium series . . . . . 6 2.2.2 Physical and chemical properties

Stanford University

176

1992--1993 low-temperature geothermal assessment program, Colorada  

SciTech Connect (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

Cappa, J.A.; Hemborg, H.T.

1995-01-01T23:59:59.000Z

177

A Coordinated Exploration Program for Geothermal Sources on the Island of  

Open Energy Info (EERE)

Exploration Program for Geothermal Sources on the Island of Exploration Program for Geothermal Sources on the Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii Abstract Staff members of the Hawaii Institute of Geophysics carried out an exploration program for geothermal sources on the island of Hawaii by using all relevant geophysical and geochemical methods. Infrared scanning aerial surveys followed by reconnaissance-type electrical surveys and group noise surveys narrowed down the promising area to the east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance, temperature profiling of wells, and chemical analysis of water samples.

178

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Financing Relatively small size of the Industry + perceived risk project financing challenges Grid Integration Solutions to supply geothermal electricity to the grid...

179

Research in lost circulation control for geothermal wells  

SciTech Connect (OSTI)

This paper reviews recent progress at Sandia National Laboratories in the area of lost circulation control for geothermal wells. The Lost Circulation Program has three major elements: (1) Detection and characterization of loss zones, (2) Development of new techniques and materials for control of loss zones, and (3) Integration of the first two items for wellsite application. Most of our work to date has been in the area of developing new techniques and materials. We report here on progress that has been made in the past two years in the development of new, pumpable cementitious muds, in situ mixing and placement of polyurethane foams, and fundamental analysis of and materials development for particulate lost circulation materials. Plans for work in the area of zone detection and characterization, including development of a transient, lost circulation hydraulics simulator and field zone characterization using an advanced wellbore televiewer, are discussed.

Ortega, A.; Loeppke, G.E.; Givler, R.C.

1987-01-01T23:59:59.000Z

180

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

GETEM-Geothermal Electricity Technology Evaluation Model  

Broader source: Energy.gov [DOE]

A guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of Energy in estimating some of the technical and economic values of its research projects and subprograms. The tool is intended to estimate and summarize the performance and cost of various geothermal electric power systems at geothermal reservoirs with a wide variety of physical characteristics.

182

Experimental Study of Water Vapor Adsorption on Geothermal  

E-Print Network [OSTI]

Geothermal Program under Department of Energy Grant No. DE-FG07-90IDI2934,and by the Department of PetroleumSGP-TR-148 Experimental Study of Water Vapor Adsorption on Geothermal Reservoir Rocks Shubo Shang Engineering, Stanford University Stanford Geothermal Program Interdisciplinary Research in Engineering

Stanford University

183

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

Lienau, P.

1996-11-01T23:59:59.000Z

184

State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report  

SciTech Connect (OSTI)

This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

Icerman, Larry

1983-08-01T23:59:59.000Z

185

Pinpointing America's Geothermal Resources with Open Source Data |  

Broader source: Energy.gov (indexed) [DOE]

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

186

Pinpointing America's Geothermal Resources with Open Source Data |  

Broader source: Energy.gov (indexed) [DOE]

Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data Pinpointing America's Geothermal Resources with Open Source Data January 3, 2013 - 1:37pm Addthis A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. A geothermally-heated greenhouse just west of Newcastle, Utah. The National Geothermal Data System -- a new, interactive open source data tool -- is helping researchers and industry identify more geothermal resources across America. | Photo by Robert Blackett, NREL. Arlene Anderson Technology Development Manager, Geothermal Technologies Program

187

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments  

Broader source: Energy.gov [DOE]

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments: Impacts of a Cluster of Energy Technologies, August 2010.

188

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

189

White County REMC- Residential Geothermal Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

White County REMC offers incentives for the purchase and installation of energy efficient heat pumps. Air-source heat pumps are eligible for a rebate of $300, while geothermal heat pumps are...

190

Hydraulic fracture stimulation treatment of Well Baca 23. Geothermal Reservoir Well-Stimulation Program  

SciTech Connect (OSTI)

Well Stimulation Experiment No. 5 of the Geothermal Reservoir Well Stimulation Program (GRWSP) was performed on March 22, 1981 in Baca 23, located in Union's Redondo Creek Project Area in Sandoval County, New Mexico. The treatment selected was a large hydraulic fracture job designed specifically for, and utilizing frac materials chosen for, the high temperature geothermal environment. The well selection, fracture treatment, experiment evaluation, and summary of the job costs are presented herein.

Not Available

1981-06-01T23:59:59.000Z

191

2011 Napa Hedberg Research Conference report on enhanced geothermal systems  

Science Journals Connector (OSTI)

...Many other new developments in geophysics...optimize injection strategies to minimize seismicity...flow rate. The development of a geothermal...from the oil and gas industry, but...supercritical turbines for geothermal...dwarfing the oil and gas resource. Once...continued technology development, large-scale...

Dag Nummedal; Gary Isaksen; Peter Malin

192

A History of Geothermal Energy Research and Development in the United States: Exploration 1976-2006  

Broader source: Energy.gov [DOE]

This report summarizes significant research projects performed by the U.S.Department of Energy (DOE)1 over 30 years to overcome challenges inexploration and to make generation of electricity from geothermal resourcesmore cost-competitive.

193

A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006  

Broader source: Energy.gov [DOE]

This report summarizes significant research projects performed by the U.S.Department of Energy (DOE)1 over 30 years to overcome challenges inexploration and to make generation of electricity from geothermal resourcesmore cost-competitive.

194

Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S.  

Broader source: Energy.gov [DOE]

In early June 2011, the U.S. Department of Energy's Geothermal Technologies Program (GTP) intends to issue a Funding Opportunity Announcement to expand its partnership with the geothermal community on geothermal systems research and development throughout the United States in order to support GTP's goal of lowering the cost of geothermal energy to 6 ¢/kWh.

195

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

196

DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies.

197

Characterizing Fractures in Geysers Geothermal Field by Micro...  

Open Energy Info (EERE)

Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on...

198

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

199

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

200

Geothermal Information Dissemination and Outreach  

SciTech Connect (OSTI)

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Reactor Safety Research Programs  

SciTech Connect (OSTI)

This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

Edler, S. K.

1981-07-01T23:59:59.000Z

202

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

203

Sandia Combustion Research Program  

SciTech Connect (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

1988-01-01T23:59:59.000Z

204

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

205

Community Geothermal Technology Program: Silica bronze project. Final report  

SciTech Connect (OSTI)

Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

Bianchini, H.

1989-10-01T23:59:59.000Z

206

1979-1980 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

Korosec, M.A.; Schuster, J.E.

1980-01-01T23:59:59.000Z

207

Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995  

SciTech Connect (OSTI)

The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

NONE

1996-02-01T23:59:59.000Z

208

Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah  

SciTech Connect (OSTI)

Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

1980-03-01T23:59:59.000Z

209

Base Research Program  

SciTech Connect (OSTI)

In June 2009, the Energy & Environmental Research Center (EERC) completed 11 years of research under the U.S. Department of Energy (DOE) Base Cooperative Agreement No. DE-FC26-98FT40320 funded through the Office of Fossil Energy (OFE) and administered at the National Energy Technology Laboratory (NETL). A wide range of diverse research activities were performed under annual program plans approved by NETL in seven major task areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, (6) advanced materials, and (7) strategic studies. This report summarizes results of the 67 research subtasks and an additional 50 strategic studies. Selected highlights in the executive summary illustrate the contribution of the research to the energy industry in areas not adequately addressed by the private sector alone. During the period of performance of the agreement, concerns have mounted over the impact of carbon emissions on climate change, and new programs have been initiated by DOE to ensure that fossil fuel resources along with renewable resources can continue to supply the nation's transportation fuel and electric power. The agreement has addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration while expanding the supply and use of domestic energy resources for energy security. It has further contributed to goals for near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources (e.g., wind-, biomass-, and coal-based electrical generation).

Everett Sondreal; John Hendrikson

2009-03-31T23:59:59.000Z

210

2009 University Coal Research Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 University Coal Research Program 2009 University Coal Research Program Description The University Coal Research (UCR) Program provides grants to U.S. colleges and universities to support fundamental research and to develop efficient and environmentally responsible fossil energy technologies. Funded by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE), the program is carried out by DOE's National Energy Technology Laboratory (NETL).

211

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

212

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

213

Geothermal Play Fairway Analysis | Department of Energy  

Energy Savers [EERE]

Analysis Geothermal Play Fairway Analysis pfw-webinar.pptx More Documents & Publications Geothermal Play Fairway Analysis LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 0211...

214

Geothermal Energy Multi-Year Program Plan, FY 1993-1997  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. The Five Year Plans and Multi-Year Plans usually included more detailed rationales and projections than other similar reports. Many of these reports were issued only in draft form. (DJE 2005)

None

1992-03-01T23:59:59.000Z

215

Pinpointing America's Geothermal Resources with Open Source Data  

Broader source: Energy.gov [DOE]

National Geothermal Data System addresses barriers to geothermal deployment by aggregating millions of geoscience datapoints and legacy geothermal research into a nationwide system that serves the geothermal community.

216

Geothermal Literature Review (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review (Laney, 2005) Geothermal Literature Review (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Field Case Studies, Marcelo Lippmann. This on-going project has collected a large set of publications on EGS activities, particularly in foreign geothermal fields, continues to search for news on current projects and on plans for future EGS activities. Information has been e-mailed to DOE and U.S. geothermal organizations like the Geothermal Energy Association, the Geothermal Resources Council and DOE contractors. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_(Laney,_2005)&oldid=510792"

217

Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

218

Gulf Coast geopressured-geothermal program summary report compilation. Volume 1: Executive summary  

SciTech Connect (OSTI)

The significant accomplishments of this program included (1) identification of the geopressured-geothermal onshore fairways in Louisiana and Texas, (2) determination that high brine flow rates of 20,000--40,000 barrels a day can be obtained for long periods of time, (3) brine, after gas extraction can be successfully reinjected into shallow aquifers without affecting the surface waters or the fresh water aquifers, (4) no observable subsidence or microseismic activity was induced due to the subsurface injection of brine, and no detrimental environmental effects attributable to geopressured-geothermal well testing were noticed, (5) sanding can be controlled by reducing flow rates, (6) corrosion controlled with inhibitors, (7) scaling controlled by phosphonate scale inhibitors, (8) demonstrated that production of gas from saturated brine under pressure was viable and (9) a hybrid power system can be successfully used for conversion of the thermal and chemical energy contained in the geopressured-geothermal resource for generation of electricity.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

219

Summary of the planning, management, and evaluation process for the Geothermal Program Review VI conference  

SciTech Connect (OSTI)

The purpose of this document is to present an overview of the planning, facilitation, and evaluation process used to conduct the Geothermal Program Review VI (PR VI) conference. This document was also prepared to highlight lessons learned from PR VI and, by utilizing the evaluation summaries and recommendations, be used as a planning tool for PR VII. The conference, entitled Beyond Goals and Objectives,'' was sponsored by the US Department of Energy's (DOE) Geothermal Technology Division (GTD), PR VI was held in San Francisco, California on April 19--21, 1988 and was attended by 127 participants. PR VI was held in conjunction with the National Geothermal Association's (NGA) Industry Round Table. This document presents a brief summary of the activities, responsibilities, and resources for implementing the PR VI meeting and provides recommendations, checklists, and a proposed schedule for assisting in planning PR VII.

Not Available

1988-10-01T23:59:59.000Z

220

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

222

Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988  

SciTech Connect (OSTI)

The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy production. Industrial advisors to the HDR Program have concluded that, while a longer testing period would certainly be desirable, a successful and well-documented flow test of this high-temperature, Phase II reservoir lasting at least one year should convince industry that HDR geothermal energy merits their investment in its commercial development. This test is called the Long Term Flow Test (LTFT), and its completion will be a major milestone in attaining the Level 1 objective. However, before the LTFT could be initiated, well EE-2 had to be repaired, as also briefly described in the ''History of Research''. During this repair operation, superb progress was made toward satisfying the next most critically important Level II objective: Improve the Performance of HDR Drilling and Completion Technology. During the repair of EE-2, Los Alamos sidetracked by drilling out of the damaged well at 2.96 km (9700 ft), and then completed drilling a new-wellbore (EE-2A) to a total depth of 3.78 km (12,360 ft). As a consequence of this drilling experience, Los Alamos believes that if the original wells were redrilled today their combined cost would be only $8 million rather than the $18.8 million actually spent (a 60% cost saving). Further details, particularly of the completion of the well, can be found in the major section, ACCOMPLISHMENTS, but it can be seen that the second, Level II objective is already nearing attainment.

Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

1988-01-01T23:59:59.000Z

223

Low Dose Radiation Research Program: Original Research Program Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Original Research Program Plan Original Research Program Plan Biological Effects of Low Dose and Dose Rate Radiation Prepared for the Office of Biological and Environmental Research by The Low Dose Radiation Research Program Plan Subcommittee of the Biological and Environmental Research Advisory Committee. II. Table of Contents Face Page Table of Contents Executive Summary Introduction Program Outline Low Dose Radiation vs. Endogenous Oxidative Damage - The Same or Different? Key Question Description Decision Making Value Recommendations and Costs Understanding Biological Responses to Radiation And Endogenous Damage Key Question Description Decision Making Value Recommendations and Costs Thresholds for Low Dose Radiation - Fact or Fiction? Key Question Description Decision Making Value Recommendations and Costs

224

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

TO THE DETECTION OF SURFACE DEFORMATION IN THE GEOTHERMAL FIELDS OF IMPERIAL VALLEY, CALIFORNIA MARCH 2010 in the Geothermal Fields of Imperial Valley, California. California Energy Commission, PIER Program. CEC5002010019 "Application of InSAR to the Detection of Surface Deformation in the Geothermal Fields of Im- perial Valley

225

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

GEOTHERMAL WELL FB4 Prepared for: California Energy Commission Prepared by: Fort Bidwell Indian Community Geothermal Well FB4. California Energy Commission, PIER Renewables Program. CEC-500-2012-061. i #12;ii #12 · Renewable Energy Technologies · Transportation Assessment of Fort Bidwell Geothermal Well FB4 is the final

226

Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995  

SciTech Connect (OSTI)

The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

NONE

1995-05-01T23:59:59.000Z

227

Chemistry Dept. Research Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry Department Overview: Chemistry Department Overview: While the subjects of chemical research in the Chemistry Department are diverse, several predominant themes span traditional research fields and research groups. These themes include: artificial photosynthesis, charge transfer for energy conversion, chemistry with ionizing radiation, catalysis and surface science, nanoscience, combustion, and nuclear chemistry. Artificial Photosynthesis This program addresses major issues hindering progress in photoinduced catalytic reduction of carbon dioxide, water splitting, and small molecule activation using an integrated experimental and theoretical approach that offers fundamental insights into the underlying photochemical processes. One thrust investigates factors controlling reductive half-reactions. Among these are: (1) searching for visible-light absorbers to couple with electron transfer and/or catalytic processes; (2) avoiding high-energy intermediates through multi-electron, multi-proton processes; (3) using earth-abundant metals, or metal complexes that have bio-inspired or non-innocent ligands to achieve low-energy pathways via second-coordination sphere interactions or redox leveling; (4) adopting water as the target solvent and the source of protons and electrons; and (5) immobilizing catalysts on electrode or semiconductor surfaces for better turnover rates and frequencies. Another thrust investigates water oxidation, focusing on photoelectrolysis processes occurring in band-gap-narrowed semiconductor and catalyst components by: (i) tuning semiconductors to control their light-harvesting and charge-separation abilities; (ii) developing viable catalysts for the four-electron water oxidation process; (iii) immobilizing the homogenous catalysts and metal oxide catalysts on electrodes and/or metal-oxide nanoparticles; and (iv) exploring the interfacial water-decomposition reactions using carriers generated by visible-light irradiation with the goal of understanding semiconductorccatalystcwater charge transport.

228

Geothermal progress monitor. Progress report No. 4  

SciTech Connect (OSTI)

The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

Not Available

1980-09-01T23:59:59.000Z

229

AQUATIC PLANT CONTROL RESEARCH PROGRAM  

E-Print Network [OSTI]

MEETING, AQUATIC PLANT CONTROL RESEARCH PROGRAM 26-29 NOVEMBER 1984 GALVESTON, TEXAS June 1985 Final report 26-29 NOVEMBER 1984, 6. PERFORMING ORG. REPORT NC:'IBER GALVESTON, TEXAS 7. AU THOR(.) 8 Control Research Program was held in Galveston, Texas, on 26-29 November 1984, to review current research

US Army Corps of Engineers

230

Geothermal Technologies Office 2012 Peer Review Report | Department...  

Broader source: Energy.gov (indexed) [DOE]

Report 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program...

231

CSD: Research Programs: Chemical Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics CSD: Research: Chemical Physics CSD: Research Programs: Chemical Physics LBL Logo A-Z CSD Research Highlights CSD Directory Chemical Sciences Division A-Z Index Phone Book Search Berkeley Lab INTRODUCTION TO CSD NATIONAL FACILITIES & CENTERS RESEARCH PROGRAMS Atomic, Molecular & Optical Sciences Catalytic Science Chemical Physics The Glenn T. Seaborg Center (GTSC) STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME Privacy & Security Notice DOE UC Berkeley CSD > Research Programs > Chemical Physics The Chemical Physics Program of the Chemical Science Division of LBNL is concerned with the development of both experimental and theoretical methodologies for studying molecular structure and dynamical processes at the most fundamental level, and with the application of these to specific

232

NETL: Aligned Gasification Research Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to remove environmental concerns related to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies,...

233

DOE Seeks to Invest up to $90 Million in Advanced Geothermal Energy Technology and Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) for up to $90 million over four years to advance the research, development and demonstration of next-generation geothermal energy technology which will harness the earth’s interior heat extracted from hot water or rocks.

234

Z .Journal of Volcanology and Geothermal Research 93 1999 130 www.elsevier.comrlocaterjvolgeores  

E-Print Network [OSTI]

Z .Journal of Volcanology and Geothermal Research 93 1999 1­30 www Volcanic Province, Baja California, Mexico Elizabeth A. Nagy a,) , Marty Grove b , Joann M. Stock a a Di Volcanic Province PVP in northeastern Baja California, Mexico, performed in conjunction with 40 Arr39 Ar

235

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

236

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981  

SciTech Connect (OSTI)

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

Lunis, B.C. (ed.)

1982-08-01T23:59:59.000Z

237

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980  

SciTech Connect (OSTI)

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

Lunis, B. C.; Toth, W. J. [comps.

1981-10-01T23:59:59.000Z

238

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

239

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Systems Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable Energy eere.energy.gov Technology...

240

Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1998-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cognitive Sciences Program Research Opportunities  

E-Print Network [OSTI]

Cognitive Sciences Program Research Opportunities Students pursuing undergraduate degrees in cognitive science are encouraged to engage in research related activities at some point during their time and knowledge, skills/experience, and motivation. The Cognitive Science Program offers four options for students

Indiana University

242

US LHC Accelerator Research Program  

E-Print Network [OSTI]

US LHC Accelerator Research Program Instrumentation Collaboration Meeting John Marriner May 9, 2003 #12;2/14/03 US LARP Instrumentation Collaboration Mtg 2 US LARP LARP = LHC Accelerator Research Program LARP is an outgrowth of the US LHC Accelerator Project The US LHC Accelerator Project built

Large Hadron Collider Program

243

RESEARCH & DEVELOPMENT: PROGRAM ABSTRACTS  

E-Print Network [OSTI]

Cells for Transportation program will not develop fuel cell cars, but will facilitate the critical-flexible fuel strategy. Other accomplishments under the DOE program include Ford/IFC's 50-kW hydrogen fuel cell Backing Layers INTEGRATED SYSTEMS Polymer Electrolyte Membrane Fuel Cells Fuel Cell Stack PEM STACK

244

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

Energy Authority Ente Nazionale dell'Energia Elettrica, Geothermal Center International Institute for Geothermal Research Geological.Survey of Japan Department of Geothermic

Bresee, J. C.

2011-01-01T23:59:59.000Z

245

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

tests Stanford - rock/fluid heat transfer Vetter Research·Studies of heat transfer from rock to fluid Vapor pressure

Howard, J. H.

2012-01-01T23:59:59.000Z

246

Hydro Research Program Seeking Graduate Student Applicants |...  

Office of Environmental Management (EM)

Hydro Research Program Seeking Graduate Student Applicants Hydro Research Program Seeking Graduate Student Applicants December 18, 2014 - 3:37pm Addthis The Hydro Research...

247

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981  

SciTech Connect (OSTI)

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

Lunis, B.C.; Toth, W.J. (comps.)

1982-05-01T23:59:59.000Z

248

12University Research Priority Programs  

E-Print Network [OSTI]

12University Research Priority Programs Asia and Europe Dynamics of Healthy Aging Ethics Evolution Cancer Research Solar Light to Chemical Energy Conversion #12;Contact Dr. Cornelia Schauz Research and Academic Career Development Künstlergasse 15 CH-8001 Zurich Phone: 044 634 48 55 cornelia

Zürich, Universität

249

Arnold Schwarzenegger, LIGHTING RESEARCH PROGRAM  

E-Print Network [OSTI]

;#12;Prepared By: Lighting Research Center Andrew Bierman, Project Lead Troy, New York 12180 Managed ByArnold Schwarzenegger, Governor LIGHTING RESEARCH PROGRAM PROJECT 3.2 ENERGY EFFICIENT LOAD- SHEDDING LIGHTING TECHNOLOGY Prepared For: California Energy Commission Public Interest Energy Research

250

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

388 388 February 2010 Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis Katherine R. Young and Chad Augustine National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy Presented at Stanford Geothermal Workshop Stanford, California February 1, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

251

A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006  

Broader source: Energy.gov [DOE]

This report summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive.

252

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids...

253

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

254

Exploratory Energy Research Program of the University of Hawaii at Manoa. Quarterly progress report  

SciTech Connect (OSTI)

Project objectives and research progress are briefly summarized for solar energy, biomass, hydrogen, and geothermal energy research projects.

Not Available

1984-01-02T23:59:59.000Z

255

Tansmutation Research program  

SciTech Connect (OSTI)

Six years of research was conducted for the United States Department of Energy, Office of Nuclear Energy between the years of 2006 through 2011 at the University of Nevada, Las Vegas (UNLV). The results of this research are detailed in the narratives for tasks 1-45. The work performed spanned the range of experimental and modeling efforts. Radiochemistry (separations, waste separation, nuclear fuel, remote sensing, and waste forms) , material fabrication, material characterization, corrosion studies, nuclear criticality, sensors, and modeling comprise the major topics of study during these six years.

Paul Seidler

2011-07-31T23:59:59.000Z

256

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

257

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

258

Biomass Research Program  

ScienceCinema (OSTI)

INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

2013-05-28T23:59:59.000Z

259

Chemical Sciences Division: Research: Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

260

Low Dose Radiation Research Program: Research Institutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institutions Institutions Lovelace Respiratory Research Institute Biological Bases for Radiation Adaptive Responses in the Lung-Lovelace Respiratory Research Institute, Albuquerque, NM USA Contact: Dr. Bobby R. Scott Program Objective Our research focuses on elucidating the biological bases for radiation adaptive responses in the lung and for suppressing lung cancer, and to use the knowledge gained to produce an improved systems-biology-based, risk model for lung cancer induction by low-dose, low linear-energy-transfer (LET) radiation. Research was initiated in October 2009. This research should help foster a new era of low-dose radiation risk/benefit assessment. It will have important implications for possible use of low-dose diagnostic radiation (e.g., X-rays) in cancer therapy. It

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Technology Development Program annual progress report, October 1982-September 1983  

SciTech Connect (OSTI)

The program emphasizes research in rock penetration mechanics, fluid technology, borehold mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1984-05-01T23:59:59.000Z

262

Director's Discretionary Research and Development Program, Annual...  

Office of Environmental Management (EM)

Director's Discretionary Research and Development Program, Annual Report FY 2007 Director's Discretionary Research and Development Program, Annual Report FY 2007 Draft...

263

Jointly Sponsored Research Program Energy Related Research  

SciTech Connect (OSTI)

Cooperative Agreement, DE-FC26-98FT40323, Jointly Sponsored Research (JSR) Program at Western Research Institute (WRI) began in 1998. Over the course of the Program, a total of seventy-seven tasks were proposed utilizing a total of $23,202,579 in USDOE funds. Against this funding, cosponsors committed $26,557,649 in private funds to produce a program valued at $49,760,228. The goal of the Jointly Sponsored Research Program was to develop or assist in the development of innovative technology solutions that will: (1) Increase the production of United States energy resources - coal, natural gas, oil, and renewable energy resources; (2) Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; (3) Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and (4) Minimize environmental impacts of energy production and utilization. Under the JSR Program, energy-related tasks emphasized enhanced oil recovery, heavy oil upgrading and characterization, coal beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, coal-bed methane recovery, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils and waters, processing of oily wastes, mitigating acid mine drainage, and demonstrating uses for solid waste from clean coal technologies, and other advanced coal-based systems. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. This report summarizes the accomplishments of the JSR Program.

Western Research Institute

2009-03-31T23:59:59.000Z

264

Working Fluids and Their Effect on Geothermal Turbines  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

265

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

266

NREL: Learning - Student Resources on Geothermal Direct Use  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Use Direct Use Photo of flowers in a greenhouse. Johnson County High School in Tennessee features a geothermally heated greenhouse, where students can learn about agriculture. The following resources will help you learn more about the direct use of geothermal energy. If you are unfamiliar with this technology, see the introduction to geothermal direct use. High School and College Level U.S. Department of Energy Geothermal Technologies Program: Direct Use Has more basic information Oregon Institute of Technology Geo-Heat Center Features information on research in direct use technologies, including resource maps. Geothermal Resources Council Provides information about and for the geothermal industry. Renewable Energy Policy Project Provides in-depth coverage on geothermal resources, technologies and

267

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

268

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

269

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

270

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

SECONO GEOPRESSURED GEOTHERMAL ENERGY CONFERENCE. VOLUME 2--15 TITLE- THE LLL GEOTHERMAL ENERGY OEVELOPMENT PROGRAM.J. REFERENCE" THE LLL GEOTHERMAL ENERGY DEVELOPMENT PROGRAM.

Cosner, S.R.

2010-01-01T23:59:59.000Z

271

Portuguese research program on nuclear fusion  

Science Journals Connector (OSTI)

The Portuguese research program on nuclear fusion is presented. The experimental activity associated with...

C. A. F. Varandas; J. A. C. Cabral; M. E. Manso; F. Serra

1994-12-01T23:59:59.000Z

272

2012 Annual Report Research Reactor Infrastructure Program  

SciTech Connect (OSTI)

The content of this report is the 2012 Annual Report for the Research Reactor Infrastructure Program.

Douglas Morrell

2012-11-01T23:59:59.000Z

273

Exemplary Student Research Program | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Exploring the Future STEM Home Activites Contact education@anl.gov Exemplary Student Research Program Students present research at Argonne. Students present research at...

274

Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance  

E-Print Network [OSTI]

Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site Research Training Alliance (AORTA) aorta.uoregon.edu NSF REU Site Program in Molecular Biosciences (UO

Oregon, University of

275

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

276

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

277

Human Research ProgramHuman Research Program Human System Risk in Exploration and  

E-Print Network [OSTI]

Human System Risks in Exploration Missions 21SEP10 2HRP Risk Process ­ D.Grounds Presentation contentsHuman Research ProgramHuman Research Program Human System Risk in Exploration and the Human Research Program 21SEP10 1HRP Risk Process ­ D Grounds #12;Human Research ProgramHuman Research Program

Waliser, Duane E.

278

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Enhanced Geothermal Systems subprogram was given at the GTP Program Peer Review on May 18, 2010.

279

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

280

ORISE: Research Participation Programs by Sponsor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORISE Science Education Programs by Sponsor ORISE research participation programs provide students and faculty with experience at top government laboratories Through its contract...

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NEPA COMPLIANCE SURVEY Project Information Project TitJe: Geothermal Technologies Program  

Broader source: Energy.gov (indexed) [DOE]

Project Information Project TitJe: Geothermal Technologies Program Date: 12-11-()9 DOE Code: 6730.020.61041 Contractor Code: Project Lead: Project Overview This NEPA is for the laying of a 2,975 foot, 8" welded plastic water line from Little Teapot Creek near in the 1. What are the environmental impacts? intersection with Teapot Creek to the North Waterflood Facility (NWF) building. The entire project area is within Section 21 T39N R78W (map attached) and will not impact any wet land areas but will cross one 2. What is the legal location? intermittent stream. The stream is presently dry. The project will include the clearing of vegetation from a 12 3. What is the duration of the project? foot wide construction corridor along the route, digging a 5 foot deep trench, welding and placing the plastic

282

Geothermal energy development  

SciTech Connect (OSTI)

This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

Butler, E.W.; Pick, J.B.

1983-01-01T23:59:59.000Z

283

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

284

Geothermal energy in Nevada: development and utilization  

SciTech Connect (OSTI)

The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

Not Available

1982-01-01T23:59:59.000Z

285

Symposium in the field of geothermal energy  

SciTech Connect (OSTI)

Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

Ramirez, Miguel; Mock, John E.

1989-04-01T23:59:59.000Z

286

Evaluation Of Baltazor Known Geothermal Resources Area, Nevada | Open  

Open Energy Info (EERE)

Baltazor Known Geothermal Resources Area, Nevada Baltazor Known Geothermal Resources Area, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evaluation Of Baltazor Known Geothermal Resources Area, Nevada Details Activities (3) Areas (1) Regions (0) Abstract: By virtue of the Geothermal Steam Act of 1970, the U.S. Geological Survey is required to appraise geothermal resources of the United States prior to competitive lease sales. This appraisal involves coordinated input from a variety of disciplines, starting with reconnaissance geology and geophysics. This paper describes how the results of several geophysical methods used in KGRA evaluation were interpreted by the authors, two geophysicists, involved with both the Evaluation Committee and the research program responsible for obtaining and interpreting the

287

Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California  

Broader source: Energy.gov [DOE]

Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field California by Mark Walters of Calpine and Patrick Dobson of Lawrence Berkeley National Laboratory for Engineered Geothermal Systems Demonstration Projects Track. Objective to create an Enhanced Geothermal System (EGS) by directly and systematically injecting low volumes of cold? water into NW Geysers high temperature zone (HTZ), similar to inadvertently? created EGS in the oldest Geysers production area to the southeast of the EGS demonstration area. Other objectives are to investigate how cold-water injection mechanically and chemically affects fractured high temperature rock systems; demonstrate the technology to monitor and validate stimulation and sustainability of such an EGS; and develop an EGS research field laboratory that can be used for testing EGS stimulation and monitoring technologies including new high temperature tools developed by others.

288

Josephine Ford Cancer Center Cancer Research Programs  

E-Print Network [OSTI]

Josephine Ford Cancer Center Cancer Research Programs presented to WSU SOM PAD January 10, 2012 presented by Sandra A. Rempel, Ph.D. Associate Director of Research, JFCC #12;JFCC Cancer Research Programs Cancer Epidemiology, Prevention and Control Program Members: Gwen Alexander, Andrea Cassidy

Berdichevsky, Victor

289

Results of the 1992-1993 low-temperature geothermal assessment program in Colorado  

SciTech Connect (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid to late-1970s. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U.S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into databases. For the purpose of this report, a geothermal area is defined as a broad area, usually less than three square miles in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Duntton area, and Cottonwood Hot Springs.

Cappa, J.A.

1994-07-01T23:59:59.000Z

290

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

291

OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant; Gregory Nellis, Professor; Sanford Klein,  

E-Print Network [OSTI]

1 OPTIMIZATION OF HYBRID GEOTHERMAL HEAT PUMP SYSTEMS Scott Hackel, Graduate Research Assistant, Madison, WI, United States Abstract: Hybrid ground-coupled heat pump systems (HyGCHPs) couple conventional ground- coupled heat pump (GCHP) equipment with supplemental heat rejection or extraction systems

Wisconsin at Madison, University of

292

Uncertainty analysis of geothermal energy economics.  

E-Print Network [OSTI]

?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

Sener, Adil Caner

2009-01-01T23:59:59.000Z

293

NREL: Geothermal Technologies - Data and Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help...

294

Doug Hollett Gives Keynote Presentation at Stanford Geothermal Workshop  

Broader source: Energy.gov [DOE]

The Program Manager of the Geothermal Technologies Program, Doug Hollett gave a keynote address at the 37th Stanford Geothermal Workshop in Stanford, California.

295

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefing on Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

296

Overview of NE Research Programs  

Broader source: Energy.gov (indexed) [DOE]

NE Research Programs NE Research Programs Sue Lesica Office of Nuclear Energy U.S. Department of Energy July 31, 2013 2 R&D Budgets FY 2013 FY 2014 Congressional Request House Mark Senate Mark SMR Licensing Technical Support 62,999 70,000 110,000 70,000 Small Modular Reactor R&D 23,958 20,000 20,000 20,000 Next Generation Nuclear Plant 38,720 0 0 0 LWR Sustainability 24,218 21,500 21,500 21,500 Advanced Reactor Concepts 21,178 31,000 45,000 21,000 Reactor Concepts RD&D 108,075 72,500 86,500 62,500 Modeling and Simulation Hub 24,588 24,300 24,300 24,300 Crosscutting Technology Development 17,242 13,901 27,885 25,437 NEAMS 13,646 9,536 National Scientific Users Facility 14,563 14,563 14,563 14,563 Nuclear Energy Enabling Technologies 70,040 62,300 66,748 62,300

297

National Geothermal Student Competition  

Broader source: Energy.gov [DOE]

The Energy Department's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

298

Geothermal Case Study Challenge  

Broader source: Energy.gov [DOE]

The Energy Department's Geothermal Technologies Office hosts an annual student competition in exploration research to engage students pursuing STEM careers and, ultimately, to aid in the next...

299

ADVANCED GAS TURBINE SYSTEMS RESEARCH PROGRAM  

SciTech Connect (OSTI)

The quarterly activities of the Advanced Gas Turbine Systems Research (AGTSR) program are described in this quarterly report. As this program administers research, we have included all program activity herein within the past quarter as dated. More specific research progress reports are provided weekly at the request of the AGTSR COR and are being sent to NETL As for the administration of this program, items worthy of note are presented in extended bullet format following the appropriate heading.

Lawrence P. Golan

2002-07-01T23:59:59.000Z

300

Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979 to 1980 of the US Department of Energy-California State-Coupled Program for reservoir assessment and confirmation  

SciTech Connect (OSTI)

Statewide assessment studies included updating and completing the USGS GEOTHERM File for California and compiling all data needed for a California Geothermal Resources Map. Site specific assessment studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

1980-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SUPRI heavy oil research program  

SciTech Connect (OSTI)

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

302

EMSL: Science: Research and Capability Development Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intramural Research & Capability Development Program Intramural Research & Capability Development Program The EMSL Intramural Research and Capability Development Program facilitates development of new research tools and enables EMSL staff members to advance the important skills and expertise necessary to enhance the EMSL user program. These intramural projects are intended to increase the scientific visibility of EMSL staff in areas that promote the objectives of EMSL's three science themes- Biological Interactions and Dynamics, Geochemistry/Biogeochemistry and Subsurface Science, and Science of Interfacial Phenomena. Technical outcomes of this program include journal publications, scientific presentations, new capabilities or capability enhancements, and expertise to augment EMSL user activities and foster development of innovative

303

Small Business Innovation Research Announces $1.15 Million to Expand Under-Utilized Geothermal Markets  

Broader source: Energy.gov [DOE]

US Energy Department will issue a funding opportunity for $1.15 million to encourage small business innovation in under-utilized geothermal markets.

304

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

305

Stanford. Geothermal Program I n t e r d i s c i p l i n a r y R e s e a r c h  

E-Print Network [OSTI]

t o Dr. Giancarlo E. F a c c a , a n e a r l y pioneer i n the field of geothermal energy, whoStanford. Geothermal Program I n t e r d i s c i p l i n a r y R e s e a r c h i n E n g i n e e r o r n i a .... A PHYSICAL MODEL OF A GEOTHERMAL SYSTEM --ITS DESI3N AND CONSTRUCTION AND ITS

Stanford University

306

Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

307

Marshall County REMC- Geothermal and Add-on Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

Marshall County REMC provides a rebate for its residential customers for the purchase and installation of an add-on heat pump and/or a geothermal heat pump. Customers can receive $300 for the...

308

Laboratory Directed Research and Development Program FY 2010  

E-Print Network [OSTI]

element nuclear physics research program. Accomplishmentsand Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs).

Hansen, Todd

2011-01-01T23:59:59.000Z

309

Laboratory Directed Research and Development Program FY2011  

E-Print Network [OSTI]

element nuclear physics research program. Accomplishmentsand Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs).

ed, Todd Hansen

2013-01-01T23:59:59.000Z

310

LANL, LLNL researchers among Early Career Research Program award recipients  

National Nuclear Security Administration (NNSA)

LANL, LLNL researchers among Early Career Research Program award recipients LANL, LLNL researchers among Early Career Research Program award recipients | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL, LLNL researchers among Early Career Research ... LANL, LLNL researchers among Early Career Research Program award recipients Posted By Office of Public Affairs

311

Low Dose Radiation Program: 2010 Low Dose Radiation Research Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Dose Radiation Research Program Investigators' Workshop Low Dose Radiation Research Program Investigators' Workshop »» Event Slide Show More than 150 people attended this year's workshop, held April 12-14 at the Renaissance M Street Hotel in Washington, D.C. In addition to 34 plenary talks and more than 70 poster presentations made by the program investigators, participants heard guest speakers from the National Cancer Institute and from sister low-dose programs in Europe and Japan. Remarks from DOE Dr. Anna Palmisano, Associate Director, Office of Science, Director for Biological and Environmental Research (BER), welcomed the meeting participants, thanked Low Dose Radiation Research Program Manager Dr. Noelle Metting for her leadership, and acknowledged the importance of the Low Dose Program to DOE because of its unique focus and important role. She

312

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

313

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

314

NETL: Onsite Research & Development Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Portfolio Publications Patents Awards Partnering With Us About Us Contacts Staff Search Coal Research In response to concerns of climate change, the United States is...

315

Edinburgh Research Explorer Probabilistic Programming Process Algebra  

E-Print Network [OSTI]

Edinburgh Research Explorer Probabilistic Programming Process Algebra Citation for published version: Georgoulas, A, Hillston, J, Milios, D & Sanguinetti, G 2014, 'Probabilistic Programming Process.1007/978-3-319-10696-0_21 Link: Link to publication record in Edinburgh Research Explorer Document Version: Preprint (usually

Millar, Andrew J.

316

ITER --"INTERNATIONAL THERMONUCLEAR EXPERIMENTAL RESEARCH PROGRAM".  

E-Print Network [OSTI]

ITER -- "INTERNATIONAL THERMONUCLEAR EXPERIMENTAL RESEARCH PROGRAM". ORGANIZATION TO DIRECT WORLD plasmas and thermonuclear burn processes (cost -$1.5-36)2. (2) An expanded, more ambitious international Thermonuclear Experimental Research Program" by L. J. Perkins #12;NORMAL-CONDUCTING COPPER OPTIONS FOR THE ITER

317

University Competition Leads to Geothermal Breakthroughs | Department of  

Broader source: Energy.gov (indexed) [DOE]

University Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs March 8, 2013 - 11:57am Addthis Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Apply for the 2013 National Geothermal Student Competition by

318

University Competition Leads to Geothermal Breakthroughs | Department of  

Broader source: Energy.gov (indexed) [DOE]

Competition Leads to Geothermal Breakthroughs Competition Leads to Geothermal Breakthroughs University Competition Leads to Geothermal Breakthroughs March 8, 2013 - 11:57am Addthis Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Idaho State University's National Geothermal Student Competition team presenting their research findings at the 2012 Geothermal Resources Council spring/summer meeting. | Photo courtesy of the Geothermal Resources Council. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs How can I participate? Apply for the 2013 National Geothermal Student Competition by visiting the contest page.

319

ORISE: Research Participation Programs by Sponsor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORISE Science Education Programs by Sponsor ORISE Science Education Programs by Sponsor ORISE research participation programs provide students and faculty with experience at top government laboratories Through its contract to operate the Oak Ridge Institute for Science and Education for the U.S. Department of Energy, ORAU partners with some of the most respected federally-funded research laboratories and programs. Below are links to websites created specifically to provide information about these ORISE programs both for prospective applicants as well as for current research participants and the laboratory staff who mentor them. Oak Ridge National Laboratory The Science Education Programs at ORNL provide a wide variety of research experiences for students from K-12 to university students from undergraduates to postdocs as well as university faculty all at the

320

Nuclear Safety Research and Development Program Operating Plan...  

Broader source: Energy.gov (indexed) [DOE]

Program Operating Plan Nuclear Safety Research and Development Program Operating Plan July 5, 2012 Nuclear Safety Research and Development Program Operating Plan This operating...

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Financing Geothermal Power Projects - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

322

The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results  

E-Print Network [OSTI]

2000. A Hot Dry Rock geothermal energy concept utilizing2006. The Future of Geothermal Energy Impact of EnhancedU.S. Department of Energy, Geothermal Technologies Program,

Xu, T.

2014-01-01T23:59:59.000Z

323

Geothermal direct-heat utilization assistance. Federal Assistance Program: Quarterly project progress report, October--December 1992  

SciTech Connect (OSTI)

Progress on technical assistance, R&D activities, technology transfer, and geothermal progress monitoring is summarized.

Not Available

1992-12-31T23:59:59.000Z

324

Environmental research program: FY 1987, annual report  

SciTech Connect (OSTI)

This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

Not Available

1988-03-01T23:59:59.000Z

325

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

will document detailed stratigraphy of each site. 8 | US DOE Geothermal Program eere.energy.gov ScientificTechnical Approach * Detailed Gravity & Magnetics: US Geological...

326

Applications Now Being Accepted for National Geothermal Academy  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's Geothermal Technologies Program is pleased to announce that applications are now being accepted for The National Geothermal Academy.

327

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

328

Demonstration of an Enhanced Geothermal System at the Northwest...  

Broader source: Energy.gov (indexed) [DOE]

Bradys Hot Springs, Nevada Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program...

329

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

330

Development of an Improved Cement for Geothermal Wells  

Broader source: Energy.gov (indexed) [DOE]

temperature fluctuation. * Facilitate the development of geothermal resources in remote locations. 7 | US DOE Geothermal Program eere.energy.gov ScientificTechnical...

331

Geothermal Energy Production with Co-produced and Geopressured...  

Broader source: Energy.gov (indexed) [DOE]

and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet),...

332

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

333

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

334

Geothermal resources of Montana  

SciTech Connect (OSTI)

The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

Metesh, J.

1994-06-01T23:59:59.000Z

335

"Bioenergy Research within SLU" Symposium Program  

E-Print Network [OSTI]

1 "Bioenergy Research within SLU" Symposium Program Tuesday, 25 September 2012 09:00 - 09 School Bioenergy Martin Weih Department of Crop Production Ecology, SLU Uppsala 09:45 ­ 10:00 Swedish funding for bioenergy research 2007-2010 Pär Aronsson Research Officer, Faculty of Natural Resources

336

Brownsberg Nature Park RESEARCH & MONITORING PROGRAM  

E-Print Network [OSTI]

Brownsberg Nature Park ECOLOGICAL RESEARCH & MONITORING PROGRAM 2001-2006 Kelly A. Fitzgerald Bart in Suriname Research Department of STINASU, Stichting Natuurbehoud Suriname Cornelis Jongbawstraat 14, P.O. Box 12252, Paramaribo, SURINAME Phone (597) 427102 / 427103 Fax (597) 421850 Email research

Norconk, Marilyn A.

337

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

338

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

SciTech Connect (OSTI)

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

339

Education and Research Transfer Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transferring and donating education-related Federal equipment to the education and non-profit science and research sectors. Skip Navigation Links Home Newsroom About INL Careers...

340

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

342

SUPRI heavy oil research program  

SciTech Connect (OSTI)

This report summarizes the progress of the research performed by the Stanford University Petroleum Research Institute (SUPRI) during the past three years. Some of SUPRI's past results are discussed briefly for the following five projects: flow properties studies;in-situ combustion; additives to improve mobility control; reservoir definition; and support services. Abstracts of technical reports published from 1990--1993 are also included.

Brigham, W.E.; Ramey, H.J.; Castanier, L.M.

1993-01-01T23:59:59.000Z

343

Transmutation Research Program University of Nevada, Las Vegas  

Broader source: Energy.gov (indexed) [DOE]

Transmutation Transmutation Research Program University of Nevada, Las Vegas University of Nevada, Las Vegas Transmutation Research Program Transmutation Research Program Anthony E. Hechanova Director http://aaa.nevada.edu Transmutation Research Program * Overview of UNLV Program * FY01 and FY02 in Review * Plans for FY03 * Future Outlook - Directions Outline Transmutation Research Program UNLV Transmutation Research Program Program Mission: To establish a world-class program at UNLV for transmutation research and education through faculty-supervised graduate student projects. Program Goals: * Build core competencies and facilities to promote UNLV's strategic growth * Increase UNLV's research activities * Attract students and faculty of the highest caliber Transmutation

344

Water assessment of Heber commercial Geothermal Development program, Imperial County, California (Section 13C)  

SciTech Connect (OSTI)

The U.S. Water Resources Council, at the request of the U.S. Department of Energy, conducted an assessment of water needs, water availability and water resources impacts for the proposed 45 MWe Heber Binary Geothermal Demonstration Project in Imperial County, California.

Not Available

1981-01-01T23:59:59.000Z

345

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

346

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

347

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

348

Decontamination Systems Information and Research Program  

SciTech Connect (OSTI)

The Decontamination Systems Information and Research Program at West Virginia University consists of research and development associated with hazardous waste remediation problems at the Department of Energy complex and elsewhere. This program seeks to facilitate expedited development and implementation of solutions to the nation`s hazardous waste clean-up efforts. By a unique combination of university research and private technology development efforts, new paths toward implementing technology and speeding clean-ups are achievable. Mechanisms include aggressive industrial tie-ins to academic development programs, expedited support of small business technology development efforts, enhanced linkages to existing DOE programs, and facilitated access to hazardous waste sites. The program topically falls into an information component, which includes knowledge acquisition, technology evaluation and outreach activities and an R and D component, which develops and implements new and improved technologies. Projects began in February 1993 due to initiation of a Cooperative Agreement between West Virginia University and the Department of Energy.

Berg, M.; Sack, W.A.; Gabr, M. [and others

1994-12-31T23:59:59.000Z

349

Student Research Participation Program | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact undergrad@anl.gov Student Research Participation Program "I really enjoyed the overall experience and the skills that I have been able to gain from working here." Overview...

350

Imperial County geothermal development quarterly report, July 1-September 30, 1983  

SciTech Connect (OSTI)

The highlights of geothermal development in Imperial County during July, August, and September 1983 are discussed. Topics include the status of geothermal development projects in the county, geothermal staff activities and research projects, and other geothermal-related topics.

Not Available

1983-10-01T23:59:59.000Z

351

Imperial County geothermal development. Quarterly report, October 1-December 31, 1983  

SciTech Connect (OSTI)

The highlights of geothermal development in Imperial County during October, November, and December 1983 are discussed. Topics include the status of geothermal development projects in the County, geothermal staff activities and research projects, and other geothermal-related topics.

Not Available

1984-01-01T23:59:59.000Z

352

Low Dose Radiation Research Program: Research Program Workshop I Abstracts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Genetic Factors Affecting Susceptibility to Low-Dose Radiation Genetic Factors Affecting Susceptibility to Low-Dose Radiation William F. Morgan and John H.J. Petrini Radiation Oncology Research Laboratory, University of Maryland at Baltimore, Baltimore, MD Summary: The goal of our application is to improve the scientific basis for understanding potential risks to the population from low dose radiation exposure based on potential genetic differences that may modulate an individual's sensitivity to low doses of radiation. Abstract: The goal of this application is to improve the scientific basis for understanding potential risks to the population from low dose radiation exposure. We propose to address specific genetic factors that affect individual susceptibility to low dose radiation and ask the question do genetic differences exist that make some individuals more sensitive to

353

Nuclear Safety Research and Development (NSR&D) Program | Department...  

Office of Environmental Management (EM)

Safety Research and Development (NSR&D) Program Nuclear Safety Research and Development (NSR&D) Program The Nuclear Safety Research and Development (NSR&D) Program is managed by...

354

Evaluation of ATP's Intramural Research Awards Program  

E-Print Network [OSTI]

Evaluation of ATP's Intramural Research Awards Program Prepared for Economic Assessment Office (ATP) funds research and development (R&D) projects performed by the National Institute of Standards of infrastructure technology in support of ATP's mission. This report presents the findings from a comprehensive

355

NETL: Advanced Research - The Advanced Research (AR) Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AR Program AR Program Advanced Research The Advanced Research (AR) Program Advanced Research Program Diagram CLICK ON GRAPHIC TO ENLARGE CLICK ON GRAPHIC TO ENLARGE AR pursues projects in several key areas that are considered to be of greatest relevance and potential benefit to advanced coal and power systems. Many of AR's projects focus on "breakthrough" technologies or novel applications, striving to balance high risk against the prospect of high payoff in terms of measurable benefits to coal and power systems technologies - improved efficiencies, lower costs, new materials, and new processes. AR manages a portfolio that includes pre-commercial projects that rely on NETL's in-house facilities and depth of expertise, as well as collaborative external arrangements that draw upon diverse outside

356

Low Dose Radiation Research Program: National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratories National Laboratories The Low Dose Radiation Program funding encompasses several Scientific Focus Areas (SFAs). The SFAs fund merit-reviewed research at DOE national laboratories. This management approach was created in 2008 by the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE's) Office of Science. PNNL's Low Dose Radiation Research Program Scientific Focus Area Linear and Nonlinear Tissue-Signaling Mechanisms in Response to Low Dose and Low Dose-Rate Radiation This program is funded as a U.S. Department of Energy Scientific Focus Area (SFA), and is an integrated cooperative program to understand low dose radiation effects in a complex model system. Coordinating Multidisciplinary Expertise The SFAs are designed to take advantage of the multidisciplinary,

357

Geothermal resources in Southwestern Utah: gravity and magnetotelluric investigations.  

E-Print Network [OSTI]

??Recent geothermal studies on sedimentary basins in Western Utah suggest the possibility of significant geothermal reservoirs at depths of 3 to 5 km. This research… (more)

Hardwick, Christian Lynn

2013-01-01T23:59:59.000Z

358

A fundamental study on hybrid geothermal energy systems.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) This thesis focuses on a fundamental study of hybrid geothermal energy systems, in which geothermal energy is hybridised… (more)

Zhou, Cheng

2014-01-01T23:59:59.000Z

359

Pinpointing America's Geothermal Resources with Open Source Data...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and direct-use through an open source data...

360

CLEAN C O A L RESEARCH PROGRAM  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathway for readying the next generation of affordable clean energy technology Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) CLEAN C O A L RESEARCH PROGRAM 2012 TECHNOLOGY READINESS ASSESSMENT DECEMBER 2012 United States Department of Energy | Office of Fossil Energy -ANALYSIS OF ACTIVE RESEARCH PORTFOLIO ii 2012 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM iii DISCLAIMER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Research Participant Program - Research and Deployment Disciplines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

362

NREL: Research Participant Program - Director's Fellowship  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director's Fellowship Director's Fellowship View NREL's Research Participant Program Video on YouTube. The NREL Director's Fellowships are designed to attract the next generation of exceptionally qualified scientists and engineers with outstanding talent and credentials in renewable energy research and related disciplines. Candidates must be a recent PhD graduate (within two years of completion), and demonstrate a promising career of leadership and research. Candidates will be selected based on eligibility, program expectations, and research proposals. Overriding consideration, when evaluating the application, will be the quality of the candidate. Successful candidates will serve a two-year term, with a possible third year renewal paid with program funding (maximum three year-appointments). The Director's

363

Advanced Research Projects Agency - Energy Program Specific Recovery...  

Office of Environmental Management (EM)

Advanced Research Projects Agency - Energy Program Specific Recovery Plan Advanced Research Projects Agency - Energy Program Specific Recovery Plan Microsoft Word - 44F1801D.doc...

364

Geothermal Technologies Office: Financial Opportunities  

Office of Environmental Management (EM)

partners with industry, academia, and research facilities to further the development of geothermal energy technologies. Competitive solicitations issued as Funding Opportunity...

365

DOE Awards $20 Million to Develop Geothermal Power Technologies  

Broader source: Energy.gov [DOE]

DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids.

366

International Geothermal Association | Open Energy Information  

Open Energy Info (EERE)

Logo: International Geothermal association Name International Geothermal association Place Bochum, Germany Website http://www.geothermal-energy.o References IGA website[1] LinkedIn Connections International Geothermal Association is an organization based in Bochum, Germany. The International Geothermal Association (IGA), founded in 1988, is a scientific, educational and cultural organization established to operate worldwide. It has more than 5,200 members in over 65 countries. The IGA is a non-political, non-profit, non-governmental organization. The objectives of the IGA are to encourage research, the development and utilization of geothermal resources worldwide through the publication of scientific and technical information among the geothermal specialists, the

367

Hydrothermal Injection Research Program. Annual progress report, FY 1983  

SciTech Connect (OSTI)

The test program was initiated at the Raft River Geothermal Field in southern Idaho in September of 1982. A series of eight short-term injection and backflow tests followed by a long-term injection test were conducted on one well in the field. Tracers were added during injection and monitored during backflow of the well. The test program was successful, resulting in a unique data set which shows promise as a means to improve understanding of the reservoir characteristics. In December of 1982 an RFP was issued to obtain an industrial partner to obtain follow-on data on the injection/backflow technique in a second field and to study any alternate advanced concepts for injection testing which the industrial community might recommend. Republic Geothermal, Inc. and the East Mesa Geothermal Field were selected for the second test series. Two wells were utilized for testing, and a series of ten tests were conducted in July and August of 1983 aimed principally at further evaluation of the injection/backflow technique. This test program was also successfully completed. This report describes in detail the analysis conducted on the Raft River data, the supporting work at EG and G Idaho and at ESL/UURI, and gives an overview of the objectives and test program at East Mesa.

Blackett, R.E.; Kolesar, P.T.; Capuano, R.G.; Sill, W.R.; Allman, D.W.; Hull, L.C.; Large, R.M.; Miller, J.D.; Skiba, P.A.; Downs, W.F.; Koslow, K.N.; McAtee, R.E.; Russell, B.F.

1983-11-01T23:59:59.000Z

368

2008 Geothermal Technologies Market Report  

Broader source: Energy.gov [DOE]

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

369

NETL: Advanced Research - HBCU/OMI Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HBCU HBCU Advanced Research Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) Program R&D Student Photo Photo courtesy of Lawrence Berkeley National Laboratory. The Historically Black Colleges and Universities and Other Minority Institutions (HBCU/OMI) Program provides a mechanism for cooperative research among HBCU/OMI institutions, the private sector, and Federal agencies. The central thrust of the program is to generate fresh ideas and tap underutilized talent, define applicable fundamental scientific principles, and develop advanced concepts for generating new and improved technologies across the full spectrum of fossil energy R&D programs. HBCU/OMI Winning Projects 2013 2012 2011 2008 2007 2006 2005 2004 2003 2002 2001 2000

370

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

371

Research Program of a Super Fast Reactor  

SciTech Connect (OSTI)

Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki [Nuclear Professional School / Department of Nuclear Engineering and Management, The University of Tokyo, Tokaimura, Naka-gun, Ibaraki, 319-1188 (Japan); Mori, Hideo [Department of Mechanical Engineering, Kyushu University (Japan); Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki [Japan Atomic Energy Agency (Japan); GOTO, Shoji [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

372

State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report  

SciTech Connect (OSTI)

Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

Icerman, L.; Starkey, A.; Trentman, N. (eds.)

1981-08-01T23:59:59.000Z

373

State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report  

SciTech Connect (OSTI)

The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

Icerman, L.; Starkey, A.; Trentman, N. (eds.) [eds.

1980-10-01T23:59:59.000Z

374

Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979  

SciTech Connect (OSTI)

The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

1980-08-01T23:59:59.000Z

375

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy—geo (earth) + thermal (heat)—is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

376

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

public acceptance of geothermal energy and, for that matter,Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systems

Apps, J.A.

2011-01-01T23:59:59.000Z

377

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

378

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systemstubes used. in geothermal energy plants Feasibility study of

Apps, J.A.

2011-01-01T23:59:59.000Z

379

Director's Discretionary Research and Development Program, Annual Report FY 2007  

Office of Energy Efficiency and Renewable Energy (EERE)

Director's Discretionary Research and Development Program, Annual Report FY 2007 May 2007 Final Draft.

380

Jointly Sponsored Research Program. Final report  

SciTech Connect (OSTI)

The Jointly Sponsored Research Program (JSRP) is a US Department of Energy (DOE) program funded through the Office of Fossil Energy and administered at the Morgantown Energy Technology Center. Under this program, which has been in place since Fiscal Year 1990, DOE makes approximately $2.5 million available each year to the Energy and Environmental Research Center (EERC) to fund projects that are of current interest to industry but which still involve significant risk, thus requiring some government contribution to offset the risk if the research is to move forward. The program guidelines require that at least 50% of the project funds originate from nonfederal sources. Projects funded under the JSRP often originate under a complementary base program, which funds higher-risk projects. The projects funded in Fiscal Year 1996 addressed a wide range of Fossil Energy interests, including hot-gas filters for advanced power systems; development of cleaner, more efficient processing technologies; development of environmental control technologies; development of environmental remediation and reuse technologies; development of improved analytical techniques; and development of a beneficiation technique to broaden the use of high-sulfur coal. Descriptions and status for each of the projects funded during the past fiscal year are included in Section A of this document, Statement of Technical Progress.

NONE

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2009 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MARCH, 2010 Prepared for the U

382

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2011 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MAY, 2012 Prepared for the U

Knowles, David William

383

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2010 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MAY, 2011 Prepared for the U

384

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2012 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 APRIL, 2013 Prepared for the U

385

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MARCH, 2008 Prepared for the U

386

Gordon Research Conferences: Program for 1969  

Science Journals Connector (OSTI)

...Haubach, "Thermal diffusion research...scattering from thermal fluctuations of...20 August. Non-linear programming...search theory to large scale operations...Stuidies of hydro-thermal deposits"; B...Heights College Plasma Physics Burton...vice chairman. Atmospheric Aerosols 30 Jutne-4...

Alexander M. Cruickshank

1969-03-07T23:59:59.000Z

387

University of Amsterdam Programming Research Group  

E-Print Network [OSTI]

Engineering Environment Bob Diertens Programming Research Group, Faculty of Science, University of Amsterdam­ToolBus software engineering environment. We generalize the refine step in this environment towards a process an environment. Keywords: process algebra, software engineering, software architecture, workbench, environment 1

Amsterdam, Universiteit van

388

University of Amsterdam Programming Research Group  

E-Print Network [OSTI]

@science.uva.nl Programming Research Group Electronic Report Series #12;A Process Algebra Software Engineering Environment Bob engineering workbench of which several instances can be combined to form an environment. Keywords: process algebra, software engineering, software architecture, workbench, environment 1. Introduction In [10

Amsterdam, Universiteit van

389

US LHC Accelerator Project and Research Program  

E-Print Network [OSTI]

US LHC Accelerator Project and Research Program Jim Strait Fermilab 13 June 2002 brookhaven - fermilab - berkeley US LHC ACCELERATOR PROJECT #12;13 June 2002 J. Strait - US LHC Accelerator Project 2 Outline US LHC Accelerator (Construction) Project Project Technical and Schedule Status Cost and Schedule

Large Hadron Collider Program

390

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

391

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... « The Geysers ». Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

392

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

393

Research Activities 2012 15 The research funding program, Exploratory Research for Advanced Technology (ERATO), was founded  

E-Print Network [OSTI]

Researcher Project Title ONO Teruo (Professor, Institute for Chemical Research) Development of low-energy-consumption Funding Program for Next Generation World-Leading Researchers (NEXT Program), including thirty-six from to be future world leaders in the field of science and technology, and promoting "green" and "life" innovations

Takada, Shoji

394

Geothermal Energy Development annual report 1979  

SciTech Connect (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

395

Fuel Cycle Research and Development Program  

Broader source: Energy.gov (indexed) [DOE]

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

396

Twelfth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

1987-01-22T23:59:59.000Z

397

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

398

California low-temperature geothermal resources update: 1993  

SciTech Connect (OSTI)

The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

Youngs, L.G.

1994-12-31T23:59:59.000Z

399

Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)  

SciTech Connect (OSTI)

This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

400

Jointly Sponsored Research Program on Energy Related Research  

SciTech Connect (OSTI)

Cooperative Agreements, DE-FC26-08NT43293, DOE-WRI Cooperative Research and Development Program for Fossil Energy-Related Resources began in June 2009. The goal of the Program was to develop, commercialize, and deploy technologies of value to the nation’s fossil and renewable energy industries. To ensure relevancy and early commercialization, the involvement of an industrial partner was encouraged. In that regard, the Program stipulated that a minimum of 20% cost share be achieved in a fiscal year. This allowed WRI to carry a diverse portfolio of technologies and projects at various development technology readiness levels. Depending upon the maturity of the research concept and technology, cost share for a given task ranged from none to as high as 67% (two-thirds). Over the course of the Program, a total of twenty six tasks were proposed for DOE approval. Over the period of performance of the Cooperative agreement, WRI has put in place projects utilizing a total of $7,089,581 in USDOE funds. Against this funding, cosponsors have committed $7,398,476 in private funds to produce a program valued at $14,488,057. Tables 1 and 2 presented at the end of this section is a compilation of the funding for all the tasks conducted under the program. The goal of the Cooperative Research and Development Program for Fossil Energy-Related Resources was to through collaborative research with the industry, develop or assist in the development of innovative technology solutions that will: • Increase the production of United States energy resources – coal, natural gas, oil, and renewable energy resources; • Enhance the competitiveness of United States energy technologies in international markets and assist in technology transfer; • Reduce the nation's dependence on foreign energy supplies and strengthen both the United States and regional economies; and • Minimize environmental impacts of energy production and utilization. Success of the Program can be measured by several criteria. Using the deployment of the federal funding with industrial participation as a performance criterion, over the course of the program, the copsonsors contributed more dollars than the federal funds. As stated earlier, a little more than half of the funding for the Program was derived from industrial partners. The industrial partners also enthusiastically supported the research and development activities with cash contribution of $4,710,372.67, nearly 65% of the required cost share. Work on all of the tasks proposed under the Cooperative Agreement has been completed. This report summarizes and highlights the results from the Program. Under the Cooperative Agreement Program, energy-related tasks emphasized petroleum processing, upgrading and characterization, coal and biomass beneficiation and upgrading, coal combustion systems development including oxy-combustion, emissions monitoring and abatement, coal gasification technologies including gas clean-up and conditioning, hydrogen and liquid fuels production, and the development of technologies for the utilization of renewable energy resources. Environmental-related activities emphasized cleaning contaminated soils using microbial fuel cells, development of processes and sorbents for emissions reduction and recovery of water from power plant flue gas, and biological carbon capture and reuse. Technology enhancement activities included resource characterization studies, development of improved methods, monitors and sensors. In general the goals of the tasks proposed were to enhance competitiveness of U.S. technology, increase production of domestic resources, and reduce environmental impacts associated with energy production and utilization. Technologies being brought to commercialization as a result of the funds provided by the Cooperative Agreement contribute to the overall goals of the USDOE and the nation. Each has broad applicability both within the United States and abroad, thereby helping to enhance the competitiveness of U.S. energy technologies in international markets and assisting in technology t

No, author

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal progress monitor. Progress report No. 7  

SciTech Connect (OSTI)

A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

Not Available

1983-04-01T23:59:59.000Z

402

Geothermal energy for Hawaii: a prospectus  

SciTech Connect (OSTI)

An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

Yen, W.W.S.; Iacofano, D.S.

1981-01-01T23:59:59.000Z

403

Geothermal resource data base: Arizona  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

404

Geothermal pipeline  

SciTech Connect (OSTI)

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

405

Status of Environmental Controls for Geothermal Energy Development  

SciTech Connect (OSTI)

This report presents the initial findings and recommendations of the Environmental Controls Panel to the Interagency Geothermal Coordinating Council (IGCC). The Panel has been charged to assess the adequacy of existing environmental controls for geothermal energy systems, to review ongoing programs to develop environmental controls, and to identify controls-related research areas where redirection of federal efforts are appropriate to assure the availability of controls on a timely basis. In its deliberations, the Panel placed greatest emphasis on the use of geothermal resources for electricity generation, the application of geothermal energy receiving greatest attention today. The Panel discussed major known environmental concerns and their potential impact on the commercialization of geothermal resources, control options, regulatory considerations, and ongoing and planned research programs. The environmental concerns reviewed in this report include: air emissions, liquid discharges, solid wastes, noise, subsidence, seismicity, and hydrological alterations. For each of these concerns a brief description of the concern, associated legislation and regulations, control approaches, federal funding trend, and the Panel's recommendations and priorities are presented. In short, the Panel recommends that controls-related research efforts be rebalanced and enhanced, with the greatest emphasis placed on controls for hydrogen sulfide (H{sub 2}S) and non-H{sub 2}S gaseous emissions, injection monitoring methods, systems to treat and use nongeothermal waters for environmental control purposes, solid waste characterization and management methods evaluation, and subsidence controls.

Caskey, John F.

1980-05-01T23:59:59.000Z

406

EERE Postdoctoral Research Award Participants Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Postdoctoral Research Award Participants Postdoctoral Research Award Participants Program Year of Award Name Facility Project Biomass 2011 Gunda, Padmaja Pacific Northwest National Laboratory Development of Catalyst System for the Selective Trimerisation of Dienes 2011 Lampert, David Argonne National Laboratory Water Quality Assessment of Pesticide Usage for Biofuel Production 2011 Hobdey, Sarah National Renewable Energy Laboratory Oligomer Saccharification 2011 Clark, Jared National Renewable Energy Laboratory Kinetic Modeling of Biomass Pyrolysis Coupled with Experimental Results Fuel Cell Technologies 2011 Ardo, Shane California Institute of Technology Next-Generation Si Microwire Array Devices for Unassisted Photoelectrosynthesis 2012 Eichman, Joshua National Renewable Energy Laboratory

407

The Research Program | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Research Program The Research Program What is the chemical and physical form of uranium in reduced aquifers? Uranium behavior in the Rifle, CO, aquifer. In order to directly interrogate the chemical and physical form of reduced uranium (U(IV)) in bioremediated sediments within the contaminated aquifer at the Rifle site, a novel technique was developed based on reactors installed in wells (center right). U(IV) was found to be bound to biomass (structural model shown in upper left-hand) within thin (microns) sulfide-rich coatings on mineral grains (bottom left). Uranium in its oxidized (U(VI)) form, is one of the most common, abundant, and problematic subsurface contaminants at legacy nuclear sites. In contrast, the tetravalent form of uranium (U(IV) ) is relatively insoluble

408

Micro-Earthquake At Coso Geothermal Area (2005) | Open Energy Information  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Area (2005) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2005 Usefulness useful DOE-funding Unknown Notes Characterization of 3D Fracture Patterns at The Geysers and Coso Geothermal Reservoirs by Shear-wave Splitting, Rial, Elkibbi, Yang and Pereyra. The raw data for the project consists of seismographic recordings of microearthquakes (MEQ) detected over many years by arrays of sensors at both The Geysers and Coso. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Micro-Earthquake_At_Coso_Geothermal_Area_(2005)&oldid=475476"

409

DOE Office of Indian Energy Foundational Course on Geothermal Energy Text Version  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Webinar Geothermal Webinar (text version) Below is the text version of the Webinar titled "DOE Office of Indian Energy Foundational Course: Geothermal Energy as a Renewable Energy." Amy Hollander: Hello. I'm Amy Hollander with the National Renewable Energy Laboratory. Welcome to today's webinar on Geothermal Energy as a Renewable Energy, sponsored by the U.S. Department of Energy Office of Indian Energy Policy and Programs. This webinar is being recorded from DOE's National Renewable Energy Laboratory's brand new, state of the art net-zero energy research support facility in Golden, Colorado. Our Geothermal presentation today is one of nine foundational webinars in this series from the DOE Office of Indian Energy Education Initiative designed to assist tribes with energy

410

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

411

OE Power Systems Engineering Research & Development Program Partnerships |  

Broader source: Energy.gov (indexed) [DOE]

Mission » Power Systems Engineering Research and Development » OE Mission » Power Systems Engineering Research and Development » OE Power Systems Engineering Research & Development Program Partnerships OE Power Systems Engineering Research & Development Program Partnerships The OE Power Systems Research and Development Program engages a broad group of stakeholders in program planning, identification of high-priority technology gap areas, and joint participation in research, development, demonstration, and deployment activities. The partnerships involve: Partnerships with Other Federal Programs Federal partnerships include participation with the Federal Energy Management Program (FEMP) to promote and install distributed energy systems at Federal facilities; the Office of Energy Assurance and the Department of

412

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project | Open  

Open Energy Info (EERE)

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project OM-300 - MWD Geothermal Navigation Instrument Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title OM-300 - MWD Geothermal Navigation Instrument Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole MWD Tools for Directional Drilling Project Description Honeywell proposes to perform this project in three phases; Phase 1 will enhance accelerometers, magnetometers and high temperature electronic components to operate at 300C. Phase 2 will define, design and demonstrate circuit card assembly (CCA) and external packaging capable of operating in the temperature, shock, and vibration of downhole MWD tools. Phase 3 will utilize the components onto a CCA, integrate the CCA sensors into a final package for final assembly, test, and the delivery of one Prototype.

413

National Geothermal Data System (NGDS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

414

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

415

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

SciTech Connect (OSTI)

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

416

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

417

Stanford Geothermal Workshop- Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

418

ORISE Research Participation Programs at the Centers for Disease...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Participation Programs at The Centers for Disease Control and Prevention Oak Ridge Institute for Science and Education Home About the CDC About ORISE Current Research...

419

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

420

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

422

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

423

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

424

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

425

Final Scientific - Technical Report, Geothermal Resource Exploration...  

Open Energy Info (EERE)

Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Abstract With financial support from the U.S. Department of Energy (DOE), Layman Energy...

426

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

427

Women of Wind Energy Honor Wind Program Researchers | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Women of Wind Energy Honor Wind Program Researchers Women of Wind Energy Honor Wind Program Researchers August 1, 2013 - 2:54pm Addthis This is an excerpt from the Second Quarter...

428

Geothermal technology development program. Quarterly progress report, April-June 1981  

SciTech Connect (OSTI)

The status of ongoing research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology is reported. (MHR)

Kelsey, J.R. (ed.)

1981-10-01T23:59:59.000Z

429

Geothermal: Sponsored by OSTI -- Geothermal Energy Multi-Year...  

Office of Scientific and Technical Information (OSTI)

Multi-Year Program Plan FY 1993-1997, January 1992, draft Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

430

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

431

Through its Clean Coal Research Program, FE  

Broader source: Energy.gov (indexed) [DOE]

its inception as part of DOE in 1977, FE's its inception as part of DOE in 1977, FE's R&D mission has continued to evolve to reflect the nation's key energy supply, security and environmental needs. Coal represents 93 percent of total U.S. fossil fuel reserves and is the largest single source (45 percent) of electricity generation, both currently and projected for the foreseeable future. It also is among the most carbon- intensive energy resources. Continuing the legacy of previous successes in the Clean Coal Technology Development Program, FE R&D today is focusing on ways to continue using this vital source of energy while minimizing atmospheric CO 2 emissions. Through its Clean Coal Research Program, FE is in the forefront of global efforts to develop and

432

Imperial County geothermal development annual meeting: summary  

SciTech Connect (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

433

Geothermal EGS Demonstration Photo Library  

Broader source: Energy.gov [DOE]

EGS Demonstrations make up the most advanced research and science investments in the geothermal sector. Five active demonstration sites nationwide are proving the spectrum of EGS potential, in and near existing hydrothermal operations, with infrastructure, and in the longer-term greenfield settings, where no previous geothermal development is operating.

434

Geothermal News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

435

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

436

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Community’s supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

437

Federal assistance program. Geothermal technology transfer. Project status report, May 1986  

SciTech Connect (OSTI)

Progress for the month of May, 1986, is described. Projects include evaluation of direct heating of greenhouses and other businesses, technology transfer to consultants, developers and users, and program monitor activities. (ACR)

Lienau, P.J.; Culver, G.

1986-05-01T23:59:59.000Z

438

STANFORD GEOTHERMAL PR0GRAh.I STANFORD UNIVERSITY  

E-Print Network [OSTI]

Department of Energy since 1975. research i n geothermal r e s e r v o i r engineering techniques t h a t w iSTANFORD GEOTHERMAL PR0GRAh.I STANFORD UNIVERSITY STANFORD,CALIFORNIA 94305 SGP-TR-5 1 GEOTHERMAL Implications of Adsorption and Formation Fluid Composition on Geothermal Reservoir Evaluation . . 40 TASK 5

Stanford University

439

CCEI | Research Experience for Undergraduates Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCEI's REU Program Program dates: June 8, 2015 - August 13, 2015 Summer 2015 REU Program Flyer CCEI is recruiting highly motivated undergraduate students who are studying chemical...

440

FY 1995 research highlights: PNL accomplishments in OER programs  

SciTech Connect (OSTI)

Pacific Northwest Laboratory (PNL) conducts fundamental and applied research in support of the US Department of Energy`s (DOE) core missions in science and technology, environmental quality, energy resources, and national security. Much of this research is funded by the program offices of DOE`s Office of Energy Research (DOE-ER), primarily the Office of Basic Energy Sciences (BES) and the Office of Health and Environmental Research (OHER), and by PNL`s Laboratory Directed Research and Development (LDRD) Program. This document is a collection of research highlights that describe PNL`s accomplishments in DOE-ER funded programs during Fiscal Year 1995. Included are accomplishments in research funded by OHER`s Analytical Technologies, Environmental Research, Health Effects, General Life Sciences, and Carbon Dioxide Research programs; BES`s Materials Science, Chemical Sciences, Engineering and Geoscience, and Applied Mathematical Sciences programs; and PNL`s LDRD Program. Summaries are given for 70 projects.

NONE

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Property:Geothermal/Awardees | Open Energy Information  

Open Energy Info (EERE)

Awardees Awardees Jump to: navigation, search Property Name Geothermal/Awardees Property Type String Description Awardees (Company / Institution) Pages using the property "Geothermal/Awardees" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Montana Tech of The University of Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + New Mexico Institute of Mining and Technology +

442

Unearthing Geothermal's Potential | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unearthing Geothermal's Potential Unearthing Geothermal's Potential Unearthing Geothermal's Potential September 16, 2010 - 12:33pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Our latest geothermal technologies awards are for those who think outside of the box (and below the surface). Secretary of Energy Steven Chu announced $20 million towards the research and development of non-conventional geothermal energy technologies in three areas: low temperatures fluids, geothermal fluids recovered from oil and gas wells and highly pressurized geothermal fluids. As the Secretary said, these innovative projects have the potential to expand the use of geothermal energy to more areas around the country. Low temperature resources are widely available across the country and offer

443

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

444

Geothermal electric cash flow model (GCFM)  

SciTech Connect (OSTI)

The Geothermal Cash Flow Model (GCFM) is a user-interactive computer model that estimates the costs and cash flow patterns of geothermal electric development projects. It was developed as a financial analysis tool for the US Department of Energy Geothermal Loan Guaranty Program. It contains a power-plant sizing and costing routine that is useful for preliminary feasibility studies of geothermal projects. The model can be operated using either a few preliminary estimates of geothermal resource characteristics or detailed estimates from reservoir engineering and power plant engineering studies. GCFM is available for public distribution.

Entingh, D.J.; Keimig, M.A.

1981-10-01T23:59:59.000Z

445

DOE-EERC jointly sponsored research program  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Cooperative Agreement DE-FC21-93MC30098 funded through the Office of Fossil Energy and administered at the Federal Energy Technology Center (FETC) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy and Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying efficient, nonpolluting energy technologies that can compete effectively in meeting market demands for clean fuels, chemical feedstocks, and electricity in the 21st century. The objective of the JSRP was to advance the deployment of advanced technologies for improving energy efficiency and environmental performance through jointly sponsored research on topics that would not be adequately addressed by the private sector alone. Examples of such topics include the barriers to hot-gas cleaning impeding the deployment of high-efficiency power systems and the search for practical means for sequestering CO{sub 2} generated by fossil fuel combustion. The selection of particular research projects was guided by a combination of DOE priorities and market needs, as provided by the requirement for joint venture funding approved both by DOE and the private sector sponsor. The research addressed many different energy resource and related environmental problems, with emphasis directed toward the EERC's historic lead mission in low-rank coals (LRCs), which represent approximately half of the U.S. coal resources in the conterminous states, much larger potential resources in Alaska, and a major part of the energy base in the former U.S.S.R., East Central Europe, and the Pacific Rim. The Base and JSRP agreements were tailored to the growing awareness of critical environmental issues, including water supply and quality, air toxics (e.g., mercury), fine respirable particulate matter (PM{sub 2.5}), and the goal of zero net CO{sub 2} emissions.

Hendrikson, J.G.; Sondreal, E.A.

1999-09-01T23:59:59.000Z

446

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM  

E-Print Network [OSTI]

Pyrolysis Research: Bioenergy Testing and Analysis Laboratory BIOENERGY PROGRAM Pyrolysis research is conducted at Texas A&M University at the Bioenergy Testing and Analysis Laboratory. Our researchers create

447

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

supports public interest energy research and development that will help improve the quality of life Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT ENERGY Prepared for: California Energy Commission Prepared by: San Diego State Research Foundation #12

448

Geothermal Energy; (USA)  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

449

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

450

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

451

Geothermal Technology Evolution Rationale for the National Energy Strategy  

SciTech Connect (OSTI)

The DOE developed ''Technology Evolution Rationale'' documents for many of its technology development programs, at this time (report is dated October 1, 1990). This is a very significant description of the status of resources, technology, and industry in 1990, and the thinking that guided the DOE Geothermal Research Program at this time. The report describes: Geothermal energy conversion and use technologies, Resources and land use, Stakeholder and users, Industry status, and Market acceptance and experience in the U.S. The Economic status chapter covers Figures of Merit for assessing geothermal energy systems, and trends in geothermal development. The chapter on Cost/performance projections provides much detail on estimates of system costs, and projections for how DOE R&D would likely affect those costs. The Rationale chapter provides much detail on how subsystems are linked together to provide system performance and cost estimates, and details of technology improvements being worked on that are likely to reduce the cost of power from geothermal. Includes references (citations) to the background studies used to develop the details here. (DJE 2005)

None

1990-10-01T23:59:59.000Z

452

Low Dose Radiation Research Program: Universities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Universities Universities | Duke University | Loma Linda University | Northwestern University | University of Chicago | University of California Davis | Northwestern University University of Chicago University of California Davis Effects of Low Dose Irradiation on NF-κB Signaling Networks and Mitochondria Principal Investigator: Dr. Gayle Woloschak DOE Low Dose Research Program Projects Low dose-low dose rate irradiation leads to long term changes in numbers of mitochondria and mitochondrial genomes - Principal Investigator: Gayle Woloschak, Professor, Department of Radiation Oncology, Northwestern University, Chicago, IL, USA NF-κB-mediated pro-survival network in low dose radiation-induced adaptive protection - Principal Investigator: Jian Jian Li, Professor, Department of Radiation Oncology, University of California Davis, Davis,

453

Berkeley Lab Earth Sciences Division - Research - Programs - Climate &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research > programs > climate_carbon_sciences research > programs > climate_carbon_sciences Climate & Carbon Sciences Program Research Areas The Carbon Cycle Better Models for Robust Climate Projection Climate Science for a Sustainable Energy Future Projects Contacts Facilities & Centers Publications Climate & Carbon Sciences Program Climate & Carbon Sciences Program The global carbon cycle strongly regulates earth's climate, while anthropogenic disturbance of the carbon cycle is the main cause of current and predicted climate change. At the same time, humans depend on the terrestrial carbon cycle for food, fiber, energy, and pharmaceuticals. The Climate and Carbon Sciences Program of the Earth Sciences Division at Lawrence Berkeley National Laboratory encompasses both atmospheric and

454

DIII-D research program progress  

SciTech Connect (OSTI)

A summary of highlights of the research on the DIII-D tokamak in the last two years is given. At low q, toroidal beta ({beta}{sub T}) has reached 11%. At high q, {epsilon}{beta}{sub p} has reached 1.8. DIII-D data extending from one regime to the other show the beta limit is at least {beta}{sub T}(%) {ge} 3.5 I/aB (MA, m, T). Prospects for using H-mode in future devices have been enhanced. The discovery of negative edge electric fields and associated turbulence suppression have become part of an emerging theory of H-mode. Long pulse (10 second) H-mode with impurity control has been demonstrated. Radial sweeping of the divertor strike points and gas puffing under the X-point have lowered peak divertor plate heat fluxes a factor of 3 and 2 respectively. T{sub i} = 17 keV has been reached in a hot ion H-mode. Electron cyclotron current drive (ECCD) has produced up to 70 kA of driven current. Program elements now beginning are fast wave current drive (FWCD) and an advanced divertor program (ADP). 38 refs., 10 figs.

Stambaugh, R.D.

1990-11-01T23:59:59.000Z

455

ERHAN KUTANOGLU Graduate Program in Operations Research and Industrial Engineering  

E-Print Network [OSTI]

ERHAN KUTANOGLU Graduate Program in Operations Research and Industrial Engineering Department · As a tenured faculty member in the Operations Research and Industrial Engineering Graduate Program, develop School of Engineering Co-Director, Industrial Affiliates Program January 2012 ­ Present Advanced

Kutanoglu, Erhan

456

Ecological Research Division Theoretical Ecology Program. [Contains abstracts  

SciTech Connect (OSTI)

This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

Not Available

1990-10-01T23:59:59.000Z

457

CUNY Pipeline Program for Careers in College Teaching and Research  

E-Print Network [OSTI]

CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity to the CUNY Pipeline Program which is designed to prepare promising undergraduate students for admission;CUNY Pipeline Program for Careers in College Teaching and Research Educational Opportunity & Diversity

Dennehy, John

458

NREL: Energy Analysis - Geothermal Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by...

459

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Energy Savers [EERE]

portfolio for the coming years - the Frontier Observatory for Research in Geothermal Energy (FORGE). Click below for the full presentation. To see a listing of all GTO...

460

National Geothermal Resource Assessment and Classification  

Broader source: Energy.gov (indexed) [DOE]

not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov RelevanceImpact of Research * Overall Summary -...

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2013 Annual Report -- Geothermal Technologies Office | Department...  

Office of Environmental Management (EM)

for an EGS field site project, called FORGE -- the Frontier Observatory for Research in Geothermal Energy -- after an intense, intra-office competition. The Office also had gains...

462

DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

RENO, Nev.  - Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a...

463

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

464

Virginia Geothermal Resources Conservation Act (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Buying & Making Electricity Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia Department of Mines, Minerals, and Energy It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to the resource, protect existing high quality state waters and safeguard potable waters from pollution, safeguard the natural environment, and promote geothermal and

465

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

FLUID CONTROL: PROJECTS FY 1977 THE DEFINITION OF ENGINEERINGengineering problems resulting from the use of geothermal fluidsengineering design caused by chemical, thermodynamic, and transport properties of geothermal fluids;

Apps, J.A.

2011-01-01T23:59:59.000Z

466

Geothermal Technologies FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Geothermal Technologies accelerates the development technologies in pre-commercial stages of development. and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce both the risks and costs of bringing geothermal power online. As a key component of our clean energy mix, geothermal is a renewable energy that generates power around the clock. What We Do The EERE geothermal technologies portfolio consists of a three-pronged investment approach to facilitate the growth of installed electrical capacity:  Research and Development invests in innovative technologies and techniques to improve the process of identifying, accessing, and developing geothermal

467

High-Temperature-High-Volume Lifting for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Motor 300C Water Test Section Cross-section View Stator Motor Housing Rotor Bearings Seal Winding 9 | US DOE Geothermal Program eere.energy.gov Geothermal ESP - Thermal Test...

468

Addendum Added to Innovative Demonstration of Geothermal Energy Production FOA  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s (DOE) Geothermal Technologies Program (GTP) has released a Funding Opportunity Announcement (FOA) that seeks innovative demonstration of energy production from non-conventional geothermal resources.

469

University Coal Research Program 2013 Selections | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

University Coal Research Program 2013 Selections University Coal Research Program 2013 Selections University Coal Research Program 2013 Selections Since the University Coal Research Program's inception in 1979, more than 728 research projects have been funded. With a combined value in excess of $132 million, these projects have provided new insights into coal's future use, and have given more than 1,800 students invaluable experience in understanding the science and technology of coal. Attached is the list of 2013 project selections under this program. UCR_Project_Selections_2013.pdf More Documents & Publications FACT SHEET: Clean Coal University Research Awards and Project Descriptions International Nuclear Energy Research Initiative: 2008 Annual Report 2013 Annual DOE-NE Materials Research Coordination Meeting

470

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

471

Final Technical Report, Geothermal Resource Evaluation And Definitioni  

Open Energy Info (EERE)

Technical Report, Geothermal Resource Evaluation And Definitioni Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Details Activities (9) Areas (1) Regions (0) Abstract: This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource

472

Power Plant Research and Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) Power Plant Research and Siting Program (Maryland) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of Natural Resources The Power Plant Research and Siting Act of 1971 established the Power Plant Research Program (PPRP) to evaluate electric generation issues in the state and recommend responsible, long-term solutions. The program manages a consolidated review of all issues related to power generation in Maryland: it reviews applications, evaluates impacts, and recommends conditions for

473

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

, National Energy Technology Laboratory, the Western Regional Biomass Energy Program, and Yolo CountyPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT ACCELERATED ANAEROBIC COMPOSTING FOR ENERGY GENERATION AT YOLO COUNTY CENTRAL LANDFILL MAY 2012 CEC5002012063 Prepared for

474

Coatings in geothermal energy production  

Science Journals Connector (OSTI)

Geothermal energy has a forecasted potential of 25000 MW years of electrical and 16 000-67 000 MW years of thermal energy capacity by the year 2000. Current estimates indicate that lower temperature resources exist in at least 39 states. The development of these resources requires a wide range of cost-effective materials. The purpose of this paper is to review geothermal conditions and the present use of coatings in geothermal production, and to assess the potential for their future applications. The early identification of such materials needs is an essential step for planning the total requirements for well drilling and facilities construction in all sectors of the energy program.

Robert R. Reeber

1980-01-01T23:59:59.000Z

475

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

476

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

477

List of Geothermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Geothermal Incentives Geothermal Incentives Jump to: navigation, search The following contains the list of 1895 Geothermal Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1895) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment

478

Geothermal Resources (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Conservation and Survey Division School of Natural Resources This section establishes the support of the state for the efficient development of Nebraska's geothermal resources, as well as permitting

479

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europe’s future energy requirements is much sm...

1977-01-01T23:59:59.000Z

480

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal research program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Uncovering Coal's Secrets Through the University Coal Research Program |  

Broader source: Energy.gov (indexed) [DOE]

Uncovering Coal's Secrets Through the University Coal Research Uncovering Coal's Secrets Through the University Coal Research Program Uncovering Coal's Secrets Through the University Coal Research Program December 18, 2013 - 10:38am Addthis Uncovering Coal’s Secrets Through the University Coal Research Program The challenges confronting the environmentally sound use of our country's fossil energy resources are best addressed through collaborative research and development. That's why this approach, which stretches federal dollars, is at the heart of the Office of Fossil Energy's University Coal Research (UCR) Program. Managed by the National Energy Technology Laboratory (NETL), the UCR program funds university research to improve understanding of the chemical and physical properties of coal, one of our nation's most abundant

482

Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy Information  

Open Energy Info (EERE)

Geothermal/FundingOpportunityAnnouncemt Geothermal/FundingOpportunityAnnouncemt Jump to: navigation, search Property Name Geothermal/FundingOpportunityAnnouncemt Property Type String Description Funding Opportunity Announcement Pages using the property "Geothermal/FundingOpportunityAnnouncemt" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + DE-FOA-0000109 +

483

Polymer Composites Research in the ALM Materials Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

merit08warren2.pdf More Documents & Publications Polymer Composites Research in the LM Materials Program Overview Structural Automotive Components from Composite Materials...

484

DOE Office of Science Graduate Student Research (SCGSR) Program...  

Office of Science (SC) Website

SCGSR Home DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory...

485

aligned-research-programs | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to remove environmental concerns related to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies,...

486

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

487

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

488

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

489

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

490

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

491

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

492

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

LIGHTING CALIFORNIA'S FUTURE: MARKET CONNECTIONS Prepared for: California Energy Commission Research · Energy Systems Integration Lighting California's Future: Market Connections is one of nine Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT

493

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT CREATING INCENTIVES FOR ELECTRICITY PROVIDERS TO INTEGRATE DISTRIBUTED ENERGY RESOURCES NOVEMBER 2007 CEC5002008028 Prepared for: California Energy Commission Prepared by: Electric Power Research Institute (EPRI) #12; Prepared by

494

College of Engineering Summer Research Experience for Undergraduates Program  

E-Print Network [OSTI]

College of Engineering Summer Research Experience for Undergraduates Program Request for an Engineering Student for Summer 2011 Research Faculty Name _____Peter Monson the interdisciplinary nature of this project). The project is about modeling the molecular behavior of fluids confined

Mountziaris, T. J.

495

College of Engineering Summer Research Experience for Undergraduates Program  

E-Print Network [OSTI]

College of Engineering Summer Research Experience for Undergraduates Program Request for an Engineering Student for Summer 2013 Research Faculty Name _______Peter Monson the interdisciplinary nature of this project). The project is about modeling the molecular behavior of fluids confined

Mountziaris, T. J.

496

DECONTAMINATION SYSTEMS AND INFORMATION RESEARCH PROGRAM  

SciTech Connect (OSTI)

During the five plus years this Cooperative Agreement existed, more than 45 different projects were funded. Most projects were funded for a one year period but there were some, deemed of such quality and importance, funded for multiple years. Approximately 22 external agencies, businesses, and other entities have cooperated with or been funded through the WVU Cooperative Agreement over the five plus years. These external entities received 33% of the funding by this Agreement. The scope of this Agreement encompassed all forms of hazardous waste remediation including radioactive, organic, and inorganic contaminants. All matrices were of interest; generally soil, water, and contaminated structures. Economic, health, and regulatory aspects of technologies were also within the scope of the agreement. The highest priority was given to small businesses funded by the Federal Energy Technology Center (FETC) and Department of Energy (DOE) involved in research and development of innovative remediation processes. These projects were to assist in the removal of barriers to development and commercialization of these new technologies. Studies of existing, underdeveloped technologies, were preferred to fundamental research into remediation technologies. Sound development of completely new technologies was preferred to minor improvements in existing methods. Solid technological improvements in existing technologies or significant cost reduction through innovative redesign were the preferred projects. Development, evaluation, and bench scale testing projects were preferred for the WVU research component. In the effort to fill gaps in current remediation technologies, the worth of the WVU Cooperative Agreement was proven. Two great technologies came out of the program. The Prefabricated Vertical Drain Technology for enhancing soil flushing was developed over the 6-year period and is presently being demonstrated on a 0.10 acre Trichloroethylene contaminated site in Ohio. The SpinTek Centrifugal Membrane System was a unique separation process introduced through the Agreement that is now being used at the Los Alamos National Laboratory. Based on the cost to the USDOE for both technologies and considering their usefulness in cleaning up contaminated sites, no other technologies developed through USDOE provide or have the propensity to provide as great a return on investment and impact on environmental remediation. These technologies alone make the $10.3 million USDOE investment in the WVU Cooperative Agreement a tremendous investment.

Echol E. Cook, Ph.D., PE.

1998-11-01T23:59:59.000Z

497

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

498

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

499

Building Technologies Program | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Building Technologies Program Building Technologies Program SHARE Building Technologies Program The Building Technologies Program Office administratively facilitates the integration of ORNL research across disciplines to support federally-and privately-funded research. ORNL's buildings research is directed and funded primarily by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Building Technologies Program. The Federal Energy Management Program, Geothermal Technologies Program, Advanced Manufacturing Office,Office of Weatherization and Intergovernmental Program, Policy and International Affairs, Concentrating Solar Power Program, Sustainability Performance Office, and other partners also support ORNL's research to develop new building technologies. Building Technologies Office

500

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data,  

Open Energy Info (EERE)

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on predicting characteristics of fractures and their orientation prior to drilling new wells. It will also focus on determining the location of the fractures, spacing and orientation during drilling, as well as characterizing open fractures after stimulation to help identify the location of fluid flow pathway within the EGS reservoir. These systems are created by passively injecting cold water, and stimulating the permeation of the injected water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the purpose of producing the geothermal resource. The main focus of the project will be on developing better understanding of the mechanisms for the stimulation of existing fractures, and to use the information for better exploitation of the high temperature geothermal resources located in the northwest portion of the Geysers field and similar fields.