Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Data acquisition for low-temperature geothermal well tests and long-term monitoring. Final report  

SciTech Connect

Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

Lienau, P.J.

1992-09-01T23:59:59.000Z

2

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network (OSTI)

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

3

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network (OSTI)

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

4

Geothermal status report  

SciTech Connect

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

5

Annual US Geothermal Power Production and Development Report | Open Energy  

Open Energy Info (EERE)

US Geothermal Power Production and Development Report US Geothermal Power Production and Development Report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Annual US Geothermal Power Production and Development Report Details Activities (0) Areas (0) Regions (0) Abstract: To increase the accuracy and value of information presented in its annual US Geothermal Power Production and Development Report, the Geothermal Energy Association (GEA) developed a reporting system, known as the Geothermal Reporting Terms and Definitions, in 2010. The Geothermal Reporting Terms and Definitions serve as a guideline to project developers in reporting geothermal project development information to the GEA. A basic understanding of the Geothermal Reporting Terms and Definitions will also aid the reader in fully understanding the information presented in this

6

Geothermal Technologies Office Annual Report 2012 | Department...  

Office of Environmental Management (EM)

Geothermal Technologies Office Annual Report 2012 Geothermal Technologies Office Annual Report 2012 This annual report for the U.S. Department of Energys Geothermal Technologies...

7

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

8

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

9

Stanford Geothermal Program Final Report  

E-Print Network (OSTI)

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

10

2008 Geothermal Technologies Market Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

11

Geothermal Technologies Office 2012 Peer Review Report | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program...

12

Geothermal Energy Development annual report 1979  

SciTech Connect

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

13

Assessment of the geothermal resources of Kansas. Final report  

SciTech Connect

The following regional geological and geophysical studies are reported: establishment of a geothermal gradient data base from approximately 45,000 bottom hole temperatures recorded from well logs and interpretation of this data in terms of regional geology and establishment and interpretation of a second data base of geothermal gradients from thermal logging data from 144 holes of opportunity in the state. (MHR)

Steeples, D.W.; Stavnes, S.A.

1982-06-01T23:59:59.000Z

14

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

15

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

16

Data acquisition for low-temperature geothermal well tests and long-term monitoring  

SciTech Connect

Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

Lienau, P.J.

1992-09-01T23:59:59.000Z

17

Geothermal: Sponsored by OSTI -- NGDS Final Report  

Office of Scientific and Technical Information (OSTI)

Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

18

Geothermal: Sponsored by OSTI -- Final Report  

Office of Scientific and Technical Information (OSTI)

Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

19

Geothermal progress monitor. Progress report No. 4  

SciTech Connect

The following are included: geothermal power plants proposed and on-line; direct heat applications proposed and operational; trends in drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guaranty program; research and development activities; legal, institutional, and regulatory activities; environmental activities; reports and publications; and a directory. (MHR)

Not Available

1980-09-01T23:59:59.000Z

20

2008 Geothermal Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives,...

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2010 Geothermal Technology Program Peer Review Report | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Fielding of...

22

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the economic arena, the policy environment in 2008 was favorable to continued geothermal power development. In the United States, the Emergency Economic Stabilization Act (EESA)...

23

Near-Term Developments in Geothermal Drilling  

SciTech Connect

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

24

Structural interpretation of the Coso geothermal field. Summary report,  

Open Energy Info (EERE)

the Coso geothermal field. Summary report, the Coso geothermal field. Summary report, October 1986-August 1987 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Structural interpretation of the Coso geothermal field. Summary report, October 1986-August 1987 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in Southern California, is an excellent example of a structurally controlled geothermal resource. Author(s): Austin, C.F.; Moore, J.L. Published: Publisher Unknown, 9/1/1987 Document Number: Unavailable DOI: Unavailable Source: View Original Report Geothermal Literature Review At Coso Geothermal Area (1987) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Structural_interpretation_of_the_Coso_geothermal_field._Summary_report,_October_1986-August_1987&oldid=473519"

25

Final Technical Report, Geothermal Resource Evaluation And Definitioni  

Open Energy Info (EERE)

Technical Report, Geothermal Resource Evaluation And Definitioni Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii, And Iii For The Animas Valley, Nm Geothermal Resource Details Activities (9) Areas (1) Regions (0) Abstract: This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource

26

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network (OSTI)

an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

27

Geothermal Heat Pump Benchmarking Report  

SciTech Connect

A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

None

1997-01-17T23:59:59.000Z

28

Geothermal Progress Monitor. Report No. 18  

SciTech Connect

The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

NONE

1996-12-31T23:59:59.000Z

29

Geothermal Progress Monitor, report No. 13  

SciTech Connect

Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

Not Available

1992-02-01T23:59:59.000Z

30

Changes to Geothermal Reporting Code and Guidelines on Company...  

Open Energy Info (EERE)

Company Reporting Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Changes to Geothermal Reporting Code and Guidelines on Company Reporting...

31

Progress report on electrical resistivity studies, COSO Geothermal Area,  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The first phase of an electrical geophysical survey of the Coso Geothermal Area is described. The objective of the survey was to outline areas of anomalously conductive ground that may be associated with geothermal activity and to assist in locating drilling sites to test the geothermal potential. Author(s): Ferguson, R. B. Published: Publisher Unknown, 6/1/1973 Document Number: Unavailable DOI: Unavailable Source: View Original Report Electrical Resistivity At Coso Geothermal Area (1972)

32

Geothermal well log interpretation state of the art. Final report  

SciTech Connect

An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

1980-01-01T23:59:59.000Z

33

Final Report: Enhanced Geothermal Systems Technology Phase II...  

Open Energy Info (EERE)

Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New...

34

Geothermal Exploration Techniques a Case Study. Final Report...  

Open Energy Info (EERE)

to library Report: Geothermal Exploration Techniques a Case Study. Final Report Abstract The objective of this project was to review and perform a critical evaluation of...

35

Stanford geothermal program. Final report, July 1990--June 1996  

SciTech Connect

This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

NONE

1998-03-01T23:59:59.000Z

36

Imperial County geothermal development. Quarterly report, January 1-March 31, 1982  

SciTech Connect

The activities of the Geothermal Office are reported including: important geothermal events, geothermal waste disposal, grant applications to the California Energy Commission, the planned geothermal development meeting, and other geothermal planning activities. The activities of the Geothermal Planner include processing of applications for geothermal permits, processing of environmental impact reports, and other geothermal planning activities. The progress on the VTN Corporation direct heat study is discussed.

Not Available

1982-03-31T23:59:59.000Z

37

US geothermal database and Oregon cascade thermal studies: (Final report)  

SciTech Connect

This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

Blackwell, D.D.; Steele, J.L.; Carter, L.

1988-05-01T23:59:59.000Z

38

A Code for Geothermal Resources and Reserves Reporting | Open...  

Open Energy Info (EERE)

and Reserves Reporting Abstract Geothermal companies are increasingly using both equity markets and the finance sector to raise funds to develop their projects. At the same time,...

39

Imperial County geothermal development. Quarterly report, April 1-June 30, 1982  

SciTech Connect

The activities of the Geothermal Office during the quarter are discussed, including: important geothermal events, geothermal waste disposal, a grant award by the California Energy Commission, the geothermal development meeting, and the current status of geothermal development in Imperial County. Activities of the Geothermal Planner are addressed, including permits, processing of EIR's, and other planning activities. Progress on the direct heat study is reported.

Not Available

1982-06-30T23:59:59.000Z

40

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal  

Open Energy Info (EERE)

Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Abstract N/A Author County of Imperial Planning Department Published WESTEC SERVICES, INC., 1979 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility Citation County of Imperial Planning Department. 1979. Final Environmental Impact Report: North Brawley Ten Megawatt Geothermal Demonstration Facility. (!) : WESTEC SERVICES, INC.. Report No.: N/A. Retrieved from

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal Energy Growth Continues, Industry Survey Reports  

Energy.gov (U.S. Department of Energy (DOE))

A survey released by the Geothermal Energy Association (GEA) shows continued growth in the number of new geothermal power projects under development in the United States, a 20% increase since January of this year.

42

Geothermal Technologies Office Annual Report 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho State Wins National Student Competition Students at Idaho State University display their poster at the annual meeting of the Geothermal Resources Council in Reno, Nevada this year, as one of 3 top finalists in the National Geothermal Student Competition hosted by the Energy Department's Geothermal Technologies Office. The group won the competition with their study on Development of an Integrated, Testable Conceptual Model of Blind Geothermal Resources in the Eastern

43

Geothermal progress monitor. Progress report No. 7  

SciTech Connect

A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

Not Available

1983-04-01T23:59:59.000Z

44

Geothermal Progress Monitor report No. 5. Progress report, June 1981  

SciTech Connect

Updated information is presented on activities and progress in the areas of electric power plants, direct heat applications, deep well drilling, leasing of federal lands, legislative and regulatory actions, research and development, and others. Special attention is given in this report to 1980 highlights, particularly in the areas of electric and direct heat uses, drilling, and the Federal lands leasing program. This report also includes a summary of the DOE FY 1982 geothermal budget request to Congress.

Not Available

1981-01-01T23:59:59.000Z

45

2013 Geothermal Technologies Office Peer Review Technical Report  

Energy.gov (U.S. Department of Energy (DOE))

The 2013 Geothermal Technologies Office Peer Review Report is now available for download. The report provides a summary and compilation of expert, independent technical feedback on GTO-funded projects, as well as feedback from the Peer Review reviewers.

46

Honey Lake Geothermal Project, Lassen County, California. Final technical report  

SciTech Connect

This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

Not Available

1984-11-01T23:59:59.000Z

47

Geothermal Technologies Office 2012 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to address induced seismicity issues. Subsurface energy technologies associated with shale gas exploration, carbon capture and storage, and geothermal energy utilization can...

48

Geothermal energy in Arizona. Final report  

SciTech Connect

Current knowledge and basic data on geothermal resources in Arizona are compiled. The following are covered: specific area investigations, thermal aspects of Arizona, and exploration methods. (MHR)

Stone, C.; Witcher, J.C.

1982-09-01T23:59:59.000Z

49

2013 Annual Report -- Geothermal Technologies Office | Department...  

Office of Environmental Management (EM)

for an EGS field site project, called FORGE -- the Frontier Observatory for Research in Geothermal Energy -- after an intense, intra-office competition. The Office also had gains...

50

Final Scientific - Technical Report, Geothermal Resource Exploration...  

Open Energy Info (EERE)

Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Abstract With financial support from the U.S. Department of Energy (DOE), Layman Energy...

51

Geothermal progress monitor: Report Number 19  

SciTech Connect

Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

NONE

1997-12-01T23:59:59.000Z

52

RRC - Geothermal Production Test Completion or Recompletion Report...  

Open Energy Info (EERE)

Production Test Completion or Recompletion Report and Log Form GT-1 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RRC - Geothermal Production Test...

53

Geothermal: Sponsored by OSTI -- Joint Egypt/United States report...  

Office of Scientific and Technical Information (OSTI)

Joint EgyptUnited States report on EgyptUnited States cooperative energy assessment. Volume 4 of 5 Vols. Annexes 6--10 Geothermal Technologies Legacy Collection HelpFAQ | Site...

54

2010 Geothermal Technology Program Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validation of Geothermally- produced Electricity from Co-produced Water at Existing OilGas Wells in TX Alcorn, Universal GeoPower LLC Electric Power Generation from Co-produced...

55

A New Apparatus For Long-Term Petrophysical Investigations On Geothermal  

Open Energy Info (EERE)

Apparatus For Long-Term Petrophysical Investigations On Geothermal Apparatus For Long-Term Petrophysical Investigations On Geothermal Reservoir Rocks At Simulated In-Situ Conditions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A New Apparatus For Long-Term Petrophysical Investigations On Geothermal Reservoir Rocks At Simulated In-Situ Conditions Details Activities (0) Areas (0) Regions (0) Abstract: We present a new apparatus capable of maintaining in-situ conditions pertinent to deep geothermal reservoirs over periods of months while in the same time allowing a variety of continuous petrophysical investigations. Two identical devices have been set up at the GFZ-Potsdam. Lithostatic overburden- and hydrostatic pore pressures of up to 100 and 50 MPa, respectively can be simulated. In addition in-situ temperature

56

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

Energy Authority Ente Nazionale dell'Energia Elettrica, Geothermal Center International Institute for Geothermal Research Geological.Survey of Japan Department of Geothermic

Bresee, J. C.

2011-01-01T23:59:59.000Z

57

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA | Open  

Open Energy Info (EERE)

Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Details Activities (3) Areas (2) Regions (0) Abstract: Three wells have been drilled by the Los Angeles Department of Water and Power at the Coso Hot Springs KGRA. A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). This paper presents the equipment and techniques involved and the results from the long-term test conducted between December 1985 and February 1986. Author(s): Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.;

58

Report on Hawaii geothermal power plant project  

SciTech Connect

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

59

Geothermal energy: opportunities for California commerce. Phase I report  

SciTech Connect

The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight direct use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.

Longyear, A.B. (ed.)

1981-12-01T23:59:59.000Z

60

Geothermal Loop Experimental Facility. Final report  

SciTech Connect

Research at the Geothermal Loop Experimental Facility was successfully concluded in September 1979. In 13,000 hours of operation over a three and one half year period, the nominal 10 megawatt electrical equivalent GLEF provided the opportunity to identify problems in working with highly saline geothermal fluids and to develop solutions that could be applied to a commercial geothermal power plant producing electricity. A seven and one half year period beginning in April 1972, with early well flow testing and ending in September 1979, with the completion of extensive facility and reservoir operations is covered. During this period, the facility was designed, constructed and operated in several configurations. A comprehensive reference document, addressing or referencing documentation of all the key areas investigated is presented.

Not Available

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

INEL Geothermal Environmental Program. Final environmental report  

SciTech Connect

An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs are summarized.

Thurow, T.L.; Cahn, L.S.

1982-09-01T23:59:59.000Z

62

Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995  

SciTech Connect

The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

NONE

1995-05-01T23:59:59.000Z

63

Geothermal direct-heat utilization assistance. Quarterly progress report, April--June 1993  

SciTech Connect

Progress is reported on the following R&D activities: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Other activities are reported on technical assistance, technology transfer, and the geothermal progress monitor.

Not Available

1993-08-01T23:59:59.000Z

64

Geothermal resource assessment, South Dakota: Final report  

SciTech Connect

Seven geothermal aquifers in South Dakota contain an accessible resource base of about 11,207 x 10/sup 18/ J. The potentially productive geothermal aquifers are: Deadwood Formation (Cambrian), Winnipeg Formation + Red River Formation + Englewood Limestone (Ordovician through Devonian), Madison Limestone (Mississippian), Minnelusa Formation (Mississippian-Permian), Inyan Kara Group (Cretaceous), and Newcastle Sandstone (Cretaceous). The resource estimate was obtained by first using heat flow, thermal conductivity, temperature gradient, and stratigraphic data to estimate aquifer temperatures. The heat content of each aquifer was determined from the product of the volumetric heat capacity, aquifer volume, and temperature difference between the aquifer and the mean annual temperature for a 14 x 14 grid of 240 km/sup 2/ cells. Geothermal fluid temperatures range from about 120/sup 0/C in the Deadwood Formation in the Williston Basin to about 30/sup 0/C for the Newcastle Sandstone in south-central South Dakota. The area containing the resource lies largely west of the Missouri River. About 10,000 km/sup 2/ of the resource area is characterized by anomalously high heat flow values greater than 100 mW m/sup -2/.

Gosnold, W.D. Jr.

1987-07-01T23:59:59.000Z

65

NREL Releases Report on Policy Options to Advance Geothermal Exploration  

Energy.gov (U.S. Department of Energy (DOE))

A new DOE report, published by the National Renewable Energy Laboratory, highlights findings from a review of five policy mechanisms that have been successfully applied to hydrothermal exploration activities around the globe – loan guarantees, drilling failure insurance, lending support, grants, and government-led exploration – and their applicability to the U.S. geothermal market.

66

Interagency Geothermal Coordinating Council Annual Report for Fiscal Year 1989  

SciTech Connect

The U.S. Interagency Geothermal Coordinating Council was a multi-agency group charged with identifying and reducing barriers to geothermal energy development in the U.S. Many of the issues covered related to regulations for and progress in the leasing of Federal lands in the West for power development. The IGCC reports are important sources of historical information. Table 1 lists significant events in the history of use of geothermal energy in the U.S., starting in1884. That is useful for tracking which Federal departments and agencies managed aspects of this work over time. Table 2 gives a complete accounting for all Federal outlays for geothermal energy development for FY 1979 - 1989, including non-DOE outlays. Table 3 shows the status of the U.S. Geothermal Loan Guarantee Program at end of FY 1989: of the $500 million authorized, $285 million was committed to eight projects, and about $40 million had been paid out on project defaults. An additional $101 million had been repaid by the borrowers. (DJE 2005)

None

1990-01-02T23:59:59.000Z

67

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.d approach to solar and geothermal energy, r e s o u r c e sl f u e l boilers, and geothermal energy. The model was d e

Bresee, J. C.

2011-01-01T23:59:59.000Z

68

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.l i c a t i o n s of Geothermal Energy Substudy ParticipantsA N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 I

Bresee, J. C.

2011-01-01T23:59:59.000Z

69

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

D. E. Appendix Small Geothermal Power Plants . . . . . . .Assessment, (4) Small Geothermal Power Plants and (5) Hoti - b u t i o n of geothermal power (1400 W e ) . (XBL 785-

Bresee, J. C.

2011-01-01T23:59:59.000Z

70

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

Bresee, J. C.

2011-01-01T23:59:59.000Z

71

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

72

Annual resources report. [Glossary on technical terms  

SciTech Connect

The report is separated into the following sections: acknowledgments; a table of contents; a list of tables and figures; a glossary; an introduction; an overview of the role of energy resources in New Mexico; separate sections on oil and gas, coal, electrical generation, uranium, and geothermal energy; a section on the geologic setting of oil and gas, coal, and uranium; an appendix of additional tables pertaining to oil and gas development; and a listing of selected references. The glossary is a brief listing of technical terms used in the report with simplified definitions for the reader's use. The overview contains highlights of data found in the report as well as comparisons of New Mexico's resources with those of other states and the nation. In general, each section covering a resource area describes reserves, production, prices, consumption, transportation, employment, and revenue statistics over the past ten or more years and projections to the year 2000.

Not Available

1982-01-01T23:59:59.000Z

73

South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985  

SciTech Connect

This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

Wegman, S.

1985-01-01T23:59:59.000Z

74

Meeting Report for Symposium on "China-US Collaborative Research on Life in Terrestrial Geothermal Springs"  

E-Print Network (OSTI)

Meeting Report for Symposium on "China-US Collaborative Research on Life in Terrestrial Geothermal on Life in Terrestrial Geothermal Springs" was organized collaboratively by the NSF-funded Tengchong PIRE

Ahmad, Sajjad

75

Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981  

SciTech Connect

Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

Not Available

1981-01-01T23:59:59.000Z

76

Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms, Fourth Quarter 2009 Â… Second Half 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

: : Snapshot of Recent Geothermal Financing Terms Fourth Quarter 2009 - Second Half 2011 Travis Lowder, Ryan Hubbell, Michael Mendelsohn, and Karlynn Cory Technical Report NREL/TP-6A20-54438 September 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Renewable Energy Finance Tracking Initiative (REFTI): Snapshot of Recent Geothermal Financing Terms Fourth Quarter 2009 - Second Half 2011 Travis Lowder, Ryan Hubbell, Michael Mendelsohn, and Karlynn Cory

77

Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993  

SciTech Connect

Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

Lienau, P.

1993-06-01T23:59:59.000Z

78

Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report |  

Open Energy Info (EERE)

Exploratory Hole No. 1 (RRGE-1). Completion report Exploratory Hole No. 1 (RRGE-1). Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; BOREHOLES; WELL DRILLING; GEOTHERMAL EXPLORATION; GEOTHERMAL WELLS; IDAHO; EQUIPMENT; GEOLOGICAL SURVEYS; WELL CASINGS; WELL LOGGING; CAVITIES; DRILLING; EXPLORATION; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA; WELLS Author(s): Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) Published: DOE Information Bridge, 10/1/1975 Document Number: Unavailable DOI: 10.2172/5091938 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Raft River Geothermal Area Retrieved from

79

Investigations and activities of Imperial County Geothermal Staff, 1982-1983. Summary report  

SciTech Connect

Research projects initiated, in progress, or completed; County/Industry cooperative efforts; and reports related to geothermal development issued by the County between October 1982 and December 1983 are described. Projects underway include projects involving environmental monitoring, advanced geothermal planning, needs of the geothermal industry, status of development, and promotion of development.

Not Available

1984-01-01T23:59:59.000Z

80

Geothermal Materials Development, Annual Report FY 1991  

SciTech Connect

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored full cost'' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geothermal Materials Development. Annual report FY 1991  

SciTech Connect

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored ``full cost`` recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

82

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

geothermal anomalies already identified i n the Imperial Valley.Mesa geothermal f i e l d i n t h e Imperial Valley ( F i gr i n g geothermal f i e l d s of t h e Imperial Valley i n

Bresee, J. C.

2011-01-01T23:59:59.000Z

83

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

f o r m a t i o n on geothermal wells and f i e l d s , t hArea, Chemical Analysis, Geothermal Well/Drillhole. Developwater from t h e geothermal wells a t Wairakei is about 4800

Bresee, J. C.

2011-01-01T23:59:59.000Z

84

West Texas geothermal resource assessment. Part I. Geothermal exploration in Trans-Pecos, Texas. Final report  

SciTech Connect

All of the new drilling for geothermal gradient and heat flow studies have been concentrated in an area near Hueco Tanks State Park. Interest in the area was raised by the silica geothermometry map of Hoffer (1979) and its proximity to El Paso, which is less than 25 miles away and expanding rapidly toward the area of geothermal interest. Several industries in El Paso appear to be potential users of non-electrical grade hot waters. A total of 14 holes have been drilled for geothermal gradient and heat-flow measurements. Of these, 12 were 50 meters deep and all but two had gradients in excess of 100/sup 0/C/km, one having a gradient as high as 306/sup 0/C/km. Of the remaining two, one penetrated bedrock at about 50 meters and was drilled to a total depth of 125 meters. The gradient in the limestone bedrock is 170/sup 0/C/km and the heat flow is about 11 x 10/sup -6/cal/cm/sup 2/ sec. This is the highest heat flow thus far reported for a locality in the Rio Grande Rift. The last hole is 300 meters deep and has a gradient of 142/sup 0/C/km and a heat flow of 9 x 10/sup -6/cal/cm/sup 2/ sec. The Hueco Tanks site is very promising for at least space heating applications of hot water. Based on the 300 meter hole the potential for electricity grade temperatures still exist, but the tight limestone bedrock may require hot dry rock extraction technology.

Roy, R.F.; Taylor, B.

1980-01-01T23:59:59.000Z

85

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report.  

Open Energy Info (EERE)

COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion report. (Coso Hot Springs KGRA) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH No. 1) is the first deep exploratory hole drilled in the Coso Hot Springs area of Southeastern California. CGEH No. 1 was drilled to a depth of 4,845 ft in the central area of a large thermal anomaly and was a continuation of investigative work in that locale to determine the existence of a geothermal resource. The drilling and completion of CGEH No. 1 is described. Also included are the daily drilling reports, drill bit records, descriptions of the casing,

86

Geothermal Energy R&D Program: Annual Progress Report for Fiscal Year 1989  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1990-04-01T23:59:59.000Z

87

Geothermal Energy R&D Program Annual Progress Report for Fiscal Year 1989 Draft  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE -2005)

None

1990-04-01T23:59:59.000Z

88

Geothermal Energy R&D Program: Annual Progress Report for Fiscal Year 1991  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1992-03-01T23:59:59.000Z

89

Geothermal direct-heat utilization assistance. Quarterly report, July--September 1993  

SciTech Connect

This report details activities from July through September 1993, Topics addressed are: Technical Assistance; Research and Development Activities; Technology Transfer; Geothermal Progress Monitor; and Personnel.

Not Available

1993-11-01T23:59:59.000Z

90

Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981  

SciTech Connect

The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

Not Available

1981-01-01T23:59:59.000Z

91

Gulf Coast geopressured-geothermal program summary report compilation. Volume 4: Bibliography (annotated only for all major reports)  

SciTech Connect

This bibliography contains US Department of Energy sponsored Geopressured-Geothermal reports published after 1984. Reports published prior to 1984 are documented in the Geopressured Geothermal bibliography Volumes 1, 2, and 3 that the Center for Energy Studies at the University of Texas at Austin compiled in May 1985. It represents reports, papers and articles covering topics from the scientific and technical aspects of geopressured geothermal reservoirs to the social, environmental, and legal considerations of exploiting those reservoirs for their energy resources.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

92

Geothermal Education Office final report, October 1, 1994 through September 30, 1999  

SciTech Connect

GEO'S website has become the primary internet resource for educational information about geothermal energy for students. GEO mails (and sometimes faxes) materials about geothermal energy published by GEO and others. During the term of this contract GEO has distributed about 50,000 individual brochures, posters, website bookmarks, curricula, comic books, booklets, videos and slide sets about geothermal energy in response to about 6,000 requests.

NONE

1999-12-29T23:59:59.000Z

93

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

district heating concepts, and one school space heating study.Figures 1 and 2 show examples of direct applications of geothermal

Bresee, J. C.

2011-01-01T23:59:59.000Z

94

Geothermal development. Semi-annual report, October 1, 1980-March 31, 1981  

SciTech Connect

Three areas are reported: geothermal administration, geothermal planning, and other geothermal activities. Administration covers the status of the Imperial Valley Environmental Project transfer, update of the Geothermal Resource Center, and findings of the geothermal field inspections. Planning addresses Board of Supervisor actions, Planning Commission actions, notice of exemptions, and the master Environmental Impact Report for Salton Sea. The other activity includes the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmoreland KGRA, and revising the southern border of the Salton Sea KGRA. (MHR)

Not Available

1981-03-31T23:59:59.000Z

95

Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997  

SciTech Connect

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1997-10-01T23:59:59.000Z

96

Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994  

SciTech Connect

The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

Not Available

1994-12-31T23:59:59.000Z

97

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 |  

Open Energy Info (EERE)

Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal system has been widely studied and reported by scientists through the past several years, but there is still a considerable divergence of opinion regarding the structural setting, origin, and internal structure of this energy resource. Because of accelerating exploration and development drilling that is taking place, there is a need for a reservoir model that is consistent with the limited geologic facts available regarding the area. Author(s): Austin, C.F.; Durbin, W.F.

98

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994  

SciTech Connect

This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

Not Available

1994-10-01T23:59:59.000Z

99

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

SciTech Connect

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

David Cuyler

2012-07-19T23:59:59.000Z

100

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

DOE Data Explorer (OSTI)

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

David Cuyler

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal R and D project report, October 1, 1976--March 31, 1977 | Open  

Open Energy Info (EERE)

report, October 1, 1976--March 31, 1977 report, October 1, 1976--March 31, 1977 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal R and D project report, October 1, 1976--March 31, 1977 Details Activities (2) Areas (1) Regions (0) Abstract: Testing and analysis on the three deep geothermal wells in Raft River and the two shallow (1200 ft) wells in Boise, plus the experiments leading to improved technology and lower cost for electricity produced from 300°F wells are covered. Non-electric direct heat uses of geothermal, to as low as 100°F also receive special attention. Appendix A contains a paper: Evaluation and Design Considerations for Liquid-Liquid Direct Contact Heat Exchangers for Geothermal Applications. Appendix B is a summary of the Freon-113 experiment results.

102

Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report |  

Open Energy Info (EERE)

Hole No. 2, RRGE-2. Completion report Hole No. 2, RRGE-2. Completion report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Geothermal Exploratory Hole No. 2 (RRGE-2) is the second exploratory hole drilled in the Raft River Valley location of the Idaho Geothermal R and D Project for the purpose of determining the existence of hot water in quantities suitable for commercial power generation and nonelectric applications. This well was drilled to a depth of 6,543 feet below ground level to obtain additional geological information for evaluation of the deep geothermal reservoir system. The drilling and completion of RRGE-2 are described. The daily drilling

103

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program  

SciTech Connect

This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

Lienau, P.

1996-11-01T23:59:59.000Z

104

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

105

The Thirteenth Annual Interagency Geothermal Coordinating Council Report for Fiscal Year 1988  

SciTech Connect

The U.S. Interagency Geothermal Coordinating Council was a multi-agency group charged with identifying and reducing barriers to geothermal energy development in the U.S. Many of the issues covered related to regulations for and progress in the leasing of Federal lands in the West for power development. The IGCC reports are important sources of historical information. (DJE 2005)

None

1989-03-21T23:59:59.000Z

106

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

u r u s ; t h e EDB (Energy Data Base) magnetic t a p e d ei o n a l geothermal energy data base, a pool of i n f o r m

Bresee, J. C.

2011-01-01T23:59:59.000Z

107

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

a n d a r d i z e d steam turbine-driven electric generatingLocated Geothermal Steam Turbine Driven Electric Genera- t ia 3-We noncondensing steam turbine at Leyte with assis-

Bresee, J. C.

2011-01-01T23:59:59.000Z

108

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

Geothermal Fluid Injection, Reservoir Engineering D. E.engineering op- erations, management o the chemical f process fluidEngineering are primarily concerned with predicting the effects of in- jecting fluids

Bresee, J. C.

2011-01-01T23:59:59.000Z

109

Nevada low-temperaure geothermal resource assessment: 1994. Final report  

SciTech Connect

Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

Garside, L.J.

1994-12-31T23:59:59.000Z

110

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

111

State-coupled low temperature geothermal resource assessment program, fiscal year 1982. Final Technical Report  

SciTech Connect

This report summarizes the results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from June 15, 1981 through September 30, 1983, under the sponsorship of the US Department of Energy (Contract DE-AS07-78ID01717). The report is divided into four chapters which correspond to the tasks delineated in the contract. Chapter 5 is a brief summary of the tasks performed under this contract during the period October 1, 1978, through June 30, 1983. This work extends the knowledge of low-temperature geothermal reservoirs with the potential for direct heating applications in New Mexico. The research effort focused on compiling basic geothermal data throughout selected areas in New Mexico in a format suitable for direct transfer to the US Geological Survey for inclusion in the GEOTHERM data file and to the National Oceanic and Atmospheric Administration for use with New Mexico geothermal resources maps.

Icerman, Larry

1983-08-01T23:59:59.000Z

112

NREL Releases Report on Policy Options to Advance Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- loan guarantees, drilling failure insurance, lending support, grants, and government-led exploration-and their applicability to the U.S. geothermal market. A significant...

113

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

SciTech Connect

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

114

Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997  

SciTech Connect

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1997-01-01T23:59:59.000Z

115

Geothermal R and D Project report for period April 1, 1976 to June 30, 1976  

Open Energy Info (EERE)

report for period April 1, 1976 to June 30, 1976 report for period April 1, 1976 to June 30, 1976 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal R and D Project report for period April 1, 1976 to June 30, 1976 Details Activities (1) Areas (1) Regions (0) Abstract: Progress during April to July 1976 in research on geothermal energy is reported. The experiments are performed in the Raft River Valley, Idaho, a hydrothermal resource site with water temperatures below 150/sup 0/C. During this period, a third well, RRGE-3 was drilled and well production was tested, testing of a direct contact heat exchanger continued, design and cost estimating continued on a 40 MW (th) organic-binary heat exchange facility, agricultural studies of irrigation with geothermal water progressed, and down-hole data was obtained from

116

2011 Napa Hedberg Research Conference report on enhanced geothermal systems  

Science Journals Connector (OSTI)

...Many other new developments in geophysics...optimize injection strategies to minimize seismicity...flow rate. The development of a geothermal...from the oil and gas industry, but...supercritical turbines for geothermal...dwarfing the oil and gas resource. Once...continued technology development, large-scale...

Dag Nummedal; Gary Isaksen; Peter Malin

117

Investigations and activities of Imperial County geothermal staff: 1982-83. Summary report  

SciTech Connect

Research projects initiated, in progress, or completed; County/Industry cooperative efforts; and reports related to geothermal development issued by the County between October 1982 and December 1983 are described.

Not Available

1984-01-01T23:59:59.000Z

118

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

119

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

120

Geothermal policy project. Quarterly report, March 1-May 30, 1980  

SciTech Connect

Efforts continued to initiate geothermal and groundwater heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Minnesota and South Carolina have agreed to a groundwater heat pump study, and Maryland and Virginia have agreed to a follow-up geothermal study in 1980. Follow-up contacts were made with several other existing project states and state meetings and workshops were held in eleven project states. Two generic documents were prepared, the Geothermal Guidebook and the Guidebook to Groundwater Heat Pumps, in addition to several state-specific documents.

Connor, T.D.

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Reference book on geothermal direct use  

SciTech Connect

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

122

Silica recovery and control in Hawaiian geothermal fluids. Final report  

SciTech Connect

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

123

Geothermal Direct-Heat Utilization Assistance - Final Report  

SciTech Connect

The Geo-Heat Center provided (1) direct-use technical assistance, (2) research, and (3) information dissemination on geothermal energy over an 8 1/2 year period. The center published a quarterly bulletin, developed a web site and maintained a technical library. Staff members made 145 oral presentations, published 170 technical papers, completed 28 applied research projects, and gave 108 tours of local geothermal installations to 500 persons.

J. W. Lund

1999-07-14T23:59:59.000Z

124

Polymer-cement geothermal-well-completion materials. Final report  

SciTech Connect

A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

Zeldin, A.N.; Kukacka, L.E.

1980-07-01T23:59:59.000Z

125

Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development  

Energy.gov (U.S. Department of Energy (DOE))

This report explores the effectiveness of the historical and current body of policies in terms of increased geothermal electricity development. Insights are provided into future policies that may drive the market to optimize development of available geothermal electricity resources.

126

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

SciTech Connect

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

127

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

SciTech Connect

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

128

Geothermal progress monitor. Progress report No. 3, March-April 1980  

SciTech Connect

Progress is reviewed in the following areas: electric uses; direct heat uses; drilling activities; exploration; leases; outreach and technical assistance; feasibility studies and application demonstrations; geothermal loan guarantee program; general activities; R and D activities; legal, institutional, and regulatory activities; environmental activities; and state, local, and private sector activities. Also included are a list of reports and publications and a directory of individuals in the geothermal community. (MHR)

Not Available

1980-01-01T23:59:59.000Z

129

Geothermal direct-heat utilization assistance: Federal assistance program. Quarterly project progress report, October--December 1995  

SciTech Connect

The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-96. It describes 90 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, development of a webpage, and progress monitor reports on geothermal resources and utilization.

NONE

1996-02-01T23:59:59.000Z

130

Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report  

SciTech Connect

The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

Matthews, K.M.

1983-07-01T23:59:59.000Z

131

Geothermal energy resource assessment of parts of Alaska. Final report  

SciTech Connect

The central Seward Peninsula was the subject of a geological, geophysical and geochemical reconnaissance survey during a 30-day period in the summer of 1980. The survey was designed to investigate the geothermal energy resource potential of this region of Alaska. A continental rift system model was proposed to explain many of the Late Tertiary-to-Quaternary topographic, structural, volcanic and geothermal features of the region. Geologic evidence for the model includes normal faults, extensive fields of young alkalic basalts, alignment of volcanic vents, graben valleys and other features consistent with a rift system active from late Miocene time to the present. Five traverses crossing segments of the proposed rift system were run to look for evidence of structure and geothermal resources not evident from surface manifestation. Gravity, helium and mercury soil concentrations were measured along the traverses. Seismic, resistivity, and VLF studies are presented.

Wescott, E.M.; Turner, D.L.; Kienle, J.

1982-08-01T23:59:59.000Z

132

Community Geothermal Technology Program: Silica bronze project. Final report  

SciTech Connect

Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

Bianchini, H.

1989-10-01T23:59:59.000Z

133

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

134

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

SciTech Connect

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

2013-05-15T23:59:59.000Z

135

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

DOE Data Explorer (OSTI)

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Joe Iovenitti

136

Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993  

SciTech Connect

This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

Not Available

1993-12-31T23:59:59.000Z

137

Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993  

SciTech Connect

In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

None

1994-04-01T23:59:59.000Z

138

Geothermal Power and Interconnection: The Economics of Getting to Market  

SciTech Connect

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

139

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

140

Field testing advanced geothermal turbodrill (AGT). Phase 1 final report  

SciTech Connect

Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

Maurer, W.C.; Cohen, J.H.

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

142

Geothermal direct-heat utilization assistance. Quarterly progress report, January--March 1993  

SciTech Connect

CHC (Geo-Heated Center) staff provided assistance to 103 requests from 26 states, and from Canada, Egypt, Mexico, China, Poland and Greece. A breakdown of the requests according to application include: space and district heating (19), geothermal heat pumps (24), greenhouses (10), aquaculture (4), industrial (4), equipment (3), resources (27), electric power (2) and other (20). Progress is reported on: (1) evaluation of lineshaft turbine pump problems, (2) pilot fruit drier and (3) geothermal district heating marketing tools and equipment investigation. Four presentations and two tours were conducted during the quarter, GHC Quarterly Bulletin Vol. 14, No. 4 was prepared, 14 volumes were added to the library and information was disseminated to 45 requests. Progress reports are on: (1) GHP Teleconference 93, (2) California Energy Buys Glass Mountain Prospect from Unocal and Makes Deal for Newberry Caldera, (3) New Power Plant Planned, (4) Vale to Get Power Plant, (5) BPA Approves Geothermal Project, (6) Update: San Bernardino Reservoir Study, (7) Twenty-nine Palms Geothermal Resources, (8) Geo-Ag Heat Center, Lake County, and (9) Update: Geothermal Wells at Alturas.

Lienau, P.

1993-03-30T23:59:59.000Z

143

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014  

SciTech Connect

The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory] (ORCID:0000000228898620); Richards, Maria C. [SMU Geothermal Laboratory

2014-06-24T23:59:59.000Z

144

Geothermal Energy  

SciTech Connect

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

145

Imperial County geothermal development quarterly report, July 1-September 30, 1983  

SciTech Connect

The highlights of geothermal development in Imperial County during July, August, and September 1983 are discussed. Topics include the status of geothermal development projects in the county, geothermal staff activities and research projects, and other geothermal-related topics.

Not Available

1983-10-01T23:59:59.000Z

146

Imperial County geothermal development. Quarterly report, October 1-December 31, 1983  

SciTech Connect

The highlights of geothermal development in Imperial County during October, November, and December 1983 are discussed. Topics include the status of geothermal development projects in the County, geothermal staff activities and research projects, and other geothermal-related topics.

Not Available

1984-01-01T23:59:59.000Z

147

Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report  

SciTech Connect

This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

Jenkins, H. II; Giddings, M.; Hanson, P.

1982-09-01T23:59:59.000Z

148

THERMALLY CONDUCTIVE CEMENTITIOUS GROUTS FOR GEOTHERMAL HEAT PUMPS. PROGRESS REPORT BY 1998  

SciTech Connect

Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98.

ALLAN,M.L.; PHILIPPACOPOULOS,A.J.

1998-11-01T23:59:59.000Z

149

Heber binary-cycle geothermal demonstration power plant: Startup and low-power testing: Special report  

SciTech Connect

In 1974 the geothermal industry recognized the need for binary cycle technology in the development of moderate temperature geothermal resources. The electric utilities further expressed a need to demonstrate the technology on a scale representative of commercial operation in order to resolve issues of performance cost and environmental acceptability, and to confirm the maturity of the technology. In response to the needs, EPRI conducted feasibility studies and a series of field experiments intended to culminate with the construction and demonstration of a nominal 50 MWe binary cycle power plant in cooperation with other interested organizations. The early work by EPRI, the Department of Energy and the San Diego Gas and Electric Company led to the formation of the present multi-sponsored project in late 1980. Construction of the demonstration plant was completed in June 1985 at the Heber geothermal field in the Imperial Valley of Southern California. The plant is rated at 46 MWe and converts the thermal energy from 360 F (182 C) geothermal fluid to electricity. Start-up of the plant was completed in December 1985 and the first extended run at low power was completed in June 1986. The results from this run and other tests associated with the plant and the geothermal production facilities during this period are contained in this report. During this period, the brine supply was lower than expected and the reinjection pressure higher than expected. The power cycle performed essentially as projected for the load levels at which the plant was tested.

Berning, J.; Bigger, J.E.; Fishbaugher, J.

1987-10-01T23:59:59.000Z

150

Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Annual report, January 1984-September 1984  

SciTech Connect

Progress is reported on a project to use the 130/sup 0/F geothermal resource in central Texas. The system for cascading geothermal energy through aquaculture and greenhouse systems was completed and the first shrimp harvest was held. (MHR)

Smith, K.

1984-09-01T23:59:59.000Z

151

Geothermal reservoir well stimulation program. First-year progress report  

SciTech Connect

The Geothermal Reservoir Well Stimulation Program (GRWSP) group planned and executed two field experiments at the Raft River KGRA during 1979. Well RRGP-4 was stimulated using a dendritic (Kiel) hydraulic fracture technique and Well RRGP-5 was stimulated using a conventional massive hydraulic fracture technique. Both experiments were technically successful; however, the post-stimulation productivity of the wells was disappointing. Even though the artificially induced fractures probably successfully connected with the natural fracture system, reservoir performance data suggest that productivity remained low due to the fundamentally limited flow capacity of the natural fractures in the affected region of the reservoir. Other accomplishments during the first year of the program may be summarized as follows: An assessment was made of current well stimulation technology upon which to base geothermal applications. Numerous reservoirs were evaluated as potential candidates for field experiments. A recommended list of candidates was developed which includes Raft River, East Mesa, Westmorland, Baca, Brawley, The Geysers and Roosevelt Hot Springs. Stimulation materials (fracture fluids, proppants, RA tracer chemicals, etc.) were screened for high temperature properties, and promising materials selected for further laboratory testing. Numerical models were developed to aid in predicting and evaluating stimulation experiments. (MHR)

Not Available

1980-02-01T23:59:59.000Z

152

Geothermal Power Generation  

SciTech Connect

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

153

Other Geothermal Energy Publications  

Energy.gov (U.S. Department of Energy (DOE))

Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

154

Geothermal Energy on Mars  

Science Journals Connector (OSTI)

This contribution will concentrate on the implications of data from new studies of Mars during the past decade or so in terms of martian geothermal resources, and the potential differences in exploiting geothermal

Paul Morgan

2009-01-01T23:59:59.000Z

155

Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998  

SciTech Connect

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1998-07-01T23:59:59.000Z

156

Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177  

SciTech Connect

In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

2007-05-17T23:59:59.000Z

157

Technical support for geopressured-geothermal well activities in Louisiana. Annual report, 1 November 1982-31 October 1983  

SciTech Connect

This annual report describes environmental monitoring of microseismic activity, land-surface elevations, and surface and ground-water quality at three designed geopressured-geothermal test well sites in Louisiana.

Not Available

1984-10-31T23:59:59.000Z

158

Utilization of geothermal energy in the mining and processing of tungsten ore. Final report  

SciTech Connect

The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

Erickson, M.V.; Lacy, S.B.; Lowe, G.D.; Nussbaum, A.M.; Walter, K.M.; Willens, C.A.

1981-01-01T23:59:59.000Z

159

INFORMAL REPORT PROPERTIES AND PERFORMANCE OF CEMENT- BASED GROUTS FOR GEOTHERMAL HEAT  

Office of Scientific and Technical Information (OSTI)

67006 67006 INFORMAL REPORT PROPERTIES AND PERFORMANCE OF CEMENT- BASED GROUTS FOR GEOTHERMAL HEAT PUMP APPLICATIONS FINAL REPORT FY 1999 M.L. Allan and A.J. Philippacopoulos November 1999 Prepared for: Office of Geothermal Technologies United States Department of Energy Washington, DC 20585 Materials and Chemical Sciences Division DISCLAIMER This document was prepared as an account of work sponsored by an agenc:y of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees makers any warranty, express or implied, or assumes any legal liability or responsibility of the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use

160

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

388 388 February 2010 Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis Katherine R. Young and Chad Augustine National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy Presented at Stanford Geothermal Workshop Stanford, California February 1, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report  

SciTech Connect

The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

Gilliland, M.W.; Fenner, L.B.

1980-01-01T23:59:59.000Z

162

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report  

Energy.gov (U.S. Department of Energy (DOE))

The 2013 Annual Report: featuring highlights and accomplishments in the Office's portfolio of projects is now available!

163

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

164

NMOCD - Form G-106 - Geothermal Resources Well Summary Report...  

Open Energy Info (EERE)

Summary Report Author State of New Mexico Energy and Minerals Department Published New Mexico Oil Conservation Division, 1978 DOI Not Provided Check for DOI availability: http:...

165

2013 Geothermal Technologies Office Peer Review Technical Report  

Energy.gov (U.S. Department of Energy (DOE))

Provided in three sections, this comprehensive technical report assesses 100 projects in the GTO portfolio, based on presentations from GTO-funded principal investigators that were evaluated and...

166

Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report  

SciTech Connect

The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

Hibbs, L.E. Jr.; Sogoian, G.C.

1983-05-01T23:59:59.000Z

167

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

168

Page 1 of 8 Reviewing Current Term Reports  

E-Print Network (OSTI)

the Report Search (available Feb 09) function. When the current term reporting period closes, those reports will only be accessible from the Report Search function and the new term reports will be displayed. When the current term reporting period closes, reports are only accessible from the Report Search

Oxford, University of

169

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

170

Geothermal Energy R&D Program Annual Progress Report for Fiscal Year 1992  

SciTech Connect

Geothermal budget actual amounts are shown for FY 1989 -1992, broken down by about 15 categories. Here, the main Program categories are: Exploration Technology, Drilling Technology, Reservoir Technology, Conversion Technology (power plants and materials), Industry-Coupled Drilling, Drilling Applications, Reservoir Engineering Applications, Direct Heat, Geopressured Wells Operation, and Hot Dry Rock Research. Here the title--Industry-Coupled Drilling--covered case studies of the Coso, CA, and Dixie Valley, NV, fields, and the Long Valley Exploratory Well (which had started as a magma energy exploration project, but reported here as a hydrothermal prospect evaluation well). (DJE 2005)

None

1993-07-01T23:59:59.000Z

171

Evaluation of noise associated with geothermal-development activities. Final report, July 31, 1979-April 30, 1982  

SciTech Connect

This report was prepared for the purpose of ascertaining the current state of noise generation, suppression, and mitigation techniques associated with geothermal development. A description of the geothermal drilling process is included as well as an overview of geothermal development activities in the United States. Noise sources at the well site, along geothermal pipelines, and at the power plants are considered. All data presented are measured values by workers in the field and by Marshall Long/Acoustics. One particular well site was monitored for a period of 55 continuous days, and includes all sources of noise from the time that the drilling rig was brought in until the time that it was moved off site. A complete log of events associated with the drilling process is correlated with the noise measurements including production testing of the completed well. Data are also presented which compare measured values of geothermal noise with federal, state, county, and local standards. A section on control of geothermal noise is also given. Volume I of this document presents summary information.

Long, M.; Stern, R.

1982-01-01T23:59:59.000Z

172

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers (EERE)

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

173

Summary of geothermal studies in Montana, 1980 through 1983. DOE final report  

SciTech Connect

The geology, hydrology, and surface manifestations of geothermal systems in Montana are described by area. Water-quality information, tables of inventory and water analysis data for springs and wells, and a geothermal resource map are included. (MHR)

Sonderegger, J.L.

1984-01-01T23:59:59.000Z

174

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect

The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

175

Geothermal Evaluation of The Hosston Formation Lackland Air Force Base, San Antonio, Texas Phase II Report  

SciTech Connect

This report summarizes the results of a phased program to test the geothermal characteristics of the Hosston Formation at Lackland Air Force Base, San Antonio, Texas. The geothermal resource evaluation was made possible through drilling and preliminary testing of a large diameter well, Lackland AFB No.1, at the south portion of the base. Phase I of the program had 3 major components: (1) compilation and interpretation of surface and subsurface geologic data to site the well; (2) design of the well; and (3) permitting the well. Phase II consisted of well drilling and preliminary development. The goal of the program was to identify water temperature, water quality, and productivity characteristics of the Hosston aquifer, which preliminary studies suggested might be favorable for direct applications on the base. Results reported herein suggest that heat pumps or other engineering alternatives might be needed for such applications. Results of the well drilling give data on water productivity, quality and temperature. Air-lift testing shows that, although the well does not flow to surface, good artesian pressure exists. Water quality appears acceptable, with about 2200 parts per million total dissolved solids. Equilibrated reservoir temperatures appear to be slightly less than 108 F (42 C).

Zeisloft, Jon; Foley, Duncan

1984-05-30T23:59:59.000Z

176

Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986  

SciTech Connect

This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

Not Available

1986-01-01T23:59:59.000Z

177

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

178

Geothermal energy: 1992 program overview  

SciTech Connect

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

179

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

SciTech Connect

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

2014-01-02T23:59:59.000Z

180

Advancing Reactive Tracer Methods for Measurement of Thermal Evolution in Geothermal Reservoirs: Final Report  

SciTech Connect

The injection of cold fluids into engineered geothermal system (EGS) and conventional geothermal reservoirs may be done to help extract heat from the subsurface or to maintain pressures within the reservoir (e.g., Rose et al., 2001). As these injected fluids move along fractures, they acquire heat from the rock matrix and remove it from the reservoir as they are extracted to the surface. A consequence of such injection is the migration of a cold-fluid front through the reservoir (Figure 1) that could eventually reach the production well and result in the lowering of the temperature of the produced fluids (thermal breakthrough). Efficient operation of an EGS as well as conventional geothermal systems involving cold-fluid injection requires accurate and timely information about thermal depletion of the reservoir in response to operation. In particular, accurate predictions of the time to thermal breakthrough and subsequent rate of thermal drawdown are necessary for reservoir management, design of fracture stimulation and well drilling programs, and forecasting of economic return. A potential method for estimating migration of a cold front between an injection well and a production well is through application of reactive tracer tests, using chemical whose rate of degradation is dependent on the reservoir temperature between the two wells (e.g., Robinson 1985). With repeated tests, the rate of migration of the thermal front can be determined, and the time to thermal breakthrough calculated. While the basic theory behind the concept of thermal tracers has been understood for some time, effective application of the method has yet to be demonstrated. This report describes results of a study that used several methods to investigate application of reactive tracers to monitoring the thermal evolution of a geothermal reservoir. These methods included (1) mathematical investigation of the sensitivity of known and hypothetical reactive tracers, (2) laboratory testing of novel tracers that would improve method sensitivity, (3) development of a software tool for design and interpretation of reactive tracer tests and (4) field testing of the reactive tracer temperature monitoring concept.

Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; Laurence C. Hull; George D. Redden

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers (EERE)

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

182

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

183

Geothermal spas in Hawaii: A new tourist industry. : A preliminary report  

SciTech Connect

There are at least three very good uses for active volcanism: Obtain energy from it. Study it. Enjoy it. We are already obtaining electrical energy and industrial heat from Kilauea's abundant resource by drilling geothermal wells and building power plants. Our Volcano Observatory is recognized as a world renowned center of learning about volcanism. Our Volcanoes National Park allows us to view and appreciate this awesome phenomenon. For several years people have speculated about the high potential in Hawaii for another way of enjoying this warmth of mother earth -- spas or resorts that would make use of water that is naturally heated and mineralized by volcanic activity. However, before spas are developed in Hawaii, answers are needed to several important questions dealing with such topics as the suitability of our geothermal waters, sources of water that could be tapped, special equipment and materials needed, land availability, governmental and environmental hurdles, and the economics of this unique business. Though a considerable amount of research is still needed, it was felt worthwhile to summarize the information gathered to date from historical works, brochures, personal communications, and other sources. This report should stimulate interest in, and perhaps accelerate, the development of one of Hawaii's most important natural resources.

Woodruff, J.L.

1987-07-01T23:59:59.000Z

184

Geothermal Drilling Organization  

SciTech Connect

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

185

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final  

SciTech Connect

This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

None

1999-02-01T23:59:59.000Z

186

Integrated Geothermal-CO2 Storage Reservoirs: FY1 Final Report  

SciTech Connect

The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. This submittal contains input and output files of the reservoir model analyses. A reservoir-model "index-html" file was sent in a previous submittal to organize the reservoir-model input and output files according to sections of the FY1 Final Report to which they pertain. The recipient should save the file: Reservoir-models-inputs-outputs-index.html in the same directory that the files: Section2.1.*.tar.gz files are saved in.

Thomas A. Buscheck

2012-01-01T23:59:59.000Z

187

The Future of Geothermal Energy  

Energy.gov (U.S. Department of Energy (DOE))

The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise...

188

Geothermal technology publications and related reports: a bibliography, January-December 1981  

SciTech Connect

Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology, Magma and General Geoscience Studies with cross references listed by author.

Hudson, S.R. (ed.)

1982-05-01T23:59:59.000Z

189

Texas geothermal R D and D program planning support document. Final report  

SciTech Connect

Program planning support was provided by; developing a geothermal RD and D program structure, characterizing the status of geothermal RD and D through review of literature and interaction with the geothermal research community, developing a candidate list of future Texas geothermal projects, and prioritizing the candidate projects based on appropriate evaluation criteria. The method used to perform this study and the results thereof are presented. Summary reviews of selected completed and ongoing projects and summary descriptions and evaluations of the candidate RD and D projects ar provided. A brief discussion emerging federal RD and D policies is presented. References and independent project rankings by three of the GRP members are included. (MHR)

Davis, R.J.; Conover, M.F.; Keeney, R.C.; Personett, M.L.; Richmann, D.L.

1981-08-28T23:59:59.000Z

190

Geothermal two-phase flow: a selective, annotated guide to the literature. Report No. GEOFLO/7  

SciTech Connect

This bibliography includes only those references considered useful for the solution of problems facing a geothermal plant designer. Historical developments and flow models are discussed. (MHR)

Bilicki, Z.; DiPippo, R.; Michaelides, E.E.; Kestin, J.; Maeder, P.F.

1980-06-01T23:59:59.000Z

191

Utilization of geothermal energy in the mining and processing of tungsten ore. 2nd quarterly report  

SciTech Connect

The completed geochemical analysis of groundwater in the Pine Creek area for evaluation of the geothermal potential of this location is presented. Also included is an environmental constraints analysis of Pine Creek noting any potential environmental problems if a geothermal system was developed onsite. Design of a geothermal system is discussed for site-specific applications and is discussed in detail with equipment recommendations and material specifications. A preliminary financial, economic, and institutional assessment of geothermal system located totally on Union Carbide property at Pine Creek is included. (MHR)

Erickson, M.V.; Willens, C.A.; Walter, K.M.; Carrico, R.L.; Lowe, G.D.; Lacy, S.B.

1980-06-01T23:59:59.000Z

192

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

193

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

194

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

195

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

196

Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report  

SciTech Connect

The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

Pilger, R.H. Jr. (ed.)

1985-01-01T23:59:59.000Z

197

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

198

Hot Dry Rock Geothermal Energy Development Program Annual Report Fiscal Year 1988  

SciTech Connect

The complete list of HDR objectives is provided in Reference 10, and is tabulated below in Tables 1 and 2 for the reader's convenience. The primary, level 1, objective for HDR is ''to improve the technology to the point where electricity could be produced commercially from a substantial number of known HDR resource sites in a cost range of 5 to 8 cents/kWh by 1997''. A critically important milestone in attaining this cost target is the level II objective: ''Evaluate the performance of the Fenton Hill Phase II reservoir''. To appreciate the significance of this objective, a brief background is helpful. During the past 14 years the US DOE has invested $123 million to develop the technology required to make Hot Dry Rock geothermal energy commercially useful. The Governments of Japan and the Federal Republic of Germany have contributed an additional $32 million to the US program. The initial objectives of the program were met by the successful development and long-term operation of a heat-extraction loop in hydraulically-fractured hot dry rock. This Phase I reservoir produced pressurized hot water at temperatures and flow rates suitable for many commercial uses such as space heating and food processing. It operated for more than a year with no major problems or detectable environmental effect. With this accomplished and the technical feasibility of HDR energy systems demonstrated, the program undertook the more difficult task of developing a larger, deeper, hotter reservoir, called ''Phase II'', capable of supporting pilot-plant-scale operation of a commercial electricity-generating power plant. As described earlier in ''History of Research'', such a system was created and operated successfully in a preliminary 30-day flow test. However, to justify capital investment in HDR geothermal technology, industry now requires assurance that the reservoir can be operated for a long time without major problems or a significant decrease in the rate and quality of energy production. Industrial advisors to the HDR Program have concluded that, while a longer testing period would certainly be desirable, a successful and well-documented flow test of this high-temperature, Phase II reservoir lasting at least one year should convince industry that HDR geothermal energy merits their investment in its commercial development. This test is called the Long Term Flow Test (LTFT), and its completion will be a major milestone in attaining the Level 1 objective. However, before the LTFT could be initiated, well EE-2 had to be repaired, as also briefly described in the ''History of Research''. During this repair operation, superb progress was made toward satisfying the next most critically important Level II objective: Improve the Performance of HDR Drilling and Completion Technology. During the repair of EE-2, Los Alamos sidetracked by drilling out of the damaged well at 2.96 km (9700 ft), and then completed drilling a new-wellbore (EE-2A) to a total depth of 3.78 km (12,360 ft). As a consequence of this drilling experience, Los Alamos believes that if the original wells were redrilled today their combined cost would be only $8 million rather than the $18.8 million actually spent (a 60% cost saving). Further details, particularly of the completion of the well, can be found in the major section, ACCOMPLISHMENTS, but it can be seen that the second, Level II objective is already nearing attainment.

Dash, Zora V.; Murphy, Hugh D.; Smith, Morton C.

1988-01-01T23:59:59.000Z

199

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

200

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal  

Open Energy Info (EERE)

Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Details Activities (1) Areas (1) Regions (0) Abstract: Cassia County Idaho; data; geophysical surveys; Idaho; Raft River geothermal area; surveys; United States; USGS; Well No. 3; well-logging Author(s): Covington, H.R. Published: Open-File Report - U. S. Geological Survey, 1/1/1978 Document Number: Unavailable DOI: Unavailable Exploratory Well At Raft River Geothermal Area (1977) Raft River Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Deep_drilling_data,_Raft_River_geothermal_area,_Idaho-Raft_River_geothermal_exploration_well_sidetrack-C&oldid=473365"

202

Direct utilization of geothermal energy in western South Dakota agribusiness. Final report  

SciTech Connect

This project involved the direct utilization of geothermal energy for (1) space heating of farm and ranch buildings, (2) drying grain, and (3) providing warm stock water during the winter. The site for this demonstration project was the Diamond Ring Ranch north of Midland, South Dakota. Geothermal water flowing from an existing well into the Madison Aquifer was used to heat four homes, a shop, a hospital barn for cattle, and air for a barn and grain dryer. This site is centrally located in the western region of South Dakota where geothermal water is available from the Madison Aquifer. The first year of the project involved the design of the heating systems and its construction while the following years were for operation, testing, demonstrating, and monitoring the system. Required modifications and improvements were made during this period. Operating modifications and improvements were made during this period. Operating experience showed that such application of geothermal resources is feasible and can result in substantial fuel savings. Economic analyses under a variety of assumptions generally gave payback periods of less than ten years. Numerous technical recommendations are made. The most significant being the necessity of passive protection from freezing of remote geothermal systems subject to winter shut downs caused by power or equipment failure. The primary institutional recommendation is to incorporate a use for the geothermal water such as irrigation or stock watering into agribusiness-related geothermal development.

Howard, S.M.

1983-09-01T23:59:59.000Z

203

Direct utilization of geothermal energy for Pagosa Springs, Colorado. Final report, June 1979-June 1984  

SciTech Connect

The Pagosa Springs Geothermal District Heating System was conceptualized, designed, and constructed between 1979 to 1984 under the US Department of Energy Program Opportunity Notice (PON) program to demonstrate the feasibility for utilizing moderate temperature geothermal resources for direct-use applications. The Pagosa Springs system successfully provides space heating to public buildings, school facilities, residences, and commercial establishments at costs significantly lower than costs of available conventional fuels. The Pagosa Springs project encompassed a full range of technical, institutional, and economic activities. Geothermal reservoir evaluations and testing were performed, and two productive approx.140/sup 0/F geothermal supply wells were successfully drilled and completed. Transmission and distribution system design, construction, startup, and operation were achieved with minimum difficulty. The geothermal system operation during the first two heating seasons has been fully reliable and well respected in the community. The project has proven that low to moderate-temperature waters can effectively meet required heating loads, even for harsh winter-mountain environments. The principal difficulty encountered has been institutional in nature and centers on the obtaining of the geothermal production well permits and the adjudicated water rights necessary to supply the geothermal hot water fluids for the full operating life of the system. 28 figs., 15 tabs.

Goering, S.W.; Garing, K.L.; Coury, G.

1984-08-01T23:59:59.000Z

204

Environmental overview for the development of geothermal resources in the State of New Mexico. Final report  

SciTech Connect

A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

1980-06-01T23:59:59.000Z

205

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

206

Technical support for geopressured-geothermal well activities in Louisiana. Final report, September 27, 1978-December 31, 1980  

SciTech Connect

The data analysis is based on the Brazoria Texas well and the balance of the modeling work is theoretical. Progress in the regional assessment of the geopressured-geothermal resource in Louisiana is reported. Environmental monitoring effort established monitoring systems and baseline environmental measurements. Efforts to improve the technoeconomic model, improve the estimates of methane in solution, and to evaluate newly identified sites are described. (MHR)

Wrighton, F.M.; Bebout, D.; Carver, D.R.; Groat, C.C.; Johnson, A.E. Jr.

1981-08-31T23:59:59.000Z

207

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments  

SciTech Connect

This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

None

1999-02-01T23:59:59.000Z

208

Investigation of the geothermal potential of the UK. A preliminary assessment. Final report  

SciTech Connect

Geologically, Britain is an extremely stable area without active volcanism. In this situation the development of geothermal resources depends upon the occurrence of permeable rocks in deep sedimentary basins or the successful development of the hot dry rock concept. The average geothermal gradient is about 25C/km, but two belts of above average heat flow extend across northern and south-western England. In these areas the gradient can be 30C/km or more. The principal aquifers occur in the Mesozoic and the greatest geothermal potential is in sandstones of the Permo-Triassic where their occurrence at depth coincides with the high heat flow belts.

Not Available

1982-01-01T23:59:59.000Z

209

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

210

Geothermal Electricity Production  

Science Journals Connector (OSTI)

...georef;1974029979 development economics geothermal energy global production...space heating and cooling and water desalination, and (for the long term) to...produLced in thermiial stations. Economics and Rate of Developnment The National...

Geoffrey R. Robson

1974-04-19T23:59:59.000Z

211

2014 Geothermal Case Study Challenge | OpenEI Community  

Open Energy Info (EERE)

term > 2014 Geothermal Case Study Challenge Content Group Activity By term Q & A Feeds Term: Waunita Hot Springs Geothermal Area Type Term Title Author Replies Last Post sort icon...

212

Geothermal resource evaluation of the Yuma area  

SciTech Connect

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

213

Geothermal technology publications and related reports: A bibliography, January 1986 through December 1987  

SciTech Connect

Sandia publications resulting from DOE programs in Geothermal Technologies, Magma Energy and Continental Scientific Drilling are listed for reference. The RandD includes borehole-related technologies, in situ processes, and wellbore diagnostics.

Tolendino, C.D. (ed.)

1988-08-01T23:59:59.000Z

214

Evaluation of geothermal energy in Arizona. Quarterly topical progress report, January 1, 1980-March 31, 1981  

SciTech Connect

The tasks, objectives and completed work are discussed for the legislative and institutional program, cities program, geothermal applications utilization technology, and outreach. The work on the Maryvale Terrace development and the New Mexico Energy Institute are described. (MHR)

White, D.H.; Goldstone, L.A.; Malysa, L.

1981-03-31T23:59:59.000Z

215

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

216

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

SciTech Connect

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

217

Geothermal potential for commercial and industrial direct heat applications in Salida, Colorado. Final report  

SciTech Connect

The Salida Geothermal Prospect (Poncha Hot Springs) was evaluated for industrial and commercial direct heat applications at Salida, Colorado, which is located approximately five miles east of Poncha Hot Springs. Chaffee Geothermal, Ltd., holds the geothermal leases on the prospect and the right-of-way for the main pipeline to Salida. The Poncha Hot Springs are located at the intersection of two major structural trends, immediately between the Upper Arkansas graben and the Sangre de Cristo uplift. Prominent east-west faulting occurs at the actual location of the hot springs. Preliminary exploration indicates that 1600 gpm of geothermal fluid as hot as 250/sup 0/F is likely to be found at around 1500 feet in depth. The prospective existing endusers were estimated to require 5.02 x 10/sup 10/ Btu per year, but the total annual amount of geothermal energy available for existing and future endusers is 28.14 x 10/sup 10/ Btu. The engineering design for the study assumed that the 1600 gpm would be fully utilized. Some users would be cascaded and the spent fluid would be cooled and discharged to nearby rivers. The economic analysis assumes that two separate businesses, the energy producer and the energy distributor, are participants in the geothermal project. The producer would be an existing limited partnership, with Chaffee Geothermal, Ltd. as one of the partners; the distributor would be a new Colorado corporation without additional income sources. Economic evaluations were performed in full for four cases: the Base Case and three alternate scenarios. Alternate 1 assumes a three-year delay in realizing full production relative to the Base Case; Alternate 2 assumes that the geothermal reservoir is of a higher quality than is assumed for the Base Case; and Alternate 3 assumes a lower quality reservoir. 11 refs., 34 figs., 40 tabs.

Coe, B.A.; Dick, J.D.; Galloway, M.J.; Gross, J.T.; Meyer, R.T.; Raskin, R.; Zocholl, J.R.

1982-10-01T23:59:59.000Z

218

Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998  

SciTech Connect

Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

Allan, M.L.; Philippacopoulos, A.J.

1998-11-01T23:59:59.000Z

219

Chapter 12 - Geothermal Energy  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses where the earth's thermal energy is sufficiently concentrated for economic use, the various types of geothermal systems, the production and utilization of the resource, and the environmental benefits and costs of geothermal production. Earth scientists quantify the energy and temperature in the earth in terms of heat flow and temperature gradient. The heat of the earth is derived from two components: the heat generated by the formation of the earth, and heat generated by radioactive decay of elements in the upper parts of the earth. The word “geothermal” comes from the combination of the Greek words gêo, meaning earth, and thérm, meaning heat. Geothermal resources are concentrations of the earth's heat, or geothermal energy, that can be extracted and used economically now or in the reasonable future. The earth contains an immense amount of heat but the heat generally is too diffuse or deep for economic use. Hence, the search for geothermal resources focuses on those areas of the earth's crust where geological processes have raised temperatures near enough to the surface that the heat contained can be utilized. Currently, only concentrations of heat associated with water in permeable rocks can be exploited economically. These systems are known as hydrothermal geothermal systems. All commercial geothermal production is currently restricted to geothermal systems that are sufficiently hot for the use and that contain a reservoir with sufficient available water and productivity for economic development. Geothermal energy is one of the cleaner forms of energy now available in commercial quantities. Use of geothermal energy avoids the problems of acid rain and greatly reduces greenhouse gas emissions and other forms of air pollution.

Joel L. Renner

2008-01-01T23:59:59.000Z

220

Geothermal direct-heat utilization assistance. Federal Assistance Program: Quarterly project progress report, October--December 1992  

SciTech Connect

Progress on technical assistance, R&D activities, technology transfer, and geothermal progress monitoring is summarized.

Not Available

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal: Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Search Advanced Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links You may need to turn on Javascript in your browser to use the Find Subject and Find Author features. Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Enter search criteria into as few or as many fields as desired. Search In For Term(s) (Place phrase in "double quotes") All Fields: Bibliographic Data: Full Text: Creator/Author Select : Title: Subject Select : Identifier Numbers: Journal Info.: Conference Info.: Patent Info.: Research Org.: Sponsoring Org.:

222

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers (EERE)

Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

223

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers (EERE)

Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle...

224

Water Use in the Development and Operation of Geothermal Power...  

Energy Savers (EERE)

Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water...

225

ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan...  

Open Energy Info (EERE)

ALASKA ENERGY AUTHORITY Alaska Geothermal Development: A Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ALASKA ENERGY AUTHORITY Alaska Geothermal...

226

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

227

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

228

Geothermal: Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

229

Relict Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Relict Geothermal Features Relict Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Relict Geothermal Features Dictionary.png Relict Geothermal Features: No definition has been provided for this term. Add a Definition Relict geothermal surface feature, include the mineral formations left behind by hot springs, fumaroles, and geysers as well as the alteration of minerals by geothermal waters (e.g. opalization of sediments). Such alteration and deposits are indicators of past hydrothermal activity. Though surface activity has ceased in many areas, relict geothermal features may indicate the presence of a still active geothermal system below the surface. Retrieved from "http://en.openei.org/w/index.php?title=Relict_Geothermal_Features&oldid=600720"

230

Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report  

SciTech Connect

Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

1980-01-01T23:59:59.000Z

231

Consolidation of geologic studies of geopressured-geothermal resources in Texas. 1990 Annual report  

SciTech Connect

In a five-county area of South Texas, geopressured-geothermal reservoirs in the upper Wilcox Group colocated with heavy-oil reservoirs in the overlying Jackson Group. In 1990, research at the Bureau of Economic Geology concentrated on evaluating the potential of using geopressured-geothermal water for hot-water flooding of heavy-oil reservoirs. Favorable geothermal reservoirs are defined by thick deltaic sandstones and growth-fault-bounded compartments. Potential geothermal reservoirs are present at a depth of 11,000 ft (3,350 m) to 15,000 ft (4,570 m) and contain water at temperatures of 350 F (177 C) to 383 F (195 C) in Fandango field, Zapata County. One potential geothermal reservoir sandstone in the upper Wilcox (R sandstone) is composed of a continuous sand body 100 ft (30 m) to greater than 200 ft (>61 m) thick. Fault blocks average 2 to 4 mi{sup 2} (5.2 to 10.4 km{sup 2}) in area.

Raney, J.A.; Seni, S.J.; DuBar, J.R.; Walter, T.G.

1991-03-01T23:59:59.000Z

232

Geothermal low-temperature reservoir assessment in Dona Ana County, New Mexico. Final report  

SciTech Connect

Sixty-four shallow temperature gradient holes were drilled on the Mesilla Valley East Mesa (east of Interstate Highways 10 and 25), stretching from US Highway 70 north of Las Cruces to NM Highway 404 adjacent to Anthony, New Mexico. Using these data as part of the site selection process, Chaffee Geothermal, Ltd. of Denver, Colorado, drilled two low-temperature geothermal production wells to the immediate north and south of Tortugas Mountain and encountered a significant low-temperature reservoir, with a temperature of about 150{sup 0}F and flow rates of 750 to 1500 gallons per minute at depths from 650 to 1250 feet. These joint exploration activities resulted in the discovery and confirmation of a 30-square-mile low-temperature geothermal anomaly just a few miles to the east of Las Cruces that has been newly named as the Las Cruces east Mesa Geothermal Field. Elevated temperature and heat flow data suggest that the thermal anomaly is fault controlled and extends southward to the Texas border covering a 100-square-mile area. With the exception of some localized perturbations, the anomaly appears to decrease in temperature from the north to the south. Deeper drilling is required in the southern part of the anomaly to confirm the existence of commercially-exploitable geothermal waters.

Icerman, L.; Lohse, R.L.

1983-04-01T23:59:59.000Z

233

State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404  

SciTech Connect

The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

Defferding, L.J.

1980-06-01T23:59:59.000Z

234

New Geothermal Prospects in the Western United States Show Promise  

Energy.gov (U.S. Department of Energy (DOE))

New geothermal prospects in the western United States show promise, according to the new 2013 Annual U.S. Geothermal Power Production and Development Report, published by the Geothermal Energy Association this week.

235

Global Market for Geothermal Continues Upswing | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market for Geothermal Continues Upswing September 4, 2013 - 2:35pm Addthis The Geothermal Energy Association reported that the global geothermal market is expected to have 12,000...

236

Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979  

SciTech Connect

An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

LeFebre, V.; Miller, A.

1980-01-01T23:59:59.000Z

237

Geothermal: Distributed Search Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

238

T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1  

SciTech Connect

The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

Not Available

1985-01-01T23:59:59.000Z

239

[Geothermal system temperature-depth database and model for data analysis]. 5. quarterly technical progress report  

SciTech Connect

During this first quarter of the second year of the contract activity has involved several different tasks. The author has continued to work on three tasks most intensively during this quarter: the task of implementing the data base for geothermal system temperature-depth, the maintenance of the WWW site with the heat flow and gradient data base, and finally the development of a modeling capability for analysis of the geothermal system exploration data. The author has completed the task of developing a data base template for geothermal system temperature-depth data that can be used in conjunction with the regional data base that he had already developed and is now implementing it. Progress is described.

Blackwell, D.D.

1998-04-25T23:59:59.000Z

240

Gulf Coast geopressured-geothermal program summary report compilation. Volume 1: Executive summary  

SciTech Connect

The significant accomplishments of this program included (1) identification of the geopressured-geothermal onshore fairways in Louisiana and Texas, (2) determination that high brine flow rates of 20,000--40,000 barrels a day can be obtained for long periods of time, (3) brine, after gas extraction can be successfully reinjected into shallow aquifers without affecting the surface waters or the fresh water aquifers, (4) no observable subsidence or microseismic activity was induced due to the subsurface injection of brine, and no detrimental environmental effects attributable to geopressured-geothermal well testing were noticed, (5) sanding can be controlled by reducing flow rates, (6) corrosion controlled with inhibitors, (7) scaling controlled by phosphonate scale inhibitors, (8) demonstrated that production of gas from saturated brine under pressure was viable and (9) a hybrid power system can be successfully used for conversion of the thermal and chemical energy contained in the geopressured-geothermal resource for generation of electricity.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report  

SciTech Connect

Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

Not Available

1983-05-01T23:59:59.000Z

242

Exploration for geothermal resources in the Capital District of New York. Volume 1. Final report  

SciTech Connect

Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

Not Available

1981-11-01T23:59:59.000Z

243

Exploration for geothermal resources in the Capital District of New York. Final report  

SciTech Connect

Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

Sneeringer, M.R.; Dunn, J.R.

1981-11-01T23:59:59.000Z

244

Geopressured-geothermal well activities in Louisiana. Annual report, 1 January 1991--31 December 1991  

SciTech Connect

Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

John, C.J.

1992-10-01T23:59:59.000Z

245

Sonoma State Hospital, Eldridge, California, geothermal-heating system: conceptual design and economic feasibility report  

SciTech Connect

The Sonoma State Mental Hospital, located in Eldridge, California, is presently equipped with a central gas-fired steam system that meets the space heating, domestic hot water, and other heating needs of the hospital. This system is a major consumer of natural gas - estimated at 259,994,000 cubic feet per year under average conditions. At the 1981 unit gas rate of $0.4608 per therm, an average of $1,258,000 per year is required to operate the steam heating system. The hospital is located in an area with considerable geothermal resources as evidenced by a number of nearby hot springs resorts. A private developer is currently investigating the feasibility of utilizing geothermally heated steam to generate electricity for sale to the Pacific Gas and Electric Company. The developer has proposed to sell the byproduct condensed steam to the hospital, which would use the heat energy remaining in the condensate for its own heating needs and thereby reduce the fossil fuel energy demand of the existing steam heating system. The geothermal heating system developed is capable of displacing an estimated 70 percent of the existing natural gas consumption of the steam heating system. Construction of the geothermal fluid distribution and collection system and the retrofits required within the buildings are estimated to cost $1,777,000. Annual expenses (operation and maintenance, insurance, and geothermal fluid purchase) have been estimated to be $40,380 per year in 1981 dollars. The proposed geothermal heating system could then be completely paid for in 32 months by the savings in natural gas purchases that would result.

Not Available

1982-02-01T23:59:59.000Z

246

Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994  

SciTech Connect

The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

Not Available

1994-05-01T23:59:59.000Z

247

Geothermal exploration in Trans-Pecos, Texas/New Mexico. Final report  

SciTech Connect

Interest in alternative energy has encouraged the investigation of possible geothermal resources in Trans Pecos, Texas/New Mexico in an area of extensive Cenozoic volcanism with several hot springs. Geochemical analysis of groundwater samples resulted in the definition of two major areas of geothermal interest: the Hueco Bolson in northeastern El Paso County, and the Presidio Bolson. Regional temperature gradient measurements also supported the existence of anomalies in these places, and showed another smaller anomaly in the Finlay Mountains, Hudspeth County. Detailed geophysical and geochemical studies were conducted on these three targets.

Roy, R.; Taylor, B.; Miklas, M.P. Jr.

1983-09-01T23:59:59.000Z

248

Geothermal Basics  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal energy—geo (earth) + thermal (heat)—is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

249

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

250

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

251

Preliminary reliability and availability analysis of the Heber geothermal binary demonstration plant. Final report  

SciTech Connect

An assessment is presented of the reliability and availability of the Heber Geothermal Binary Demonstration Plant on the basis of preliminary design information. It also identifies and ranks components of the plant in order of their criticality to system operation and their contribution to system unavailability. The sensitivity of the various components to uncertainties of data and the potential for reliability growth are also examined. The assessment results were obtained through the adaptation and application of an existing reliability and availability methodology to the Heber plant design. These preliminary assessments were made to assist (1) in evaluating design alternatives for the plant and (2) in demonstrating that the closed-loop, multiple-fluid, binary cycle geothermal concept is competitive with the more conventional flashed steam cycle technology. The Heber Geothermal Binary Demonstration Plant Project is a cooperative effort directed toward accelerating geothermal development for power generation and establishing the binary cycle technology as a proven alternative to the flashed steam cycle for moderate temperature hydrothermal resources. The binary power plant would have a capacity of 45 MW/sub e/ net and would derive its energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) fluid from the Heber reservoir in southern California.

Himpler, H.; White, J.; Witt, J.

1981-10-01T23:59:59.000Z

252

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

253

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... « The Geysers ». Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

254

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Environment Geothermal/Environment < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

255

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network (OSTI)

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD the Stanford Geothermal Program, Department of Energy contract DE-AT03-80SFl1459 for their financial report Geothermal Program, Department of Energy contract DE-AT03-80SF11459 for their financial report. Also we would

Stanford University

256

Engineering and economic evaluation of direct hot-water geothermal energy applications on the University of New Mexico campus. Final technical report  

SciTech Connect

The potential engineering and economic feasibility of low-temperature geothermal energy applications on the campus of the University of New Mexico is studied in detail. This report includes three phases of work: data acquisition and evaluation, system synthesis, and system refinement and implementation. Detailed process designs are presented for a system using 190/sup 0/F geothermal water to substitute for the use of 135 x 10/sup 9/ Btu/y (141 TJ/y) of fossil fuels to provide space and domestic hot water heating for approximately 23% of the campus. Specific areas covered in the report include economic evaluation, environmental impact and program implementation plans.

Kauffman, D.; Houghton, A.V.

1980-12-31T23:59:59.000Z

257

Report, Long-Term Nuclear Technology Research and Development Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are not limited to, R&D related to power reactors and the responsibility for the waste management system for final disposition of the spent fuel resulting from nuclear power reactors. Although a major use of nuclear technology is to supply energy for electricity production, the DOE has far broader roles regarding nuclear

258

Computer simulation of production from geothermal-geopressured aquifers. Final report, October 1, 1978-January 31, 1983  

SciTech Connect

This is the final report on research conducted to improve the technical and scientific understanding of geopressured and geothermal resources. The effort utilized a computer to interpret the results of well tests and compile data on gas solubility in brine and the viscosity of brine. A detailed computer reservoir study of a geopressured test well that had been abandoned as a dry hole but became a commercial producer of hydrocarbons is presented. A number of special topical reports pertaining to test activities performed on Department of Energy test wells (MG-T/DOE Amoco Fee No. 1 Well, Leroy Sweezy No. 1 Well, and Pleasant Bayou No. 2 Well) are appended to the report. A referenced article written under this study that appeared in the Journal of Petroleum Technology is also reproduced.

Doherty, M.G.; Poonawala, N.A.

1983-07-01T23:59:59.000Z

259

Geothermal: Distributed Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

260

Gulf Coast Geopressured-Geothermal Program Summary Report Compilation. Volume I, Executive Summary  

SciTech Connect

The significant accomplishments of this program included (1) identification of the geopressured-geothermal onshore fairways in Louisiana and Texas, (2) determination that high brine flow rates of 20,000--40,000 barrels a day can be obtained for long periods of time, (3) brine, after gas extraction can be successfully reinjected into shallow aquifers without affecting the surface waters or the fresh water aquifers, (4) no observable subsidence or microseismic activity was induced due to the subsurface injection of brine, and no detrimental environmental effects attributable to geopressured--geothermal well testing were noticed, (5) sanding can be controlled by reducing flow rates, (6) corrosion controlled with inhibitors, (7) scaling controlled by phosphonate scale inhibitors, (8) demonstrated that production of gas from saturated brine under pressure was viable and (9) a hybrid power system can be successfully used for conversion of the thermal and chemical energy contained in the geopressured-geothermal resource for generation of electricity. The U. S. Department of Energy's geopressured-geothermal research program in the Gulf Coast achieved many significant findings and disproved and clarified many historical perceptions that had previously limited industry's interest in developing this resource. Though in today's economic market it may not be commercially profitable to exploit this resource, the rapid advance of technology in all its different aspects could potentially make this resource attractive in the not too distant future. The ideal situation would involve the development of a total energy system in which all three associated forms of energy--chemical, thermal and mechanical are utilized. The extraction of gas from brine combined with the large number of potential direct and indirect uses of this resource will add to its economic profitability. This U.S. DOE's visionary research program has essentially laid the foundations for characterization of this resource and all aspects connected with its development.

Chacko, J. John; Maciasz, Gina; Harder, Brian J.

1998-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: CX Type Term Title Author Replies Last Post sort icon Blog entry CX Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

262

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: feedback Type Term Title Author Replies Last Post sort icon Blog entry feedback Geothermal Stakeholder Feedback on the GRR Kyoung 21 Mar 2013 - 10:01 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

263

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EIS Type Term Title Author Replies Last Post sort icon Blog entry EIS Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

264

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry Database Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

265

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Categorical Exclusions Type Term Title Author Replies Last Post sort icon Blog entry Categorical Exclusions Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Blog entry Categorical Exclusions GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Categorical Exclusions GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review

266

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: EA Type Term Title Author Replies Last Post sort icon Blog entry EA Geothermal NEPA Workshop at GRC Kyoung 14 Oct 2013 - 20:19 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

267

Geothermal pipeline  

SciTech Connect

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

268

Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report  

SciTech Connect

The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

Allen, C.C.; Allen, R.W.; Beldock, J.

1981-11-08T23:59:59.000Z

269

Geopressured geothermal bibliography (Geopressure Thesaurus)  

SciTech Connect

This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

Hill, T.R.; Sepehrnoori, K.

1981-08-01T23:59:59.000Z

270

Geothermal EGS Demonstration Photo Library  

Energy.gov (U.S. Department of Energy (DOE))

EGS Demonstrations make up the most advanced research and science investments in the geothermal sector. Five active demonstration sites nationwide are proving the spectrum of EGS potential, in and near existing hydrothermal operations, with infrastructure, and in the longer-term greenfield settings, where no previous geothermal development is operating.

271

Category:Geothermal Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Geothermal Projects Each year different agencies report the upcoming geothermal developing projects. The Geothermal Energy Association (GEA) publishes their findings in their annual US Geothermal Power Production and Development Update, in which it lists geothermal projects in one of four phases of development. SNL Financial reports geothermal projects and they collect their information from a variety of sources including EIA, company websites, press releases, and various other sources. The list below is intended to be a centralized list of geothermal projects from a variety of reporting sources. This list of projects may be sourced from GEA, SNL, EIA, press releases, or individual developers.

272

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

273

State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report  

SciTech Connect

Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, and Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.

Icerman, L.; Starkey, A.; Trentman, N. (eds.)

1981-08-01T23:59:59.000Z

274

State-coupled low-temperature geothermal-resource assessment program, Fiscal Year 1979. Final technical report  

SciTech Connect

The results of low-temperature geothermal energy resource assessment efforts in New Mexico during the period from 1 October 1978 to 30 June 1980 are summarized. The results of the efforts to extend the inventory of geothermal energy resources in New Mexico to low-temperature geothermal reservoirs with the potential for direct heating applications are given. These efforts focused on compiling basic geothermal data and new hydrology and temperature gradient data throughout New Mexico in a format suitable for direct transfer to the US Geological Survey and the National Oceanic and Atmospheric Administration for inclusion in the GEOTHERM data file and for preparation of New Mexico low-temperature geothermal resources maps. The results of geothermal reservoir confirmation studies are presented. (MHR)

Icerman, L.; Starkey, A.; Trentman, N. (eds.) [eds.

1980-10-01T23:59:59.000Z

275

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers (EERE)

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

276

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

277

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

278

Stanford Geothermal Workshop- Geothermal Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

279

Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979  

SciTech Connect

The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G. (comps.)

1980-08-01T23:59:59.000Z

280

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

282

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

283

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

284

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

285

Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report  

SciTech Connect

In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediately adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.

Reynolds, M.; Ritchotte, G.; Viggiano, A.; Dwyer, J.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

1994-08-01T23:59:59.000Z

286

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

Lunis, B.C. (ed.)

1982-08-01T23:59:59.000Z

287

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

Lunis, B. C.; Toth, W. J. [comps.

1981-10-01T23:59:59.000Z

288

Two phase flow in geothermal systems. Final report, April 1, 1984-March 31, 1985  

SciTech Connect

Studies were performed to better understand the physical mechanisms involved in two-phase, single substance flow and their thermodynamic and fluid-dynamic implications. Flow properties were measured over a wide range of flow conditions from low-flash Mach number to high-flash Mach numbers to simulate actual two-phase flow over the full length of a geothermal well from the flash horizon to the choked wellhead. Void fraction, friction factors and entropy production were calculated. 2 refs., 12 figs. (ACR)

Maeder, P.F.; Kestin, J.

1985-04-01T23:59:59.000Z

289

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981  

SciTech Connect

The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

Lunis, B.C.; Toth, W.J. (comps.)

1982-05-01T23:59:59.000Z

290

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network (OSTI)

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

291

Geothermal Basics  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

292

Geothermal Case Studies  

SciTech Connect

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

293

Center for Excellence in Rural Safety Mid-Term Report  

E-Print Network (OSTI)

, and public policies can act together to improve driver safety.We work in collaboration with federal, stateCenter for Excellence in Rural Safety Mid-Term Report July 2008 #12;#12;Contents Rural Safety safety................2 RESEARCH End-to-End Emergency Response

Levinson, David M.

294

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

geothermal geothermal Type Term Title Author Replies Last Post sort icon Blog entry geothermal Geothermal Regulatory Roadmap featured on NREL Now Graham7781 5 Aug 2013 - 13:18 Blog entry geothermal GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry geothermal GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

295

Geothermal News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

296

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

297

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Community’s supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

298

New fluorocarbon elastomers for seals for geothermal and other aggressive environments. Final report  

SciTech Connect

Saturated ethyllenic elastomers having a range of methyl group substitution, and a range of partial fluorine substitution were screened. Elastomers based on vinylidene fluoride hexafluoropropylene (VDFHFP) and those based on tetrafluoroethylenepropylene (TFEP) (alternating) were successfully cross-linked by electron-beam radiation and fluorinated to yield elastomeric products, but those based on ethylene-propylene-diene (EPDM) elastomer became brittle after fluorination. The best products were evaluated using tensile strength, elongation at break, solvent swelling, thermogravimetric analysis and infrared. A wide range of carbon-black filled compositions using the TFEP elastomer were cross-linked. The compositions were then fluorinated at or near room temperature for extended periods of time. After fluorination the samples were subjected to geothermal brine at 300/sup 0/C. The best carbon-black filled composition again lasted at least 100 days in the geothermal brine. This filler-elastomer composition was chosen for use in the production of 0-rings. The 0-rings were produced by compression molding using a 30 ton hydraulic press. Various sizes of 0-rings were produced ranging fro 0.8 to 2.0 inches in diameter and from 1/16 to 3/16 inches in width. The final 0-rings were cross-linked at 40 Mrad and fluorinated under the optimized conditions developed for the samples.

Lagow, R.J.

1982-12-01T23:59:59.000Z

299

Report on design, construction, and testing of CO/sub 2/ breakout system for geothermal brines  

SciTech Connect

A skid mounted test facility has been built for determining conditions at which CO/sub 2/ flashes from geothermal brines. The system has been checked and operated at one geothermal plant. It performed as designed. The equipment is designed to operate at temperatures and pressures typical of wells near Heber, California. (Nominally 180/sup 0/C and 300 to 500 psig). It has heat exchangers which can cool the brine to less than 70/sup 0/C. (The cooling water is recirculated after being cooled by a forced air heat exchanger). Breakout pressures can be determined for any temperature between 70/sup 0/C and wellhead temperature. An adjustable orifice provides final control on pressure required to initiate flashing. The orifice is at the bottom of a sight glass. A light beam shines through the sight glass and focuses on a photoelectric cell. The presence of bubbles scatters light and decreases the output of the cell. Results using the cell were more reproducible than those using the naked eye. Results from one test show a smooth curve over the temperature range 75/sup 0/C to 165/sup 0/C. Agreement between the experimental values and calculated ones is discussed.

Robertus, R.J.; Shannon, D.W.; Sullivan, R.G.

1984-03-01T23:59:59.000Z

300

Consolidation of geologic studies of geopressured geothermal resources in Texas. 1982 annual report  

SciTech Connect

Detailed structural mapping at several horizons in selected study areas within the Frio growth-fault trend demonstrates a pronounced variability in structural style. At Sarita in South Texas, shale mobilization produced one or more shale ridges, one of which localized a low-angle growth fault trapping a wedge of deltaic sediments. At Corpus Christi, shale mobilization produced a series of large growth faults, shale-cored domed anticlines, and shale-withdrawal basins, which become progressively younger basinward. At Blessing, major growth faults trapped sands of the Greta/Carancahua barrier system with little progradation. At Pleasant Bayou, a major early growth-fault pattern was overprinted by later salt tectonics - the intrusion of Danbury Dome and the development of a salt-withdrawal basin. At Port Arthur, low-displacement, long-lived faults formed on a sand-poor shelf margin contemporaneously with broad salt uplifts and basins. Variability in styles is related to the nature and extent of Frio sedimentation and shelf-margin progradation and to the presence or absence of salt. Structural styles that are conducive to the development of large geothermal reservoirs include blocks between widely spaced growth faults having dip reversal, salt-withdrawal basins, and shale-withdrawal basins. These styles are widespread on the Texas Gulf Coast. However, actually finding a large reservoir depends on demonstrating the existence of sufficient sandstone with adequate quality to support geopressured geothermal energy production.

Morton, R.A.; Ewing, T.E.; Kaiser, W.R.; Finley, R.J.

1983-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Testing geopressured geothermal reservoirs in existing wells. Wells of Opportunity Program final contract report, 1980-1981  

SciTech Connect

The geopressured-geothermal candidates for the Wells of Opportunity program were located by the screening of published information on oil industry activity and through direct contact with the oil and gas operators. This process resulted in the recommendation to the DOE of 33 candidate wells for the program. Seven of the 33 recommended wells were accepted for testing. Of these seven wells, six were actually tested. The first well, the No. 1 Kennedy, was acquired but not tested. The seventh well, the No. 1 Godchaux, was abandoned due to mechanical problems during re-entry. The well search activities, which culminated in the acceptance by the DOE of 7 recommended wells, were substantial. A total of 90,270 well reports were reviewed, leading to 1990 wells selected for thorough geological analysis. All of the reservoirs tested in this program have been restricted by one or more faults or permeability barriers. A comprehensive discussion of test results is presented.

Not Available

1982-01-01T23:59:59.000Z

302

Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume IV. Field activities. Final report  

SciTech Connect

This volume describes those activities which took place at the Sperry DOE Gravity Head plant site at the East Mesa Geothermal Reservoir near Holtville, California between February 1980, when site preparation was begun, and November 1982, when production well 87-6 was permanently abandoned. Construction activities were terminated in July 1981 following the liner collapse in well 87-6. Large amounts of program time manpower, materials, and funds had been diverted in a nine-month struggle to salvage the production well. Once these efforts proved futile, there was no rationale for continuing with the site work unless and until sufficient funding to duplicate well 87-6 was obtained. Activities reported here include: plant construction and pre-operational calibration and testing, drilling and completion of well 87-6, final repair effort on well 87-6, abandonment of well 87-6, and performance evaluation of well 87.6. (MHR)

Harvey, C.

1984-01-01T23:59:59.000Z

303

Geothermal energy development in the Eastern United States. Technical assistance report No. 4. Geothermal space heating: Pittsville Middle/Elementary School, Pittsville, Maryland  

SciTech Connect

A technical evaluation was made to determine whether geothermal energy obtained from a well could be used to space heat the new school building being constructed as well as the existing elementary wing of the Pittsville School. The first part deals with space heating the new school building only; the second part pertains to space heating the new school building together with the new existing wing. An addendum was added for new well and production pump costs. (MHR)

Briesen, R.V.; Yu, K.

1980-06-01T23:59:59.000Z

304

Corrosion of selected metals and a high-temperature thermoplastic in hypersaline geothermal brine. Report of investigations/1983  

SciTech Connect

The Bureau of Mines conducted corrosion research to determine suitable construction materials for geothermal resource recovery plants. Weight loss, pitting and crevice corrosion, U-bend stress corrosion, and electrochemical polarization measurements were made on selected metals in brine and steam process environments produced from high-enthalpy hypersaline brine from geothermal well Magmamax No. 1 at the Salton Sea Known Geothermal Resources Area, Imperial Valley, Calif.

Conrad, R.K.; Carter, J.P.; Cramer, S.D.

1983-09-01T23:59:59.000Z

305

Geothermal Technologies Office: Geothermal Projects  

Energy Savers (EERE)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

306

Gulf Coast geopressured-geothermal program summary report compilation. Volume 3: Applied and direct uses, resource feasibility, economics  

SciTech Connect

The US Department of Energy established a geopressured-geothermal energy program in the mid 1970`s as one response to America`s need to develop alternate energy resources in view of the increasing dependence on imported fossil fuel energy. This program continued for 17 years and approximately two hundred million dollars were expended for various types of research and well testing to thoroughly investigate this alternative energy source. This volume describes the following studies: Geopressured-geothermal hybrid cycle power plant: design, testing, and operation summary; Feasibility of hydraulic energy recovery from geopressured-geothermal resources: economic analysis of the Pelton turbine; Brine production as an exploration tool for water drive gas reservoirs; Study of supercritical Rankine cycles; Application of the geopressured-geothermal resource to pyrolytic conversion or decomposition/detoxification processes; Conclusions on wet air oxidation, pyrolytic conversion, decomposition/detoxification process; Co-location of medium to heavy oil reservoirs with geopressured-geothermal resources and the feasibility of oil recovery using geopressured-geothermal fluids; Economic analysis; Application of geopressured-geothermal resources to direct uses; Industrial consortium for the utilization of the geopressured-geothermal resource; Power generation; Industrial desalination, gas use and sales, pollutant removal, thermal EOR, sulfur frasching, oil and natural gas pipelining, coal desulfurization and preparation, lumber and concrete products kilning; Agriculture and aquaculture applications; Paper and cane sugar industries; Chemical processing; Environmental considerations for geopressured-geothermal development. 27 figs., 25 tabs.

John, C.J.; Maciasz, G.; Harder, B.J.

1998-06-01T23:59:59.000Z

307

Geothermal Energy Development in the Eastern United States: Technical assistance report No. 6 geothermal space heating and airconditioning -- McGuire Air Force Base, New Jersey  

SciTech Connect

A method of utilizing the geothermal (66 F) water resource for space heating and cooling of 200 of the 1452 housing units at McGuire AFB is suggested. Using projections of future costs of gas, coal and electricity made by DOD and by industry (Westinghouse), the relative costs of the geothermal-water-plus-heat-pump system and the otherwise-planned central gas heating (to be converted to coal in 1984) and air-conditioning (using individual electric units) system are compared. For heating with the geothermal/heat-pump system, an outlet temperature of 130 F is selected, requiring a longer running time than the conventional system (at 180 F) but permitting a COP (coefficient of performance) of the heat pump of about 3.4. For cooling (obtained in this study by changing directions of water flow, not refrigerant cycles), the change in temperature is less, and a COP near 4.5 is obtained. The cost of cooling in the summer months would be significantly less than the cost of using individual electric air-conditioners. Thus, by using nonreversible heat pumps, geothermal water is used to heat and to cool a section of the housing compound, minimizing operating expenditures. It is estimated that, to drill 1000 ft deep production and reinjection wells and to install ten heat pumps, heat exchangers and piping, would require a capital outlay of $643 K. This cost would replace the capital cost of purchasing and installing 200 air-conditioning units and 14% of the cost of the future coal-fired central heating system (which would otherwise serve all 1452 housing units at McGuire). The net additional capital outlay would be $299 K, which could be amortized in 10 years by the lower operating cost of the geothermal system if electricity and coal prices escalate as industry suggests. If the coal and electricity costs rise at the more modest rates that DOD projects, the capital costs would be amortized in a 15 year period.

Hill, F.K.; Briesen R. von

1980-12-01T23:59:59.000Z

308

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Colorado Type Term Title Author Replies Last Post sort icon Blog entry Colorado Colorado Meeting Kyoung 21 Mar 2013 - 10:24 Blog entry Colorado Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

309

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FY12 Type Term Title Author Replies Last Post sort icon Blog entry FY12 Thank You! Kyoung 21 Mar 2013 - 08:40 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253755

310

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Fish and Wildlife Type Term Title Author Replies Last Post sort icon Blog entry Fish and Wildlife Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

311

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: Cost Recovery Type Term Title Author Replies Last Post sort icon Blog entry Cost Recovery GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry Cost Recovery GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers

312

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: flora and fauna Type Term Title Author Replies Last Post sort icon Blog entry flora and fauna Texas Legal Review Alevine 29 Jul 2013 - 14:46 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

313

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: analysis Type Term Title Author Replies Last Post sort icon Blog entry analysis GRR 3rd Quarter - Stakeholder Update Meeting Kyoung 9 Jul 2013 - 20:57 Blog entry analysis GRR 2nd Quarter - Stakeholder Update Meeting Kyoung 2 May 2013 - 14:06 Blog entry analysis Happy New Year! Kyoung 21 Mar 2013 - 10:09 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers:

314

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: FWS Type Term Title Author Replies Last Post sort icon Blog entry FWS Idaho Meeting #2 Kyoung 4 Sep 2012 - 21:36 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142253965

315

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds Term: BHFS Type Term Title Author Replies Last Post sort icon Blog entry BHFS Texas Legal Review Alevine 29 Jul 2013 - 14:46 Blog entry BHFS Happy New Year! Kyoung 21 Mar 2013 - 10:09 Blog entry BHFS Legal Reviews are Underway Kyoung 21 Mar 2013 - 09:17 Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill

316

Puna Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Puna Geothermal Project Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Location Puna, Hawaii County Hawaii County, Hawaii Geothermal Area Hawaii Geothermal Region Geothermal Project Profile Developer Puna Geothermal Venture Project Type Hybrid Flash/Binary GEA Development Phase Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property. Planned Capacity (MW) 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW GEA Report Date

317

Imperial County geothermal development annual meeting: summary  

SciTech Connect

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

318

Geothermal resource data base: Arizona  

SciTech Connect

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

319

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

320

The Geothermal Technologies Office  

Energy Savers (EERE)

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Sandia National Laboratories: Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

322

2011 Peer Review Report | Department of Energy  

Office of Environmental Management (EM)

Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer...

323

Federal Geothermal Program Plan for Fiscal Year 1983  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This is a report of the Interagency Geothermal Coordinating Committee (IGCC). (DJE 2005)

None

1983-03-01T23:59:59.000Z

324

Geothermal energy program summary  

SciTech Connect

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

325

Geothermal: Sponsored by OSTI -- Geothermal Energy R&D Program...  

Office of Scientific and Technical Information (OSTI)

R&D Program - Annual Progress Report for Fiscal Year 1990 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

326

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

327

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

328

Geothermal Energy R&D Program Summary  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form.

None

1988-11-18T23:59:59.000Z

329

Development of Enhanced Geothermal Systems Technologies Workshops...  

Energy Savers (EERE)

in the report by the Massachusetts Institute of Technology (MIT) titled The Future of Geothermal Energy (MIT 2006). Three of the presentations (in the areas of Reservoir...

330

Assessment of Inferred Geothermal Resource: Longavi Project,...  

Open Energy Info (EERE)

Project, Chile Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Inferred Geothermal Resource: Longavi Project, Chile Organization Hot...

331

Geothermal: Sponsored by OSTI -- Nuclear Technology Division...  

Office of Scientific and Technical Information (OSTI)

Nuclear Technology Division annual progress report for period ending June 30, 1973 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

332

Innovative Exploration Techniques for Geothermal Assessment at...  

Open Energy Info (EERE)

determine the fracture surface area, heat content and heat transfer, flow rates, and chemistry of the geothermal fluids encountered by the exploration wells. - Write final report...

333

California Geothermal Energy Collaborative  

E-Print Network (OSTI)

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

334

Recovering lithium chloride from a geothermal brine. Report of investigations/1984  

SciTech Connect

The Bureau of Mines has devised techniques to recover lithium from geothermal brines as the chloride. More than 99 pct of the lithium was precipitated from a brine containing 170 mg/L Li by adding a solution of A1C13 and increasing the pH to 7.5 with lime slurry. The Li-Al precipitate was dissolved in HCl and sparged with gaseous HC1 to recover the A1C13; this resulted in a solution containing LiCl and CaC12. The solution was evaporated at 100C to obtain a mixture of the chlorides from which 97 pct of the lithium was recovered and 90 pct of the calcium was rejected by leaching with tetrahydrofuran. The LiC1 recovered by evaporation of the tetrahydrofuran was purified by dissolution in water and treatment with oxalic acid. The final LiC1 solution contained 89 pct of the lithium originally present in the brine and had a purity of 99.9 pct.

Schultze, L.E.; Bauer, D.J.

1984-01-01T23:59:59.000Z

335

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Environment Environment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

336

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term  

SciTech Connect

A new type of dual-porosity model is being developed to simulate two-phase flow processes in fractured geothermal reservoirs. At this time it is assumed that the liquid phase in the matrix blocks remains immobile. By utilizing the effective compressibility of a two-phase water/steam mixture in a porous rock, flow within the matrix blocks can be modeled by a single diffusion equation. This equation in turn is replaced by a non-linear ordinary differential equation that utilizes the mean pressure and mean saturation in the matrix blocks to calculate the rate of fluid flow between the matrix blocks and fractures. This equation has been incorporated into the numerical simulator TOUGH to serve as a source/sink term for computational gridblocks that represent the fracture system. The new method has been compared with solutions obtained using fully-discretized matrix blocks, on a problem involving a three-dimensional vapor-dominated reservoir containing an injection and a production well, and has been found to be quite accurate.

Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

1993-02-01T23:59:59.000Z

337

Geothermal Energy; (USA)  

SciTech Connect

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

338

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

339

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

340

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europe’s future energy requirements is much sm...

1977-01-01T23:59:59.000Z

342

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

343

Regional operations research program for commercialization of geothermal energy in the Rocky Mountain basin and range. Final technical report, January 1980-March 1981  

SciTech Connect

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

Not Available

1981-07-01T23:59:59.000Z

344

City of El Centro geothermal energy utility core field experiment. Final report, February 16, 1979-November 30, 1984  

SciTech Connect

The City of El Centro was awarded a contract in late 1978 to cost share the development of a low to moderate temperature geothermal resource in the City. The resource would be utilized to heat, cool and provide hot water to the nearby Community Center. In December 1981, Thermal 1 (injector) was drilled to 3970 feet. In January 1982, Thermal 2 (producer) was drilled to 8510 feet. Before testing began, fill migrated into both wells. Both wells were cleaned out. A pump was installed in the producer, but migration of fill again into the injector precluded injection of produced fluid. A short term production test was undertaken and results analyzed. Based upon the analysis, DOE decided that the well was not useful for commercial production due to a low flow rate, the potential problems of continued sanding and gasing, and the requirement to lower the pump setting depth and the associated costs of pumping. There was no commercial user found to take over the wells. Therefore, the wells were plugged and abandoned. The site was restored to its original condition.

Province, S.G.; Sherwood, P.B.

1984-11-01T23:59:59.000Z

345

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

346

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

347

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

348

Final Scientific/Technical Report [Recovery Act: Districtwide Geothermal Heating Conversion  

SciTech Connect

The Recovery Act: Districtwide Geothermal Heating Conversion project performed by the Blaine County School District was part of a larger effort by the District to reduce operating costs, address deferred maintenance items, and to improve the learning environment of the students. This project evaluated three options for the ground source which were Open-Loop Extraction/Re-injection wells, Closed-Loop Vertical Boreholes, and Closed-Loop Horizontal Slinky approaches. In the end the Closed-Loop Horizontal Slinky approach had the lowest total cost of ownership but the majority of the sites associated with this project did not have enough available ground area to install the system so the second lowest option was used (Open-Loop). In addition to the ground source, this project looked at ways to retrofit existing HVAC systems with new high efficiency systems. The end result was the installation of distributed waterto- air heat pumps with water-to-water heat pumps installed to act as boilers/chillers for areas with a high ventilation demand such as they gymnasiums. A number of options were evaluated and the lowest total cost of ownership approach was implemented in the majority of the facilities. The facilities where the lowest total cost of ownership approaches was not selected were done to maintain consistency of the systems from facility to facility. This project had a number of other benefits to the Blaine County public. The project utilizes guaranteed energy savings to justify the levy funds expended. The project also developed an educational dashboard that can be used in the classrooms and to educate the community on the project and its performance. In addition, the majority of the installation work was performed by contractors local to Blaine County which acted as an economic stimulus to the area during a period of recession.

Chatterton, Mike

2014-02-12T23:59:59.000Z

349

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

350

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

351

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

352

Geothermal technology development program. Quarterly progress report, April-June 1981  

SciTech Connect

The status of ongoing research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology is reported. (MHR)

Kelsey, J.R. (ed.)

1981-10-01T23:59:59.000Z

353

Geothermal Project Data and Personnel Resumes  

SciTech Connect

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

354

Cost analysis of oil, gas, and geothermal well drilling  

Science Journals Connector (OSTI)

Abstract This paper evaluates current and historical drilling and completion costs of oil and gas wells and compares them with geothermal wells costs. As a starting point, we developed a new cost index for US onshore oil and gas wells based primarily on the API Joint Association Survey 1976–2009 data. This index describes year-to-year variations in drilling costs and allows one to express historical drilling expenditures in current year dollars. To distinguish from other cost indices we have labeled it the Cornell Energy Institute (CEI) Index. This index has nine sub-indices for different well depth intervals and has been corrected for yearly changes in drilling activity. The CEI index shows 70% higher increase in well cost between 2003 and 2008 compared to the commonly used Producer Price Index (PPI) for drilling oil and gas wells. Cost trends for various depths were found to be significantly different and explained in terms of variations of oil and gas prices, costs, and availability of major well components and services at particular locations. Multiple methods were evaluated to infer the cost-depth correlation for geothermal wells in current year dollars. In addition to analyzing reported costs of the most recently completed geothermal wells, we investigated the results of the predictive geothermal well cost model WellCost Lite. Moreover, a cost database of 146 historical geothermal wells has been assembled. The CEI index was initially used to normalize costs of these wells to current year dollars. A comparison of normalized costs of historical wells with recently drilled ones and WellCost Lite predictions shows that cost escalation rates of geothermal wells were considerably lower compared to hydrocarbon wells and that a cost index based on hydrocarbon wells is not applicable to geothermal well drilling. Besides evaluating the average well costs, this work examined economic improvements resulting from increased drilling experience. Learning curve effects related to drilling multiple similar wells within the same field were correlated.

Maciej Z. Lukawski; Brian J. Anderson; Chad Augustine; Louis E. Capuano Jr.; Koenraad F. Beckers; Bill Livesay; Jefferson W. Tester

2014-01-01T23:59:59.000Z

355

Geothermal resources  

SciTech Connect

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

356

Development Operations Hypersaline Geothermal Brine Utilization Imperial  

Open Energy Info (EERE)

Hypersaline Geothermal Brine Utilization Imperial Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Abstract N/A Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Citation Whitescarver, Olin D.. 1984. Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California. (!) : U.S. Department of Energy. Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Development_Operations_Hypersaline_Geothermal_Brine_Utilization_Imperial_County,_California&oldid=682648

357

Property:Geothermal/Partner5Website | Open Energy Information  

Open Energy Info (EERE)

Partner5Website Partner5Website Jump to: navigation, search Property Name Geothermal/Partner5Website Property Type URL Description Partner 5 Website (URL) Pages using the property "Geothermal/Partner5Website" Showing 6 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.westerngeco.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.thermasource.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://- + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

358

Geothermal data | OpenEI  

Open Energy Info (EERE)

91 91 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278991 Varnish cache server Geothermal data Dataset Summary Description This dataset corresponds to the final report on a screening study to compare six methods of removing noncondensable gases from direct-use geo-thermal steam power plants. This report defines the study methodologies and compares the performance and economics of selected gas-removal systems. Recommendations are presented for follow-up investigations and implementation of some of the technologies discussed. Source NREL Date Released Unknown Date Updated Unknown Keywords geothermal Geothermal data NREL solar Data application/vnd.ms-excel icon Download data (xls, 1.4 MiB)

359

New Geothermal Prospects in the Western United States Show Promise...  

Energy Savers (EERE)

new 2013 Annual U.S. Geothermal Power Production and Development Report, published by the Geothermal Energy Association this week. With an estimate of more than 500 Megawatts of...

360

Consolidation of geologic studies of geopressured geothermal resources in Texas. 1984 annual report  

SciTech Connect

The report contains two sections, the first on a regional statistical survey of fault compartments, and the second on a revised theory of fluid migration and temperature history in the Frio formation. Separate abstracts were prepared for each section. (ACR)

Ewing, T.E.; Light, M.P.R.; Tyler, N.; Morton, R.A.

1986-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal energy development in the eastern United States: technical assistance report no. 5. Geothermal space heating-naval air rework facility, Norfolk, Virginia. [Aircraft hangers  

SciTech Connect

The electronic integration hangar, designated LP-167, was selected for study, as it was a single-story building with a large floor area. Because of the high ceiling and the sliding doors necessary to admit aircraft, the heat loss rate, based on floor area, was about twice that of commercial buildings. It was furnished with an oil-fired hot water heating system capable of high thermal output to meet heating requirements in the coldest weather. On the basis of the known characteristics of geothermal sources for the Atlantic Coastal Plain, and wells drilled and assayed in the Norfolk area, a reasonable estimate of the parameters of a well drilled at NARF was made. This included a low temperature output from the well of only 107/sup 0/F, so that direct transfer of warm water between the wellhead heat exchanger (HX) and the hot water radiating system in the building was not practical. Four design options are explored and calculations are presented on each one.

Hill, F.K.; Henderson, R.W.

1980-06-01T23:59:59.000Z

362

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers (EERE)

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

363

geothermal | OpenEI Community  

Open Energy Info (EERE)

geothermal geothermal Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

364

Geothermal development plan: Pima County  

SciTech Connect

The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

365

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

366

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

367

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect

A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

368

Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001  

SciTech Connect

The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

Schochet, Daniel N.; Cunniff, Roy A.

2001-02-01T23:59:59.000Z

369

2003 Long-Term Surveillance and Maintenance Program Report  

SciTech Connect

Radioactive waste was created by the Federal Government and private industry at locations around the country in support of national defense, research, and civilian power-generation programs. If not controlled, much of this legacy waste would remain hazardous to human health and the environment indefinitely. Current technology does not allow us to render this waste harmless, so the available methods to control risk rely on consolidation, isolation, and long-term management of the waste. The U.S. Department of Energy (DOE) has an obligation to safely control the radioactive waste and to inform and train future generations to maintain and, perhaps, improve established protections. DOE is custodian for much of the radioactive and other hazardous waste under control of the Federal Government. DOE established the Formerly Utilized Sites Remedial Action Program (FUSRAP) in 1974 and the Defense Decontamination and Decommissioning (D&D) Program and the Surplus Facilities Management Program in the 1980s. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978. These federal programs and legislation were established to identify, remediate, and manage legacy waste. Remedial action is considered complete at a radioactive waste site when the identified hazardous material is isolated and the selected remedial action remedy is in place and functioning. Radioactive or other hazardous materials remain in place as part of the remedy at many DOE sites. Long-term management of radioactive waste sites incorporates a set of actions necessary to maintain protection of human health and the environment. These actions include maintaining physical impoundment structures in good repair to ensure that they perform as designed, preventing exposure to the wastes by maintaining access restrictions and warnings, and recording site conditions and activities for future custodians. Any actions, therefore, that will prevent exposure to the radioactive waste now or in the future are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE’s responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation’s nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE’s legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM–50), as well as management of remedies involving ground water and surface water contaminated by former processing activities.

None

2004-07-01T23:59:59.000Z

370

Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress  

SciTech Connect

This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

Normann, Randy A.

2014-12-01T23:59:59.000Z

371

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

372

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Details Activities (7) Areas (6) Regions (0) Abstract: To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal

373

2014 Geothermal Case Study Challenge | OpenEI Community  

Open Energy Info (EERE)

Challenge > Posts by term > 2014 Geothermal Case Study Challenge Content Group Activity By term Q & A Feeds Term: Colorado School of Mines Type Term Title Author Replies Last Post...

374

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

375

Microseismic monitoring for evidence of geothermal heat in the capital district of New York. Final report, Phases I-III  

SciTech Connect

The seismic monitoring work of the geothermal project was initiated for the purpose of determining more exactly the relationship between seismicity and the postulated geothermal and related activity in the Albany-Saratoga Springs area in upstate New York. The seismic monitoring aspect of this work consisted of setting up and operating a network of seven seismograph stations within and around the study area capable of detecting and locating small earthquakes. To supplement the evidence from present day seismic activity, a list of all known historical and early instrumental earthquakes was compiled and improved from original sources for a larger region centered on the study area. Additional field work was done to determine seismic velocities of P and S phases by special recording of quarry blasts. The velocity results were used both as an aid to improve earthquake locations based on computer programs and to make inferences about the existence of temperature anomalies, and hence geothermal potential, at depths beneath the study area. Finally, the level in the continuous background earth vibration, microseisms, was measured throughout the study area to test a possibility that a relationship may exist at the surface between the level in microseisms and the geothermal or related activity. The observed seismic activity within the study area, although considerably higher (two to three times) than inferred from the historical and early instrumental data, is still not only low for a potential geothermal area but appears to be related to coherent regional tectonic stresses and not to the proposed more localized geothermal activity reflected in the mineralized, CO/sub 2/ rich spring discharge.

Not Available

1983-06-01T23:59:59.000Z

376

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

377

Fundamentals of Geothermics  

Science Journals Connector (OSTI)

The expression ‘geothermics of the Earth’ is understood to be restricted to the solid Earth and is usually shortened to geothermics. Hence, the field of geothermics starts as soon as the solid Earth has been e...

R. Haenel; L. Rybach; L. Stegena

1988-01-01T23:59:59.000Z

378

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

379

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) assembled a panel of geothermal experts to identify the obstacles to geothermal energy growth and more. May 9, 2011 Department of Energy to Issue Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S. In early June 2011, the U.S. Department of Energy's Geothermal Technologies

380

DOE - Office of Legacy Management -- Geothermal  

Office of Legacy Management (LM)

Geothermal Test Facility, California Geothermal Test Facility, California This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Please be green. Do not print these documents unless absolutely necessary. Request a paper copy of any document by submitting a Document Request. All Site Documents All documents are Adobe Acrobat files. pdf_icon Fact Sheet Other Documents Fact Sheet Geothermal Test Facility, California, Site Fact Sheet December 12, 2011 Other Documents Geothermal Test Facility (GTF) Closure and Records Transfer (DOE/National Nuclear Security Administration memorandum) April 23, 2004 Closure Report East Mesa Geothermal Test Facility July 31, 1998 Recission of Waste Discharge Requirements for U.S. Department of Energy, Geothermal Test Facility, East Mesa - El Centro, Imperial County (California Regional Water Quality Control Board letter) January 4, 1997

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

382

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

383

Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981  

SciTech Connect

This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

None

1981-07-01T23:59:59.000Z

384

Initial Report on the Development of a Monte Carlo-Markov Chain Joint Inversion Approach for Geothermal Exploration  

SciTech Connect

Geothermal exploration and subsequent characterization of potential resources typically employ a variety of geophysical, geologic and geochemical techniques. However, since the data collected by each technique provide information directly on only one or a very limited set of the many physical parameters that characterize a geothermal system, no single method can be used to describe the system in its entirety. Presently, the usual approach to analyzing disparate data streams for geothermal applications is to invert (or forward model) each data set separately and then combine or compare the resulting models, for the most part in a more or less ad hoc manner. However, while each inversion may yield a model that fits the individual data set, the models are usually inconsistent with each other to some degree. This reflects uncertainties arising from the inevitable fact that geophysical and other exploration data in general are to some extent noisy, incomplete, and of limited sensitivity and resolution, and so yield non-unique results. The purpose of the project described here is to integrate the different model constraints provided by disparate geophysical, geological and geochemical data in a rigorous and consistent manner by formal joint inversion. The objective is to improve the fidelity of exploration results and reservoir characterization, thus addressing the goal of the DOE Geothermal Program to improve success in exploration for economically viable resources by better defining drilling targets, reducing risk, and improving exploration/drilling success rates.

Foxall, W; Ramirez, A; Carlson, S; Dyer, K; Sun, Y

2007-04-25T23:59:59.000Z

385

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

386

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Geothermal Regulatory Roadmap > Posts by term Content Group Activity By term Q & A Feeds 1031 regulations (1) Alaska (1) analysis (3) appropriations (1) BHFS (3) Categorical Exclusions (3) citation (1) citing (1) Colorado (2) Coordinating Permit Office (2) Cost Mechanisms (2) Cost Recovery (2) CX (1) D.C. (1) data (1) Database (1) developer (2) EA (1) EIS (1) endangered species (1) Fauna (1) feedback (1) Fish and Wildlife (1) Flora (1) flora and fauna (1) 1 2 3 next › last » Groups Menu You must login in order to post into this group. Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12)

387

Near-surface groundwater responses to injection of geothermal wastes  

SciTech Connect

This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

Arnold, S.C.

1984-06-01T23:59:59.000Z

388

FY97 Geothermal R&D Program Plan  

SciTech Connect

This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

None

1996-09-01T23:59:59.000Z

389

Geothermal Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

390

HDR geothermal energy  

Science Journals Connector (OSTI)

HDR geothermal energy, petrothermal geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

391

petrothermal geothermal energy  

Science Journals Connector (OSTI)

petrothermal geothermal energy, HDR geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

392

Geothermal Technologies Subject Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

393

Geothermal Technologies Legacy Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

394

Property:Geothermal/Partner2Website | Open Energy Information  

Open Energy Info (EERE)

Partner2Website Partner2Website Jump to: navigation, search Property Name Geothermal/Partner2Website Property Type URL Description Partner 2 Website (URL) Pages using the property "Geothermal/Partner2Website" Showing 19 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.dri.edu/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.climatemaster.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://optimsoftware.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.altarockenergy.com/ +

395

Property:Geothermal/Partner4Website | Open Energy Information  

Open Energy Info (EERE)

Partner4Website Partner4Website Jump to: navigation, search Property Name Geothermal/Partner4Website Property Type URL Description Partner 4 Website (URL) Pages using the property "Geothermal/Partner4Website" Showing 7 pages using this property. A Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.smu.edu/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sandia.gov/ + D Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

396

Geothermal development issues: Recommendations to Deschutes County  

SciTech Connect

This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

Gebhard, C.

1982-07-01T23:59:59.000Z

397

SGP-TR-32 STANFORD GEOTHERMAL PROGRAM  

E-Print Network (OSTI)

SGP- TR- 32 STANFORD GEOTHERMAL PROGRAM PROGRESS REPORT NO. 7 t o U. S. DEPARTMENT OF ENERGY Recent Radon Transient Experiments Energy Recovery from Fracture-Stimulated Geothermal Reservoirs 1 2 October 1, 1978 through December 31, 1978. Research is performed under t h e Department of Energy Contract

Stanford University

398

Geothermal's hot prospects  

SciTech Connect

Magma Power and California Energy's ambitious plans to build geothermal capacity in the United States and abroad have captured Wall Street's attention. After acquiring three geothermal plants, a power contract and 11,000 acres of geothermal leaseholds, officials at Magma Power Co. can probably wipe their brows, take a deep breath and agree that is has been a big year. The San Diego-based company acquired the three projects in March. The leaseholds came from Unocal and are in the Imperial Valley of California, close to the four geothermal plants Magma operates near the Salton Sea. Overnight, Magma's generating capacity increased 50 percent, from 164 MW to 244 MW, and revenues, as measured on a pro forma basis, were boosted 60 percent to $174 million from $108 million in fiscal 1992. By most standards, that qualifies as a big year. No wonder, then, that Magma's stock (MGMA:NASDAQ) has been this year's best performing public, independent energy stock by far, soaring 17.8 percent to about $38 a share through August 31. That's way ahead of Standard Poor's 500 Index, which increased 5.7 percent during the same time. The industry's other major independent geothermal player, California Energy Co., based in Omaha, Neb., is a strong competitor with Magma for geothermal assets. Both companies are nearly even in terms of megawatt capacity, and both are pursuing an aggressive expansion strategy as they begin to reach global markets. California Energy has begun implementing its own plans for rapid growth. Its stock (CE:NYSE, PSE, LSE) has outperformed the S P 500, too, rising 6.7 percent through August 31 to trade at a little more than $18 a share. California Energy also acquired some Unocal assets, paying between $15 million and $19 million for 26,000 acres of reserves in the Glass Mountain area in Northern California. While Magma acquired three operating plants able to generate 80 MW and a power contract to supply 20 MW more, California Energy acquired leases and wells.

Mandelker, J.

1993-11-01T23:59:59.000Z

399

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

400

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

402

Resource assessment of low- and moderate-temperature geothermal waters in Calistoga, Napa County, California. Report of the second year, 1979-1980  

SciTech Connect

Phase I studies included updating and completing the USGS GEOTHERM file for California and compiling all data needed for a California Geothermal Resources Map. Phase II studies included a program to assess the geothermal resource at Calistoga, Napa County, California. The Calistoga effort was comprised of a series of studies involving different disciplines, including geologic, hydrologic, geochemical and geophysical studies.

Youngs, L.G.; Bacon, C.F.; Chapman, R.H.; Chase, G.W.; Higgins, C.T.; Majmundar, H.H.; Taylor, G.C.

1980-11-10T23:59:59.000Z

403

Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report  

SciTech Connect

This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

Hill, B.E. [ed.

1992-10-01T23:59:59.000Z

404

Fairbanks Geothermal Energy Project  

Energy.gov (U.S. Department of Energy (DOE))

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

405

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

The California Energy Commission's Geothermal Resources Development Account Geothermal Planning Projects support of geothermal resource elements, or geothermal components of energy elements, for inclusion in the localPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT STRUCTURING A DIRECT

406

Guidebook to Geothermal Power Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

407

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

408

OHm Geothermal | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

409

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network (OSTI)

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

410

Video Resources on Geothermal Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

411

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

412

Guidebook to Geothermal Power Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado Subcontract Report NREL/SR-6A20-49391 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado NREL Technical Monitor: Paul Schwabe Prepared under Subcontract No. LGJ-0-40242-01 Subcontract Report

413

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Groups > Groups > Geothermal Regulatory Roadmap Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in order to post into this group. Groups Menu You must login in order to post into this group. Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine Recent content Geothermal NEPA Workshop at GRC New Robust References! Geothermal Regulatory Roadmap featured on NREL Now Texas Legal Review GRR 3rd Quarter - Stakeholder Update Meeting more Group members (12) Managers: Kyoung Recent members: AfifaAwan Dklein2012 Jweers AGill Agentile Kwitherbee Kjking Payne Dhoefner Twnrel Alevine 429 Throttled (bot load)

414

Environmental baseline monitoring in the area of general crude oil - Department of Energy Pleasant Bayou Number 2: a geopressured geothermal test well, 1979. Annual report, Volume I  

SciTech Connect

A program to monitor baseline air and water quality, subsidence, microseismic activity, and noise in the vicinity of Brazoria County geopressured geothermal test wells, Pleasant Bayou No. 1 and No. 2, has been underway since March 1978. The initial report on environmental baseline monitoring at the test well contained descriptions of baseline air and water quality, a noise survey, an inventory of microseismic activity, and a discussion of the installation of a liquid tilt meter (Gustavson, 1979). The following report continues the description of baseline air and water quality of the test well site, includes an inventory of microseismic activity during 1979 with interpretations of the origin of the events, and discusses the installation and monitoring of a liquid tilt meter at the test well site. In addition, a brief description of flooding at the test site is presented.

Gustavson, T.C.; Howard, R.C.; McGookey, D.

1980-01-01T23:59:59.000Z

415

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

A study of geothermal drilling and the production of electricity from geothermal energy  

SciTech Connect

This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

1994-01-01T23:59:59.000Z

417

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

418

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

419

Deep drilling data Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

drilling data Raft River geothermal area, Idaho drilling data Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Deep drilling data Raft River geothermal area, Idaho Details Activities (2) Areas (1) Regions (0) Abstract: Stratigraphy and geophysical logs of three petroleum test boreholes in the Raft River Valley are presented. The geophysical logs include: temperature, resistivity, spontaneous potential, gamma, caliper, and acoustic logs. Author(s): Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. Published: DOE Information Bridge, 1/1/1978 Document Number: Unavailable DOI: 10.2172/6272996 Source: View Original Report Exploratory Well At Raft River Geothermal Area (1975) Exploratory Well At Raft River Geothermal Area (1976) Raft River Geothermal Area

420

Programmatic Objectives of the Geothermal Technology Division: Volume 1  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

Meridian Corporation, Alexandria, VA

1989-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

New Studies Aid in Optimizing Water Use in Geothermal Applications  

Energy.gov (U.S. Department of Energy (DOE))

Three key reports from the Energy Department address water impacts in geothermal energy production. Two recently issued studies, produced by Argonne National Laboratory for the Department's...

422

Geothermal: Sponsored by OSTI -- ESMERALDA ENERGY COMPANY FINAL...  

Office of Scientific and Technical Information (OSTI)

ESMERALDA ENERGY COMPANY FINAL SCIENTIFIC TECHNICAL REPORT, January 2008, EMIGRANT SLIMHOLE DRILLING PROJECT, DOE GRED III (DE-FC36-04GO14339) Geothermal Technologies Legacy...

423

Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Geothermal Energy: Clean Power from the Earth's Heat Abstract Societies in the 21st century require enormous...

424

Characterization Of Fracture Patterns In The Geysers Geothermal...  

Open Energy Info (EERE)

navigation, search OpenEI Reference LibraryAdd to library Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Abstract The...

425

A History or Geothermal Energy Research and Development in the...  

Energy Savers (EERE)

Drilling 1976-2006 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 This report summarizes significant research projects performed...

426

A History of Geothermal Energy Research and Development in the...  

Energy Savers (EERE)

Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant...

427

Geothermal energy potential in Chaffee County, Colorado | Open...  

Open Energy Info (EERE)

Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal energy potential in Chaffee County, Colorado Author F.C. Healy Published...

428

Geothermal: Sponsored by OSTI -- Foundation Heat Exchanger Final...  

Office of Scientific and Technical Information (OSTI)

Report: Demonstration, Measured Performance, and Validated Model and Design Tool Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

429

Rye Patch geothermal development, hydro-chemistry of thermal...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Rye Patch geothermal development, hydro-chemistry of thermal water applied to resource...

430

RAPID/Geothermal/Well Field/Texas | Open Energy Information  

Open Energy Info (EERE)

- Drilling Permits Online Filing User's Guide webpage RRC - Geothermal Production Test Completion or Recompletion Report and Log Form GT-1 RRC - Online Drilling Permit System...

431

Surveys on the distribution and abundance of the Hawaiian hoary bat (Lasiurus cinereus semotus) in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report  

SciTech Connect

In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of bats throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.

Reynolds, M.; Ritchotte, G.; Dwyer, J.; Viggiano, A.; Nielsen, B.; Jacobi, J.D. [Fish and Wildlife Service, Hawaii National Park, HI (United States). Hawaii Research Station

1994-08-01T23:59:59.000Z

432

Detailed conceptual design of a high-temperature CO/sub 2/ sensor for geothermal applications. Final report, Task I  

SciTech Connect

The work performed on the development of a pCO/sub 2/ probe is documented. The recommended probe includes a solid state device which senses the pH of the internal electrolyte, a gas-permeable membrane that allows diffusion of CO/sub 2/ into the electrolyte, and a getter to inhibit incursion of H/sub 2/S. The results of the feasibility study indicate that such a probe holds promise of meeting all the operational and environmental requirements for in situ and down-hole measurement of carbon dioxide in geothermal fluids.

Phelan, D.M.; Taylor, R.M.; Baxter, R.D.

1983-03-01T23:59:59.000Z

433

Were Archaean continental geothermal gradients much steeper than today? (reply)  

Science Journals Connector (OSTI)

... -We did not intend to suggest that our gradients bore any relationship to near-surface geothermal gradients. It may have been clearer to have termed them average ... gradients. It may have been clearer to have termed them average geothermal gradients. Our purpose in quoting these gradients was simply to emphasise that the temperature ...

KEVIN BURKE; W. S. F. KIDD

1978-08-17T23:59:59.000Z

434

Category:Geothermal References | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geothermal References Jump to: navigation, search Add a new Reference Pages in category "Geothermal References" The following 200 pages are in this category, out of 323 total. (previous 200) (next 200) 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2007 Annual Report A A Case History of Injection Through 1991 at Dixie Valley, Nevada A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii A geochemical model of the Kilauea east rift zone A model for the shallow thermal regime at Dixie Valley geothermal field

435

Property:Geothermal/Partner3Website | Open Energy Information  

Open Energy Info (EERE)

Partner3Website Partner3Website Jump to: navigation, search Property Name Geothermal/Partner3Website Property Type URL Description Partner 3 Website (URL) Pages using the property "Geothermal/Partner3Website" Showing 14 pages using this property. A Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://jobs.ornl.gov/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.unr.edu/home/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.tetramertechnologies.com/ +

436

Geothermal Research and Development Program  

SciTech Connect

Results are reported on adsorption of water vapor on reservoir rocks, physics of injection of water into vapor-dominated geothermal reservoirs, earth-tide effects on downhole pressures, injection optimization at the Geysers, effects of salinity in adsorption experiments, interpreting multiwell pressure data from Ohaaki, and estimation of adsorption parameters from transient experiments.

Not Available

1993-01-25T23:59:59.000Z

437

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network (OSTI)

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

438

Gulf Coast geopressured-geothermal reservoir simulation: final task report (year 4). Final report, 1 August 1979-31 July 1980  

SciTech Connect

The results of the short-term production tests run on the Pleasant Bayou No. 2 well are summarized. These tests were analyzed using conventional pressure test analysis methods. The effects of reservoir heterogeneties onm production behavior and, in particular, permeability distribution and faulting of reservoir sand were studied to determine the sensitivity of recovery to these parameters. A study on the effect of gas buildup around a producing well is reported. (MHR)

MacDonald, R.C.; Sepehrnoori, K.; Ohkuma, H.

1982-10-01T23:59:59.000Z

439

Geothermal district piping - A primer  

SciTech Connect

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

440

Technical support for geopressured-geothermal well activities in Louisiana; Final report, 1 January 1992--31 December 1993  

SciTech Connect

The US Department of Energy has operated continuous-recording, microearthquake monitoring networks at geopressured-geothermal test well sites since 1980. These microseismic networks were designed to detect microearthquakes indicative of fault activation and/or subsidence that can potentially result from the deep subsurface withdrawal and underground disposal of large volumes of brine during well testing. Seismic networks were established before the beginning of testing to obtain background levels of seismicity. Monitoring continued during testing and for some time after cessation of flow testing to assess any delayed microseismicity caused by the time dependence of stress migration within the earth. No flow testing has been done at the Hulin well since January 1990, and the Pleasant Bayou well has been shut down since September 1992. Microseismic monitoring continued at the Hulin and Pleasant Bayou sites until 31 December 1992, at which time both operations were shut down and field sites dismantled. During 1992, the networks recorded seismic signals from earthquakes, sonic booms, geophysical blasting, thunderstorms, etc. However, as in previous years, no local microseismic activity attributable to geopressured-geothermal well testing was recorded.

John, C.J.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Federal Geothermal Research Program Update, FY 2000  

SciTech Connect

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

442

National Geothermal Resource Assessment and Classification |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

443

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

444

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers (EERE)

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

445

FIVE-YEAR PROGRESS REPORT ON A SUCCESSFUL SOLAR/GEOTHERMAL HEATING AND COOLING SYSTEM FOR A COMMERCIAL OFFICE BUILDING IN BURLINGTON, MASSACHUSETTS  

Science Journals Connector (OSTI)

ABSTRACT The purpose of this paper is to present: 1) a description of a solar/geothermal heating and cooling system that has been in successful operation in a commercial office building for over five years; and 2) to present technical and cost operational results that indicate a total annual energy consumption of approximately 25,000 Btu/sq ft/ year. The paper includes a general description of the three-story multi-tenant office building located in Burlington, Massachusetts, its energy efficient design features, its active solar space heating and hot water system, its solar/geothermal heat pump back-up heating system and its geothermal cooling system. A description of the solar/geothermal system is presented including the liquid flat plate collectors, storage tanks, heat exchangers, heat pump, heat transfer fluid, control system, operational modes and the energy monitoring system. KEYWORDS Solar space heating; geothermal heating; geothermal cooling; solar domestic hot water; energy monitoring and control.

John Zvara; P.E.; Ronald J. Adams

1986-01-01T23:59:59.000Z

446

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

447

Geothermal energy geopressure subprogram  

SciTech Connect

The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

Not Available

1981-02-01T23:59:59.000Z

448

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

449

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

450

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

451

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

452

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers (EERE)

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

453

Nevada Geothermal Area | Department of Energy  

Energy Savers (EERE)

Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately...

454

The Geysers Geothermal Area | Department of Energy  

Energy Savers (EERE)

The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field....

455

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

456

North Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Power Plants in North Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Dakota No areas listed....

457

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

458

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Operational Geothermal Power Plants in Wisconsin No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wisconsin No areas listed....

459

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

460

Geothermal Exploration Best Practices: A Guide to Resource Data Collection,  

Open Energy Info (EERE)

Exploration Best Practices: A Guide to Resource Data Collection, Exploration Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Exploration Best Practices: A Guide to Resource Data Collection, Analysis and Presentation for Geothermal Projects Details Activities (0) Areas (0) Regions (0) Abstract: Exploration best practices for any natural resource commodity should aim to reduce the resource risk prior to significant capital investment, for a fraction of the cost of the planned investment. For geothermal energy, the high risks cost of proving the resource is one of the key barriers facing the industry. This guide lays out best practices for geothermal exploration to assist geothermal developers and their

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Behavior Of Rare Earth Element In Geothermal Systems, A New  

Open Energy Info (EERE)

Behavior Of Rare Earth Element In Geothermal Systems, A New Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Behavior Of Rare Earth Element In Geothermal Systems, A New Exploration-Exploitation Tool Details Activities (32) Areas (17) Regions (0) Abstract: The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields

462

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

463

Honey Lake Geothermal Area  

Energy.gov (U.S. Department of Energy (DOE))

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

464

Applications of Geothermal Energy  

Science Journals Connector (OSTI)

The distinction between near surface and deep geothermal systems follows from the different depth levels of the geothermal reservoirs and different techniques of utilization (Fig ... smooth. Distinguishing the tw...

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

465

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

466

GEOTHERM Data Set  

DOE Data Explorer (OSTI)

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

467

Geothermal Government Programs  

Energy.gov (U.S. Department of Energy (DOE))

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

468

Geothermal energy development  

SciTech Connect

This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

Butler, E.W.; Pick, J.B.

1983-01-01T23:59:59.000Z

469

Geothermal Industry Partnership Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

470

South Dakota geothermal handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

471

Sandia National Laboratories: Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

472

Geothermal Photo Gallery  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

473

Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects.

474

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

475

Annotated geothermal bibliography of Utah  

SciTech Connect

The bibliography includes all the Utah geothermal references through 1984. Some 1985 citations are listed. Geological, geophysical, and tectonic maps and reports are included if they cover a high-temperature thermal area. The references are indexed geographically either under (1) United States (national studies), (2) regional - western United States or physiographic province, (3) Utah - statewide and regional, or (4) county. Reports concerning a particular hot spring or thermal area are listed under both the thermal area and the county names.

Budding, K.E.; Bugden, M.H. (comps.)

1986-01-01T23:59:59.000Z

476

Geothermal Brief: Market and Policy Impacts Update  

SciTech Connect

Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

Speer, B.

2012-10-01T23:59:59.000Z

477

Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A  

SciTech Connect

All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

Bliss, J.D.

1983-07-01T23:59:59.000Z

478

U.S. Geothermal Expands Energy Rights and Initiates | Open Energy...  

Open Energy Info (EERE)

Initiates Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Expands Energy Rights and Initiates Abstract NA Author U.S. Geothermal Inc....

479

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

480

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

Note: This page contains sample records for the topic "geothermal reporting terms" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

482

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

483

US Geothermal Energy Program Multiyear Plan, 1988-1992  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. The Five Year Plans and Multi-Year Plans usually included more detailed rationales and projections than other similar reports. This is a final report. It contains significant data on cost of power from geothermal power systems, and is of historical (history) interest in that regard. (DJE 2005)

None

1988-10-01T23:59:59.000Z

484

1992--1993 low-temperature geothermal assessment program, Colorada  

SciTech Connect

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

Cappa, J.A.; Hemborg, H.T.

1995-01-01T23:59:59.000Z

485

Geothermal Regulatory Roadmap | OpenEI Community  

Open Energy Info (EERE)

Geothermal Regulatory Roadmap Geothermal Regulatory Roadmap Home > Features > Groups Content Group Activity By term Q & A Feeds Content type Blog entry Discussion Document Event Poll Question Keywords Author Apply Kyoung Geothermal NEPA Workshop at GRC Posted by: Kyoung 14 Oct 2013 - 20:19 On Tuesday, October 2, the Geothermal Technology Office and the National Renewable Energy Laboratory held a 1/2-day NEPA workshop. The workshop was held at the MGM Grand in Las Vegas, in conjunction... Tags: Categorical Exclusions, CX, Database, EA, EIS, FONSI, GEA, GRC, GRR, NEPA Jweers New Robust References! Posted by: Jweers 7 Aug 2013 - 18:23 Check out the new Reference Form. Adding... 1 comment(s) Tags: citation, citing, developer, formatting, reference, Semantic Mediawiki, wiki Graham7781

486

Geothermal energy market study on the Atlantic Coastal Plain: Ocean City, Maryland geothermal energy evaluation  

SciTech Connect

This report is one of a series of studies that have been made by the Applied Physics Laboratory, or its subcontractors, to examine the technical and economic feasibility of the utilization of geothermal energy at the request of potential users.

Schubert, C.E.

1981-08-01T23:59:59.000Z

487

Geothermal Energy Development in the Eastern United States, Sensitivity analysis-cost of geothermal energy  

SciTech Connect

The Geothermal Resources Interactive Temporal Simulation (GRITS) model is a computer code designed to estimate the costs of geothermal energy systems. The interactive program allows the user to vary resource, demand, and financial parameters to observe their effects on delivered costs of direct-use geothermal energy. Due to the large number and interdependent nature of the variables that influence these costs, the variables can be handled practically only through computer modeling. This report documents a sensitivity analysis of the cost of direct-use geothermal energy where each major element is varied to measure the responsiveness of cost to changes in that element. It is hoped that this analysis will assist those persons interested in geothermal energy to understand the most significant cost element as well as those individuals interested in using the GRITS program in the future.

Kane, S.M.; Kroll, P.; Nilo, B.

1982-12-01T23:59:59.000Z

488

Geothermal Development and the Use of Categorical Exclusions (Poster)  

SciTech Connect

The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.

Levine, A.; Young, K. R.

2014-09-01T23:59:59.000Z

489

Exploratory Well At Raft River Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

76) 76) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1976) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Second and third exploratory wells drilled Notes Raft River Geothermal Exploratory Hole No. 2, RRGE-2 drilled. During this period, a third well, RRGE-3 was also drilled and well production was tested. Down-hole data was obtained from RRGE-3. References Speake, J.L. (1 August 1976) Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Kunze, J.F. (1 October 1976) Geothermal R and D Project report for period April 1, 1976 to June 30, 1976

490

NREL: Energy Analysis - Geothermal Results - Life Cycle Assessment Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Results - Life Cycle Assessment Review Geothermal Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Geothermal Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for geothermal technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions from geothermal power generation Credit: Goldstein, B., G. Hiriart, R. Bertani, C. Bromley, L. Gutiérrez-Negrín, E. Huenges, H. Muraoka, A. Ragnarsson, J. Tester, V. Zui, 2011: Geothermal Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 4.6 Enlarge image

491

Heat flow and microearthquake studies, Coso Geothermal Area, China Lake,  

Open Energy Info (EERE)

and microearthquake studies, Coso Geothermal Area, China Lake, and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Heat flow and microearthquake studies, Coso Geothermal Area, China Lake, California. Final report Details Activities (2) Areas (1) Regions (0) Abstract: The present research effort at the Coso Geothermal Area located on the China Lake Naval Weapons Center, China Lake, California, was concerned with: (1) heat flow studies and (2) microearthquake studies associated with the geothermal phenomena in the Coso Hot Springs area. The sites for ten heat flow boreholes were located primarily using the available seismic ground noise and electrical resistivity data. Difficulty was encountered in the drilling of all of the holes due to altered, porous,

492

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010  

E-Print Network (OSTI)

Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 1 3D Flow Modelling of the Medium-Term Circulation Test Performed in the Deep Geothermal Site of Soultz-Sous-forêts (France) Sylvie Gentier, Xavier Rachez, Tien Dung Tran Ngoc, Mariane Peter-Borie, Christine Souque BRGM, Geothermal

Paris-Sud XI, Université de

493

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

494

Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field,  

Open Energy Info (EERE)

Velocity And Attenuation Structure Of The Geysers Geothermal Field, Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Details Activities (1) Areas (1) Regions (0) Abstract: The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret seismic compressional-wave velocity and quality quotient (Q) data at The Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of waveforms from approximately 300

495

The Future of Geothermal Energy  

E-Print Network (OSTI)

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

496

Geothermal-resource verification for Air Force bases  

SciTech Connect

This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

Grant, P.R. Jr.

1981-06-01T23:59:59.000Z

497

U.S. Geothermal Announces Successful Completion of First Well at Neal Hot  

Open Energy Info (EERE)

U.S. Geothermal Announces Successful Completion of First Well at Neal Hot U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs Abstract N/A Author U.S. Geothermal Inc. Published Publisher Not Provided, 2008 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs Citation U.S. Geothermal Inc.. 2008. U.S. Geothermal Announces Successful Completion of First Well at Neal Hot Springs. Boise Idaho: (!) . Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=U.S._Geothermal_Announces_Successful_Completion_of_First_Well_at_Neal_Hot_Springs&oldid=682770"

498

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers (EERE)

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

499

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

Majer, Ernest L.

2006-01-01T23:59:59.000Z

500

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z