Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

2

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

3

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

4

NREL: Financing Geothermal Power Projects - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

5

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

Science Conference Proceedings (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

6

Report on Hawaii Geothermal Power Plant Project  

DOE Green Energy (OSTI)

The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

Not Available

1983-06-01T23:59:59.000Z

7

Nicaragua-San Jacinto-Tizate Geothermal Power Project | Open...  

Open Energy Info (EERE)

Geothermal Power Project AgencyCompany Organization Inter-American Development Bank Sector Energy Focus Area Renewable Energy, Geothermal Topics Background analysis...

8

Report on Hawaii geothermal power plant project  

DOE Green Energy (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

9

NREL: Financing Geothermal Power Projects - Overview of Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Financing Geothermal Power Projects Overview of Financing Geothermal Power Projects Financing geothermal power projects involves specific processes, costs, and risks. There are also several advantages and challenges to developing and financing geothermal power projects. The financing strategies presented apply to geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). In 2008, the U.S. Geological Survey completed an assessment of moderate- and high-temperature geothermal resources in 13 states. These data help lower project costs and risks for project developers by shortening the resource identification phase of project development; yet geothermal resource development still has risk. Financing Processes, Costs, and Risks

10

Deep Geothermal Well and Power Plant Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole...

11

NREL: Financing Geothermal Power Projects - Financing Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Options for Geothermal Power Projects Financing Options for Geothermal Power Projects Different financing options are used at each stage in geothermal power project development, which include the exploration and drilling stage and construction and operation stage. The financing option in each stage earns a return proportionate with the risk accepted at that stage in the project's development. For each financing option, both financial and non-financial elements should be considered. Financing options and considerations for a typical geothermal power project are shown in the table below. Your project financing options and considerations may be different. Financing Options and Considerations for a Typical Geothermal Power Project* Financial Considerations Financing Stage Exploration and Drilling Construction and Operation

12

NREL: Financing Geothermal Power Projects - Policies and Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Policies and Regulations Affecting Geothermal Power Project Financing Policies and Regulations Affecting Geothermal Power Project Financing Federal and state policies, including leasing and permitting, federal financial incentives, renewable portfolio standards, and greenhouse gas emission reduction regulations, can affect geothermal power project development financing processes and timelines. The related issues that should be considered during the project development cycle regarding these policies are summarized in the following table and described in more detail below. Note that this table is not meant to guide developers through the entire policy landscape, and should not be assumed to include all related issues in geothermal power development. Roles of Policies and Regulations in the Geothermal Power Project Development Process*

13

Five-megawatt geothermal-power pilot-plant project  

DOE Green Energy (OSTI)

This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

Not Available

1980-08-29T23:59:59.000Z

14

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

at www.nrel.govpublications. Contract No. DE-AC36-08GO28308 Hybrid Cooling for Geothermal Power Plants Final ARRA Project Report Desikan Bharathan Technical Report NREL...

15

Nevada geothermal power plant project approved  

Science Conference Proceedings (OSTI)

A proposal to construct and test a 12.5-megawatt geothermal power plant in the Steamboat Hot Springs KGRA in Washoe County, Nevada, has been approved by the Bureau of Land Management (BLM). The power plant could be completed by October 1987. Several stipulations are included in the BLM approval. The stipulations include a program to monitor ground water, surface water, and hydrothermal features to detect any impacts on the hydrology in the Steamboat Hot Springs area. When plant operations are tested, an emission test will be required to verify that noncondensible gas concentrations are within federal and state standards. No geothermal fluid will be discharged on the land's surface. Other stipulations include the special construction of electrical distribution lines to protect birds of prey; the fencing of hazardous areas; and a minimal disturbance of surface areas.

Not Available

1987-07-01T23:59:59.000Z

16

Kenya geothermal private power project: A prefeasibility study  

DOE Green Energy (OSTI)

Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

Not Available

1992-10-01T23:59:59.000Z

17

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

18

Unalaska geothermal exploration project. Electrical power generation analysis. Final report  

DOE Green Energy (OSTI)

The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

Not Available

1984-04-01T23:59:59.000Z

19

Small-Scale Geothermal Power Plant Field Verification Projects: Preprint  

SciTech Connect

In the spring of 2000, the National Renewable Energy Laboratory issued a Request for Proposal for the construction of small-scale (300 kilowatt [kW] to 1 megawatt [MW]) geothermal power plants in the western United States. Five projects were selected for funding. Of these five, subcontracts have been completed for three, and preliminary design work is being conducted. The three projects currently under contract represent a variety of concepts and locations: a 1-MW evaporatively enhanced, air-cooled binary-cycle plant in Nevada; a 1-MW water-cooled Kalina-cycle plant in New Mexico; and a 750-kW low-temperature flash plant in Utah. All three also incorporate direct heating: onion dehydration, heating for a fish hatchery, and greenhouse heating, respectively. These projects are expected to begin operation between April 2002 and September 2003. In each case, detailed data on performance and costs will be taken over a 3-year period.

Kutscher, C.

2001-07-03T23:59:59.000Z

20

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

BACA Project: geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

Not Available

1982-12-01T23:59:59.000Z

22

Baca geothermal demonstration project. Power plant detail design document  

DOE Green Energy (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

23

BACA Project: geothermal demonstration power plant. Final report  

SciTech Connect

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

1982-12-01T23:59:59.000Z

24

Projects Geothermal | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for ProjectsGeothermal Citation Terra-Gen Power LLC. ProjectsGeothermal...

25

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report  

DOE Green Energy (OSTI)

Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

Bharathan, D.

2013-06-01T23:59:59.000Z

26

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

27

Northern California Power Association--Shell Oil Company Geothermal Project No. 2: energy and materials resources  

DOE Green Energy (OSTI)

The potential environmental impact of the energy and material resources expended in site preparation, construction, operation, maintenance, and abandonment of all phases of the Northern California Power Association--Shell Geothermal Project in The Geysers--Calistoga Known Geothermal Resource Area is described. The impact of well field development, operation, and abandonment is insignificant, with the possible exception of geothermal resource depletion due to steam withdrawal from supply wells during operation. The amount of resource renewal that may be possible through reinjection is unknown because of uncertainties in the exact amount of heat available in the steam supply field. Material resources to be used in construction, operation, and abandonment of the power plant and transmission lines are described. Proposed measures to mitigate the environmental impacts from the use of these resources are included. Electric power supply and demand forecasts to the year 2005 are described for the area served by the NCPA.

Hall, C.H.; Ricker, Y.E.

1979-01-01T23:59:59.000Z

28

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

29

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

30

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

31

FY 1996 Summary of Hot Dry Rock Geothermal Power Project  

DOE Green Energy (OSTI)

The report describes progress and status of the HDR project at Hijiori. The year was notable for a flow enhancement test of a system with two production wells in operation. Other items include a geochemical survey, reinterpretation of acoustic emission data from 1988 through 1995, borehole measurements to find intersections with fractures, a geological survey, preparation for modeling fractures, improvements in crack simulation in a reservoir analysis model, and environmental survey work. (DJE 2005)

None

1996-12-31T23:59:59.000Z

32

Today's geothermal power economics and risks  

DOE Green Energy (OSTI)

Capital and power generation costs are developed as a parameterized composite of a number of ongoing geothermal power projects, and evaluates several of the most commonly accepted risks of geothermal power in terms of cost penalties to a basic cost of power. The status of geothermal power in the US is also reviewed briefly.

Lawford, T.W.

1979-01-01T23:59:59.000Z

33

Category:Geothermal Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Geothermal Projects Each year different agencies report the upcoming geothermal developing projects. The Geothermal Energy Association (GEA) publishes their findings in their annual US Geothermal Power Production and Development Update, in which it lists geothermal projects in one of four phases of development. SNL Financial reports geothermal projects and they collect their information from a variety of sources including EIA, company websites, press releases, and various other sources. The list below is intended to be a centralized list of geothermal projects from a variety of reporting sources. This list of projects may be sourced from GEA, SNL, EIA, press releases, or individual developers.

34

Puna Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Puna Geothermal Project Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Location Puna, Hawaii County Hawaii County, Hawaii Geothermal Area Hawaii Geothermal Region Geothermal Project Profile Developer Puna Geothermal Venture Project Type Hybrid Flash/Binary GEA Development Phase Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property. Planned Capacity (MW) 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW GEA Report Date

35

Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines  

DOE Green Energy (OSTI)

The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

Vimmerstedt, L.

1998-11-30T23:59:59.000Z

36

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

37

Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

Elizabeth Battocletti

2006-04-06T23:59:59.000Z

38

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

DOE Green Energy (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

39

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

40

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

Geothermal Resource Exploration And Definition Project Geothermal Resource Exploration And Definition Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Project Details Activities (23) Areas (8) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) project is a cooperative DOEhdustry project to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to aid in the development of geographically diverse geothermal resources and increase electrical power generation from geothermal resources in the continental United States. The project was initiated in April 2000 with a solicitation for industry participation in the project, and this solicitation resulted in seven successful awards in

42

Geothermal environmental overview project  

DOE Green Energy (OSTI)

The basic purpose of the Geothermal Environmental Overview Project is to summarize and assess the state of environmental issues of the top priority KGRAs from among the 37 KGRAs currently identified by the Division of Geothermal Energy as having possibility for commercial development. The objectives of the Overview Project are inventory of available data, assessment of available data, identification of data gaps, and identification of key issues. (JGB)

Anspaugh, L.R.

1977-10-25T23:59:59.000Z

43

Record of Decision for the Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements (DOE/EIS-0266) (11/20/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements Administrator's Record of Decision Summary The Bonneville Power Administration (BPA) has decided to execute Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project). Initially, BPA will execute one or more PPAs in order to acquire up to the entire Project output. TSAs will be executed before the Project becomes operational. The United States Forest Service (Forest Service) and the Bureau of Land Management (BLM) were the joint lead Federal agencies in the preparation of

44

Geothermal Project Data and Personnel Resumes  

SciTech Connect

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

1980-01-01T23:59:59.000Z

45

Geothermal Project Data and Personnel Resumes  

DOE Green Energy (OSTI)

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

46

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

47

Geothermal Power of America | Open Energy Information  

Open Energy Info (EERE)

Power of America Power of America Jump to: navigation, search Name Geothermal Power of America Place Los Angeles, California Sector Geothermal energy Product A Nevada-based company focusing on geothermal project development and operation. References Geothermal Power of America[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geothermal Power of America is a company located in Los Angeles, California . References ↑ "Geothermal Power of America" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Power_of_America&oldid=345810" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

48

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

49

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

50

Northern Nevada Joint Utility Geothermal Project  

SciTech Connect

After approximately eight months of formation discussion between a number of western utilities, a group of five companies defined a project scope, schedule and budget for assessing the prospects for electric power production using Nevada geothermal resources.

Richards, R.G.

1980-12-01T23:59:59.000Z

51

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

52

Economic Impact Analysis for EGS Geothermal Project | Open Energy  

Open Energy Info (EERE)

Impact Analysis for EGS Geothermal Project Impact Analysis for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Economic Impact Analysis for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This proposed study will involve studying the impacts associated with jobs, energy and environment (as a result of investments in geothermal industry and specific EGS technologies) through the creation of a Geothermal Economic Calculator tool (GEC). The study will cover Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. The GEC created will be capable of helping end users (public and the industry) perform region specific economic impact analyses using a web platform that will be hosted by EGI for different geothermal technologies under EGS that will be used for electric power production.

53

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

SciTech Connect

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

54

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

55

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

56

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

57

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

58

Today's geothermal power economics and risks  

SciTech Connect

Capital and power generation costs are developed as a parameterized composite of a number of ongoing geothermal power projects, and evaluates several of the most commonly accepted risks of geothermal power in terms of cost penalties to a basic cost of power. The status of geothermal power in the US is also reviewed briefly.

Lawford, T.W.

1979-01-01T23:59:59.000Z

59

Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment  

DOE Green Energy (OSTI)

The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

Not Available

1984-10-01T23:59:59.000Z

60

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Project Financial Summary Report Concerning Financing Surface Facilities for a 50 Megawatt Geothermal Electric Power Plant Facility in Utah  

DOE Green Energy (OSTI)

This report summarizes the economic and financial conditions pertaining to geothermal electric power plant utilization of geothermal fluids produced from the Roosevelt Hot springs area of Utah. The first year of electric power generation is scheduled to be 1982. The non-resource facilities will be called ''surface facilities'' and include the gathering system, the power plant, the substation, and the injection system.

None

1978-06-23T23:59:59.000Z

62

Geothermal Money Book [Geothermal Outreach and Project Financing  

Science Conference Proceedings (OSTI)

Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2004-02-01T23:59:59.000Z

63

Annual US Geothermal Power Production and Development Report | Open Energy  

Open Energy Info (EERE)

US Geothermal Power Production and Development Report US Geothermal Power Production and Development Report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Annual US Geothermal Power Production and Development Report Details Activities (0) Areas (0) Regions (0) Abstract: To increase the accuracy and value of information presented in its annual US Geothermal Power Production and Development Report, the Geothermal Energy Association (GEA) developed a reporting system, known as the Geothermal Reporting Terms and Definitions, in 2010. The Geothermal Reporting Terms and Definitions serve as a guideline to project developers in reporting geothermal project development information to the GEA. A basic understanding of the Geothermal Reporting Terms and Definitions will also aid the reader in fully understanding the information presented in this

64

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

SciTech Connect

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

1976-04-01T23:59:59.000Z

65

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

DOE Green Energy (OSTI)

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

Not Available

1976-04-01T23:59:59.000Z

66

Application of direct contact heat exchangers to geothermal power production cycles. Project review, December 1, 1974--May 31, 1977  

DOE Green Energy (OSTI)

Work performed on the development of direct contact heat exchanger power cycles for geothermal applications is reviewed. The period covered in the report is from the inception of the project in 1974 through May 31, 1977. Results from a large experimental program on heat exchanger develpment as well as from many analyses of components and cycle performance and economics are given. A number of working fluids and operating conditions have been considered, and no major obstacles for the implementation of the concept have been discovered.

Jacobs, H.R.; Boehm, R.F.; Hansen, A.C.

1977-01-01T23:59:59.000Z

67

Geothermal Money Book [Geothermal Outreach and Project Financing  

DOE Green Energy (OSTI)

Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2004-02-01T23:59:59.000Z

68

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

DOE Green Energy (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

69

Preliminary report on the Northern California Power Agency's Notice of Intention to seek certification for NCPA Geothermal Project No. 2  

DOE Green Energy (OSTI)

This preliminary report on the Northern California Power Agency (NCPA) geothermal power plant proposal has been prepared pursuant to California Public Resources Code Sections 25510, 25512, and 25540. It presents the preliminary Findings of fact and Conclusions adopted by the Commission Committee assigned to conduct proceedings on the Notice. In addition, the report contains a description of the proposed project, a summary of the proceedings to date, and local, state, and Federal government agency comments on the proposal. Finally, the report presents the Committee's view of those issues that require further consideration in future proceedings on the Notice. Pursuant to Public Resources Code Sections 25512 and 25540, the report presents preliminary Findings and Conclusions on: (1) conformity to the forecast of statewide and service area electric power demands; (2) the degree to which the proposed site and facility conform with applicable local, regional, state and Federal standards, ordinances, and laws; and (3) the safety and reliability of the facility.

Not Available

1978-01-01T23:59:59.000Z

70

Geysers Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Geysers Project Geothermal Project Project Location Information Coordinates 38.790555555556°, -122.75583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790555555556,"lon":-122.75583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

71

Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ormat Geothermal Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada September 23, 2011 - 3:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the Department finalized a partial guarantee for up to a $350 million loan to support a geothermal power generation project. The project, sponsored by Ormat Nevada, Inc., is expected to produce up to 113 megawatts (MW) of clean, baseload power from three geothermal power facilities and will increase geothermal power production in Nevada by nearly 25 percent. The facilities are Jersey Valley in Pershing County, McGinness Hills in Lander County and Tuscarora in Elko County. The company estimates the project will fund 332 jobs during construction and 64 during operations.

72

Project Financial Summary Report Concerning Financing Surface Facilities for a 50 Megawatt Geothermal Electric Power Plant Facility in Utah  

SciTech Connect

This report summarizes the economic and financial conditions pertaining to geothermal electric power plant utilization of geothermal fluids produced from the Roosevelt Hot springs area of Utah. The first year of electric power generation is scheduled to be 1982. The non-resource facilities will be called ''surface facilities'' and include the gathering system, the power plant, the substation, and the injection system.

1978-06-23T23:59:59.000Z

73

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

74

Hybrid Geothermal Heat Pump System Research Geothermal Project | Open  

Open Energy Info (EERE)

Hybrid Geothermal Heat Pump System Research Geothermal Project Hybrid Geothermal Heat Pump System Research Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid Geothermal Heat Pump System Research Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 2: Data Gathering and Analysis Project Description Geothermal, or ground-source heat pump systems have been shown to have superior energy performance to conventional heating and cooling systems in many building types and climates. There has been significant growth in the application of these systems; yet, geothermal systems have only been able to capture a few percent of the heating and cooling market. This is due primarily to the prohibitively high cost of installing the necessary ground loop.

75

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

New River Geothermal Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal...

76

Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant  

DOE Green Energy (OSTI)

A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

1979-07-01T23:59:59.000Z

77

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project | Open  

Open Energy Info (EERE)

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project OM-300 - MWD Geothermal Navigation Instrument Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title OM-300 - MWD Geothermal Navigation Instrument Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 High-Temperature Downhole MWD Tools for Directional Drilling Project Description Honeywell proposes to perform this project in three phases; Phase 1 will enhance accelerometers, magnetometers and high temperature electronic components to operate at 300C. Phase 2 will define, design and demonstrate circuit card assembly (CCA) and external packaging capable of operating in the temperature, shock, and vibration of downhole MWD tools. Phase 3 will utilize the components onto a CCA, integrate the CCA sensors into a final package for final assembly, test, and the delivery of one Prototype.

78

Honey Lake Geothermal Project, Lassen County, California. Final technical report  

DOE Green Energy (OSTI)

This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

Not Available

1984-11-01T23:59:59.000Z

79

Template:GeothermalProject | Open Energy Information  

Open Energy Info (EERE)

This is the 'GeothermalProject' template. To define a new Geothermal This is the 'GeothermalProject' template. To define a new Geothermal Development Project, please use the Geothermal Development Project Form. Parameters Place - The city and state in which the development project is located. County - The county in which the development project is located GeothermalArea - The geothermal area in which the development project is located. Coordinates - The coordinates (lat, lon) of the resource area. Developer - Project developer ProjectType - The type of project. Typically one of the following: Conventional Hydrothermal (Unproduced) Resource, Conventional Hydrothermal (Produced) Resource, Conventional Hydrothermal Expansion, Coproduction, Geopressured Geopressured System, EGS GEADevelopmentPhase - The phase of plant construction, as defined by

80

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

82

Northern California Power Agency Geothermal Project No. 2: draft joint environmental study  

DOE Green Energy (OSTI)

The following are included: project description, environmental setting, environmental impacts and mitigation measures, project alternatives and a summary of environmental consequences. (MHR)

Not Available

1979-11-01T23:59:59.000Z

83

Empire Geothermal Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Power LLC Jump to: navigation, search Name Empire Geothermal Power LLC Place Reno, Nevada Zip 89509 Sector Geothermal energy Product Empire owns and operates a 3.5MW geothermal project in Nevada. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power  

Open Energy Info (EERE)

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Geopressured Resources Project Description Within the Sweet Lake Oil and Gas Field, the existence of a geopressured-geothermal system was confirmed in the 1980s as part of the DOE's Gulf Coast Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and job creation it would entail, provide the opportunity to develop thousands of megawatts of geopressured-geothermal power in the South Eastern United States.

85

Newberry Volcano EGS Demonstration Geothermal Project | Open Energy  

Open Energy Info (EERE)

Volcano EGS Demonstration Geothermal Project Volcano EGS Demonstration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Newberry Volcano EGS Demonstration Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The project will demonstrate EGS power generation from the Newberry Known Geothermal Resource Area ("Newberry"). Four deep, high temperature, very low permeability, production-size wells have been completed at Newberry, including two currently owned by Davenport. The Newberry project site exemplifies unparalleled EGS potential in the United States, with a large, high-temperature, conductive thermal anomaly yielding wells with permeability orders of magnitude less than conventional hydrothermal wells.

86

Category:Geothermal ARRA Funded Projects Properties | Open Energy  

Open Energy Info (EERE)

Geothermal ARRA Funded Projects Properties Geothermal ARRA Funded Projects Properties Jump to: navigation, search Properties used in the Geothermal ARRA Funded template. Pages in category "Geothermal ARRA Funded Projects Properties" The following 57 pages are in this category, out of 57 total. G Property:Geothermal/AboutArea Property:Geothermal/AccomplishmentsAwards Property:Geothermal/AwardDate Property:Geothermal/AwardeeCostShare Property:Geothermal/Awardees Property:Geothermal/AwardeeWebsite Property:Geothermal/CurrentStatus Property:Geothermal/DOEFundingLevel Property:Geothermal/DoeFundingLevelToDate Property:Geothermal/DOEJobsCreationEst Property:Geothermal/FundingOpportunityAnnouncemt Property:Geothermal/FundingSource Property:Geothermal/FY Property:Geothermal/Impacts Property:Geothermal/LegalNameOfAwardee

87

Geothermal Plan Justification, Geothermal Project 1976  

SciTech Connect

The report provides information for a five year plan for the Fish and Wildlife Service to deal with developments in the geothermal energy sector in the U.S. [DJE-2005

1976-06-01T23:59:59.000Z

88

Newberry Geothermal Pilot Project : Final Environmental Impact Statement.  

DOE Green Energy (OSTI)

BPA has decided to acquire 20 average megawatts (aMW) of electrical power from a privately-owned geothermal power plant on the west flank of Newberry Volcano in Deschutes County, Oregon. The Newberry Project will generate 30 aMW and will be developed, owned, and operated by CE Newberry, Inc. of Portland, Oregon. In addition, BPA has decided to grant billing credits to EWEB for 10 aMW of electrical power and to provide wheeling services to EWEB for the transmission of this power to their system. BPA expects the Newberry Project to be in commercial operation by November 1997. BPA has statutory responsibilities to supply electrical power to its utility industrial and other customers in the Pacific Northwest. The Newberry Project will be used to meet the electrical power supply obligations of these customers. The Newberry Project will also demonstrate the availability of geothermal power to meet power supply needs in the Pacific Northwest and is expected to be the first commercial geothermal plant in the region. The Newberry Project was selected under the BPA Geothermal Pilot Project Program. The goal of the Program is to initiate development of the Pacific Northwest`s large, but essentially untapped, geothermal resources, and to confirm the availability of this resource to meet the energy needs of the region. The primary underlying objective of this Program is to assure the supply of alternative sources of electrical power to help meet growing regional power demands and needs.

US Forest Service; US Bureau of Land Management; US Bonneville Power Administration

1994-09-01T23:59:59.000Z

89

Colorado State Capitol Building Geothermal Program Geothermal Project |  

Open Energy Info (EERE)

State Capitol Building Geothermal Program Geothermal Project State Capitol Building Geothermal Program Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Colorado State Capitol Building Geothermal Program Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This building is approximately 100 years old, and much of the building is heated with expensive district steam and lacks sufficient central cooling. The requested funding pertains to Topic Area 1 Technology Demonstration Projects. Funding would be used for Phase I - Feasibility Study and Engineering Design, Phase II - Installation and Commissioning of Equipment, and Phase III - Operation, Data Collection, and Marketing. Geothermal energy provided by an open-loop ground source heat pump system and upgrades to the building HVAC systems will reduce consumption of electricity and utility steam created with natural gas. Additionally, comfort, operations and maintenance, and air quality will be improved as a result. It is anticipated that the open loop GHP system will require a 500-650 gpm water flow rate.

90

Time frames for geothermal project development  

DOE Green Energy (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

91

Decision on the Northern California Power Agency's application for certification for Geothermal Project No. 2  

DOE Green Energy (OSTI)

Findings on compliance with statutory site certification requirements, a discussion of the Joint Environmental Study and its significance in terms of the California Environmental Quality and National Environmental Policy Acts, a brief recapitulation of the procedural steps which occured, and a summary of the evidentiary bases for this Decision are included. Topical discussions on the various human and natural environmental areas impacted by the project, as well as the technical, engineering, and other areas of concern affected by the project are presented. These topical discussions summarize the basis for the Commission's ultimate Findings and Conclusions pertaining to each broad category.

Not Available

1980-02-01T23:59:59.000Z

92

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

93

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

94

Northern California Power Agency's Notice of Intention to seek certification for Geothermal Project No. 1 (79-NOI-1). Final report  

DOE Green Energy (OSTI)

The Findings of Fact and Conclusions of Law are presented on issues considered and adopted by the Committee assigned to conduct proceedings on the Notice of Intention. The proposed geothermal project is described and the hearing record is summarized. Findings on the following are included: air quality, hydrology and water resources, water quality, waste disposal, geology and seismicity, soils, biological resources, noise, cultural resources, need for the project, socio-economic factors, financial and economic impacts, public health, safety and reliability, transmission lines, and civil and structural engineering. (MHR)

Not Available

1980-03-01T23:59:59.000Z

95

Calpine Enhanced Geothermal Systems Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calpine Enhanced Geothermal Systems Project Final Environmental Assessment June 2010 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: RMT...

96

Guidebook to Geothermal Power Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado Subcontract Report NREL/SR-6A20-49391 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado NREL Technical Monitor: Paul Schwabe Prepared under Subcontract No. LGJ-0-40242-01 Subcontract Report

97

Geothermal: Sponsored by OSTI -- Geothermal R and D project report...  

Office of Scientific and Technical Information (OSTI)

R and D project report, January 1, 1976--march 31, 1976 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

98

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

99

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

100

Session 9: Heber Geothermal Binary Demonstration Project  

DOE Green Energy (OSTI)

The Heber Binary Project had its beginning in studies performed for the Electric Power Research Institute (EPRI), which identified the need for commercial scale (50 Mw or larger) demonstration of the binary cycle technology. In late 1980, SDG&E and the Department of Energy (DOE) signed a Cooperative Agreement calling for DOE to share in 50 percent of the Project costs. Similarly, SDG&E signed Project participation agreements with EPRI, the Imperial Irrigation District, California Department of Water Resources, and Southern California Edison Company, which provided the remaining 50 percent of the required funding. In 1982, the State of California also joined the Project. The objectives of the Heber Binary Project are to demonstrate the potential of moderate-temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology, and to establish schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants. The plant will be the first large-scale power generating facility in the world utilizing the binary conversion process, and it is expected that information resulting from this Project will be applicable to a wide range of moderate-temperature hydrothermal reservoirs, which represent 80 percent of geothermal resources in the United States. To accomplish the plant engineering, design, and equipment procurement, SDG&E has hired Fluor Engineers, Inc., Power Division, of Irvine, California. In early 1982, SDG&E contracted for construction management services with Dravo Constructors, Inc. (DCI) of New York. DCI is responsible for casting the Fluor design into construction packages, letting the construction contracts, and overseeing the construction in the field.

Allen, Richard F.; Nelson, Tiffany T.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

102

Property:Geothermal/ProjectDesc | Open Energy Information  

Open Energy Info (EERE)

ProjectDesc ProjectDesc Jump to: navigation, search Property Name Geothermal/ProjectDesc Property Type Text Description Project Description Pages using the property "Geothermal/ProjectDesc" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + The Soda Lake geothermal field is an ideal setting to test the applicability of the 3D-3C reflection seismic method because: it is a producing field with a great deal of geologic and drilling data already available; it is in an alluvial valley where the subsurface structures that carry the geothermal fluids have no surface manifestations; and, there are downhole geophysical logs of fractures and permeable zones that can be used to ground-truth the new data. If the 3D-3C method is successful it will bring a powerful tool into use in the industry to select targets with the permeability, heat, and fluid needed to exploit geothermal resources.

103

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon...

104

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

105

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

106

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

107

Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Geotherm Power Fonds GmbH Co KG Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name Green Energy Geotherm Power Fonds GmbH & Co. KG Place Hannover, Lower Saxony, Germany Zip 30559 Sector Geothermal energy Product German-based fund that will invest in geothermal projects to be developed by Green Energy Group. References Green Energy Geotherm Power Fonds GmbH & Co. KG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Geotherm Power Fonds GmbH & Co. KG is a company located in Hannover, Lower Saxony, Germany . References ↑ "Green Energy Geotherm Power Fonds GmbH & Co. KG" Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Geotherm_Power_Fonds_GmbH_Co_KG&oldid=346014"

108

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

109

Geothermal project summaries. Geothermal energy research, development and demonstration program  

DOE Green Energy (OSTI)

Summaries of all Division of Geothermal Energy supported projects for which contracts have been executed are compiled. Each summary includes pertinent statistical data for that project and an abstract summarizing the project plans and accomplishments. The projects summarized fall into six categories: engineering research and development, resource exploration and assessment, hydrothermal technology applications, advanced technology applications, utilization experiments, and environmental control and institutional studies. (MHR)

Not Available

1976-09-01T23:59:59.000Z

110

Perforating System for Geothermal Applications Geothermal Project...  

Open Energy Info (EERE)

EGS Research, Development and Demonstration technical plan, this project will focus on developing technologies required for engineering wells to enable stimulation and ensuring...

111

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

112

Geothermal: Sponsored by OSTI -- Hybrid Cooling for Geothermal...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report Geothermal Technologies Legacy Collection...

113

Barren Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hills Geothermal Project Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Barren Hills Geothermal Project Project Location Information Coordinates 39.01°, -119.19° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.01,"lon":-119.19,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

114

Upsal Hogback Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Upsal Hogback Geothermal Project Upsal Hogback Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Upsal Hogback Geothermal Project Project Location Information Coordinates 39.638611111111°, -118.79944444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.638611111111,"lon":-118.79944444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Sou Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Sou Hills Geothermal Project Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates 40.143055555556°, -117.72638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.143055555556,"lon":-117.72638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Coyote Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Coyote Canyon Geothermal Project Coyote Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Coyote Canyon Geothermal Project Project Location Information Coordinates 39.723055555556°, -118.08027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.723055555556,"lon":-118.08027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

117

Olene Gap Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Olene Gap Geothermal Project Olene Gap Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Olene Gap Geothermal Project Project Location Information Coordinates 42.1725°, -121.62083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1725,"lon":-121.62083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

118

Thermo Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Thermo Geothermal Project Thermo Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Thermo Geothermal Project Project Location Information Coordinates 38.173611111111°, -113.20472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.173611111111,"lon":-113.20472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Granite Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Creek Geothermal Project Project Location Information Coordinates 41.058611111111°, -117.22777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.058611111111,"lon":-117.22777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Pilot Peak Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Pilot Peak Geothermal Project Pilot Peak Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pilot Peak Geothermal Project Project Location Information Coordinates 38.342266666667°, -118.10361111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.342266666667,"lon":-118.10361111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Orita 3 Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Orita 3 Geothermal Project Orita 3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates 32.97722°, -115.40444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.97722,"lon":-115.40444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

122

Hawthorne Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hawthorne Geothermal Project Hawthorne Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hawthorne Geothermal Project Project Location Information Coordinates 38.313444444444°, -118.58527777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.313444444444,"lon":-118.58527777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Alum Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alum Geothermal Project Project Location Information Coordinates 37.908611111111°, -117.66666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.908611111111,"lon":-117.66666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Delcer Butte Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Delcer Butte Geothermal Project Delcer Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information Coordinates 40.404444444444°, -115.05888888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.404444444444,"lon":-115.05888888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Kelsey North Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Kelsey North Geothermal Project Kelsey North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information Coordinates 38.889847222222°, -122.80472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.889847222222,"lon":-122.80472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

126

Unalaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Unalaska Geothermal Project Unalaska Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Unalaska Geothermal Project Project Location Information Coordinates 53.887222222222°, -166.68638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53.887222222222,"lon":-166.68638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Bald Mountain Geothermal Project Bald Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Bald Mountain Geothermal Project Project Location Information Coordinates 40.365833333333°, -120.2425° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.365833333333,"lon":-120.2425,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Truckee Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Truckee Geothermal Project Truckee Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Truckee Geothermal Project Project Location Information Coordinates 38.664444444444°, -117.17111111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.664444444444,"lon":-117.17111111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Project Salt Wells Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333°, -118.33444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.580833333333,"lon":-118.33444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

130

Midnight Point Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Midnight Point Geothermal Project Midnight Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Midnight Point Geothermal Project Project Location Information Coordinates 43.548333333333°, -119.97611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.548333333333,"lon":-119.97611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

131

Pumpernickel Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Geothermal Project Pumpernickel Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pumpernickel Geothermal Project Project Location Information Coordinates 40.996944444444°, -117.24805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.996944444444,"lon":-117.24805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Edwards Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Edwards Creek Geothermal Project Edwards Creek Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Edwards Creek Geothermal Project Project Location Information Coordinates 39.617222222222°, -117.67166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.617222222222,"lon":-117.67166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

133

Fireball Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Fireball Geothermal Project Fireball Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fireball Geothermal Project Project Location Information Coordinates 39.877777777778°, -118.34722222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.877777777778,"lon":-118.34722222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Tungsten Mtn Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mtn Geothermal Project Mtn Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Tungsten Mtn Geothermal Project Project Location Information Coordinates 39.723055555556°, -118.08027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.723055555556,"lon":-118.08027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Mahogany Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mahogany Geothermal Project Mahogany Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mahogany Geothermal Project Project Location Information Coordinates 43.558055555556°, -120.07166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.558055555556,"lon":-120.07166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

136

Granite Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Granite Springs Geothermal Project Project Location Information Coordinates 40.1475°, -118.64861111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1475,"lon":-118.64861111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

Smith Creek Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889°, -117.55083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.311388888889,"lon":-117.55083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Clayton Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Clayton Valley Geothermal Project Clayton Valley Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Clayton Valley Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Lovelock Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Lovelock Geothermal Project Lovelock Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lovelock Geothermal Project Project Location Information Coordinates 40.18°, -118.47666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.18,"lon":-118.47666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

140

Crump Geyser Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Crump Geyser Geothermal Project Crump Geyser Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Crump Geyser Geothermal Project Project Location Information Coordinates 42.226388888889°, -119.88222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.226388888889,"lon":-119.88222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Devil's Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Devil's Canyon Geothermal Project Devil's Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information Coordinates 40.938333333333°, -117.53916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.938333333333,"lon":-117.53916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

142

Kelsey South Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

South Geothermal Project South Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey South Geothermal Project Project Location Information Coordinates 38.870694444444°, -122.81777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.870694444444,"lon":-122.81777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Mt. Baker Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Mt. Baker Geothermal Project Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates 48.777222222222°, -121.81333333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.777222222222,"lon":-121.81333333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Tuscarora I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Tuscarora I Geothermal Project Tuscarora I Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Tuscarora I Geothermal Project Project Location Information Coordinates 41.313888888889°, -116.22° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.313888888889,"lon":-116.22,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Thermo 2 Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Thermo 2 Geothermal Project Thermo 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Thermo 2 Geothermal Project Project Location Information Coordinates 38.173611111111°, -113.20472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.173611111111,"lon":-113.20472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

Newdale Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Newdale Geothermal Project Newdale Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Newdale Geothermal Project Project Location Information Coordinates 43.886111111111°, -111.60361111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.886111111111,"lon":-111.60361111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

147

Hot Pot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Pot Geothermal Project Hot Pot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Pot Geothermal Project Project Location Information Coordinates 40.996944444444°, -117.24805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.996944444444,"lon":-117.24805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

148

Weiser Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Weiser Geothermal Project Weiser Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Weiser Geothermal Project Project Location Information Coordinates 44.249722222222°, -116.96777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.249722222222,"lon":-116.96777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

149

Silver Peak Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Silver Peak Geothermal Project Silver Peak Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver Peak Geothermal Project Project Location Information Coordinates 37.755°, -117.63472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.755,"lon":-117.63472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

150

Hudson Ranch Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hudson Ranch Geothermal Project Project Location Information Coordinates 33.333055555556°, -115.83416666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.333055555556,"lon":-115.83416666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

151

Baltazor Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs Geothermal Project Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location Information Coordinates 41.923888888889°, -118.71° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.923888888889,"lon":-118.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

152

Mary's River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Project River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

153

Ulupalakua Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Ulupalakua Geothermal Project Ulupalakua Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Ulupalakua Geothermal Project Project Location Information Coordinates 20.792222222222°, -156.32694444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.792222222222,"lon":-156.32694444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Mount Spurr Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Spurr Geothermal Project Spurr Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mount Spurr Geothermal Project Project Location Information Coordinates 61.299722222222°, -152.25138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.299722222222,"lon":-152.25138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

Dixie Meadows Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dixie Meadows Geothermal Project Project Location Information Coordinates 39.966944444444°, -117.85527777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966944444444,"lon":-117.85527777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Gerlach Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Gerlach Geothermal Project Gerlach Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Gerlach Geothermal Project Project Location Information Coordinates 40.622777777778°, -119.34138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.622777777778,"lon":-119.34138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Dead Horse Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dead Horse Geothermal Project Dead Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information Coordinates 38.896388888889°, -118.37944444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.896388888889,"lon":-118.37944444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Fallon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Fallon Geothermal Project Fallon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Geothermal Project Project Location Information Coordinates 39.472777777778°, -118.77888888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.472777777778,"lon":-118.77888888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Lee Allen Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Lee Allen Geothermal Project Lee Allen Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lee Allen Geothermal Project Project Location Information Coordinates 39.6°, -118.34° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6,"lon":-118.34,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

160

Hawaii Geothermal Project summary report for Phase I  

DOE Green Energy (OSTI)

Results of Phase I of the Hawaii Geothermal Project (HGP) are reported. It was a multidisciplinary research effort in the following program areas: (1) geophysical--exploratory surveys to define the most favorable areas for geothermal investigations; (2) engineering-- analytical models to assist in interpretation of geophysical results, and studies on energy recovery from hot brine; and (3) socioeconomic--legal and regulatory aspects of ownership and administration of geothermal resources, and economic planning studies on the impact of geothermal resources, and economic planning studies on the impact of geothermal power. The major emphasis of Phase I was on the Geophysical Program, since the issue of if and where geothermal resources exist is crucial to the project. However, parallel studies were initiated in all supporting programs, so that progress was made in identifying and clarifying the technological, environmental, legal, regulatory, social and economic problems that could impede the development of geothermal power in Hawaii. Although the analysis and interpretation of field data are still incomplete, the consensus developed early--both on the basis of preliminary geophysical results and from complementary studies conducted on the Big Island over the past several decades--that an exploratory drilling program would be essential to check out the subsurface conditions predicted by the surveys.

Not Available

1975-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

162

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

163

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

164

Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report  

DOE Green Energy (OSTI)

The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

Not Available

1981-08-01T23:59:59.000Z

165

Canby Cascaded Project Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Canby Cascaded Project Geothermal Project Canby Cascaded Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Canby Cascaded Project Geothermal Project Project Location Information Coordinates 41.443888888889°, -120.87027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.443888888889,"lon":-120.87027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

167

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

168

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

169

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

170

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

171

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

172

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

173

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

174

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

175

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

176

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

177

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

178

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

179

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

180

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

182

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

183

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

184

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

185

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

186

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

187

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

188

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

189

Geothermal Power Development in the Phillippines  

DOE Green Energy (OSTI)

The generation of electric power to meet the needs of industrial growth and dispersal in the Philippines is aimed at attaining self-reliance through availment of indigenous energy resources. The Philippines by virtue of her position in the high-heat flow region has in abundance a number of exploitable geothermal fields located all over the country. Results indicate that the geothermal areas of the Philippines presently in various stages of exploration and development are of such magnitude that they can be relied on to meet a significant portion of the country's power need. Large scale geothermal energy for electric power generation was put into operation last year with the inauguration of two 55-MW geothermal generating units at Tiwi, Albay in Southern Luzon. Another two 55-MW units were added to the Luzon Grid in the same year from Makiling-Banahaw field about 70 kilometers south of Manila. For 1979 alone, therefore, 220-MW of generating capacity was added to the power supply coming from geothermal energy. This year a total of 220-MW power is programmed for both areas. This will bring to 443-MW of installed generating capacity from geothermal energy with 3-MW contributed by the Tongonan Geothermal pilot plant in Tongonan, Leyte, Central Philippines in operation since July 1977. Financial consideration of Philippine experience showed that electric power derived from geothermal energy is competitive with other sources of energy and is a viable source of baseload electric power. Findings have proven the technical and economic acceptability of geothermal energy resources development. To realize the benefits that stem from the utilization of indigenous geothermal resources and in the light of the country's ever increasing electric power demand and in the absence of large commercial oil discovery in the Philippines, geothermal energy resource development has been accelerated anew. The program includes development of eight fields by 1989 by adding five more fields to the currently developed and producing geothermal areas.

Jovellanos, Jose U.; Alcaraz, Arturo; Datuin, Rogelio

1980-12-01T23:59:59.000Z

190

Alum Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Alum Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow (6 ft) temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature and seismic data to create an integrated model that will be used to prioritize drill target locations. Four geothermal wells will be drilled and geologically characterized in Phase 2. The project will use a coiled-tube rig to test this drilling technology at a geothermal field for the first time. Two slimwells and two production wells will be drilled with core collected and characterized in the target sections of each well. In Phase 3, extended flow tests will be conducted on the producible wells to confirm the geothermal resource followed by an overall assessment of the productivity of the Alum geothermal area. Finally, Phase 3 will evaluate the relative contribution of each exploration technique in reducing risk during the early stages of the geothermal project.

191

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

192

Geothermal policy project. Quarterly report, August 1-October 31, 1979  

DOE Green Energy (OSTI)

The NCSL geothermal policy project continued with initiating geothermal studies in new project states and furthering policy development in existing states. Activities of the project staff are reviewed. (MHR)

Sacarto, D.M.

1979-11-01T23:59:59.000Z

193

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

194

Evaluation of the Geothermal Public Power Utility Workshops in California  

DOE Green Energy (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

195

Silver Peak Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Silver Peak Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The scope of this three phase project includes tasks to validate a variety of innovative exploration and drilling technologies which aim to accurately characterize the geothermal site and thereby reduce project risk. Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature data to create an integrated model that will be used to prioritize drill target locations.

196

List of Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

ARRA Projects ARRA Projects Jump to: navigation, search List of Geothermal ARRA Funded Projects CSV State Project Type Topic 2 Awardees Funding Location of Project A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project Nevada Validation of Innovative Exploration Technologies Magma Energy 5,000,000 Soda Lake, Nevada A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Montana Topic Area 1: Technology Demonstration Projects Montana Tech of The University of Montana 1,072,744 Butte, Montana A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project New Mexico Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources New Mexico Institute of Mining and Technology 1,999,990 Socorro, New Mexico

197

Akutan Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Development Project: Akutan Geothermal Project Project Location Information Coordinates 54.1325°, -164.92194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.1325,"lon":-164.92194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details Areas (5) Power Plants (0) Projects...

199

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas (24) Power Plants (0) Projects (1)...

200

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Economic Study for Geothermal Steam Production of Electric Power  

SciTech Connect

This report presents the results of economic analyses of geothermal electric power production facilities using selected geothermal resource temperature characteristics and relates the cost of power and rate of return on investment thus obtained to those being experienced at present and as projected from nuclear and fossil-fuel generating facilities. The results are set down in a manner to permit easy economic comparison of the various options of electric power generation. It is intended that this study will be a management assist in evaluating the rate of return on invested project capital and the resulting cost of electricity generated from geothermal resources as related to existing alternative generation methods. The resulting electric energy cost is compared with the selected alternative electric generation and their costs.

1977-03-18T23:59:59.000Z

202

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

New River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: New River Geothermal Project Project Location Information Coordinates 33.131388888889°, -115.69444444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.131388888889,"lon":-115.69444444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: White Mountain Geothermal Project Project Location Information Coordinates 44.571666666667°, -114.47916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.571666666667,"lon":-114.47916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Preliminary Screening for Project Feasibility and Applications for Geothermal Heat Pump Retrofit Projects  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes guidance on determining the feasibility of geothermal heat pump retrofit projects.

206

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

207

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

208

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

209

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

210

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

211

Fairbanks Geothermal Energy Project Final Report  

SciTech Connect

The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

2013-05-31T23:59:59.000Z

212

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

213

The Snake River Geothermal Drilling Project - Innovative Approaches...  

Open Energy Info (EERE)

Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies...

214

The Power and Potential of Geothermal Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy October 3, 2011 - 7:03pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs As Secretary Chu noted this weekend, America finds itself in a fierce global competition for the clean energy jobs and industries of the future - with countries like China, Germany and others investing tens of billions of dollars to expand their domestic renewable energy industry and capture the lead in a rapidly growing field. In this context, the Department of Energy's loan programs have played a crucially important role in helping the United States compete, by providing affordable financing to innovative projects that might not otherwise happen but that hold the potential to seed entire new industries for U.S.

215

In-line process instrumentation for geothermal power plants  

DOE Green Energy (OSTI)

The economics of geothermal power depend on satisfactory plant reliability of continuous operation. Plant problems and extended downtime due to corrosion failures, scale buildup, or injection well plugging have affected many past geothermal projects. If in-line instrumentation can be developed to alert plant operators to correctable problems, then the cost and reliability of geothermal power will be improved. PNL has completed a problem of development of in-line corrosion and chemical instrumentation for binary cycle plants, and this technology has been used to set up a monitoring program at the Heber Binary Demonstration Power Plant. The current emphasis has shifted to development of particle meters for use on injection lines and CO/sub 2/ and pH probes for use in control of calcite scaling. Plans have been outlined to develop and demonstrate flash plant instrumentation for corrosion monitoring, scaling, steam purity, and injection line particle counting. 2 refs., 17 figs., 1 tab.

Shannon, D.W.; Robertus, R.J.; Sullivan, R.G.; Kindle, C.H.; Pierce, D.D.

1985-05-01T23:59:59.000Z

216

Aurora Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Aurora Geothermal Project Aurora Geothermal Project Project Location Information Coordinates 38.289166666667°, -118.89916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.289166666667,"lon":-118.89916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Silver State Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Silver State Geothermal Project Silver State Geothermal Project Project Location Information Coordinates 38.786666666667°, -117.17916666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.786666666667,"lon":-117.17916666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Whirlwind Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Whirlwind Valley Geothermal Project Whirlwind Valley Geothermal Project Project Location Information Coordinates 39.4375°, -113.87583333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4375,"lon":-113.87583333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Trail Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Trail Canyon Geothermal Project Trail Canyon Geothermal Project Project Location Information Coordinates 38.325555555556°, -114.29388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.325555555556,"lon":-114.29388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Panther Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Panther Canyon Geothermal Project Panther Canyon Geothermal Project Project Location Information Coordinates 40.549444444444°, -117.57666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.549444444444,"lon":-117.57666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Colado Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Colado Geothermal Project Colado Geothermal Project Project Location Information Coordinates 40.18°, -118.47666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.18,"lon":-118.47666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Reese River Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Reese River Geothermal Project Reese River Geothermal Project Project Location Information Coordinates 39.034444444444°, -116.67666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.034444444444,"lon":-116.67666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Orita 2 Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Orita 2 Geothermal Project Orita 2 Geothermal Project Project Location Information Coordinates 32.977222222222°, -115.40527777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.977222222222,"lon":-115.40527777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

Desert Queen Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Project Desert Queen Geothermal Project Project Location Information Coordinates 39.877777777778°, -118.34722222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.877777777778,"lon":-118.34722222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

225

Newberry I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Newberry I Geothermal Project Newberry I Geothermal Project Project Location Information Coordinates 43.689166666667°, -121.255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.689166666667,"lon":-121.255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Orita I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

I Geothermal Project I Geothermal Project Project Location Information Coordinates 32.977222222222°, -115.40527777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.977222222222,"lon":-115.40527777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

High Valley Geothermal Project High Valley Geothermal Project Project Location Information Coordinates 38.863611111111°, -122.80138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.863611111111,"lon":-122.80138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Project Dixie Valley Geothermal Project Project Location Information Coordinates 39.7223036°, -118.0616895° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7223036,"lon":-118.0616895,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Cove Fort Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Project Location Information Coordinates 38.6075°, -112.57472222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.6075,"lon":-112.57472222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Wister I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Wister I Geothermal Project Wister I Geothermal Project Project Location Information Coordinates 33.315277777778°, -115.60333333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.315277777778,"lon":-115.60333333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

North Valley Geothermal Project North Valley Geothermal Project Project Location Information Coordinates 39.830833333333°, -119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.830833333333,"lon":-119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Carson Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Carson Lake Geothermal Project Carson Lake Geothermal Project Project Location Information Coordinates 39.321111111111°, -118.70388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.321111111111,"lon":-118.70388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Monitoring Biological Activity at Geothermal Power Plants  

Science Conference Proceedings (OSTI)

The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

Peter Pryfogle

2005-09-01T23:59:59.000Z

234

Patua Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Patua Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Patua Geothermal Project Project Location Information Coordinates 39.598611111111°, -119.215° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598611111111,"lon":-119.215,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Hawaii Geothermal Project: initial Phase II progress report  

DOE Green Energy (OSTI)

Results of Phase I of the Hawaii Geothermal Project (HGP), which consisted of a two-year study on the potential of geothermal energy for the Big Island of Hawaii, are reviewed. One conclusion from Phase I was that preliminary results looked sufficiently encouraging to warrant the drilling of the first experimental geothermal well in the Puna area of the Big Island. During the first two months of drilling, parallel activity has continued in all research and support areas. Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. Earlier work on mathematical and physical modeling of geothermal reservoirs was expanded; analysis of liquid-dominated geothermal systems continued; and studies on testing of geothermal wells were initiated. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. Early stages of the drilling program proceeded slowly. The initial 9 7/8-inch drill hole to 400 feet, as well as each of the three passes required to open the hole to 26 inches, were quite time consuming. Cementing of the 20-inch surface casing to a depth of 400 feet was successfully accomplished, and drilling beyond that depth has proceeded at a reasonable rate. Penetration below the surface casing to a depth of 1050 feet was accomplished at a drilling rate in excess of 150 feet per day, with partial circulation over the entire range.

Not Available

1976-02-01T23:59:59.000Z

236

Geothermal Mill Redevelopment Project in Massachusetts  

DOE Green Energy (OSTI)

Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (DOE) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

Vale, A.Q.

2009-03-17T23:59:59.000Z

237

Geothermal Heat Pump System for Ice Arena Geothermal Project...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

238

Geothermal Impact Analysis Geothermal Project | Open Energy Informatio...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

239

HL Power Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » HL Power Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home HL Power Geothermal Facility General Information Name HL Power Geothermal Facility Facility HL Power Sector Geothermal energy Location Information Location Wendel, California Coordinates 40.3482346°, -120.2335461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3482346,"lon":-120.2335461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

240

Ahuachapan Geothermal Power Plant, El Salvador  

DOE Green Energy (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Rift Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rio Grande Rift Geothermal Region edit Details Areas (21) Power Plants (0) Projects (2)...

242

Project Independence. Final task force report: geothermal energy  

SciTech Connect

This report contains the final technical analysis of the Project Independence Interagency Geothermal Task Force chaired by the National Science Foundation. The potential of geothermal energy, resources, fuel cycles, and the status of geothermal technology are outlined. Some constraints inhibiting rapid and widespread utilization and some Federal actions to remove utilization barriers are described. (MOW)

1974-11-01T23:59:59.000Z

243

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

244

Advanced Condenser Boosts Geothermal Power Plant Output (Fact ...  

... Indonesia, and Turkey. Promising greater efficiency and reduced costs ADCC technology holds great promise for geothermal power plants seeking ...

245

Commission decision on the Northern California Power Agency's Application for Certification for Geothermal Project No. 2. Docket 79-AFC-2  

DOE Green Energy (OSTI)

The text of the Decision is presented in narrative form. Included are: findings on compliance with statutory site certification requirements, a discussion of the Joint Environmental Study and its significance in terms of the California Environmental Quality and National Environmental Policy Acts, a brief recapitulation of the procedural steps which occurred, and a summary of the evidentiary bases for this Decision. Also presented are topical discussions on the various human and natural environmental areas impacted by the project, as well as the technical, engineering, and other areas of concern affected by the project. These topical discussions summarize the basis for the Commission's ultimte Findings and Conclusions pertaining to each broad cetegory. (MHR)

Not Available

1980-03-01T23:59:59.000Z

246

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

247

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

248

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

Snake River Geothermal Drilling Project - Innovative Approaches to Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This project will implement and test a series of innovative geothermal exploration strategies in two phases. Phase 1 studies will comprise surface mapping, shallow seismic surveys, potential field surveys (gravity and magnetics), compilation of existing well data, and the construction of three dimension structure sections. Phase 2 will comprise two intermediate depth (1.5-1.6 km) slim-hole exploration wells with a full suite of geophysical borehole logs and a vertical seismic profile to extrapolate stratigraphy encountered in the well into the surrounding terrain. Both of the exploration wells will be fully cored to preserve a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental scientific drilling project that focuses on the origin and evolution of the Yellowstone hotspot.

249

Northern California Power Agency's Notice of Intention to seek certification for NCPA Geothermal Project No. 1 (79-NOI-1). Summary and Hearing Order  

DOE Green Energy (OSTI)

The principal issues raised in the proceedings to date are summarized and the following are identified: issues to be adjudicated in subsequent hearings, issues which have been eliminated from the proceedings, and issues which should be deferred until the certification process. The proposed geothermal project is described and the hearing record is summarized. Findings are presented on the following: air quality, hydrology and water resources, water quality, geology and seismicity, soils, biological resources, noise, cultural resources, socioeconomic effects, need for the project, financial impacts, public health, safety and reliability, transmission lines, and civil and structural engineering. (MHR)

Not Available

1979-12-01T23:59:59.000Z

250

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

251

Egs Exploration Methodology Project Using the Dixie Valley Geothermal...  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

252

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

Robertson, R.C.

1978-12-01T23:59:59.000Z

253

Engineering and Economic Evaluation of Geothermal Power Plants  

Science Conference Proceedings (OSTI)

Geothermal power plants are commercially mature, dispatchable, base-loaded renewable energy sources. Most existing geothermal power plants exploit moderate- to high-temperature geothermal resources greater than 150C. These conditions exist in a few, relatively small geographic areas of the world, but these areas currently host thousands of megawatts of reliable, base-loaded renewable power, with thousands more megawatts in development. According to the Geothermal Resources Council, between 4000 and 7000 ...

2010-12-31T23:59:59.000Z

254

Baca geothermal demonstration project. Quarterly technical progress report, October 1-December 31, 1980  

SciTech Connect

Work completed on the Baca 50 Megawatt (MWe) Geothermal Demonstration Power Plant Project, Baca Location No. 1, New Mexico is reported. Topics covered in this quarterly report include progress made in the well and steam production systems, the power plant and transmission systems, and in the project data management program.

1981-03-01T23:59:59.000Z

255

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

256

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

257

Power System Equipment Module Test Project  

DOE Green Energy (OSTI)

The technology of electric power generation when applying the binary process to hydrothermal resources had not yet been demonstrated in the United States. Accordingly, on November 10, 1977, the Electric Power Research Institute and the Department of Energy, acting through the Lawrence Berkeley Laboratory, agreed to cofund the Power System Equipment Module Test Project. The Power System Equipment Module Test Project consisted of a field test program to accomplish the objectives listed below while heating hydrocarbon fluids to above their critical points, expanding these fluids, and subsequently, condensing them below their critical points: (1) Verify the performance of state-of-the-art heat exchangers in geothermal service; (2) Verify the heat exchangers' performance heating either selected pure light hydrocarbons or selected mixtures of light hydrocarbons in the vicinity of their respective critical pressures and temperatures; (3) Establish overall heat transfer coefficients that might be used for design of commercial-size geothermal power plants using the same geothermal brine and light hydrocarbon working fluids; (4) Perform and investigate the above under representative fluid operating conditions during which the production wells would be pumped. The project was accomplished by diverting approximately 200 gpm of the flow from one of Magma Power Company's geothermal wells in the East Mesa Geothermal Field. After the heat was removed from the geothermal brine flow, the cooled flow was returned to Magma Power Company and recombined with the main brine stream for disposal by reinjection. Approximately five thermal megawatts was transferred from geothermal brine to hydrocarbon working fluids in a closed system. This heat was removed from the working fluids in a condenser and subsequently rejected to the environment by a wet cooling tower. The thermodynamic performance of both the working fluids and the system components was measured during the test program to achieve the project's objectives.

Schilling, J.R.

1980-12-01T23:59:59.000Z

258

Guidebook to Geothermal Power Finance | Open Energy Information  

Open Energy Info (EERE)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Jump to: navigation, search Tool Summary Name: Guidebook to Geothermal Power Finance Agency/Company /Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Finance, Implementation Resource Type: Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49391.pdf Country: United States Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Aspects of the Kalina technology applied to geothermal power production  

DOE Green Energy (OSTI)

This report contains the results of studies conducted at the Idaho National Engineering Laboratory (INEL) concerning the applicability of the Kalina technology to geothermal (hydrothermal) power production. This report represents a correction and addition to that report. The Heat Cycle Research Program (HCRP) has as its primary goal the cost-effective production of electric power from moderate temperature hydrothermal resources. Recent work has included the study of supercritical cycles with counterflow condensation which utilize mixtures as working fluids. These advanced concepts are projected to give a 20 to 30% improvement in power produced per unit geofluid flow rate (geofluid effectiveness, w hr/lb). The original Kalina cycle is a system which is similar to the cycles being studied in the Heat Cycle Research program and it was felt that this new cycle should be studied in the geothermal context. 15 refs., 9 figs., 2 tabs.

Bliem, C.J.

1989-09-21T23:59:59.000Z

260

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

262

GeoPowering the West: Hawaii; Why Geothermal?  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Hawaii. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2004-04-01T23:59:59.000Z

263

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

Waste heat rejection systems for geothermal power stations have a significantly greater influence on plant operating performances and costs than do corresponding systems in fossil- and nuclear-fueled stations. With thermal efficiencies of only about 10%, geothermal power cycles can reject four times as much heat per kilowatt of output. Geothermal sites in the United States tend to be in water-short areas that could require use of more expensive wet/dry or dry-type cooling towers. With relatively low-temperature heat sources, the cycle economics are more sensitive to diurnal and seasonal variations in sink temperatures. Factors such as the necessity for hydrogen sulfide scrubbers in off-gas systems or the need to treat cooling tower blowdown before reinjection can add to the cost and complexity of goethermal waste heat rejection systems. Working fluids most commonly considered for geothermal cycles are water, ammonia, Freon-22, isobutane, and isopentane. Both low-level and barometric-leg direct-contact condensers are used, and reinforced concrete has been proposed for condenser vessels. Multipass surface condensers also have wide application. Corrosion problems at some locations have led to increased interest in titanium tubing. Studies at ORNL indicate that fluted vertical tubes can enhance condensing film coefficients by factors of 4 to 7.

Robertson, R C

1979-01-01T23:59:59.000Z

264

Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants  

DOE Green Energy (OSTI)

This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

None

1977-07-01T23:59:59.000Z

265

Pumpernickel Valley Geothermal Project Thermal Gradient Wells | Open Energy  

Open Energy Info (EERE)

Valley Geothermal Project Thermal Gradient Wells Valley Geothermal Project Thermal Gradient Wells Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Pumpernickel Valley Geothermal Project Thermal Gradient Wells Details Activities (4) Areas (1) Regions (0) Abstract: The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault,

266

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

267

Property:GeothermalArraProjectFunding | Open Energy Information  

Open Energy Info (EERE)

GeothermalArraProjectFunding GeothermalArraProjectFunding Jump to: navigation, search Property Name GeothermalArraProjectFunding Property Type Number Description Geothermal ARRA project funding Pages using the property "GeothermalArraProjectFunding" Showing 25 pages using this property. (previous 25) (next 25) A Alaska + 19,147,685 + Arizona + 15,799,947 + Arkansas + 3,256,311 + C California + 27,481,201.57 + Colorado + 18,070,049 + Connecticut + 4,414,493.79 + D District of Columbia + 1,077,500 + F Florida + 250,000 + H Hawaii + 4,911,330 + I Idaho + 10,190,110 + Illinois + 3,659,971 + Indiana + 6,339,591 + L Louisiana + 5,000,000 + M Massachusetts + 3,771,546 + Michigan + 2,752,163 + Minnesota + 2,888,018 + Mississippi + 1,571,027 + Missouri + 2,476,400 + Montana + 1,228,014 +

268

NETL: News Release - NETL Projects Selected to Conduct Geothermal Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

September 28, 2011 September 28, 2011 NETL Projects Selected to Conduct Geothermal Energy Research Morgantown, W.Va. - Two geothermal energy projects led by researchers at the National Energy Technology Laboratory (NETL) have been selected to receive funding from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. These projects, along with 30 others selected through a competitive process, promise to help accelerate development of geothermal energy technologies and diversify America's sources of clean, renewable energy. "The Department of Energy is investing in pioneering new technologies that will further develop the nation's geothermal resources, create skilled jobs for American workers, and help diversify our energy portfolio," said U.S. Energy Secretary Steven Chu in announcing the selected projects earlier this month. 'The projects . . . will provide opportunities for clean energy innovations that will ensure the U.S. remains a global leader in geothermal energy development and expand the nation's use of this important renewable energy resource."

269

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

DOE Green Energy (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

270

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Midnight Point and Mahogany Geothermal Exploration 5: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

271

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1925: Midnight Point and Mahogany Geothermal Exploration EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

272

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

273

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

274

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

275

Employment Impacts of Geothermal Electric Projects  

SciTech Connect

Table 1 summarizes the number of jobs associated with the development and operation of a 50 MW geothermal dual flash power system. The values shown are person years (PY) of employment for the 50 MW system. About 1500 person years (PY) of labor are incorporated in the manufacture and installation of capital components of the system. Of these, about 300 PY are local to the area of the geothermal system, and about 1200 are dispersed elsewhere in the U.S. or other countries. About 71 PY of labor per year are required for the operation of the system. Of those, about 39 PY are local to the plant, and about 32 are dispersed. The total person years of labor over the entire life cycle of such a system, assuming a 30-year operational life, is on the order of 3630 person years. These include jobs during the 5 to 10 years of exploration and construction activities prior to plant start up. Of these jobs, about 1470 PY are local to the system, and about 21 60 are dispersed elsewhere.

Entingh, Daniel J.

1993-05-23T23:59:59.000Z

276

City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study  

DOE Green Energy (OSTI)

The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the federal tax incentives come into play.

Brian Brown, PE; Stephen Anderson, PE, Bety Riley

2011-07-31T23:59:59.000Z

277

FORSITE, a multiple-project management system: production of critical-path development schedules for geothermal electric-power-generation projects  

DOE Green Energy (OSTI)

FORSITE is an advanced project monitoring software system that is designed to track and forecast the development of multiple projects. This paper describes the organization and operation of the FORSITE system including its overall structure and the functional relationships between its files and data bases. The paper also illustrates the operation of the system with an example of a generic critical-path management schedule produced by FORSITE. A program listing and schedule summaries are included as appendices.

Bernstein, A.J.; Entingh, D.J.; Gerstein, R.E.; Gould, A.V.

1982-10-01T23:59:59.000Z

278

S-cubed geothermal technology and experience  

DOE Green Energy (OSTI)

Summaries of ten research projects are presented. They include: equations describing various geothermal systems, geohydrological environmental effects of geothermal power production, simulation of linear bench-scale experiments, simulation of fluid-rock interactions in a geothermal basin, geopressured geothermal reservoir simulator, user-oriented geothermal reservoir simulator, geothermal well test analyses, geothermal seismic exploration, high resolution seismic mapping of a geothermal reservoir, experimental evaluation of geothermal well logging cables, and list of publications. (MHR)

Not Available

1976-04-01T23:59:59.000Z

279

The Marysville, Montana Geothermal Project. Final Report  

DOE Green Energy (OSTI)

This report describes the exploration of an anomalous site near Marysville, Montana, where the geothermal heat flow is about 10 times the regional average. The site arouses scientific interest because there are no surface manifestations such as young volcanics, hot springs, geysers, etc., within 20 miles of it. Also, there is significant economic interest in exploring the source of heat as a potential for the generation of electricity. Included herein are independent sections prepared by each contractor. Consequently, there is some overlapping information, generally presented from different viewpoints. The project consists of geophysical surveys in 1973 and 1974, the drilling of the deep well in the summer of 1974 to a depth of 6790 feet, the coring and logging of the well, the supporting scientific studies, and the data analysis. Since so much data are available on the Marysville system, it can serve as a testing and research area to help locate and understand similar systems. (GRA)

Not Available

1975-09-01T23:59:59.000Z

280

Pilgrim Hot Springs, Alaska Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Springs, Alaska Geothermal Project Springs, Alaska Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Pilgrim Hot Springs, Alaska Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A combination of existing and innovative remote sensing and geophysical techniques will be used to site the two confirmation core holes. These include a suite of Landsat, Aster, and FLIR techniques using infrared radiation combined with a CSAMT/AMT resistivity survey, 4.5 m to 150 m temperature gradient holes, and 1980 convective heat loss calculations. These will be used in combination to determine the natural heat loss from the Pilgrim geothermal system and allow an order of magnitude estimate of the resource potential.

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal R&D Program FY 1988 Project Summaries  

SciTech Connect

This report summarizes DOE Geothermal R&D subprograms, major tasks, and projects. Contract funding amounts are shown. Many summaries have references (citations) to the researchers' previous related work. These can be useful. Geothermal budget actual amounts are shown for FY 1984 -1988. (DJE 2005)

1988-10-01T23:59:59.000Z

282

Geothermal R&D Program FY 1988 Project Summaries  

SciTech Connect

This report summarizes DOE Geothermal R&D subprograms, major tasks, and projects. Contract funding amounts are shown. Many summaries have references (citations) to the researchers' previous related work. These can be useful. Geothermal budget actual amounts are shown for FY 1984 -1988. (DJE 2005)

None

1988-10-01T23:59:59.000Z

283

Microsoft Word - 338M_Geothermal_Project_Descriptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grant Amount Project Location (City) Project Location (State) Description 1) Innovative Exploration and Drilling Projects El Paso County $5,000,000 El Paso County TX El Paso County will utilize new portable drilling technology and geological analysis techniques in Ft. Bliss, TX. Flint Geothermal LLC $4,778,234 (5 sites) CO Flint Geothermal LLC will utilize a combination of geological mapping tools to identify resources in Colorado. GeoGlobal Energy LLC $4,040,375 Gabbs NV GeoGlobal Energy LLC will combine geological with geochemical analysis to discover hidden resources in the Basin and Range region of Nevada. Geothermal Technical Partners, Inc.

284

Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement  

DOE Green Energy (OSTI)

In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

Reed, R.M.; Saulsbury, J.W.

1993-06-01T23:59:59.000Z

285

Raft River III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Raft River III Geothermal Project Project Location Information Coordinates 42.099444444444°, -113.38222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.099444444444,"lon":-113.38222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Lightning Dock II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Lightning Dock II Geothermal Project Lightning Dock II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lightning Dock II Geothermal Project Project Location Information Coordinates 32.346944444444°, -108.70722222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.346944444444,"lon":-108.70722222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Keystone/Mesquite Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Keystone/Mesquite Lake Geothermal Project Keystone/Mesquite Lake Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Keystone/Mesquite Lake Geothermal Project Project Location Information Coordinates 35.978611111111°, -115.53027777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.978611111111,"lon":-115.53027777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

China Lake South Range Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

China Lake South Range Geothermal Project China Lake South Range Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: China Lake South Range Geothermal Project Project Location Information Coordinates 35.65°, -117.66166666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.65,"lon":-117.66166666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Hawthorne Army Depot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Depot Geothermal Project Depot Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hawthorne Army Depot Geothermal Project Project Location Information Coordinates 38.476944444444°, -118.65777777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.476944444444,"lon":-118.65777777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Black Rock III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Black Rock III Geothermal Project Black Rock III Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Black Rock III Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

291

Pilgrim Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Pilgrim Hot Springs Geothermal Project Project Location Information Coordinates 65.093°, -164.92194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.093,"lon":-164.92194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

El Centro/Superstition Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Centro/Superstition Hills Geothermal Project Centro/Superstition Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: El Centro/Superstition Hills Geothermal Project Project Location Information Coordinates 33.020833333333°, -115.81305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.020833333333,"lon":-115.81305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Neal Hot Springs II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs II Geothermal Project Neal Hot Springs II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs II Geothermal Project Project Location Information Coordinates 44.023055555556°, -117.46° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.023055555556,"lon":-117.46,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Hill Airforce Base Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Airforce Base Geothermal Project Airforce Base Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hill Airforce Base Geothermal Project Project Location Information Coordinates 41.238888888889°, -111.97277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.238888888889,"lon":-111.97277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

McGinness Hills Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

McGinness Hills Geothermal Project McGinness Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: McGinness Hills Geothermal Project Project Location Information Coordinates 39.493055555556°, -117.06638888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.493055555556,"lon":-117.06638888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

Lee Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Geothermal Project Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lee Hot Springs Geothermal Project Project Location Information Coordinates 39.208055555556°, -118.72388888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.208055555556,"lon":-118.72388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Leach Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Leach Hot Springs Geothermal Project Leach Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Leach Hot Springs Geothermal Project Project Location Information Coordinates 40.603888888889°, -117.64805555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.603888888889,"lon":-117.64805555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Mary's River SW Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mary's River SW Geothermal Project Project Location Information Coordinates 41.750555555556°, -115.30194444444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.750555555556,"lon":-115.30194444444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Lightning Dock I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

I Geothermal Project I Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Lightning Dock I Geothermal Project Project Location Information Coordinates 32.346944444444°, -108.70722222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.346944444444,"lon":-108.70722222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

East Soda Lake Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Soda Lake Geothermal Project Soda Lake Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: East Soda Lake Geothermal Project Project Location Information Coordinates 39.53°, -118.87° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.53,"lon":-118.87,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DeArmand Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

DeArmand Geothermal Project DeArmand Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: DeArmand Geothermal Project Project Location Information Coordinates 37.895833333333°, -113.66138888889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.895833333333,"lon":-113.66138888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

San Emidio II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Emidio II Geothermal Project Emidio II Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: San Emidio II Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 40°22'59" N, 119°'23" W.The following coordinate was not recognized: 40°22'59" N, 119°'23" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

303

Fallon-Main Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Fallon-Main Geothermal Project Fallon-Main Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon-Main Geothermal Project Project Location Information Coordinates 39.425°, -118.70277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.425,"lon":-118.70277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Neal Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Project Neal Hot Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Neal Hot Springs Geothermal Project Project Location Information Coordinates 44.023055555556°, -117.46° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.023055555556,"lon":-117.46,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Heber Geothermal Binary Demonstration Project. Quarterly technical progress report, September 15, 1980-March 31, 1981  

DOE Green Energy (OSTI)

Work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of September 15, 1980, through March 31, 1981 is documented. Topics covered in this quarterly report include progress made in the areas of Wells and Fluids Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

Hanenburg, W.H.; Lacy, R.G.; Van De Mark, G.D.

1981-06-01T23:59:59.000Z

306

Heber geothermal binary demonstration project. Quarterly technical progress report, April 1, 1981-June 30, 1981  

SciTech Connect

Work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of April 1, 1981, through June 30, 1981 is documented. Topics covered include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

Van De Mark, G.D.

1981-09-01T23:59:59.000Z

307

Designing geothermal power plants to avoid reinventing the corrosion wheel  

DOE Green Energy (OSTI)

This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

Conover, Marshall F.

1982-10-08T23:59:59.000Z

308

Geothermal Power: Meeting the Challenge of Electric Price Stabilizatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s):...

309

Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii  

DOE Green Energy (OSTI)

The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

None

1981-06-01T23:59:59.000Z

310

Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development  

DOE Green Energy (OSTI)

The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

Not Available

1976-06-01T23:59:59.000Z

311

Geothermal policy project. Quarterly report, June 1-August 31, 1980  

DOE Green Energy (OSTI)

Efforts continued to initiate geothermal and water source heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Follow-up contacts were made with several project states, and state meetings and workshops were held in nine project states. Two state-specific documents were prepared during this reporting period, for Nevada and Wyoming.

Connor, T.D.

1980-11-01T23:59:59.000Z

312

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

Research Project, Imperial Valley, California Research Project, Imperial Valley, California Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New River Geothermal Research Project, Imperial Valley, California Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Current models for the tectonic evolution of the Salton Trough provide a refined geologic model to be tested within the New River system and subsequently applied to additional rift dominated settings. Specific concepts to be included in model development include: rifting as expressed by the Brawley Seismic zone setting, northwest extensional migration, detachment faulting and a zone of tectonic subsidence as defining permeability zones; and evaluation and signature identification of diabase dike systems. Lateral continuous permeable sand units will be demonstrated through integration of existing well records with results of drilling new wells in the area.

313

Egs Exploration Methodology Project Using the Dixie Valley Geothermal  

Open Energy Info (EERE)

Egs Exploration Methodology Project Using the Dixie Valley Geothermal Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Authors Joe Iovenitti, Jon Sainsbury, Ileana Tibuleac, Robert Karlin, Philip Wannamaker, Virginia Maris, David Blackwell, Mahesh Thakur, Fletcher H. Ibser, Jennifer Lewicki, B. Mack. Kennedy and Michael Swyer Conference Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University; Stanford, California; 2013 Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Egs Exploration Methodology Project Using the

314

Salt Wells Geothermal Energy Projects Environmental Impact Statement | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Salt Wells Geothermal Energy Projects Environmental Impact Statement Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Energy Projects Environmental Impact Statement Abstract Abstract unavailable. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 07/22/2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Energy Projects Environmental Impact Statement Citation Bureau of Land Management. Salt Wells Geothermal Energy Projects Environmental Impact Statement [Internet]. 07/22/2011. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management, Carson City

315

Geothermal Energy Research and Development Program; Project Summaries  

Science Conference Proceedings (OSTI)

This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

None

1994-03-01T23:59:59.000Z

316

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Power Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Nevada Exploration Region Northern Basin and Range Geothermal Region GEA Development Phase...

319

SaskPower Geothermal and Self-Generated Renewable Power Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings SaskPower Geothermal and Self-Generated Renewable Power Loan Program (Saskatchewan, Canada) SaskPower...

320

Geothermal R and D Project report for period April 1, 1976 to...  

Open Energy Info (EERE)

30, 1976 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal R and D Project report for period April 1, 1976 to June 30, 1976 Details Activities (1)...

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

322

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

323

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

324

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

325

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

326

Comparison of elementary geothermal-brine power-production processes  

SciTech Connect

From applied technology geothermal committee meeting; Idaho Falls, Idaho, USA (7 Aug 1973). A comparison of three simple geothermal power- production systems shows that the flashed steam and the compound systems are favored for use with high-temperature brines. The binary system becomes economically competitive only when used on low-temperature brines (enthalpies less than 350 Btu/lb). Geothermal power appears to be economically attractive even when low-temperature brines are used. (auth)

Green, M.A.; Laird, A.D.K.

1973-08-01T23:59:59.000Z

327

New York Canyon Stimulation Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Stimulation Geothermal Project Stimulation Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title New York Canyon Stimulation Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The projects expected outcomes and benefits are; - Demonstrated commercial viability of the EGS-stimulated reservoir by generating electricity using fluids produced from the reservoir at economic costs. - Significant job creation and preservation and economic development in support of the Recovery Act of 2009. State Nevada Objectives Demonstrate the commercial application of EGS techniques at the New York Canyon (NYC) site in a way that minimizes cost and maximizes opportunities for repeat applications elsewhere.

328

Geothermal resources development project: Phase I  

DOE Green Energy (OSTI)

Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

Not Available

1979-09-30T23:59:59.000Z

329

Hybrid and Advanced Air Cooling Geothermal Lab Call Project | Open Energy  

Open Energy Info (EERE)

and Advanced Air Cooling Geothermal Lab Call Project and Advanced Air Cooling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Hybrid and Advanced Air Cooling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description Many geothermal power plants in the U.S. are air-cooled because of water limitations. NREL has worked with industry to explore various strategies for boosting the performance of air coolers in hot weather. Computer modeling and experimental measurements have been done on the use of evaporative media upstream of the air-cooled condensers at the Mammoth Lakes Power Plant. NREL has also analyzed the use of an air-cooled condenser in series with (i.e., upstream of) a water-cooled condenser and found that this can be beneficial for power cycles requiring desuperheating of the turbine exhaust vapor. Recently, the conventional power industry has developed an interest in operating water- and air-cooled condensers in parallel. This arrangement allows a small water cooler to reduce the heat transfer duty on the air cooler on hot summer days thereby allowing the condensing working fluid to make a much closer approach to the air dry bulb temperature.

330

Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997  

DOE Green Energy (OSTI)

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1997-01-01T23:59:59.000Z

331

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

332

Geothermal Power and Interconnection: The Economics of Getting to Market  

Science Conference Proceedings (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

333

Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)  

SciTech Connect

The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support project facilities in a safe and environmentally acceptable manner; and non-power generating alternatives, such as conservation and demand-side management.

None

1992-09-18T23:59:59.000Z

334

DSW Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates DSW Power Projects Boulder Canyon: Straddling the Colorado River near the Arizona-Nevada border, Hoover Dam in Boulder Canyon creates Lake Mead. River waters turning turbines at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada over 53.30 circuit-miles of transmission line. Central Arizona: Authorized in 1968, the Central Arizona Project in Arizona and western New Mexico was built to improve water resources in the Colorado River Basin. Segments of the authorization allowed for Federal participation in the Navajo Generating Station. The Federal share of the powerplant's combined capacity is 547 MW.

335

BLM Approves Salt Wells Geothermal Energy Projects | Open Energy  

Open Energy Info (EERE)

Energy Projects Energy Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Energy Projects Abstract Abstract unavailable. Author Colleen Sievers Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/28/2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Approves Salt Wells Geothermal Energy Projects Citation Colleen Sievers. BLM Approves Salt Wells Geothermal Energy Projects [Internet]. 09/28/2011. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada. [updated 2011/09/28;cited 2013/08/21]. Available from: http://www.blm.gov/nv/st/en/fo/carson_city_field/blm_information/newsroom/2011/september/blm_approves_salt.html

336

Solicitation - Geothermal Drilling Development and Well Maintenance Projects  

DOE Green Energy (OSTI)

Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

Sattler, A.R.

1999-07-07T23:59:59.000Z

337

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

338

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

DOE Green Energy (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

339

South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985  

DOE Green Energy (OSTI)

This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

Wegman, S.

1985-01-01T23:59:59.000Z

340

RM Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in 1990. The projects serve Colorado, Kansas, Nebraska and Wyoming with 830 MW of installed capacity and 3,360 miles of transmission line. About Power Marketing...

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California  

DOE Green Energy (OSTI)

The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

Not Available

1980-10-01T23:59:59.000Z

342

Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants  

DOE Green Energy (OSTI)

An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

DiPippo, R.

1980-01-01T23:59:59.000Z

343

Raft River 5-MW(e) geothermal pilot plant project  

SciTech Connect

The Raft River 5-MW(e) Pilot Plant Project was started in 1976. Construction is scheduled for completion in July 1980, with three years of engineering and operational testing to follow. The plant utilized a 280/sup 0/F geothermal fluid energy source and a dual boiling isobutane cycle. Developmental efforts are in progress in the areas of down hole pumps and chemical treatment of geothermal fluid for cooling tower makeup.

Rasmussen, T.L.; Whitbeck, J.F.

1980-01-01T23:59:59.000Z

344

Honey Lake hybrid geothermal wood residue power plant, Lassen County, California  

DOE Green Energy (OSTI)

The feasibility of a proposed 50 MW (gross) electric power project located near Wendel, California about 25 miles east of Susanville was studied. The project would be the first commercial power plant to combine the use of geothermal energy and wood fuel for power production. Wood fuel consisting primarily of various forms of forest management residues would be processed and partially dehydrated with geothermal energy prior to combustion. Geothermal energy would also be used for boiler feedwater heating and combustion air preheating. The study defines the range of site-specific benefits and economics of using wood fuel and moderate temperature geothermal energy, both of which are abundant and often located in proximity at many locations in the western United States. The study results document conclusively that overall project economics can be very favorable and that in addition to providing an important source of electric power, many benefits to forest land managers, local communities, project developers and the state of the environment can be derived from the combined use of moderate temperature geothermal energy and wood fuel.

Not Available

1982-06-01T23:59:59.000Z

345

Hawaii Geothermal Project. Summary report for Phase 1  

DOE Green Energy (OSTI)

The research program was divided into three areas: geophysical--exploratory surveys to define the most favorable areas for geothermal investigations; engineering--analytical models to assist in interpretation of geophysical results, and studies on energy recovery from hot brine; and, environmental-socioeconomic--legal and regulatory aspects of ownership and administration of geothermal resources, and economic planning studies on the impact of geothermal power. Summaries of results obtained to date in each of the research areas are presented; a list of reference publications where these results are reviewed in greater detail is included. (JGB)

Not Available

1975-05-01T23:59:59.000Z

346

National Conference of State Legislatures Geothermal Project. Final report, February 1978--September 1982  

SciTech Connect

The principal objectives of the NCSL Geothermal Project was to stimulate and assist state legislative action to encourage the efficient development of geothermal resources, including the use of groundwater heat pumps. The project had the following work tasks: (1) initiate state geothermal policy reviews; (2) provide technical assistance to state geothermal policy reviews; (3) serve as liaison with geothermal community; and (4) perform project evaluation.

1983-01-31T23:59:59.000Z

347

Fallon Test Ranges Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fallon Test Ranges Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Fallon Test Ranges Geothermal Project Project Location Information Coordinates 39.425°, -118.70277777778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.425,"lon":-118.70277777778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

348

An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project  

Science Conference Proceedings (OSTI)

A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an irreversible commitment to it. The state should also more carefully assess the potential risks and hazards of volcanic disturbances, the degree of environmental damage that could occur, the future demand for electricity, and the potential of supplying electricity from alternative energy sources, conservation and small scale power units. As they stated in the April 1987 study, to move ahead with rapid large scale geothermal development on Hawaii without thoroughly studying these aspects of its development is ill-advised and economically unsound.

None

1990-03-01T23:59:59.000Z

349

Status of geothermal reservoir engineering research projects supported by USDOE/Division of Geothermal Energy  

DOE Green Energy (OSTI)

In the fall of 1977, the US Department of Energy (DOE), Division of Geothermal Energy (DGE) proposed that Lawrence Berkeley Laboratory (LBL) assume lead responsibility, on DGE's behalf, for geothermal reservoir engineering. This summary discusses briefly the DOE/DGE-sponsored geothermal reservoir engineering research program which includes LBL in-house research and research done by others through LBL. LBL in-house research has emphasized improvement of well test analysis methods and the development of geothermal reservoir performance simulators. Work by others has included 18 separate contracts on a variety of technical and scientific projects. Altogether, 29 distinguishable research topics have been addressed. Fourteen institutions, including eight private companies, have interacted with the program. Table 1, along with figures 2 and 3 summarized the status of the work.

Howard, J.H.; Schwarz, W.J.

1979-07-01T23:59:59.000Z

350

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

DOE Green Energy (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

351

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

352

Materials selection guidelines for geothermal power systems. First edition  

DOE Green Energy (OSTI)

Nine potential power cycles are defined and diagrammed for the generation of electricity from geothermal fluids. General fluid properties that influence the applicability of power cycles to a particular geothermal resource are discussed. The corrosivity of individual process streams in power cycles is described based on variations in chemical composition and temperature. Results of materials performance tests are analyzed based on the chemical composition of the corrosive medium and physical factors such as temperature, duration of exposure, and fluid velocity. The key chemical components in geothermal fluids that are significant in determining corrosivity are identified. Both summarized and detailed results of materials performance tests in U.S. liquid-dominated resources are given. Seven U.S. liquid-dominated KGRA's are classified according to relative corrosiveness and their key chemical components are defined. The various forms and mechanisms of corrosive attack that can occur in geothermal process streams are described. The application of nonmetallic materials in geothermal environments is discussed. The appendices contain information on (1) operating experience at geothermal power plants, (2) corrosion in desalination facilities, (3) reliability of geothermal plants, (4) elastomeric materials, (5) comparative alloy costs, and (6) geothermal equipment manufacturers. (MHR)

DeBerry, D.W.; Ellis, P.F.; Thomas, C.C.

1978-09-01T23:59:59.000Z

353

Honey Lake Hybrid Power Plant Project. Volume 1. Executive summary  

DOE Green Energy (OSTI)

A technical and economic feasibility study of the engineering aspects of a hybrid wood-fired geothermal electrical generating plant is presented. The proposed plant location is in Lassen County, California, near the Wendel Amedee Known Geothermal Resource Area. This power plant uses moderate temperature geothermal fluid to augment the heat supplied from a wood waste fired boiler. This report defines major plant systems for implementation into the plant conceptual design and provides sufficient design information for development of budgetary cost estimates. Emphasis is placed on incorporation of geothermal heat into the power generation process. Plant systems are designed and selected based on economic justification and on proven performance. The culminating economic analysis provides the financial information to establish the incentives for construction of the plant. The study concludes that geothermal energy and energy from wood can be combined in a power generating plant to yield attractive project economics.

Not Available

1982-03-01T23:59:59.000Z

354

Heat Extraction Project, geothermal reservoir engineering research at Stanford  

DOE Green Energy (OSTI)

The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.

Kruger, P.

1989-01-01T23:59:59.000Z

355

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

356

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

357

Direct-flash-steam geothermal-power-plant assessment. Final report  

DOE Green Energy (OSTI)

The objective of the project was to analyze the capacity and availability factors of an operating direct flash geothermal power plant. The analysis was to include consideration of system and component specifications, operating procedures, maintenance history, malfunctions, and outage rate. The plant studied was the 75 MW(e) geothermal power plant at Cerro Prieto, Mexico, for the years 1973 to 1979. To describe and assess the plant, the project staff reviewed documents, visited the plant, and met with staff of the operating utility. The high reliability and availability of the plant was documented and actions responsible for the good performance were identified and reported. The results are useful as guidance to US utilities considering use of hot water geothermal resources for power generation through a direct flash conversion cycle.

Alt, T.E.

1982-01-01T23:59:59.000Z

358

Geothermal power plants of the United States: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

The development of geothermal energy as a source of electric power in the United States is reviewed. A thorough description is given of The Geysers geothermal power project in northern California. The recent efforts to exploit the hot-water resources of the Mexicali-Imperial Rift Valley are described. Details are given concerning the geology of the several sites now being used and for those at which power plants will soon be built. Attention is paid to the technical particulars of all existing plants, including wells, gathering systems, energy conversion devices, materials, environmental impacts, economics and operating characteristics. Specifically, plants which either exist or are planned for the following locations are covered: The Geysers, CA; East Mesa, CA; Heber, CA; Roosevelt Hot Springs, UT; Valles Caldera, NM; Salton Sea, CA; Westmorland, CA; Brawley, CA; Desert Peak, NV; and Raft River, ID. The growth of installed geothermal electric generating capacity is traced from the beginning in 1960 and is projected to 1984.

DiPippo, R.

1978-04-01T23:59:59.000Z

359

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

360

Comparison of Geothermal Power Conversion Cycles  

SciTech Connect

Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash states; binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

Elliott, David G.

1976-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s): Jon Wellinghoff Steve Munson Date: January 30, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Julie Osborn Existing data indicates that extensive geothermal resources of power production grade exist throughout the western United States. These resources may be capable of producing clean, reliable electric power in sufficient quantities to act as a hedge against the price volatility of gas-fired electric generation. The challenge facing energy policy makers is developing effective strategies and appropriate incentives to assist developers in moving competitive quantities of geothermal electric capacity into the western power marketplace. Issues related to achieving this goal

362

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program < Back Eligibility Agricultural Commercial Industrial Residential Maximum Rebate 1,000/ton Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount $800 - $1,000/ton Provider Oklahoma Municipal Power Authority Program funds currently exhausted, additional funds have been requested. Visit the program website for the most up to date information on fund availability and to register for the waiting list for this program. The Oklahoma Municipal Power Authority (OMPA) and the Oklahoma Department of Commerce currently offer the Oklahoma Comfort Program for geothermal

363

Hawaii Geothermal Project initial Phase II progress report, February 1976  

DOE Green Energy (OSTI)

Additional gravity, seismic, and electrical surveys were conducted; water and rock samples were collected; and analysis and interpretation of data has proceeded. The engineering program has expanded its earlier work on mathematical and physical modeling of geothermal reservoirs; continued with the analysis of liquid-dominated geothermal systems; and initiated studies on geothermal well testing. An environmental assessment statement of HGP No. 1 was prepared and baselines established for crucial environmental parameters. Economic, legal, and regulatory studies were completed and alternatives identified for the development of geothermal power in Hawaii. The Drilling Program has provided assistance in contract negotiations, preparation of the drilling and testing programs, and scientific input to the drilling operation. (MHR)

Not Available

1976-02-01T23:59:59.000Z

364

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network (OSTI)

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed. The characteristics of the geothermal fields under consideration were not firm, with data indicating widely varying downhole temperatures. Thus, neither the resource nor the plant operating conditions could be set. To assist both the ultimate user of the resource, the utility, and the developer of the geothermal field, a series of parametric sensitivity studies were conducted for the initial evaluation of a field vis-a-vis the power plant. Using downhole temperature as the variable, the amount of brine, brine requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power plant. The selection of geothermal steam power plant design conditions must be related to the field in which the plant is located. The results of the work have proven to be valuable in two major respects: (1) to determine the production required of a particular geothermal field to meet electrical generation output and (2) as field characteristics become firm, operating conditions can be defined for the associated power plant.

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

365

Geothermal overview project: preliminary environmental assessments. Quarterly progress report, October 1, 1978--December 31, 1978  

DOE Green Energy (OSTI)

The following are included: geothermal overview projects initiated in FY 1979, geothermal overview projects initiated in FY 1978, the agenda and participants in the overview planning meeting, the Oregon status reports, and the Hawaii status reports. (MHR)

Phelps, P.L.

1979-01-03T23:59:59.000Z

366

Northern California Power Agency's notice of intention to file an application for certification of NCPA Geothermal Project No. 2. Final report  

DOE Green Energy (OSTI)

Final findings and conclusions are presented on: conformity to the forecast of statewide and service area electric power demands; conformity of the proposed site and facility with applicable local, regional, state, and federal standards, ordinances, and laws; and the safety and reliability of the facility. Also included is a proposed decision approving the notice, with conditions, for consideraion by the full Commission. In addition, a description of the proposed project, a summary of the proceedings to date; local, state, and federal government agency comments on the Preliminary Report; and the Committee's view of those issues that require further consideration are included. (MHR)

Not Available

1979-03-01T23:59:59.000Z

367

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

368

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995  

DOE Green Energy (OSTI)

The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

Lienau, P.

1995-12-01T23:59:59.000Z

369

Fluid Temperature and Power Estimation of Geothermal Power Plants by a Simplified Numerical Model  

Science Conference Proceedings (OSTI)

This paper presents an estimation of power generated in a given geothermal heat pipe system. Such power generation is basically controlled by the ultimate temperature of fluid flowing through the u-shape pipes and could also be affected by power consumption ... Keywords: energy, geothermal power plant, numerical model, heat conduction, optimum design

Ge Ou; Itai Einav

2010-08-01T23:59:59.000Z

370

Nevada manufacturer installing geothermal power plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

371

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

372

Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program  

DOE Green Energy (OSTI)

The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hot brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.

None

1976-11-01T23:59:59.000Z

373

Present status of Fang Geothermal Project, Thailand  

SciTech Connect

Geothermal exploration work in Fang area begun in 1977 when the BRGM and Geowatt of France and EGAT agreed to collaborate on a feasibility study of electric energy production in Fang geothermal area. Twelve exploration wells (FGTE series) and eight slim holes (BH series) have been drilled and produce hot water at 105/sup 0/C, 0.4 bars at a discharge rate of up to 14 l/s. Exploration well testing and the economic study is to be conducted as part of the next cooperation program of AFME and EGAT during late 1985-early 1986. The first 100-300 kWe demonstration plant is planned to be installed by the end of Fiscal Year 1986. The future of the development program depends on the success of this demonstration plant.

Wanakasem, S.; Takabut, K.

1986-01-01T23:59:59.000Z

374

FY 1974 program plan for geothermal project  

SciTech Connect

The Program Plan specifies the basic plan for the utilization of FY-74 funds allocated by the AEC Division of Applied Technology and contributions from other participants for the development of geothermal energy in southern Idaho. Funding priorities are dictated by the Construction Data Package submission deadline and the October 1, 1974, site selection. Tasks not funded during FY-74 will be pursued during FY-75. (auth)

1974-02-05T23:59:59.000Z

375

Sacramento Municipal Utility District Geothermal Power Plant, SMUDGEO No. 1. Final report  

DOE Green Energy (OSTI)

The proposed construction of 72-MW geothermal power plant is discussed. The following aspects are covered: the project as proposed by the utility; the environmental setting; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the Growth Inducing Impacts. (MHR)

Not Available

1981-02-01T23:59:59.000Z

376

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

377

High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation  

DOE Green Energy (OSTI)

Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that on a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.

Grijalva, R. L.; Sanemitsu, S. K.

1978-11-01T23:59:59.000Z

378

Drum Mountain Geothermal Project (2) | Open Energy Information  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project (2) Project Location Information Coordinates 39.544722222222°, -112.91611111111° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Snake River Plain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Snake River Plain Geothermal Project Project Location Information Coordinates 43.136944444444°, -115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.136944444444,"lon":-115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

McCoy Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: McCoy Geothermal Project Project Location Information Coordinates 39.552777777778°, -117.91222222222° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.552777777778,"lon":-117.91222222222,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Newberry I Geothermal Project (2) | Open Energy Information  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Newberry I Geothermal Project (2) Project Location Information Coordinates 43.689166666667°, -121.255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.689166666667,"lon":-121.255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

Development Project: Drum Mountain Geothermal Project (3) Development Project: Drum Mountain Geothermal Project (3) Project Location Information Coordinates The following coordinate was not recognized: 39.32.41" N, 112°55'1" W.The following coordinate was not recognized: 39.32.41" N, 112°55'1" W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

383

El Centro/Superstition Hills Geothermal Project (2) | Open Energy  

Open Energy Info (EERE)

Project (2) Project (2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: El Centro/Superstition Hills Geothermal Project (2) Project Location Information Coordinates 33.020833333333°, -115.81305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.020833333333,"lon":-115.81305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Guide to financing: small-scale geothermal energy projects  

DOE Green Energy (OSTI)

A brief overview is given of the current financing sources for projects requiring $1 million or less in capital investment and the major considerations commonly encountered in assembling financing. A directory of technical and financial assistance and a glossary of geothermal/financial terms are included.

Not Available

1982-04-01T23:59:59.000Z

385

Geothermal environmental projects publication list with abstracts 1975-1978  

DOE Green Energy (OSTI)

This report contains 119 abstracts of publication resulting from or closely related to geothermal environmental projects conducted by the Environmental Sciences Division at Lawrence Livermore Laboratory. Publications are listed chronologically from 1975 through 1978. The main entries are numbered sequentially, and include the full citation, an abstract, and selected keywords. This section is followed by an author index, and a keyword index.

Ricker, Y.E.; Anspaugh, L.R.

1979-05-15T23:59:59.000Z

386

Hawaii Geothermal Project; HGP-A Reservoir Engineering  

DOE Green Energy (OSTI)

The Hawaii Geothermal Project well HGP-A has undergone a two-year testing program which included cold water pumpdown tests, flashing flows with measurements of temperature and pressure profiles, and noise surveys. These tests and the data obtained are discussed in detail.

Yuen, P.C.; Chen, B.H.; Kihara, D.H.; Seki, A.S.; Takahashi, P.K.

1978-09-01T23:59:59.000Z

387

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

Geothermal resources for electric power generation. i. PlantOF GEOTHERMAL SYSTEMS Electric Power Generation SystemsUSE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND

Apps, J.A.

2011-01-01T23:59:59.000Z

388

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant has been completed for four geothermal Resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. Brown University provided the theoretical basis for the hybrid study. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant. Costing methods followed recommendations issued by the Energy research and Development Administration.

Not Available

1977-06-01T23:59:59.000Z

389

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant was completed for four geothermal resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa, and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant.

Not Available

1977-06-01T23:59:59.000Z

390

Los Alamos hot dry rock geothermal project  

DOE Green Energy (OSTI)

The greatest potential for geothermal energy is the almost unlimited energy contained in the vast regions of hot, but essentially impermeable, rock within the first six or seven km of the Earth's crust. For the past five years, the Los Alamos Scientific Laboratory has been investigating and developing a practical, economical and environmentally acceptable method of extracting this energy. By early 1978, a 10 MW (thermal) heat extraction experiment will be in operation. In the Los Alamos concept, a man-made geothermal reservoir is formed by drilling into a region of suitably hot rock, and then creating within the rock a very large surface for heat transfer by large-scale hydraulic-fracturing techniques. After a circulation loop is formed by drilling a second hole to intersect the fractured region, the heat contained in this reservoir is brought to the surface by the buoyant closed-loop circulation of water. The water is kept liquid throughout the loop by pressurization, thereby increasing the rate of heat transport up the withdrawal hole compared to that possible with steam.

Brown, D.W.; Pettitt, R.A.

1977-01-01T23:59:59.000Z

391

NREL: Water Power Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Search More Search Options Site Map Printable Version Projects NREL's water power R&D projects support industry efforts to develop and deploy cost-effective water power...

392

Feasibility study of geothermal heating, Modoc Lassen housing project  

DOE Green Energy (OSTI)

This study evaluates the feasibility of using geothermal water for space and domestic water heating systems at the elderly housing project now ready for construction at the Modoc Lassen Indian Reservation. For the six units considered, the space heating load is four times the domestic water heating load. Since the geothermal water temperature is uncertain, two scenarios were evaluated. In the first, which assumes 160/sup 0/F supply temperature, the geothermal system is assumed to satisfy the entire space and domestic water heating loads. In the second, which assumes the supply temperature to be less than 120/sup 0/F at the wellhead only space heating is provided. The economics of the first scenario are quite favorable. The additional expenditure of $15,630 is projected to save $3522 annually at current energy costs, and the life cycle cost study projects a discounted rate of return on the investment of 44.4%. Surprisingly, the investment is even more favorable for the second scenario, due to the higher cost and lower resultant savings for the domestic water components. Forced air space heating from geothermal is recommended. Domestic water heating is recommended pending additional information on supply water temperature.

Not Available

1981-11-01T23:59:59.000Z

393

Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995  

DOE Green Energy (OSTI)

The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

NONE

1995-05-01T23:59:59.000Z

394

Parcperdue Geopressure -- Geothermal Project: Appendix E  

DOE Green Energy (OSTI)

The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

Sweezy, L.R.

1981-10-05T23:59:59.000Z

395

Raft River II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Raft River II Geothermal Project Raft River II Geothermal Project Project Location Information Coordinates 42.605555555556°, -113.24055555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.605555555556,"lon":-113.24055555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Darrough Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Geothermal Project Geothermal Project Project Location Information Coordinates 38.821944444444°, -117.18305555556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.821944444444,"lon":-117.18305555556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

New York Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

New York Canyon Geothermal Project New York Canyon Geothermal Project Project Location Information Coordinates 40.056111111111°, -118.01083333333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.056111111111,"lon":-118.01083333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Hot Springs Point Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Hot Springs Point Geothermal Project Hot Springs Point Geothermal Project Project Location Information Coordinates 39.493055555556°, -117.06666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.493055555556,"lon":-117.06666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Klamath County YMCA geothermal heating project environmental assessment  

DOE Green Energy (OSTI)

The YMCA Geothermal Heating project proposes to obtain approximately 57% of the total facility energy usage through direct application of the Klamath Falls KGRA. This will be accomplished through the design and construction of a retrofit and injection system for the utilization of an existing 110/sup 0/F geothermal energy source at the project site. The existing 2016 foot well will be outfitted with a turbine pump with variable speed drive. The well head will be enclosed by a 10' x 10' building. The geothermal fluid, pumped at a peak rate of 350 gpm will be transported to the YMCA Facility through 5'' diameter schedule 40 black iron pipe fitted with victaulic couplings for expansion. All underground supply pipes will be equipped with magnesium anodes for galvaic protection and will be insulted with 1'' thick calcium silicate insulation, with two layers of 45 number roofing felt applied with asphaltic compound. All supply lines within the building will be insulated with 1'' fiberglass insulation material with a cloth jacket. The fluids will pass through a heating coil and heat exchanger system to provide heat for the 30,000 square foot YMCA facility as well as for the 90,000 gallon swimming pool. The spent geothermal fluids will then be conveyed through a 4'' black iron return pipe to be returned to an acceptable aquifer through the 1500 foot injection well.

Shreve, J.H. (ed.)

1979-07-10T23:59:59.000Z

400

New Mexico State University Campus geothermal demonstration project  

DOE Green Energy (OSTI)

This report presents the design, construction highlights, and performance of the New Mexico State University Campus Geothermal Demonstration Project at Las Cruces, New Mexico. Construction started in July 1981, first system use was January 1982, and the system was dedicated on April 21, 1982. Included herein are summary observations after two years of use. The geothermal hot water from New Mexico State University wells is used to heat potable water, which in turn provides 83 percent of the domestic hot water on the New Mexico State University campus, as well as space heat to two buildings, and for two heated swimming pools. The original system is providing service to 30 total buildings, with two additional buildings (150,000 square feet) in process of geothermal conversion.) The system overall performance has been excellent, except for geothermal well pump problems. In terms of operating efficiency, the system has exceeded the design parameters. In spite of abnormally high costs for well and pump repairs, the system has shown a positive cost avoidance of more than $118,000 for the first year of operation. For the first two full years of operation, the system has produced a net positive cost avoidance of more than $200,000. Payback on the total investment of $1,670,000 is projected to be 6 to 10 years, depending on the future prices of natural gas and electricity.

Cuniff, R.A.; Fisher, K.P.; Chintawongvanich, P.

1984-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Exploration and Development of Geothermal Power in California | Open Energy  

Open Energy Info (EERE)

Exploration and Development of Geothermal Power in California Exploration and Development of Geothermal Power in California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Exploration and Development of Geothermal Power in California Abstract From 1955 to 1962, approximately 40 wells were drilled in 15 California thermal areas for the purpose of exploring and developing natural steam to utilize for electric power generation. Twenty-four of the wells were drilled in the three areas which at present seem to have the greatest potential for the production of natural steam: The Geysers, Sonoma County; Casa Diablo, Mono County; and the Salton Sea area, Imperial County.Since June 1960, steam from The Geysers thermal area, produced at a rate of approximately 250,000 Ib/hr, has been utilized to operate a 12,500 kw

402

National Conference of State Legislators Geothermal Project. Final report, February 1978-September 1982  

DOE Green Energy (OSTI)

The activities of the National Conference of State Legislatures Geothermal Project in stimulating and assessing state legislative action to encourage the efficient development of geothermal resources, including the use of ground water heat pumps, are reviewed by state. (MHR)

Not Available

1982-01-01T23:59:59.000Z

403

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network (OSTI)

costs. #12;15 Pre-feasibility investigation of water and energy options utilising geothermal energy program to investigate and encourage the use of geothermal and waste heat resources for heat-driven pre with an economic, technical and market analysis of various scales of technology application where geothermal energy

Scheel, David

404

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

405

Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project  

DOE Green Energy (OSTI)

Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

None

1989-06-01T23:59:59.000Z

406

Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project  

SciTech Connect

Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

1989-06-01T23:59:59.000Z

407

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

408

Heber geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The binary power plant is to be a 45 MW net electrical facility deriving energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) Heber reservoir in Southern California. The optimized baseline design established for the power plant is described, and the design and optimization work that formed the basis for the baseline design is documented. The work accomplished during Phase II, Preliminary Design is also recorded, and a base provided from which detailed plant design could be continued. Related project activities in the areas of licensing, environmental, cost, and schedule are also described. The approach used to establish the Phase II optimized baseline design was to (1) review the EPRI Phase I conceptual design and feasibility studies; (2) identify current design criteria and state-of-the-art technology; and (3) develop a preliminary design optimized to the Heber site based on utiliity standards.

Not Available

1979-06-01T23:59:59.000Z

409

Geothermal Ground-Loop Preinstallation Project at Walden Pond  

Science Conference Proceedings (OSTI)

Geothermal ground-source heat pumps can help utilities increase electricity sales while reducing peak demands, but high ground-loop installation costs are a barrier to widespread acceptance. This project, conducted with Public Service Company of Indiana, demonstrated that mass installation of ground loops in a residential subdivision prior to home construction can substantially reduce installed cost for both horizontal and vertical loop configurations.

1990-09-05T23:59:59.000Z

410

EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV Summary...

411

Geothermal policy project. Quarterly report, September 1, 1980-November 30, 1980  

DOE Green Energy (OSTI)

Efforts continued to carry forward policy development in existing project states. Follow-up contacts were made with most project states, and state visits and meetings occurred in eight project states. Several state-specific documents and one background document, geothermal Policies in Selected States, were prepared during this reporting period. In Yakima, Washington, the project cosponsored a geothermal symposium with the Washington State Energy Office, in addition to attending several other geothermal meetings and conferences.

Not Available

1981-01-01T23:59:59.000Z

412

Environmental assessment for geothermal loan guarantee: South Brawley geothermal exploration project  

DOE Green Energy (OSTI)

The foregoing analysis indicates that the proposed geothermal field experiment could result in several adverse environmental effects. Such effects would lie primarily in the areas of air quality, noise, aesthetics, land use, and water consumption. However, for the most part, mitigating measures have been, or easily could be, included in project plans to reduce these adverse effects to insignificant levels. Those aspects of the project which are not completely amenable to mitigation by any reasonable means include air quality, noise, aesthetics, land use and water use.

Not Available

1979-11-01T23:59:59.000Z

413

Heber Geothermal Demonstration Power Plant. Interim report No. 1, August 1977--January 1978  

DOE Green Energy (OSTI)

The work performed from August 1977 through January 1978 pertinent to the design of the Heber Geothermal Demonstration Power Plant is summarized. The report discusses review of earlier baseline geothermal studies performed by Holt/Procon and the design optimization performed by Fluor Engineers and Constructors, Inc., and The Ben Holt Company. The Heber project objective is to design, construct and operate a power plant to produce a net power output of 45 MW/sub e/, deriving energy from a low-salinity, moderate temperature (360/sup 0/F, 182/sup 0/C) brine heat source available from the Heber geothermal reservoir. A binary cycle conversion system employs a light aliphatic hydrocarbon mixture to derive heat from the brine supply, throuh heat exchangers, and drive the turbine-generator to produce power. Chevron Resources Company develops the geothermal resource for sale to San Diego Gas and Electric Company. Power output will be distributed to California's Imperial Valley by the Imperial Valley Irrigation District.

Unitt, S.G.

1978-08-01T23:59:59.000Z

414

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

DOE Green Energy (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

415

Exergetic Performance Investigation of Medium-Low Enthalpy Geothermal Power Generation  

Science Conference Proceedings (OSTI)

The renewable energy sources are becoming attractive solutions for clean and sustainable energy needs. Geothermal energy is increasingly contributing to the power supply worldwide. In evaluating the efficiency of energy conservation systems, the most ... Keywords: geothermal energy, power generation, binary cycle, exergetic efficiency, exergy analysis, geothermal power plant

Junkui Cui; Jun Zhao; Chuanshan Dai; Bin Yang

2009-10-01T23:59:59.000Z

416

Economic Study of Geothermal Steam Production and Power Generation  

SciTech Connect

This report presents the results of the study to determine the required selling price of geothermal flash steam in order for Phillips Petroleum Company to obtain a rate of return on investment of 10, 15 or 20% on its discovery in Nevada. The economic evaluations are based on an order-of-magnitude type of estimate of capital costs for the flash steam production, steam gathering and brine reinjection system to supply steam to a 55 MW (Gross) geothermal power generating plant, using mixed pressure (double flash steam) and turbine design. Geothermal well costs, brine quality and well productivity data were provided by Phillips Petroleum Company and are based on the discovery wells in Nevada. Power plant costs are based on current technology and available hardware, under construction at the present time. Costs have been escalated to 1977.

1977-02-01T23:59:59.000Z

417

Geothermal Financing Workbook  

DOE Green Energy (OSTI)

This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

Battocletti, E.C.

1998-02-01T23:59:59.000Z

418

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

419

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network (OSTI)

the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

Howard, J.H.

2011-01-01T23:59:59.000Z

420

Measurement and control techniques in geothermal power plants  

DOE Green Energy (OSTI)

This information provided the background and source material used in preparing the chapter of the Geothermal Source Book on instrumentation, measurement, and control techniques. Here more complete and detailed information is presented than could be included in the source book chapter and is being published for reference. Included are detailed examples of instrumentation and control techniques currently being used in geothermal power plants. In addition, the basic guidelines and unique characteristics of instrumentation and control in geothermal systems, are presented. The instrumentation and control philosophy and the hardware involved in geothermal electric plants and their supply and injection systems are addressed. The intent is to address the unique characteristics of geothermal electric instrumentation and control (I and C) systems. Standard I and C practice is available in the general literature. Sources of information for standard I and C practice are listed in the Appendix. The information presents the philosophy of I and C system design; the development of the system, from power grid considerations through subsystem operation to specific system details; and component selection and operating considerations.

Whitbeck, J.F.; Dart, R.H.; Miller, J.D.; Brewer, D.R.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content