Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

2

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

3

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

4

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

5

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

6

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

7

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama…

2007-01-01T23:59:59.000Z

8

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

9

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

10

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

11

Purchase and Installation of a Geothermal Power Plant to Generate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation....

12

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

13

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network [OSTI]

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed...

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

14

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

15

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

16

Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources  

Broader source: Energy.gov [DOE]

Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

17

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

18

Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

19

Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya  

Science Journals Connector (OSTI)

Geothermal energy and the other renewable energy sources are becoming attractive solutions for clean and sustainable energy needs of Turkey. Geothermal energy is being used for electricity production and it has direct usage in Turkey, which is among the first five countries in the world for the geothermal direct usage applications. Although, Turkey is the second country to have the highest geothermal energy potential in Europe, the electricity production from geothermal energy is quite low. The main purpose of this study is to investigate the status of the geothermal energy for the electricity generation in Turkey. Currently, there is one geothermal power plant with an installed capacity of 20.4 MWe already operating in the Denizli–Kizildere geothermal field and another is under the construction in the Aydin–Germencik field. This study examines the potential and utilization of the existing geothermal energy resources in Kutahya–Simav region. The temperature of the geothermal fluid in the Simav–Eynal field is too high for the district heating system. Therefore, the possibility of electrical energy generation by a binary-cycle has been researched and the preliminary feasibility studies have been conducted in the field. For the environmental reasons, the working fluid used in this binary power plant has been chosen as HCFC-124. It has been concluded that the Kutahya–Simav geothermal power plant has the potential to produce an installed capacity of 2.9 MWe energy, and a minimum of 17,020 MWh/year electrical energy can be produced from this plant. As a conclusion, the pre-feasibility study indicates that the project is economically feasible and applicable.

Ramazan Kose

2007-01-01T23:59:59.000Z

20

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

22

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

SciTech Connect (OSTI)

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

23

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

SciTech Connect (OSTI)

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

24

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

25

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

26

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

27

NREL: Financing Geothermal Power Projects - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

28

Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

29

Assessment of geothermal assisted coal-fired power generation using an Australian case study  

Science Journals Connector (OSTI)

Abstract A systematic techno-economic analysis of geothermal assisted power generation (GAPG) was performed for a 500 MW unit of a typical coal-fired power plant located at the upper Hunter region of New South Wales, Australia. Specifically, the GAPG viability and performance was examined by investigating the impacts of reservoir temperature, resource distance, hybridisation scheme, and economic conditions including carbon tax and Renewable Energy Certificates (REC). The process simulation package, Aspen HYSYS, was employed for all simulation purposes. Thermodynamically, GAPG system was found to increase the power output of the plant by up to 19% under the booster mode whilst in fuel saving mode the coal consumption reduced by up to 0.3 million tonne/year decreasing the Green House Gas (GHG) emission by up to 15% (0.6 million tonne/year). Economic analyses showed that for a typical HDR resource with a reservoir temperature about 150 °C located within a 5 km radius from the power plant, the GAPG system becomes economically competitive to the stand-alone fossil fuel based plant when minimum carbon tax and \\{RECs\\} rates of 40 $/tonne and 60 cents/kW h are introduced. The figure of merit analyses comparing GAPG system with both stand-alone fossil fuel and stand-alone geothermal plants showed that an economically feasible GAPG system requires the use of HDR resources located no further than 20 km from the plants. Reference maps were also developed to predict suitable conditions for which the hybrid plant outperforms the stand-alone plants.

Cheng Zhou; Elham Doroodchi; Behdad Moghtaderi

2014-01-01T23:59:59.000Z

30

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

31

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation  

SciTech Connect (OSTI)

Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

2014-12-30T23:59:59.000Z

32

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

33

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

34

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

35

An in-depth assessment of hybrid solar–geothermal power generation  

Science Journals Connector (OSTI)

Abstract A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solar–geothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120 °C and a fixed brine flow rate of 50 kg/s revealed that under Australian climatic conditions (with a typical ambient temperature of 31 °C in summer) a hybrid plant would outperform stand-alone geothermal and solar power plants if at least 68% of its energy input is met by solar energy (i.e. a solar energy fraction of ?68%). This figure drops to about 19% for reservoir temperatures greater than 170 °C. Case studies also showed that, for a mid-range reservoir temperature of 150 °C, the cost of electricity production can be reduced by 20% when a hybrid plant is used instead of the stand-alone Enhanced Geothermal System (EGS).

Cheng Zhou; Elham Doroodchi; Behdad Moghtaderi

2013-01-01T23:59:59.000Z

36

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

37

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

38

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Michael Hillesheim and Gail Mosey Produced under direction of the U.S. Environmental Protection Agency (EPA) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement IAG-09-1751 and Task No. WFD4.1001. Technical Report NREL/TP-6A10-60251 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy

39

Andean Geothermal Power | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Andean Geothermal Power Place: Texas Sector: Geothermal energy Product: Texas-based geothermal project developer company. References: Andean...

40

DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle® mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

42

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

43

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect (OSTI)

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

44

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

45

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

46

DOE and Partners Demonstrate Mobile Geothermal Power System at...  

Broader source: Energy.gov (indexed) [DOE]

Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo...

47

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

48

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

49

Ahuachapan Geothermal Power Plant, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

50

Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas  

Broader source: Energy.gov [DOE]

Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

51

North Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Power Plants in North Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Dakota No areas listed....

52

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Operational Geothermal Power Plants in Wisconsin No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wisconsin No areas listed....

53

Report on Hawaii geothermal power plant project  

SciTech Connect (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

54

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

55

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

56

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

57

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

for Competitive Geothermal Power Generation, Energy & Fuels,of Power Generation Prospects from Enhanced Geothermal

Pruess, K.

2010-01-01T23:59:59.000Z

58

A Geothermic Generating Plant  

Science Journals Connector (OSTI)

... energy is generated in the turbo-alternators at 25,000 volts and transmitted to the substations along the Viareggio–Rome railway, where it is converted to 3,000 volts direct ...

1939-10-28T23:59:59.000Z

59

World Geothermal Power Generation in the Period 2001-2005 | Open...  

Open Energy Info (EERE)

Costa Rica, France (Guadeloupe), Iceland, Indonesia, Italy1, Kenya, Mexico, Nicaragua, Russia, and the USA have increased the capacity of their power plant installations by more...

60

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado Subcontract Report NREL/SR-6A20-49391 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado NREL Technical Monitor: Paul Schwabe Prepared under Subcontract No. LGJ-0-40242-01 Subcontract Report

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nevada Geothermal Area | Department of Energy  

Energy Savers [EERE]

Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately...

62

Water Use in the Development and Operations of Geothermal Power Plants  

Broader source: Energy.gov [DOE]

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

63

Water Use in the Development and Operation of Geothermal Power Plants  

Broader source: Energy.gov [DOE]

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

64

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

65

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

66

ENVIRONMENTAL IMPACTS OF GEOTHERMAL ENERGY GENERATION AND UTILIZATION Luis D. Berrizbeitia  

E-Print Network [OSTI]

such as solar power, wind power, and geothermal power. Geothermal energy is a source of electricity generation, with a current capacity of 3,093 megawatts (MW). The largest geothermal development in the world is located at the Geysers north of San Francisco, in Sonoma County, California

Polly, David

67

Improving Vortex Generators to Enhance the Performance of Air-Cooled Condensers in a Geothermal Power Plant  

SciTech Connect (OSTI)

This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfer visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.

Manohar S. Sohal

2005-09-01T23:59:59.000Z

68

Geothermal Power of America | Open Energy Information  

Open Energy Info (EERE)

Power of America Power of America Jump to: navigation, search Name Geothermal Power of America Place Los Angeles, California Sector Geothermal energy Product A Nevada-based company focusing on geothermal project development and operation. References Geothermal Power of America[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geothermal Power of America is a company located in Los Angeles, California . References ↑ "Geothermal Power of America" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Power_of_America&oldid=345810" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

69

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network [OSTI]

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the… (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

70

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

71

Rotordynamics in alternative energy power generation.  

E-Print Network [OSTI]

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal,… (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

72

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy Nevada's Beowawe Geothermal Plant Begins Generating Clean Energy April 20, 2011 - 1:45pm Addthis U.S. Energy...

73

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems  

Broader source: Energy.gov [DOE]

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

74

Uenotai Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867, 140.60390925355 Loading map... "minzoom":false,"mapp...

75

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s): Jon Wellinghoff Steve Munson Date: January 30, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Julie Osborn Existing data indicates that extensive geothermal resources of power production grade exist throughout the western United States. These resources may be capable of producing clean, reliable electric power in sufficient quantities to act as a hedge against the price volatility of gas-fired electric generation. The challenge facing energy policy makers is developing effective strategies and appropriate incentives to assist developers in moving competitive quantities of geothermal electric capacity into the western power marketplace. Issues related to achieving this goal

76

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers [EERE]

Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

77

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers [EERE]

Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle...

78

Water Use in the Development and Operation of Geothermal Power...  

Energy Savers [EERE]

Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water...

79

Dora-3 Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Dora-3 Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Coordinates 37.875046144284, 28.102602480794 Loading...

80

RAPID/Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

for compensation. Geothermal Power Plant in Federal Bureau of Land Management Federal Energy Regulatory Commission Geothermal Power Plant in New Mexico None NA Every person...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

82

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

83

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

84

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

85

Geothermal slim holes for small off-grid power projects  

Science Journals Connector (OSTI)

Economically viable, small (100 kWe to 1000 kWe), geothermal power generation units using slim holes are available for the production of electrical power in remote areas and for rural electrification in developing countries. Based on borehole data from geothermal fields in the United States and Japan, slim holes have been proven as adequate fuel sources for small-scale geothermal power plants (SSGPPs) and can deliver enough geothermal fluid to the wellhead in a baseload mode to be of practical interest for off-grid electrification projects. The electrical generating capacity of geothermal fluids which can be produced from typical slim holes (150-mm diameter or less), both by conventional, self-discharge, flash-steam methods for hotter geothermal reservoirs, and by binary-cycle technology with downhole pumps for low- to moderate-temperature reservoirs are estimated using a simplified theoretical approach. Depending mainly on reservoir temperature, the numerical simulations indicate that electrical capacities from a few hundred kilowatts to over one megawatt per slim hole are possible. In addition to the advantage of price per kilowatt-hour in off-grid applications, \\{SSGPPs\\} fueled by slim holes are far more environmentally benign than fossil-burning power plants, which is crucial in view of current worldwide climate-change concerns and burgeoning electricity demand in the less-developed and developing countries.

Jim Combs; Sabodh K Garg; John W Pritchett

1997-01-01T23:59:59.000Z

86

NEPA Process for Geothermal Power Plants in the Deschutes National...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NEPA Process for Geothermal Power Plants in the Deschutes National Forest EIS at Newberry...

87

Geothermal Power - the Future is Now | Department of Energy  

Office of Environmental Management (EM)

States Department of Energy is breaking the sound barrier, delivering next generation geothermal energy today. At the newly reopened Geysers Geothermal Visitor Center, located...

88

Geothermal Power Plants — Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

89

Evaluation of the Geothermal Public Power Utility Workshops in California  

SciTech Connect (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

90

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

91

Potential of geothermal energy in China .  

E-Print Network [OSTI]

??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in… (more)

Sung, Peter On

2010-01-01T23:59:59.000Z

92

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

93

Exploration and Development of Geothermal Power in California | Open Energy  

Open Energy Info (EERE)

Exploration and Development of Geothermal Power in California Exploration and Development of Geothermal Power in California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Exploration and Development of Geothermal Power in California Abstract From 1955 to 1962, approximately 40 wells were drilled in 15 California thermal areas for the purpose of exploring and developing natural steam to utilize for electric power generation. Twenty-four of the wells were drilled in the three areas which at present seem to have the greatest potential for the production of natural steam: The Geysers, Sonoma County; Casa Diablo, Mono County; and the Salton Sea area, Imperial County.Since June 1960, steam from The Geysers thermal area, produced at a rate of approximately 250,000 Ib/hr, has been utilized to operate a 12,500 kw

94

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

95

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

96

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? Desert Peak 2 is the nation's first commercial enhanced geothermal system to supply electricity to the grid. Based in Churchill County, Nevada, the project has increased power

97

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

98

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

99

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

100

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

102

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

103

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

104

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

105

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

106

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

107

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

108

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

109

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

110

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

111

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

112

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

113

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

114

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

115

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

116

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

117

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

118

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

119

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

120

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Miles Below the Earth: The Next-Generation of Geothermal Energy |  

Broader source: Energy.gov (indexed) [DOE]

Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy February 7, 2011 - 12:34pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What will the project do? Enhanced geothermal systems (EGS) essentially create man-made reservoirs that mimic naturally occurring pockets of steam- with the potential for use as a reliable, 24/7 source of renewable energy. For more than a century, traditional geothermal power plants have been generating electricity by extracting pockets of steam found miles below the Earth's surface. Until recently though, those plants could only be constructed in locations where pockets of steam had formed naturally. Enhanced geothermal systems (EGS) have been crafted to solve that problem

122

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

public acceptance of geothermal energy and, for that matter,Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systems

Apps, J.A.

2011-01-01T23:59:59.000Z

123

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systemstubes used. in geothermal energy plants Feasibility study of

Apps, J.A.

2011-01-01T23:59:59.000Z

124

Annual US Geothermal Power Production and Development Report | Open Energy  

Open Energy Info (EERE)

US Geothermal Power Production and Development Report US Geothermal Power Production and Development Report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Annual US Geothermal Power Production and Development Report Details Activities (0) Areas (0) Regions (0) Abstract: To increase the accuracy and value of information presented in its annual US Geothermal Power Production and Development Report, the Geothermal Energy Association (GEA) developed a reporting system, known as the Geothermal Reporting Terms and Definitions, in 2010. The Geothermal Reporting Terms and Definitions serve as a guideline to project developers in reporting geothermal project development information to the GEA. A basic understanding of the Geothermal Reporting Terms and Definitions will also aid the reader in fully understanding the information presented in this

125

Cascading Closed Loop Cycle Power Generation  

E-Print Network [OSTI]

marketed as WOWGen®. The WOW Energies patents represent the production of efficient power from low, medium and high temperature heat generated from the combustion of fuels; heat from renewable energy sources such as solar and geothermal heat; or waste heat...

Romero, M.

2008-01-01T23:59:59.000Z

126

HL Power Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » HL Power Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home HL Power Geothermal Facility General Information Name HL Power Geothermal Facility Facility HL Power Sector Geothermal energy Location Information Location Wendel, California Coordinates 40.3482346°, -120.2335461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3482346,"lon":-120.2335461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Empire Geothermal Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Power LLC Jump to: navigation, search Name Empire Geothermal Power LLC Place Reno, Nevada Zip 89509 Sector Geothermal energy Product Empire owns and operates a 3.5MW geothermal project in Nevada. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

128

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

129

Standard Guide for Specifying Thermal Performance of Geothermal Power Systems  

E-Print Network [OSTI]

1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

130

Geothermal Power Plants — Meeting Water Quality and Conservation Standards  

Broader source: Energy.gov [DOE]

U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

131

Water Use in the Development and Operation of Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

...48 Appendix C - Summary of Water Consumption for Electricity Generation Technologies ...51 v FIGURES 1 Example GIS Map: Geothermal Water...

132

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

Til, C. J. Van

2012-01-01T23:59:59.000Z

133

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

134

International Data Exchange for Geothermal Energy Power Production  

Science Journals Connector (OSTI)

During the past five years great strides have been made in the development of geothermal energy resources for electrical power production. However, ... seen an enormous growth in publications dealing with geothermal

Sidney L. Phillips

1979-01-01T23:59:59.000Z

135

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

FLUID CONTROL: PROJECTS FY 1977 THE DEFINITION OF ENGINEERINGengineering problems resulting from the use of geothermal fluidsengineering design caused by chemical, thermodynamic, and transport properties of geothermal fluids;

Apps, J.A.

2011-01-01T23:59:59.000Z

136

NREL: Financing Geothermal Power Projects - Overview of Financing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Financing Geothermal Power Projects Overview of Financing Geothermal Power Projects Financing geothermal power projects involves specific processes, costs, and risks. There are also several advantages and challenges to developing and financing geothermal power projects. The financing strategies presented apply to geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). In 2008, the U.S. Geological Survey completed an assessment of moderate- and high-temperature geothermal resources in 13 states. These data help lower project costs and risks for project developers by shortening the resource identification phase of project development; yet geothermal resource development still has risk. Financing Processes, Costs, and Risks

137

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

138

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

139

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

140

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

142

California Geothermal Power Plant to Help Meet High Lithium Demand  

Broader source: Energy.gov [DOE]

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

143

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab  

Open Energy Info (EERE)

Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Air-Cooled Condensers in Next-Generation Conversion Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Air-Cooled Condensers in Next-Generation Conversion Systems Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Air-Cooling Project Description As the geothermal industry moves to use geothermal resources that are more expensive to develop, there will be increased incentive to use more efficient power plants. Because of increasing demand on finite supplies of water, this next generation of more efficient plants will likely need to reject heat sensibly to the ambient (air-cooling). This will be especially true in western states having higher grade Enhanced Geothermal Systems (EGS) resources, as well as most hydrothermal resources. If one had a choice, an evaporative heat rejection system would be selected because it would provide both cost and performance advantages. The evaporative system, however, consumes a significant amount of water during heat rejection that would require makeup. Though they use no water, air-cooling systems have higher capital costs, reduced power output (heat is rejected at a higher temperature), lower power sales due to higher parasitics (fan power), and greater variability in power output (because of large variation in the dry-bulb temperature).

144

The use of geothermal energy: A reliable, cheap, and environmentally friendly method for generating electricity and heat  

Science Journals Connector (OSTI)

The economical and environmental aspects of generating electricity at traditional thermal power stations and at geothermal power stations are considered. The dynamics of prices for fossil fuel and results from...

O. A. Povarov; O. M. Dubnov; A. I. Nikol’skii

2007-08-01T23:59:59.000Z

145

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

146

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

147

Property:PotentialGeothermalHydrothermalGeneration | Open Energy  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalGeneration PotentialGeothermalHydrothermalGeneration Jump to: navigation, search Property Name PotentialGeothermalHydrothermalGeneration Property Type Quantity Description The estimated potential energy generation from Geothermal Hydrothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialGeothermalHydrothermalGeneration"

148

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power  

Broader source: Energy.gov [DOE]

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado.

149

Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Geothermal Energy: Clean Power from the Earth's Heat Abstract Societies in the 21st century require enormous...

150

North Brawley Geothermal Power Plant Project Overview | Open...  

Open Energy Info (EERE)

Project Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Geothermal Power Plant Project Overview Author PCL Construction...

151

New Ways to Produce Geothermal Power at Lower Temperatures |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15, 2013 - 2:13pm Addthis Note: This article appeared in the April 2013 issue of Power Engineering magazine. By Tim Reinhardt, physical scientist, DOE's Geothermal Technologies...

152

Construction Underway on First Geothermal Power Plant in New Mexico  

Broader source: Energy.gov [DOE]

New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

153

Suginoi Hotel Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234, 131.47605371632 Loading map... "minzoom":false,"mapp...

154

Design and simulation of a geothermal–solar combined chimney power plant  

Science Journals Connector (OSTI)

Abstract The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermal–solar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermal–solar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPP’s power capacity.

Fei Cao; Huashan Li; Qiuming Ma; Liang Zhao

2014-01-01T23:59:59.000Z

155

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

158

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power...

159

Binary Cycle Geothermal Demonstration Power Plant New Developments  

SciTech Connect (OSTI)

San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

Lacy, Robert G.; Jacobson, William O.

1980-12-01T23:59:59.000Z

160

Geothermal Energy--Clean Power From the Earth's Heat  

E-Print Network [OSTI]

G. Groat Director, U.S. Geological Survey #12;iv Conversion Factors Geothermal Energy--Clean Power From the Earth's Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey #12;Geothermal Energy--Clean Power From the Earth's Heat By Wendell A

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Financing Geothermal Power Projects - Policies and Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policies and Regulations Affecting Geothermal Power Project Financing Policies and Regulations Affecting Geothermal Power Project Financing Federal and state policies, including leasing and permitting, federal financial incentives, renewable portfolio standards, and greenhouse gas emission reduction regulations, can affect geothermal power project development financing processes and timelines. The related issues that should be considered during the project development cycle regarding these policies are summarized in the following table and described in more detail below. Note that this table is not meant to guide developers through the entire policy landscape, and should not be assumed to include all related issues in geothermal power development. Roles of Policies and Regulations in the Geothermal Power Project Development Process*

162

NREL: Financing Geothermal Power Projects - Financing Options for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financing Options for Geothermal Power Projects Financing Options for Geothermal Power Projects Different financing options are used at each stage in geothermal power project development, which include the exploration and drilling stage and construction and operation stage. The financing option in each stage earns a return proportionate with the risk accepted at that stage in the project's development. For each financing option, both financial and non-financial elements should be considered. Financing options and considerations for a typical geothermal power project are shown in the table below. Your project financing options and considerations may be different. Financing Options and Considerations for a Typical Geothermal Power Project* Financial Considerations Financing Stage Exploration and Drilling Construction and Operation

163

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

164

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

165

Performance of Deep Geothermal Energy Systems .  

E-Print Network [OSTI]

??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation… (more)

Manikonda, Nikhil

2012-01-01T23:59:59.000Z

166

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power  

Open Energy Info (EERE)

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Geopressured Resources Project Description Within the Sweet Lake Oil and Gas Field, the existence of a geopressured-geothermal system was confirmed in the 1980s as part of the DOE's Gulf Coast Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and job creation it would entail, provide the opportunity to develop thousands of megawatts of geopressured-geothermal power in the South Eastern United States.

167

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

168

Salton Sea Power Plant Recognized as Most Innovative Geothermal Project  

Broader source: Energy.gov [DOE]

The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

169

How a Geothermal Power Plant Works (Simple) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from...

170

Enhanced Geothermal in Nevada: Extracting Heat From the Earth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable...

171

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

172

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

173

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

174

California: Next-Generation Geothermal Demonstration Launched...  

Office of Environmental Management (EM)

Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine...

175

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

176

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program < Back Eligibility Agricultural Commercial Industrial Residential Maximum Rebate 1,000/ton Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount $800 - $1,000/ton Provider Oklahoma Municipal Power Authority Program funds currently exhausted, additional funds have been requested. Visit the program website for the most up to date information on fund availability and to register for the waiting list for this program. The Oklahoma Municipal Power Authority (OMPA) and the Oklahoma Department of Commerce currently offer the Oklahoma Comfort Program for geothermal

177

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

178

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

179

Berlín Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Sector Geothermal energy Location Information Location Montanita Joy, Usulutan, El Salvador Coordinates 13.525, -88.5089 Loading map... "minzoom":false,"mappingservice":"go...

180

Casa Diablo Geothermal Area | Department of Energy  

Energy Savers [EERE]

Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

182

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

183

Salton Sea Power Plant Recognized as Most Innovative Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis The first power plant to be built in the Salton Sea area in 20 years was recognized in December by...

184

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

SciTech Connect (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

185

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

SciTech Connect (OSTI)

A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

Hays, Lance G

2014-07-07T23:59:59.000Z

186

Fostering a New Generation of Geothermal Workers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers October 5, 2010 - 4:31pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Editor's Note: The Registration Deadline has been extended to November 12th. If there's one thing that absolutely must be in place to build a robust clean energy economy, it's a robust and well-trained clean energy workforce. Think about it - we're doing something here that we've never really done before, at least not to this scale. It's one thing to install solar panels on top of large building complexes and in huge fields - but how about every home in America? And if we're really going to use electric vehicles to the scale that David Sandalow talked about yesterday,

187

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

188

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

2013-11-15T23:59:59.000Z

189

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

190

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

191

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

192

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

193

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

194

GRC Workshop: The Power of the National Geothermal Data System | Department  

Broader source: Energy.gov (indexed) [DOE]

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

195

Policy Makers' Guidebook for Geothermal Electricity Generation | Open  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Electricity Generation Policy Makers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Geothermal: Sponsored by OSTI -- Project Title: Small Scale Electrical...  

Office of Scientific and Technical Information (OSTI)

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

197

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

198

Stanford Geothermal Workshop  

Energy Savers [EERE]

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

199

Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Geotherm Power Fonds GmbH Co KG Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name Green Energy Geotherm Power Fonds GmbH & Co. KG Place Hannover, Lower Saxony, Germany Zip 30559 Sector Geothermal energy Product German-based fund that will invest in geothermal projects to be developed by Green Energy Group. References Green Energy Geotherm Power Fonds GmbH & Co. KG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Geotherm Power Fonds GmbH & Co. KG is a company located in Hannover, Lower Saxony, Germany . References ↑ "Green Energy Geotherm Power Fonds GmbH & Co. KG" Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Geotherm_Power_Fonds_GmbH_Co_KG&oldid=346014"

200

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

202

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

203

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

204

The Power and Potential of Geothermal Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy October 3, 2011 - 7:03pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs As Secretary Chu noted this weekend, America finds itself in a fierce global competition for the clean energy jobs and industries of the future - with countries like China, Germany and others investing tens of billions of dollars to expand their domestic renewable energy industry and capture the lead in a rapidly growing field. In this context, the Department of Energy's loan programs have played a crucially important role in helping the United States compete, by providing affordable financing to innovative projects that might not otherwise happen but that hold the potential to seed entire new industries for U.S.

205

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

206

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

U. S. Conunercial Nuclear Power Plants", Report WASH-1400 (Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

207

EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...  

Energy Savers [EERE]

EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV...

208

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue...

209

Geothermal Brine Brings Low-Cost Power with Big Potential | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm,...

210

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

211

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

212

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

213

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

SciTech Connect (OSTI)

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

John Sullivan

2013-06-04T23:59:59.000Z

214

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

215

A consortium of three brings real geothermal power for California's Imperial valley -- at last  

SciTech Connect (OSTI)

Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication of the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.

Wehlage, E.F.

1983-04-01T23:59:59.000Z

216

Cumulative energy, emissions, and water consumption for geothermal electric power production  

Science Journals Connector (OSTI)

A life cycle analysis has been conducted on geothermal electricity generation. The technologies covered in the study include flash binary enhanced geothermal systems (EGS) and coproduced gas and electricity plants. The life cycle performance metrics quantified in the study include materials water and energy use and greenhouse gas (GHG) emissions. The life cycle stages taken into account were the plant and fuel cycle stages the latter of which includes fuel production and fuel use (operational). The plant cycle includes the construction of the plant wells and above ground piping and the production of the materials that comprise those systems. With the exception of geothermal flash plants GHG emissions from the plant cycle are generally small and the only such emissions from geothermal plants. Some operational GHGs arise from flash plants and though substantial when compared to other geothermal power plants these are nonetheless considerably smaller than those emitted from fossil fuel fired plants. For operational geothermal emissions an emission rate (g/kW h) distribution function vs. cumulative capacity was developed using California plant data. Substantial GHG emissions arise from coproduced facilities and two other “renewable” power plants but these are almost totally due to the production and use of natural gas and biofuels. Nonetheless those GHGs are still much less than those from fossil fuel fired plants. Though significant amounts of water are consumed for plant and well construction especially for well field stimulation of EGS plants they are small in comparison to estimated water consumed during plant operation. This also applies to air cooled plants which nominally should consume no water during operation. Considering that geothermal operational water use data are scarce our estimates show the lowest water consumption for flash and coproduced plants and the highest for EGS though the latter must be considered provisional due to the absence of field data. The EGS estimate was based on binary plant data.

J. L. Sullivan; C. Clark; J. Han; C. Harto; M. Wang

2013-01-01T23:59:59.000Z

217

Quadrennial Technology Review's Alternative Generation Workshop...  

Broader source: Energy.gov (indexed) [DOE]

Workshop Slides Preliminary Slides for Alternative Generation Workshop including Carbon Capture and Sequestration, Nuclear Power, Wind Power, Water Power, Geothermal...

218

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

219

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

SciTech Connect (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

220

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal power production: impact assessments and environmental monitoring  

SciTech Connect (OSTI)

The role that baseline and postoperational environmental monitoring plays in assessing impacts of geothermal power production is emphasized. Based on experience in the Imperial Valley, where substantial geothermal resources exist, the important characteristics of monitoring programs involving subsidence, seismicity, and air and water quality are examined. The importance of environmental monitoring for situations where predictive models either do not exist (e.g., seismicity), or are still being developed (e.g., land subsidence) are discussed. In these cases the need for acquiring and analyzing data that can provide timely information on changes caused by geothermal operations are emphasized. Monitoring is also useful in verifying predictions of air quality changes - in particular, violations of ambient standards after control technologies are implemented. Water quality can be monitored with existing sampling programs where the potential for geothermal impacts is thought to be rather small. The significant issues in these environmental areas, the status of baseline data and predictive capability that currently exists, and the need for future monitoring and modeling programs to assess the impacts of geothermal development are summarized.

Layton, D.W.; Pimentel, K.D.

1980-01-01T23:59:59.000Z

222

Geothermal power in Italy: A social multi-criteria evaluation  

Science Journals Connector (OSTI)

Abstract Italy was the first country in the world to exploit geothermal resources for electricity production. In Europe it is still the first country in terms of installed capacity. Currently, the only region in Italy with geothermal power plants is Tuscany. This study focuses on Mt. Amiata, one of the two geothermal areas in Tuscany. In Mt. Amiata a strong opposition to the exploitation of geothermal resources is rising. The context is characterized by contested scientific results regarding crucial issues such as the impact of geothermal exploitation on human health and the conservation of water resources. A social multi-criteria evaluation is proposed to explore the different legitimate perspectives of the actors involved. Scenarios are distinguished in terms of their technology, plant site and installed capacity. Criteria reflect economic considerations, social aspects and environmental concerns. A Condorcet consistent aggregation algorithm is applied and results are analyzed using a sensitivity analysis. The alternative scenarios are evaluated by attaching different weights to the criteria reflecting divergent points of view.

Matteo Borzoni; Francesco Rizzi; Marco Frey

2014-01-01T23:59:59.000Z

223

Guidebook to Geothermal Power Finance | Open Energy Information  

Open Energy Info (EERE)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Jump to: navigation, search Tool Summary Name: Guidebook to Geothermal Power Finance Agency/Company /Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Finance, Implementation Resource Type: Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49391.pdf Country: United States Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

225

Grid-Connected Renewable Energy Generation Toolkit-Geothermal...  

Open Energy Info (EERE)

Geothermal AgencyCompany Organization: United States Agency for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website:...

226

Siemens Power Generation, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2005 Pittsburgh Coal Conference 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 © Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic Combustor for Fuel Flexible Turbines W. R. Laster Siemens Westinghouse Power Corporation Abstract Siemens has been working on a catalytic combustor for natural gas operation for several years using the Rich Catalytic Lean (RCL TM ) design. The design has been shown to produce low NOx emissions on natural gas operation. By operating the catalyst section fuel rich, the design shows considerable promise for robust operation over a wide range of fuel compositions including syngas. Under the sponsorship of the U. S. Department of Energy' s National Energy Technology Laboratory, Siemens Westinghouse is conducting a three year

227

Investigation of geothermal power plant performance using sequestered carbon dioxide as a heat transfer or working fluid.  

E-Print Network [OSTI]

??This study investigates the potential for combining carbon dioxide (CO2) sequestration with geothermal power production in areas with low geothermal resource temperatures. Using sequestered CO2… (more)

Janke, Brian D.

2011-01-01T23:59:59.000Z

228

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

229

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

230

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

231

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to “standardize the technology”.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130 °C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100–130 °C range, while the return temperature of the brine is assumed to be between 70 and 100 °C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

232

Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration  

Broader source: Energy.gov [DOE]

Extreme Temperature Energy Storage and Generation, for Cost and Risk Reduction in Geothermal Exploration presentation at the April 2013 peer review meeting held in Denver, Colorado.

233

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Broader source: Energy.gov (indexed) [DOE]

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

234

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

235

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains  with  geothermal  power.  Geothermal Resources gains  with  geothermal  power.  Geothermal Resources of Tables:  Table 1:  Geothermal Power Plants Operating at 

Brophy, P.

2012-01-01T23:59:59.000Z

236

DOE Awards $20 Million to Develop Geothermal Power Technologies  

Broader source: Energy.gov [DOE]

DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids.

237

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

238

Geothermal Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Geothermal Technologies Office accelerates the development and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce the risks and costs of bringing geothermal power online. As a key component of the U.S. clean energy mix, geothermal is a renewable energy that generates power around the clock.

239

More Power from Below  

Science Journals Connector (OSTI)

...MWe). Most new geothermal power plants brought...electric generation. Geothermal water at temperatures...used for bathing, heating, and greenhouses...Large-scale district heating projects have operated...are heated with geothermal water. Temperatures...

Joseph N. Moore; Stuart F. Simmons

2013-05-24T23:59:59.000Z

240

Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Interior Department to Open 190 Million Acres to Geothermal Power...  

Energy Savers [EERE]

to make more than 190 million acres of federal land in 12 western states available for geothermal energy development. DOI's Final Geothermal Programmatic Environmental Impact...

242

California Geothermal Power Plant to Help Meet High Lithium Demand...  

Energy Savers [EERE]

brines in California. Batteries from Brine California: Geothermal Plant to Help Meet High Lithium Demand Mineral Recovery Creates Revenue Stream for Geothermal Energy Development...

243

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential  

Office of Energy Efficiency and Renewable Energy (EERE)

Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

244

Power Generation and the Environment  

Science Journals Connector (OSTI)

...such as hydro and gas tur- bines. It...these increases in power costs will be a...aspects of power generation: the exploration...residual fuels for power plants, as well...concepts of oil-fired power generation plants for the...

Rolf Eliassen

1971-01-01T23:59:59.000Z

245

BPA Power Generation (pbl/main)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Power Generation Hydro Power Federal Columbia River Power System (FCRPS) Hydro Projects FCRPS...

246

Heber binary-cycle geothermal demonstration power plant: Startup and low-power testing: Special report  

SciTech Connect (OSTI)

In 1974 the geothermal industry recognized the need for binary cycle technology in the development of moderate temperature geothermal resources. The electric utilities further expressed a need to demonstrate the technology on a scale representative of commercial operation in order to resolve issues of performance cost and environmental acceptability, and to confirm the maturity of the technology. In response to the needs, EPRI conducted feasibility studies and a series of field experiments intended to culminate with the construction and demonstration of a nominal 50 MWe binary cycle power plant in cooperation with other interested organizations. The early work by EPRI, the Department of Energy and the San Diego Gas and Electric Company led to the formation of the present multi-sponsored project in late 1980. Construction of the demonstration plant was completed in June 1985 at the Heber geothermal field in the Imperial Valley of Southern California. The plant is rated at 46 MWe and converts the thermal energy from 360 F (182 C) geothermal fluid to electricity. Start-up of the plant was completed in December 1985 and the first extended run at low power was completed in June 1986. The results from this run and other tests associated with the plant and the geothermal production facilities during this period are contained in this report. During this period, the brine supply was lower than expected and the reinjection pressure higher than expected. The power cycle performed essentially as projected for the load levels at which the plant was tested.

Berning, J.; Bigger, J.E.; Fishbaugher, J.

1987-10-01T23:59:59.000Z

247

Greenhouse Gas emissions from California Geothermal Power Plants  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

248

Greenhouse Gas emissions from California Geothermal Power Plants  

SciTech Connect (OSTI)

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

2014-03-14T23:59:59.000Z

249

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network [OSTI]

and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

250

Geothermal Power and Interconnection: The Economics of Getting to Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power and Power and Interconnection: The Economics of Getting to Market David Hurlbut Technical Report NREL/TP-6A20-54192 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Geothermal Power and Interconnection: The Economics of Getting to Market David Hurlbut Prepared under Task No. WE11.0815 Technical Report NREL/TP-6A20-54192 April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

251

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

252

Heber Binary-Cycle Geothermal Demonstration Power Plant: Half-load testing, performance, and thermodynamics  

SciTech Connect (OSTI)

This report describes the project's activities during the period July 1986 through June 1987; and includes results of two annual outages and eight months of low power testing and operating. The Heber Binary-Cycle Geothermal Demonstration Power Plant is a 45 MWe electric power generating plant in the Imperial Valley of Southern California. The purpose of the Heber Binary Project is to demonstrate the capability of binary-cycle technology to economically utilize moderate-temperature (300/degree/F to 410/degree/F (150/degree/C to 210/degree/C)) geothermal resources for electric power production. The main objective of the project is to show performance, cost, and environmental acceptability of binary-cycle technology. Experience with demonstration plant and heat supply facilities is described. Details of equipment problems are included. Heat supply shortfall prevented the planned ascent to full power, but binary-cycle experience was favorable at power levels up to 50% of design. 68 refs., 80 figs., 34 tabs.

Berning, J.L.; Fishbaugher, J.R.

1988-08-01T23:59:59.000Z

253

Low-grade geothermal energy conversion by organic Rankine cycle turbine generator  

SciTech Connect (OSTI)

This paper reports results of a demonstration project which helped determine the feasibility of converting low-grade thermal energy in 49/sup 0/C water into electrical energy via an organic Rankine cycle 2500 watt (electrical) turbine-generator. The geothermal source which supplied the water is located in a rural Alaskan village. The primary reasons an organic Rankine cycle turbine-generator was investigated as a possible source of electric power in rural Alaska are: high cost of operating diesel-electric units and their poor long-term reliability when high-quality maintenance is unavailable; and the extremely high level of long-term reliability reportedly attained by commercially available organic Rankine cycle turbines. The important contribution made by this project is data provided on the thermal and electrical operating characteristics of an experimental organic Rankine cycle turbine-generator operating at a uniquely low vaporizer temperature.

Zarling, J.P.; Aspnes, J.D.

1983-08-01T23:59:59.000Z

254

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

255

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

256

Dynamic power systems for power generation  

SciTech Connect (OSTI)

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

257

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

258

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

259

How a Geothermal Power Plant Works (Simple) - Text Version |...  

Energy Savers [EERE]

Lines Deliver Electricity Electrical current from the generator is sent to a step-up transformer outside the power plant. Voltage is increased in the transformer and electrical...

260

Los Humeros III Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Contracts have already been signed with the Mexican Comision Federal de Electricidad (CFE) for the installation of an additional 25 MW Single Flash power generation unit and...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal power development in Hawaii. Volume I. Review and analysis  

SciTech Connect (OSTI)

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

262

The Award-Winning Environmental Performance of Geothermal Power in California  

Broader source: Energy.gov [DOE]

For more than a decade now, three power companies and one community in California have received awards for their outstanding environmental performance from the use of geothermal power. Here's a...

263

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

264

Geothermal developers remain optimistic | Department of Energy  

Office of Environmental Management (EM)

"As it takes relatively longer to develop geothermal power capacity compared to wind or solar installations, many projects in development today won't generate electricity until...

265

GEOTHERMAL EXPLORATION ASSESSMENT AND INTERPRETATION, KLAMATH BASIN, OREGON-SWAN LAKE AND KLAMATH HILLS AREA  

E-Print Network [OSTI]

s r e l a t e d t o geothermal power generation i n Oregon:G. , 1966, Energy and power of geothermal resources: Dept. ogeothermal rpospect, Klamath County, Oregon: Thermal Power

Stark, M.

2011-01-01T23:59:59.000Z

266

Western Regional Final Supplemental Environmental Impact Statement: Rulemaking for Small Power Production and Cogeneration Facilities - Exemptions for Geothermal Facilities  

SciTech Connect (OSTI)

Section 643 of the Energy Security Act of 1980 directed the Federal Energy Regulatory Commission to develop rules to further encourage geothermal development by Small Power Production Facilities. This rule amends rules previously established in Dockets No. RM79-54 and 55 under Section 201 and 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). The analysis shows that the rules are expected to stimulate the development of up to 1,200 MW of capacity for electrical generation from geothermal facilities by 1995--1,110 MW more than predicted in the original PURPA EIS. This Final Supplemental EIS to the DEIS, issued by FERC in June 1980, forecasts likely near term development and analyzes environmental effects anticipated to occur due to development of geothermal resources in the Western United States as a result of this additional rulemaking.

Heinemann, Jack M.; Nalder, Nan; Berger, Glen

1981-02-01T23:59:59.000Z

267

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

Geothermal Resource Exploration And Definition Project Geothermal Resource Exploration And Definition Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Project Details Activities (23) Areas (8) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) project is a cooperative DOEhdustry project to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to aid in the development of geographically diverse geothermal resources and increase electrical power generation from geothermal resources in the continental United States. The project was initiated in April 2000 with a solicitation for industry participation in the project, and this solicitation resulted in seven successful awards in

268

Geothermal Power and Interconnection: The Economics of Getting to Market  

SciTech Connect (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

269

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

270

Geothermal Technologies FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Geothermal Technologies accelerates the development technologies in pre-commercial stages of development. and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce both the risks and costs of bringing geothermal power online. As a key component of our clean energy mix, geothermal is a renewable energy that generates power around the clock. What We Do The EERE geothermal technologies portfolio consists of a three-pronged investment approach to facilitate the growth of installed electrical capacity:  Research and Development invests in innovative technologies and techniques to improve the process of identifying, accessing, and developing geothermal

271

Low-Temperature, Coproduced, and Geopressured Geothermal Power  

Broader source: Energy.gov [DOE]

The Geothermal Technology Program (GTP) low-temperature subprogram aims to provide the global geothermal community with the means to achieve development and widespread deployment of economically viable, innovative, and scalable technologies—including those involving coproducts—that will capture a significant portion of the low-temperature geothermal resource base over the next two decades. To that end, GTP held a Technology Roadmapping Workshop on July 13-14, 2010 in Golden, Colorado.

272

Low-Temperature, Coproduced, and Geopressured Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

innovative, and scalable technologies-including those involving coproducts-that will capture a significant portion of the low-temperature geothermal resource base over the next...

273

Water Use in the Development and Operations of Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the...

274

Los Azufres II Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal energy Location Information Location Los Azufres, Cd. Hidalgo, Michoacan, Mexico Coordinates 19.783947724044, -100.60854434967 Loading map... "minzoom":false,"map...

275

Tide operated power generating apparatus  

SciTech Connect (OSTI)

An improved tide operated power generating apparatus is disclosed in which a hollow float, rising and falling with the ocean tide, transmits energy to a power generator. The improvement comprises means for filling the float with water during the incoming tide to provide a substantial increase in the float dead weight during the outgoing tide. Means are further provided to then empty the float before the outgoing tide whereby the float becomes free to rise again on the next incoming tide.

Kertzman, H. Z.

1981-02-03T23:59:59.000Z

276

2008 Geothermal Technologies Market Report  

Broader source: Energy.gov [DOE]

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

277

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

278

400kW Geothermal Power Plant at Chena Hot Springs, Alaska | Open...  

Open Energy Info (EERE)

Springs, Alaska Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 400kW Geothermal Power Plant at Chena Hot Springs, Alaska Abstract This document...

279

Supply of geothermal power from hydrothermal sources: A study of the cost of power in 20 and 40 years  

SciTech Connect (OSTI)

This study develops estimates for the amount of hydrothermal geothermal power that could be on line in 20 and 40 years. This study was intended to represent a snapshot'' in 20 and 40 years of the hydrothermal energy available for electric power production should a market exist for this power. This does not represent the total or maximum amount of hydrothermal power, but is instead an attempt to estimate the rate at which power could be on line constrained by the exploration, development and support infrastructure available to the geothermal industry, but not constrained by the potential market for power.

Petty, S. (Petty (Susan) Consulting, Solano Beach, CA (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States)); Long, W.P. (Carlin Gold Co., Inc., Grass Valley, CA (United States)); Geyer, J. (Geyer (John) and Associates, Vancouver, WA (United States))

1992-11-01T23:59:59.000Z

280

Value analysis of advanced heat rejection systems for geothermal power plants  

SciTech Connect (OSTI)

A computer model is developed to evaluate the performance of the binary geothermal power plants (Organic Rankine Cycles) with various heat rejection systems and their impact on the levelized cost of electricity. The computer model developed in this work is capable of simulating the operation of a geothermal power plant which consists mainly of an Organic Rankine Cycle (binary plants) with different types of working fluids such as pure hydrocarbons and some binary mixtures of the most promising combinations of hydrocarbons.

Bliem, C. [CJB Consulting, Longmont, CO (United States); Zangrando, F.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1996-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

282

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

283

Tailored Working Fluids for Enhanced Binary Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

284

Power Generation and Human Health  

Science Journals Connector (OSTI)

Emissions from power generation are associated with adverse health and ecological effects. Fossil fuel-based power plants (such as coal, oil, and to a lesser extent, natural gas) are associated with emissions of particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), and a variety of organic contaminants such as mercury and volatile organic compounds (VOCs). Exposure to emissions from power plants has been associated with a variety of respiratory symptoms, typically based on short-term (e.g., from 5–10 min to 24 h) increases in ambient concentrations. In addition, exposure to constituents from emissions generated by fossil fuels has been associated with increases in premature mortality, particularly in the elderly, and a variety of respiratory and cardiovascular illnesses. Fossil fuels, particularly coal-fired power plants, are responsible for generating the majority of emissions to which humans are exposed.

K. von Stackelberg

2011-01-01T23:59:59.000Z

285

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

286

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

287

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

288

NREL: Learning - Geothermal Electricity Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

289

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

290

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

291

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

292

Using Backup Generators: Alternative Backup Power Options  

Broader source: Energy.gov [DOE]

In addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options.

293

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

294

DOE Awards $20 Million to Develop Geothermal Power Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fluid will then be used as the heat source for a heating system, a greenhouse, and a fish farm. This "cascading" use of the geothermal resource is meant to improve the economics...

295

Interior Department to Open 190 Million Acres to Geothermal Power  

Broader source: Energy.gov [DOE]

The U.S. Department of the Interior (DOI) announced last week that it plans to make more than 190 million acres of federal land in 12 western states available for geothermal energy development.

296

Tailored Working Fluids for Enhanced Binary Geothermal Power...  

Broader source: Energy.gov (indexed) [DOE]

R245fa R245fa Concepts Optimization Demonstration 2 | US DOE Geothermal Program eere.energy.gov * Timeline - Project started on December 29, 2009, ends April 21, 2012 -...

297

Solid state pulsed power generator  

DOE Patents [OSTI]

A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

2014-02-11T23:59:59.000Z

298

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy—geo (earth) + thermal (heat)—is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

299

California/Geothermal | Open Energy Information  

Open Energy Info (EERE)

California/Geothermal California/Geothermal < California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF California Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in California Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Bald Mountain Geothermal Project Oski Energy LLC Susanville, California 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase II - Resource Exploration and Confirmation Black Rock I Geothermal Project CalEnergy Generation Phase III - Permitting and Initial Development North Shore Mono Lake Geothermal Area Walker-Lane Transition Zone Geothermal Region

300

Economic comparison of a well-head geothermal power plant and a traditional one  

Science Journals Connector (OSTI)

Abstract The objective of this paper was to do an economic comparison between the traditional approach to geothermal projects and a well-head method, where smaller power plants were installed on each well to considerably reduce the time until energy production begins. The two methods were compared in a hypothetical steamfield, based on their NPV and net power production. The comparison showed that wellhead power plants benefit geothermal projects by increasing the power output and NPV by as much as 5% and 16% respectively, depending on how early they can start production and the rate of installation.

Carlos Atli Córdova Geirdal; Maria S. Gudjonsdottir; Pall Jensson

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

302

Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy  

Science Journals Connector (OSTI)

In the Republic of Croatia there are some medium temperature geothermal sources by means of which it is possible to produce electricity. However, only recently concrete initiatives for the construction of geothermal power plants have been started. Consequently, the paper provides proposals of the possible cycles for the Republic of Croatia. On the example of the most prospective geothermal source in the Republic of Croatia detailed analysis for the proposed energy conversion cycles is performed: for Organic Rankine Cycle (ORC) and Kalina cycle. On the basis of analysis results both the most suitable cycle for selected and for other geothermal sources in the Republic of Croatia are proposed. It is ORC which in case of the most prospective geothermal source in the Republic of Croatia has better both the thermal efficiency (the First Law efficiency) and the exergetic efficiency (the Second Law efficiency): 14.1% vs. 10.6% and 52% vs. 44%. The ORC gives net power of 5270 kW with mass flow rate 80.13 kg/s, while the Kalina cycle gives net power of 3949 kW with mass flow rate 35.717 kg/s.

Z. Guzovi?; D. Lon?ar; N. Ferdelji

2010-01-01T23:59:59.000Z

303

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

EMERGENCY PLANNING FOR NUCLEAR POWER PLANTS: THE LICENSINGEmergency Planning for Nuclear Power Plants Determination ofproposed nuclear power plants . . . . . . . . . • . . . .

Yen, W.W.S.

2010-01-01T23:59:59.000Z

304

Geothermal well-field and power-plant investment-decision analysis  

SciTech Connect (OSTI)

Investment decisions pertaining to hydrothermal well fields and electric power plants are analyzed. Geothermal investment decision models were developed which, when coupled to a site-specific stochastic cash flow model, estimate the conditional probability of a positive decision to invest in the development of geothermal resource areas. Quantitative decision models have been developed for each major category of investor currently involved in the hydrothermal projects. These categories include: large, diversified energy resource corporations; independently operating resource firms; investor-owned electric utilities; municipal electric utilities; state-run resource agencies; and private third-party power plant investors. The geothermal cash flow, the investment decision analysis, and an example of model application for assessing the likely development of geothermal resource areas are described. The sensitivity of this investment behavior to federal incentives and research goals is also analyzed and discussed.

Cassel, T.A.V.; Amundsen, C.B.; Edelstein, R.H.; Blair, P.D.

1981-05-31T23:59:59.000Z

305

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

306

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal… (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

307

Mapping Geothermal Heat Flow and Existing Plants | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

resources make up most of the current geothermal operating plants in the United States. Power generation comes from drawing heat from the fluid found naturally deep below the...

308

Metal Organic Heat Carriers for Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. This project addresses Energy Conversion Barrier N -Inability to lower the temperature conditions under which EGS power generation is commercially viable.

309

Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells  

Open Energy Info (EERE)

Co-Produced Fluids from Oil and Gas Wells Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Coproduced Fluids for Oil and Gas Wells Project Description The geothermal organic Rankine cycle (ORC) system will be installed at an oil field operated by Encore Acquisition in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. The data and knowledge acquire during the O & M phase can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

310

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California",and Related Standards for Nuclear Power Plants", Lawrencejected lifetime for a nuclear power plant is 40 years, a

Nero, jA.V.

2010-01-01T23:59:59.000Z

311

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,Summary of Nuclear Power Plant Operating Experience for

Nero, A.V.

2010-01-01T23:59:59.000Z

312

Solar energy power generation system  

SciTech Connect (OSTI)

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

313

2010 Geothermal Technology Program Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validation of Geothermally- produced Electricity from Co-produced Water at Existing OilGas Wells in TX Alcorn, Universal GeoPower LLC Electric Power Generation from Co-produced...

314

Geothermal Project Data and Personnel Resumes  

SciTech Connect (OSTI)

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

315

Study of the influential leaders, power structure, community decisions, and geothermal energy development in Imperial County, California  

SciTech Connect (OSTI)

The economy of Imperial County, California, is now dominated by agriculture, but economic studies indicate that the emerging geothermal sector could grow to a size comparable to that of agriculture. The purpose of this study is to discover the kind of power structure operating in Imperial County, the influential leaders, the source of their power, their probable reactions to geothermal development, and the possible effects geothermal development will have on the power structure. Several social science research methods are used to identify the influential leaders and to describe the power structure in Imperial County. An analysis of the opinions of leadership and the public shows the likely response to geothermal development. The power structure analysis, combined with forecasts of the economic effects of geothermal development, indicates the ways in which the power structure itself may change.

Butler, E.W.; Hall, C.H.; Pick, J.B.

1980-04-01T23:59:59.000Z

316

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

317

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

318

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Response Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

319

Investigation of deep permeable strata in the permian basin for future geothermal energy reserves  

SciTech Connect (OSTI)

This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

Erdlac, Richard J., Jr.; Swift, Douglas B.

1999-09-23T23:59:59.000Z

320

The New Era of Geothermal Energy Utilization with Aid of Nuclear Reactor Technology  

Science Journals Connector (OSTI)

Japan has about 120 active volcanoes. Estimated potential of geothermal power generation is 23,470 MWe from ... reservoirs to a depth of 3 km. Geothermal energy is expected to be an important role ... Currently, ...

Takehiko Yokomine; Masato Miura; Chineo Tawara

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Assessment of the suitability of agricultural waste water for geothermal power plant cooling in the Imperial Valley. I. Water quality  

SciTech Connect (OSTI)

Evaluation of the quality of agricultural waste water is the first step in assessing the sitability of agricultural waste water for geothermal power plant cooling. In this study samples of agricultural waste water from the New and Alamo rivers located in the Imperial Valley of California are analyzed. Determinations of standard water quality parameters, solids content, and inorganic compositions of the solids are made. The results are compared with data on samples of irrigation water and steam condensate also obtained from sites in the Imperial Valley. The data are evaluated in relation to cooling tower operation, waste generation, and waste disposal.

Morris, W.F.; Rigdon, L.P.

1981-09-01T23:59:59.000Z

322

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

323

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

an Enhanced Geothermal System (EGS) power generation project in Desert Peak (Nevada) geothermal field. As partPROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University GEOTHERMAL SYSTEM K.M. Kovac1 , Susan J. Lutz2 , Peter S. Drakos3 , Joel Byersdorfer4 , and Ann Robertson

Stanford University

324

Property:NbrGeneratingUnits | Open Energy Information  

Open Energy Info (EERE)

NbrGeneratingUnits NbrGeneratingUnits Jump to: navigation, search Property Name NbrGeneratingUnits Property Type Number Description Number of Generating Units. Pages using the property "NbrGeneratingUnits" Showing 12 pages using this property. B BLM Geothermal Facility + 3 + Blundell 1 Geothermal Facility + 1 + Blundell 2 Geothermal Facility + 1 + E ENEL Salt Wells Geothermal Facility + 2 + F Faulkner I Energy Generation Facility + 6 + N Navy I Geothermal Facility + 3 + Navy II Geothermal Facility + 3 + Neal Hot Springs Geothermal Power Plant + 3 + North Brawley Geothermal Power Plant + 5 + P Puna Geothermal Facility + 10 + R Raft River Geothermal Facility + 1 + Rocky Mountain Oilfield Testing Center + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:NbrGeneratingUnits&oldid=400184#SMWResults"

325

Power generation using solar power plant.  

E-Print Network [OSTI]

??Pursuing the commitment of California State to generate at least 20 percent of total generated energy from the renewable source by the year 2010 rather… (more)

Amin, Parth

2010-01-01T23:59:59.000Z

326

EA-290 Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290 Ontario Power...

327

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

328

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

329

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

330

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

331

PTC, ITC, or Cash Grant? An Analysis of the Choice Facing Renewable Power Projects in the United States  

E-Print Network [OSTI]

loop biomass, and geothermal power, the inflation-adjustedas geothermal, microturbines, and combined heat and powerpower generated by certain types of renewable energy projects, including wind, closed- and open-loop biomass, geothermal,

Bolinger, Mark

2009-01-01T23:59:59.000Z

332

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

333

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

334

Conditions on Electric Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of the Effects of Drought An Analysis of the Effects of Drought Conditions on Electric Power Generation in the Western United States April 2009 DOE/NETL-2009/1365 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

335

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

336

Germany Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

337

Russia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Russia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

338

Geothermal Energy Photos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Geothermal Energy Photos Geothermal Energy Photos Image of the Week: Energy Department investments are exploring for geothermal power from abundant natural...

339

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Executive Summary  

SciTech Connect (OSTI)

In 1983, the Bonneville Power Administration contracted for an evaluation and ranking of all geothermal resource sites in the states of Idaho, Montana, Oregon, and Washington which have a potential for electrical generation and/or electrical offset through direct utilization of the resource. The objective of this program was to consolidate and evaluate all geologic, environmental, legal, and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of all known geothermal sites. This data base would enhance the making of credible forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. The four states, working together under a cooperative agreement, identified a total of 1,265 potential geothermal sites. The 1,265 sites were screened to eliminate those with little or no chance of providing either electrical generation and/or electrical offset. Two hundred and forty-five of the original 1,265 sites were determined to warrant further study. The Four-State team proceeded to develop a methodology which would rank the sites based upon an estimate of development potential and cost. Development potential was estimated through the use of weighted variables selected to approximate the attributes which a geothermal firm might consider in its selection of a site for exploration and possible development. Resource; engineering; and legal, institutional, and environmental factors were considered. Cost estimates for electrical generation and direct utilization sites were made using the computer programs CENTPLANT, WELLHEAD, and HEATPLAN. Finally, the sites were ranked utilizing a technique which allowed for the integration of development and cost information. On the basis of the developability index, 78 high temperature sites and 120 direct utilization sites were identified as having ''good'' or ''average'' potential for development and should be studied in detail. On the basis of cost, at least 29 of the high temperature sites appear to be technically capable of supporting a minimum total of at least 1,000 MW of electrical generation which could be competitive with the busbar cost of conventional thermal generating technologies. Sixty direct utilization sites have a minimum total energy potential of 900+ MW and can be expected to provide substantial amounts of electrical offset at or below present conventional energy prices. The combined development and economic rankings can be used to assist in determining sites with superior characteristics of both types. Five direct utilization sites and eight high temperature sites were identified with both high development and economic potential. An additional 27 sites were shown to have superior economic characteristics, but development problems. The procedure seems validated by the fact that two of the highest ranking direct utilization sites are ones that have already been developed--Boise, Idaho and Klamath Falls, Oregon. Most of the higher ranking high temperature sites have received serious examination in the past as likely power production candidates.

Bloomquist, R.G.; Black, G.L.; Parker, D.S.; Sifford, A.; Simpson, S.J.; Street, L.V.

1985-06-01T23:59:59.000Z

340

Power generation of a thermoelectric generator with phase change materials  

Science Journals Connector (OSTI)

In this paper, a thermoelectric generator that embeds phase change materials for wasted heat energy harvesting is proposed. The proposed thermoelectric generator embeds phase change materials in its device structure. The phase change materials store large amounts of heat energy using the latent heat of fusion. When the heat source contacts the thermoelectric generator, dissipated heat from the heat source is stored in the phase change materials. When the heat source is removed from the thermoelectric generator, the output power of the thermoelectric generator slowly decreases, while the output power of conventional thermoelectric generators decreases rapidly without the heat source. The additional air layer in the proposed thermoelectric generator disturbs the heat dissipation from the phase change materials, so the thermoelectric generator can maintain the power generation for longer without a heat source. The experimental results for the thermoelectric generator fabricated clearly show the latent heat effect of the phase change materials and the embedded air layer.

Sung-Eun Jo; Myoung-Soo Kim; Min-Ki Kim; Yong-Jun Kim

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Iceland Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Iceland Geothermal Region Energy Generation Facilities within the Iceland Geothermal Region...

342

Austria Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Planned Estimate Plants with Unknown Planned Capacity Geothermal Areas within the Austria Geothermal Region Energy Generation Facilities within the Austria Geothermal Region...

343

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

344

Aircraft Power Generators: Hybrid Modeling and  

E-Print Network [OSTI]

Aircraft Power Generators: Hybrid Modeling and Simulation for Fault Detection ASHRAF TANTAWY University Integrated drive generators (IDGs) are the main source of electrical power for a number, and a majority of the existing FDI techniques for the electrical subsystem (brushless generator) are based

Koutsoukos, Xenofon D.

345

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

GEOTHERMAL APPLICATIONS Heat cost - total cost ratio vt temperaturn Power generation Pulp and paper .Heavy water Canning Desalination Sugar refining District heating

Haven, Kendal F.

2012-01-01T23:59:59.000Z

346

EA-290-B Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-B Ontario Power Generation, Inc. EA-290-B Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290-B Ontario...

347

EA-290-A Ontario Power Generation, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-A Ontario Power Generation, Inc. EA-290-A Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada EA-290-A Ontario...

348

Rural Electrification with Renewable Energy: Geothermal Power in Arid Regions  

Science Journals Connector (OSTI)

Abundant sources of alternative energy are available in various parts of the world. ‘Big is Beautiful’ was the unstated motto of Western power planners, in designing power additions in the Northern hemisphere....

Dr. Tsvi Meidav

1998-01-01T23:59:59.000Z

349

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

350

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

351

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

352

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

353

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

while consuming on-site emissions of volatile organic compounds (VOC's). References: Power Generating Inc1 This article is a stub. You can help OpenEI by expanding it. Power...

354

Power Generation and the Environment  

Science Journals Connector (OSTI)

...this session, Richard Post reported on the current status and hopes for the future of power genera- tion by controlled thermonuclear fusion. The possibility of achieving a thermal efficiency approximating 90% in a rela- tively "clean" power reactor...

Rolf Eliassen

1971-01-01T23:59:59.000Z

355

Recent developments of thermoelectric power generation  

Science Journals Connector (OSTI)

One form of energy generation that is expected to be on the rise in the next several decades is thermoelectric power generation (TEPG) which converts heat directly to electricity. Compared with other methods, ...

Luan Weiling; Tu Shantung

2004-06-01T23:59:59.000Z

356

Geothermal Electricity Production Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

357

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network [OSTI]

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

358

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

359

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

360

Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants  

Open Energy Info (EERE)

June 2000 * NREL/SR-550-28329 June 2000 * NREL/SR-550-28329 Martin Vorum, P.E. Englewood, Colorado Eugene A. Fritzler, P.E. Fort Morgan, Colorado Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants April 1999-March 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2000 * NREL/SR-550-28329 Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants April 1999-March 2000 Martin Vorum, P.E. Englewood, Colorado Eugene A. Fritzler, P.E. Fort Morgan, Colorado NREL Technical Monitor: C. Kutscher

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Power Generation and the Environment  

Science Journals Connector (OSTI)

...transmission and distribution of electric power. Systems...decision-making and planning. Simulation...Symposium on Energy for the Future...increasing role in planning for the location...furnishing electric power, such...transmission and distribution of electric power. Sys...making and planning. Simulation...meet the energy needs for...

Rolf Eliassen

1971-01-01T23:59:59.000Z

362

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

363

IEEE POWER ENGINEERING SOCIETY ENERGY DEVELOPMENT AND POWER GENERATION COMMITTEE  

E-Print Network [OSTI]

--Price Cap Regulation: Stimulating Efficiency in Electricity Distribution in Latin America. (Luiz Barroso Sponsored by: International Practices for Energy Development and Power Generation Chairs: Luiz Barroso, PSR

Catholic University of Chile (Universidad Católica de Chile)

364

The Chena Hot Springs 400kw Geothermal Power Plant: Experience...  

Open Energy Info (EERE)

efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the Chena...

365

Olkaria III Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Type Single Flash Owner Ormat Technologies, Inc. Developer Ormat Technologies, Inc. Energy Purchaser Kenya Power and Lighting Company Limited Commercial Online Date 2014...

366

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

367

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

368

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Broader source: Energy.gov (indexed) [DOE]

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

369

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

370

MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN  

E-Print Network [OSTI]

Although, many countries are utiliszing the geothermal energy for power generation, India is yet to joinMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS.NGRI-2008-EXP-637 MAGNETOTELLURIC INVESTIGATIONS IN GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

Harinarayana, T.

371

Chapter 10 - Novel Power Generating Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, some novel power generating systems are discussed. It is believed that sustainable thermal energy sources such as industrial waste heat recovery, concentrated solar radiation, ocean thermal energy, nuclear heat, and biomass combustion will gradually become more important. The first part of the chapter presents a novel system for power conversion from low-grade heat. This is an advanced ammonia–water-based power cycle able to operate with minimal exergy destruction due to an excellent match of temperature profiles at the heat source and sink. The chapter continues with thermoelectric power generators that can address the challenge of efficient power generation from high-grade thermal energy. Chemical looping combustion systems for power generation are treated thereafter for situations when carbon emissions must be reduced by carbon dioxide separation and sequestration or partial recycling. The last section of the chapter presents a number of selected novel systems for power generation, including magneto-hydrodynamic generators, thermoacoustic generators, and cryogenic compression oxy-combustion power plants with supercritical carbon dioxide and some novel integrated systems.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

372

Ancestral Nesson anticline and associated geothermal anomalies: Enhanced hydrocarbon generation controlled by crustal structure  

SciTech Connect (OSTI)

Hydrocarbon generation in the Williston basin is influenced by crustal motions and geothermal gradient anomalies associated with the ancestral Nesson anticline, a long-lived crustal structure located along 103{degree} longitude. This structure and its effects are particularly important in Canada where most petroleum source rocks were not sufficiently buried to have generated hydrocarbons in a normal geothermal gradient environment. High geothermal gradients associated with this structure raise the oil window and expand the region of source rock thermal maturity. Ancestral Nesson structure subsided differentially throughout the Phanerozoic, controlling paleobathymetry and facies over its crest. During the Upper Ordovician the structure was positive; rich potential petroleum source rocks were deposited on the western flank of the structure, generally excluding them from the zone of elevated heat flows. The total petroleum potential of this oil-source system exceeds 5.5 billion bbl of oil equivalent in Canada alone. Unfortunately, its exclusion from the maturation anomaly results in no more than 200 million bbl of oil being expelled from these sources. During the Middle Devonian, the structure was a negative feature that formed a starved subbasin separating the Winnipegosis and Elm Point carbonate shelves. Rich potential petroleum source rocks that accumulated on the crest of the structure at that time now overlie the region of elevated heat that flows and enhanced hydrocarbon maturation. Two billion barrels of oil are estimated to have been expelled from this source rock. Understanding the history and tectonics of the ancestral Nesson anticline is fundamental to a correct appraisal of hydrocarbon resources in the Williston basin.

Osadetz, K.G.; Snowdon, L.R. (Geological Survey of Canada, Calgary, Alberta (Canada))

1989-09-01T23:59:59.000Z

373

Turbine repair at Nesjavellir geothermal power plant: An Icelandic case study  

Science Journals Connector (OSTI)

Abstract During a quadrennial inspection of a 30 MW Mitsubishi steam turbine at Nesjavellir geothermal power plant, corrosion products were found on the last set of labyrinth packing in the gland seal system which resulted in erosion corrosion of the turbine rotor. The rotor had worn by approximately 8 mm. Because of the tight timeframe of the overhaul, it was decided to repair this failure on site using the experience of the staff and domestic industry. Labyrinth seals were built by a domestic machine shop, decreasing cost and shutdown time dramatically. This article describes the occurring failure and how it was repaired within days with cooperation between the energy company and domestic industry. It further discusses probable causes for such failure and how it may be prevented. The article describes in essence how valuable it can prove to build maintenance knowledge domestically in the geothermal sector.

R.S. Atlason; A. Gunnarsson; R. Unnthorsson

2015-01-01T23:59:59.000Z

374

Final Environmental Assessment Small-Scale Geothermal Power Plant and Direct-Use Geothermal Application at AmeriCulture Inc., Cotton City, NM  

Broader source: Energy.gov (indexed) [DOE]

Colorado 80401-3393 Colorado 80401-3393 August 26, 2002 DOE/EA-1396 FINDING OF NO SIGNIFICANT IMPACT For the SMALL-SCALE POWER PLANT AND DIRECT-USE GEOTHERMAL APPLICATION At AMERICULTURE, INC., COTTON CITY, NEW MEXICO AGENCY: U.S. Department of Energy, Golden Field Office ACTION: Finding of No Significant impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) conducted an Environmental Assessment (EA) of the Small-Scale Power Plant and Direct-Use Application at AmeriCulture, Inc. to evaluate potential impacts of construction and operations that would be funded in part by DOE. Small geothermal power plants have the potential for widespread application, but achieving cost- effectiveness in small plant sizes presents a number of challenges. To address these challenges, DOE is supporting the small-scale field verification projects to (1) determine and validate the

375

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

376

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

377

Power Generation and the Environment  

Science Journals Connector (OSTI)

...fuels) leads to waste heat which the environment...duction, and the waste heat to be dissipated to the...matter, carbon monoxide, hydrocarbons, nitrogen oxides, and...5 3.1 5.9 Waste heat generated (1015) Btu...resulting from fossil fuel combustion to the year 2000 might...

Rolf Eliassen

1971-01-01T23:59:59.000Z

378

Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in  

Broader source: Energy.gov (indexed) [DOE]

Ormat Geothermal Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada September 23, 2011 - 3:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the Department finalized a partial guarantee for up to a $350 million loan to support a geothermal power generation project. The project, sponsored by Ormat Nevada, Inc., is expected to produce up to 113 megawatts (MW) of clean, baseload power from three geothermal power facilities and will increase geothermal power production in Nevada by nearly 25 percent. The facilities are Jersey Valley in Pershing County, McGinness Hills in Lander County and Tuscarora in Elko County. The company estimates the project will fund 332 jobs during construction and 64 during operations.

379

Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework  

SciTech Connect (OSTI)

This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

Schroeder, Jenna N.

2014-06-10T23:59:59.000Z

380

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Analysis of power generation processes using petcoke  

E-Print Network [OSTI]

Petroleum coke or petcoke, a refinery byproduct, has generally been considered as an unusable byproduct because of its high sulfur content. However energy industries now view petcoke as a potential feedstock for power generation because it has...

Jayakumar, Ramkumar

2009-05-15T23:59:59.000Z

382

The Industrialization of Thermoelectric Power Generation Technology  

Broader source: Energy.gov [DOE]

Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

383

Application of IGCC Technology to Power Generation  

Science Journals Connector (OSTI)

Improved efficiency and low cost are two of the objectives in the development and commercialization of power generation cycles. With the advent of today’s commercial advanced gas turbines and high-temperature gas

R. E. Ayala

1998-01-01T23:59:59.000Z

384

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

385

Power generation method including membrane separation  

DOE Patents [OSTI]

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

386

Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii  

SciTech Connect (OSTI)

The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

Chapman, G.A.; Buevens, W.R.

1982-06-01T23:59:59.000Z

387

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

388

Investigations of supercritical CO2 Rankine cycles for geothermal power plants  

SciTech Connect (OSTI)

Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

389

Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California  

E-Print Network [OSTI]

D I P IPPO , R. (2012). Geothermal Power Plants: Principles,in the vicinity of geothermal power plants worldwide, it isregional effects of geothermal power production. This study

Lajoie, Lia Joyce

2012-01-01T23:59:59.000Z

390

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

Kegion KGKA 2. On-going Geothermal Power Plant Activity inof 50MW Demonstration Geothermal Power Plant, Presentationrates Table 2 On-Going Geothermal Power Plane Activity in

Haven, Kendal F.

2012-01-01T23:59:59.000Z

391

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

CORROS ION; METALLURGY; GEOTHERMAL POWER PLANTS; GEOTHERMALOF MATERIALS FOR GEOTHERMAL POWER PLANT APPLICATIONS. PAPERu AIDLIN 71 1 ITlE- GEOTHERMAL POWER IN THE WEST. TALK GIVEN

Cosner, S.R.

2010-01-01T23:59:59.000Z

392

Historical Exploration And Drilling Data From Geothermal Prospects And  

Open Energy Info (EERE)

Exploration And Drilling Data From Geothermal Prospects And Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Details Activities (20) Areas (7) Regions (0) Abstract: In 2005, Idaho National Laboratory was conducting a study of historical exploration practices and success rates for geothermal resources identification. Geo Hills Associates (GHA) was contracted to review and accumulate copies of published literature, Internet information, and unpublished geothermal exploration data to determine the level of exploration and drilling activities that occurred for all of the currently

393

Safe Operation of Backup Power Generators  

E-Print Network [OSTI]

E-395 04/06 Portable generators are useful when temporary or remote electric power is needed, but they can also be deadly. The primary hazards to avoid when us- ing a generator are carbon monoxide (CO) poison- ing from generator exhaust fumes..., electrocution and fire. Carbon monoxide danger Carbon monoxide is an odorless, colorless gas byproduct of incomplete combustion of fuels, such as natural gas, heating oil and diesel. This toxic gas interferes with the blood?s ability to carry oxygen...

Smith, David

2006-04-19T23:59:59.000Z

394

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

395

Property:GeothermalDevelopmentPhases | Open Energy Information  

Open Energy Info (EERE)

GeothermalDevelopmentPhases GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Geothermal/Power Plant + C CA-017-05-051 + Geothermal/Well Field + CA-170-02-15 + Geothermal/Exploration + CA-650-2005-086 + Geothermal/Exploration + CA-670-2010-CX + Geothermal/Exploration + CA-96062042 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + D DOE-EA-1116 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + DOE-EA-1621 + Geothermal/Power Plant + DOE-EA-1676 + Geothermal/Power Plant + DOE-EA-1733 + Geothermal/Well Field +

396

Geothermal publications list for Geopowering the West States  

SciTech Connect (OSTI)

A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

None

2004-12-01T23:59:59.000Z

397

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

398

Geothermal energy in Turkey: 2008 update  

Science Journals Connector (OSTI)

Geological studies indicate that the most important geothermal systems of western Turkey are located in the major grabens of the Menderes Metamorphic Massif, while those that are associated with local volcanism are more common in the central and eastern parts of the country. The present (2008) installed geothermal power generation capacity in Turkey is about 32.65 MWe, while that of direct use projects is around 795 MWt. Eleven major, high-to-medium enthalpy fields in western part of the country have 570 MWe of proven, 905 MWe of probable and 1389 MWe of possible geothermal reserves for power generation. In spite of the complex legal issues related to the development of Turkey's geothermal resources, their use is expected to increase in the future, particularly for electricity generation and for greenhouse heating.

Umran Serpen; Niyazi Aksoy; Tahir Öngür; E. Didem Korkmaz

2009-01-01T23:59:59.000Z

399

Combined-Cycle Power Generation — A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

400

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region Details Areas (0) Power...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

402

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

403

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

404

Record of Decision for the Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements (DOE/EIS-0266) (11/20/00)  

Broader source: Energy.gov (indexed) [DOE]

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements Administrator's Record of Decision Summary The Bonneville Power Administration (BPA) has decided to execute Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project). Initially, BPA will execute one or more PPAs in order to acquire up to the entire Project output. TSAs will be executed before the Project becomes operational. The United States Forest Service (Forest Service) and the Bureau of Land Management (BLM) were the joint lead Federal agencies in the preparation of

405

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

D. E. Appendix Small Geothermal Power Plants . . . . . . .Assessment, (4) Small Geothermal Power Plants and (5) Hoti - b u t i o n of geothermal power (1400 W e ) . (XBL 785-

Bresee, J. C.

2011-01-01T23:59:59.000Z

406

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

407

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

408

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

position in the power generation field. It is the second largest commercial supplier of power generation gas turbines in the United States and the fourth single largest supplier...

409

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

410

Electric Power Generation from Coproduced Fluids from Oil and...  

Broader source: Energy.gov (indexed) [DOE]

Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

411

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

412

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jilin Power Generation Co Ltd Jump to: navigation, search Name: Datang Jilin Power Generation Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: Set up...

413

Velagapudi Power Generation Ltd VPGL | Open Energy Information  

Open Energy Info (EERE)

Velagapudi Power Generation Ltd VPGL Jump to: navigation, search Name: Velagapudi Power Generation Ltd. (VPGL) Place: Vijayawada, Andhra Pradesh, India Zip: 520 007 Sector: Biomass...

414

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in...

415

Geothermal: Sponsored by OSTI -- On the role of external combustion...  

Office of Scientific and Technical Information (OSTI)

On the role of external combustion engines for on-site power generation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

416

Chapter 14 - Marine Power Generation Technologies  

Science Journals Connector (OSTI)

Abstract There are four ways in which the world’s oceans can provide an energy source for power generation. Marine currents around coastlines, inlets, and estuaries can be exploited with underwater turbines. Ocean waves are also a source of energy that can be tapped using a variety of different devices that convert the oscillating motion of waves into a motion that can be used to provide electricity generation. The world’s oceans, particularly in the tropical regions, are massive solar collectors, absorbing heat that creates a hot layer on the surface of the sea. This hot water can be used to drive a heat engine, with cooling taken from the ocean depths where the temperature remains low. The mixing of fresh and salt water also releases energy, and this too can be tapped in a number of ways to generate electricity. All of these are being developed as means of power generation.

Paul Breeze

2014-01-01T23:59:59.000Z

417

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

418

Microelectromechanical power generator and vibration sensor  

DOE Patents [OSTI]

A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

2006-11-28T23:59:59.000Z

419

Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique  

Science Journals Connector (OSTI)

Abstract Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to \\{GPPs\\} with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical \\{GPPs\\} is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing \\{GPPs\\} and increasing reliability by recommending corrective actions for each failure mode.

Hamid Reza Feili; Navid Akar; Hossein Lotfizadeh; Mohammad Bairampour; Sina Nasiri

2013-01-01T23:59:59.000Z

420

Nevada Geothermal Operating Company LLC | Open Energy Information  

Open Energy Info (EERE)

Operating Company LLC Operating Company LLC Jump to: navigation, search Name Nevada Geothermal Operating Company LLC Place Blue Mountain, NV Sector Geothermal energy Website http://www.nevadageothermal.co References Alternative Earth Resources Inc Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Nevada Geothermal Operating Company LLC is a subsidiary of Alternative Earth Resources Inc based in Blue Mountain, NV. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EA-1893: Canby Cascaded Geothermal Development System, Canby, California |  

Broader source: Energy.gov (indexed) [DOE]

93: Canby Cascaded Geothermal Development System, Canby, 93: Canby Cascaded Geothermal Development System, Canby, California EA-1893: Canby Cascaded Geothermal Development System, Canby, California Summary This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: NOTE: This EA has been cancelled.

422

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

423

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

424

Electric generating prospects for nuclear power  

Science Journals Connector (OSTI)

Most of the nuclear power plants in the U.S. today are of the light-water variety. In many parts of the U.S. these plants are competitive with plants burning coal, but the electricity that they generate will be more costly in the future as uranium supplies ...

Manson Benedict

1970-07-01T23:59:59.000Z

425

Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Siemens Power Generation Place Erlangen, Bavaria, Germany Zip 91058 Product Erlangen-based subsidiary of Siemens AG that develops, manufactures, and installs power plants and related equipment such as turbines. Its fuel cell subsidiary is Siemens Westinghouse. Coordinates 49.59795°, 11.00258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.59795,"lon":11.00258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Air-cooled Condensers in Next-generation Conversion Systems  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to reduce the costs associated with the generation of electrical power from air-cooled binary plants.

427

Mulitdimensional reactive transport modeling of CO2 minreal sequestration in basalts at the Helllisheidi geothermal field, Iceland  

E-Print Network [OSTI]

3 km SW of the Hellisheidi geothermal power plant, owned andbuilt next to Hellisheidi geothermal power plant. The pilotfrom Hellisheidi geothermal power plant. In simulations of

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

428

Geothermal status report  

SciTech Connect (OSTI)

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

429

STATE-OF-THE-ART OF MODELS FOR GEOTHERMAL RECOVERY PROCESSES  

E-Print Network [OSTI]

mental effects of geothermal power production, phase I. SSS-geothermal fluid with the well casing, fluid pipelines, and power

Tsang, C.F.

2012-01-01T23:59:59.000Z

430

Isotope powered Stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

Tingey, G.L.; Sorensen, G.C. [Pacific Northwest Lab., Richland, WA (United States); Ross, B.A. [Stirling Technology Co., Richland, WA (United States)

1995-01-01T23:59:59.000Z

431

Isotope powered stirling generator for terrestrial applications  

SciTech Connect (OSTI)

An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling ENgine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to data: (a) a development model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Tingey, G.L.; Sorensen, G.C. [Battelle, Paific Laboratory, P.O. Box 999, Richland, Washington 99352 (United States); Ross, B.A. [Stirling Technology Company, 2952 George Washington Way, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

432

Federal Energy Management Program: New and Underutilized Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New and New and Underutilized Power Generation Technologies to someone by E-mail Share Federal Energy Management Program: New and Underutilized Power Generation Technologies on Facebook Tweet about Federal Energy Management Program: New and Underutilized Power Generation Technologies on Twitter Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Google Bookmark Federal Energy Management Program: New and Underutilized Power Generation Technologies on Delicious Rank Federal Energy Management Program: New and Underutilized Power Generation Technologies on Digg Find More places to share Federal Energy Management Program: New and Underutilized Power Generation Technologies on AddThis.com... Energy-Efficient Products Technology Deployment

433

Coal Gasification for Power Generation, 3. edition  

SciTech Connect (OSTI)

The report provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered include: an overview of Coal Generation including its history, the current market environment, and the status of coal gasification; a description of gasification technology including processes and systems; an analysis of the key business factors that are driving increased interest in coal gasification; an analysis of the barriers that are hindering the implementation of coal gasification projects; a discussion of Integrated Gasification Combined Cycle (IGCC) technology; an evaluation of IGCC versus other generation technologies; a discussion of IGCC project development options; a discussion of the key government initiatives supporting IGCC development; profiles of the key gasification technology companies participating in the IGCC market; and, a detailed description of existing and planned coal IGCC projects.

NONE

2007-11-15T23:59:59.000Z

434

Conceptual design of a geothermal site development forecasting system  

SciTech Connect (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

435

ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT  

SciTech Connect (OSTI)

Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

Ronald Bischoff; Stephen Doyle

2005-01-20T23:59:59.000Z

436

NAFTA opportunities: Electrical equipment and power generation  

SciTech Connect (OSTI)

The North American Free Trade Agreement (NAFTA) provides significant commercial opportunities in Mexico and Canada for the United States electric equipment and power generation industries, through increased goods and services exports to the Federal Electricity Commission (CFE) and through new U.S. investment in electricity generation facilities in Mexico. Canada and Mexico are the United States' two largest export markets for electrical equipment with exports of $1.53 billion and $1.51 billion, respectively, in 1992. Canadian and Mexican markets represent approximately 47 percent of total U.S. exports of electric equipment. The report presents an economic analysis of the section.

Not Available

1993-01-01T23:59:59.000Z

437

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

438

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Details Activities (1) Areas (1) Regions (0) Abstract: Following a period of exploration and development in the mid-late 1970's, there was little activity at the Raft River geothermal field for the next ~20 years. US Geothermal Inc. acquired the project in 2002, and began commercial power generation in January 2008. From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the

439

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

440

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Modeling Generator Power Plant Portfolios and Pollution Taxes in  

E-Print Network [OSTI]

Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain-term solution (e.g.,are long-term solution (e.g., solar power and wind power (solar power and wind power Heavy user of fossil fuels:Heavy user of fossil fuels: Electric power industryElectric power industry

Nagurney, Anna

442

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2004-01-01T23:59:59.000Z

443

ADVANCED CO2 CYCLE POWER GENERATION  

SciTech Connect (OSTI)

Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-02NT41621 to develop a conceptual design and determine the performance characteristics of a new IGCC plant configuration that facilitates CO{sub 2} removal for sequestration. This new configuration will be designed to achieve CO{sub 2} sequestration without the need for water gas shifting and CO{sub 2} separation, and may eliminate the need for a separate sequestration compressor. This research introduces a novel concept of using CO{sub 2} as a working fluid for an advanced coal gasification based power generation system, where it generates power with high system efficiency while concentrating CO{sub 2} for sequestration. This project supports the DOE research objective of development of concepts for the capture and storage of CO{sub 2}.

A. Nehrozoglu

2003-10-01T23:59:59.000Z

444

Financing future power generation in Italy  

SciTech Connect (OSTI)

Under Italian law, independent power generation fueled by renewable and so-called ``assimilated'' sources must be given incentives. To implement this provision, a resolution known as ``CIP 6'' and a decree setting forth the procedure to sell such electricity to ENEL were issued. CIP 6 has recently been revoked and new incentives have been announced. In the meantime, CIP 6 continues to apply to various projects which have been approved but not yet constructed.

Esposito, P.

1998-07-01T23:59:59.000Z

445

DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Leverages Fossil Energy Expertise to Develop and Explore Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources February 7, 2011 - 12:00pm Addthis Washington, D.C. - Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields. DOE's Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy will combine efforts to have experts test and validate low temperature geothermal power generation technologies at the Rocky Mountain Oilfield Testing Center (RMOTC) near Casper, Wyoming.

446

IEP - Water-Energy Interface: Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Plant Water Management Power Plant Water Management The availability of clean and reliable sources of water is a critical issue across the United States and throughout the world. Under the Innovations for Existing Plants Program (IEP), the National Energy Technology Laboratory (NETL) has pursued an integrated water-energy R&D program that addresses water management issues relative to coal-based power generation. This initiative intended to clarify the link between energy and water, deepen the understanding of this link and its implications, and integrate current water-related R&D activities into a national water-energy R&D program. Please click on each research area for additional information. Non-Traditional Sources of Process and Cooling Water Non-Traditional Sources of Process and Cooling Water

447

Cummins Power Generation SECA Phase 1  

SciTech Connect (OSTI)

The following report documents the progress of the Cummins Power Generation (CPG) SECA Phase 1 SOFC development and final testing under the U.S. Department of Energy Solid State Energy Conversion Alliance (SECA) contract DE-FC26-01NT41244. This report overviews and summarizes CPG and partner research development leading to successful demonstration of the SECA Phase 1 objectives and significant progress towards SOFC commercialization. Significant Phase 1 Milestones: (1) Demonstrated: (a) Operation meeting Phase 1 requirements on commercial natural gas. (b) LPG and Natural Gas CPOX fuel reformers. (c) SOFC systems on dry CPOX reformate. (c) Steam reformed Natural Gas operation. (d) Successful start-up and shut-down of SOFC system without inert gas purge. (e) Utility of stack simulators as a tool for developing balance of plant systems. (2) Developed: (a) Low cost balance of plant concepts and compatible systems designs. (b) Identified low cost, high volume components for balance of plant systems. (c) Demonstrated high efficiency SOFC output power conditioning. (d) Demonstrated SOFC control strategies and tuning methods. The Phase 1 performance test was carried out at the Cummins Power Generation facility in Minneapolis, Minnesota starting on October 2, 2006. Performance testing was successfully completed on January 4, 2007 including the necessary steady-state, transient, efficiency, and peak power operation tests.

Charles Vesely

2007-08-17T23:59:59.000Z

448

An integrated model to compare net electricity generation for CO?- and water-based geothermal systems.  

E-Print Network [OSTI]

??Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed byBrown in 2000 and its advantages have been discussed by him… (more)

Agarwal, Vikas, 1986-

2010-01-01T23:59:59.000Z

449

Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines  

SciTech Connect (OSTI)

The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

Vimmerstedt, L.

1998-11-30T23:59:59.000Z

450

Nevada: Kingston Creek Hydro Project Powers 100 Households |...  

Energy Savers [EERE]

in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Geothermal Energy Growth Continues, Industry Survey Reports Project Overview Positive Impact...

451

Kalex Advanced Low Temp Geothemal Power Cycle | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Single-well Low Temperature CO2- based Engineered Geothemal System...

452

An energy return on investment for a geothermal power plant on the Texas Gulf Coast.  

E-Print Network [OSTI]

??This thesis examines the energy return on investment (EROI) of a model 3 MW hybrid gas-geothermal plant on the Texas Gulf Coast. The model plant… (more)

Kampa, Kyle Benjamin

2013-01-01T23:59:59.000Z

453

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...  

Office of Environmental Management (EM)

April at the Florida Canyon Mine, Nevada, marked the beginning of another promising clean energy commercial enterprise. The Geothermal Technologies Office researches, develops, and...

454

BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States." The publication followed the release of the Final Geothermal Programmatic Environmental Impact Statement (PEIS), which the Interior Department published in October...

455

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian… (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

456

Geothermal: Related Links  

Office of Scientific and Technical Information (OSTI)

E-print Network Sign up for weekly E-print Alerts on a topic of interest Bonneville Power Administration California Energy Commission California Energy Commission (Geothermal...

457

Geothermal's hot prospects  

SciTech Connect (OSTI)

Magma Power and California Energy's ambitious plans to build geothermal capacity in the United States and abroad have captured Wall Street's attention. After acquiring three geothermal plants, a power contract and 11,000 acres of geothermal leaseholds, officials at Magma Power Co. can probably wipe their brows, take a deep breath and agree that is has been a big year. The San Diego-based company acquired the three projects in March. The leaseholds came from Unocal and are in the Imperial Valley of California, close to the four geothermal plants Magma operates near the Salton Sea. Overnight, Magma's generating capacity increased 50 percent, from 164 MW to 244 MW, and revenues, as measured on a pro forma basis, were boosted 60 percent to $174 million from $108 million in fiscal 1992. By most standards, that qualifies as a big year. No wonder, then, that Magma's stock (MGMA:NASDAQ) has been this year's best performing public, independent energy stock by far, soaring 17.8 percent to about $38 a share through August 31. That's way ahead of Standard Poor's 500 Index, which increased 5.7 percent during the same time. The industry's other major independent geothermal player, California Energy Co., based in Omaha, Neb., is a strong competitor with Magma for geothermal assets. Both companies are nearly even in terms of megawatt capacity, and both are pursuing an aggressive expansion strategy as they begin to reach global markets. California Energy has begun implementing its own plans for rapid growth. Its stock (CE:NYSE, PSE, LSE) has outperformed the S P 500, too, rising 6.7 percent through August 31 to trade at a little more than $18 a share. California Energy also acquired some Unocal assets, paying between $15 million and $19 million for 26,000 acres of reserves in the Glass Mountain area in Northern California. While Magma acquired three operating plants able to generate 80 MW and a power contract to supply 20 MW more, California Energy acquired leases and wells.

Mandelker, J.

1993-11-01T23:59:59.000Z

458

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

459

NREL: Energy Analysis - Geothermal Results - Life Cycle Assessment Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Results - Life Cycle Assessment Review Geothermal Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Geothermal Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for geothermal technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions from geothermal power generation Credit: Goldstein, B., G. Hiriart, R. Bertani, C. Bromley, L. Gutiérrez-Negrín, E. Huenges, H. Muraoka, A. Ragnarsson, J. Tester, V. Zui, 2011: Geothermal Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 4.6 Enlarge image

460

Utah Geothermal Area | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy...

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

West Texas geothermal resource assessment. Part II. Preliminary utilization assessment of the Trans-Pecos geothermal resource. Final report  

SciTech Connect (OSTI)

The utilization potential of geothermal resources in Trans-Pecos, Texas was assessed. The potential for both direct use and electric power generation were examined. As with the resource assessment work, the focus was on the Hueco Tanks area in northeastern El Paso County and the Presidio Bolson area in Presidio County. Suitable users of the Hueco Tanks and Presidio Bolson resource areas were identified by matching postulated temperature characteristics of the geothermal resource to the need characteristics of existing users in each resource area. The amount of geothermal energy required and the amount of fossil fuel that geothermal energy would replace were calculated for each of the users identified as suitable. Current data indicate that temperatures in the Hueco Tanks resource area are not high enough for electric power generation, but in at least part of the Presidio Bolson resource area, they may be high enough for electric power generation.

Gilliland, M.W.; Fenner, L.B.

1980-01-01T23:59:59.000Z

462

Energy 101: Geothermal Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface, through geothermal heat pumps.

463

Geothermal energy research and development  

Science Journals Connector (OSTI)

Thermal springs have been used for bathing, washing and cooking for thousands of years in many countries. At the beginning of this century, experiments started with piping the hot water to houses for space heating and with using geothermal steam for the production of electricity. Geothermal is a proven energy resource that uses mostly conventional technology. Commercial production on the scale of hundreds of MW has been undertaken for over three decades both for electricity generation and direct utilization. Today, electricity is generated from geothermal energy in 21 countries. The installed capacity is nearly 6300 MW-electric. Four developing countries (El Salvador 18%, Kenya 11%, Nicaragua 18% and Philippines 21%) produce over 10% of their total electricity from geothermal. Electric generation cost is commonly around 4 U.S.cents/kWh. Direct utilization of geothermal water (space heating, horticulture, fish farming, industry and/or bathing) is known in about 40 countries, thereof 14 countries have each an installed capacity of over 100 MW-thermal. The overall installed capacity for direct utilization is about 11,400 MW-thermal. The production cost/kWh for direct utilization is highly variable, but commonly under 2 U.S.cents/kWht. A worldwide survey shows that the total investments in geothermal energy between 1973 and 1992 amounted to approximately 22 billion U.S.$. During the two decades, 30 countries invested each over 20 million U.S.$, 12 countries over 200 million U.S.$, and 5 countries over 1 billion U.S.$. During the first decade, 1973–1982, public funding amounted to 4.6 billion U.S.$ and private funding to 3 billion U.S.$. During the second decade, 1983–1992, public funding amounted to 6.6 billion U.S.$ and private funding to 7.7 billion U.S.$. Geothermal development has in the past been much affected by the development of prices of the competing fuels, especially oil and natural gas. Assuming a continuation of the present oil prices, the annual growth rate in geothermal utilization is likely to be some 4% for electricity generation and 10% for direct utilization. This would imply installed capacities of 8900 \\{MWe\\} and 30,000 \\{MWt\\} in the year 2000. The total investment cost of geothermal in the world during the next decade can be expected to be some 15–20 billion U.S.$. Properly implemented, geothermal energy is a sustainable resource and benign to the environment. The emission of greenhouse gases is minimal compared to fossil fuels. The removal of hydrogen sulphide from high temperature steam and the reinjection of spent geothermal fluids into the ground make the potential negative environmental effects negligible. The relative economic viability of geothermal energy will improve significantly if and when a pollution tax is endorsed on power production using fossil fuels. Geothermal exploration and exploitation requires skills from many scientific and engineering disciplines. International geothermal training centres are operated in Iceland, Italy, Japan, Mexico, and New Zealand. The International Geothermal Association was founded in 1988 and has over 2000 members in all parts of the world.

Ingvar B. Fridleifsson; Derek H. Freeston

1994-01-01T23:59:59.000Z

464

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2012-01-01T23:59:59.000Z

465

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2010-01-01T23:59:59.000Z

466

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Broader source: Energy.gov (indexed) [DOE]

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

467

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

468

Simulation of a generator for a wind-power unit  

Science Journals Connector (OSTI)

Analysis of excitation systems of generators for wind-power units is carried out, a software package for generator simulation is presented, and the sequence of the...

I. M. Kirpichnikova; A. S. Mart’yanov; E. V. Solomin

2013-10-01T23:59:59.000Z

469

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

470

Datang Jilin Resourceful New Energy Power Generation Co Ltd formerly...  

Open Energy Info (EERE)

Resourceful New Energy Power Generation Co Ltd formerly known as Roaring 40s and Datan Jump to: navigation, search Name: Datang Jilin Resourceful New Energy Power Generation Co Ltd...

471

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

472

Map of Geothermal Facilities/Data | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facilities/Data Geothermal Facilities/Data < Map of Geothermal Facilities Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W 90,000,000,000 mW

473

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

474

Overview of Thermoelectric Power Generation Technologies in Japan  

Broader source: Energy.gov [DOE]

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

475

Geothermal energy technology and current status: an overview  

Science Journals Connector (OSTI)

Geothermal energy is the energy contained as heat in the Earth’s interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earth’s heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment. Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 \\{MWe\\} (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 10–17%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 2–10 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources. The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 \\{MWt\\} (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 1973–1992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.

Enrico Barbier

2002-01-01T23:59:59.000Z

476

Electromagnetic Generators for Portable Power Applications Matthew Kurt Senesky  

E-Print Network [OSTI]

or turbines paired with electrical generators. Producing such a system to run efficiently on the milli to power tools to electric vehicle drives to wind power generation -- that would benefit from highElectromagnetic Generators for Portable Power Applications by Matthew Kurt Senesky B.A. (Dartmouth

Sanders, Seth

477

Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy  

Energy Savers [EERE]

The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS fact sheet provides an overview of this...

478

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

479

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing (except water vapor) is emitted to the atmosphere. Resources below 400°F

480

SunShot Initiative: Baseload Concentrating Solar Power Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

Note: This page contains sample records for the topic "geothermal power generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Potential for by-product recovery in geothermal energy operations issue paper  

SciTech Connect (OSTI)

This document identifies and discusses the significant issues raised by the idea of recovering useful by-products from wastes (primarily spent brine) generated during geothermal power production. The physical availability of numerous valuable materials in geothermal brines has captured the interest of geothermal resource developers and other parties ever since their presence was known. The prospects for utilizing huge volumes of highly-saline geothermal brines for electricity generation in the Imperial Valley of California have served to maintain this interest in both private sector and government circles.

None

1982-07-01T23:59:59.000Z

482

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

483

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

484

New power politics will determine generation's path  

SciTech Connect (OSTI)

The US power industry's story in 2009 will be all about change, to borrow a now-familiar theme. Though the new administration's policy specifics had not been revealed as this report was prepared, it appears that flat load growth in 2009 will give the new Obama administration a unique opportunity to formulate new energy policy without risking that the lights will go out. New coal projects are now facing increasing difficulties. It looks as though the electricity supply industry will continue to muddle through. It may see an advancement in infrastructure investment, significant new generation or new technology development. It also faces the possibility that policies necessary to achieving those goals will not materialize, for political and economic reasons. 4 figs.

Maize, K.; Neville, A.; Peltier, R.

2009-01-15T23:59:59.000Z

485

COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald DiPippo  

Office of Scientific and Technical Information (OSTI)

f f - r h COO-405 1 -44 COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald DiPippo MASTER Eileen M. Avelar June 1979 Work Performed Under Contract No. EY-76-S-02-4051 Division of Engineering Brown University Providence, Rhode Island U. S. DEPARTMENT OF ENERGY Geothermal Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

486

BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power  

Broader source: Energy.gov [DOE]

The U.S. Department of Interior's Bureau of Land Management (BLM) has made official its plans to open more than 190 million acres of federal lands for leasing and potential development of geothermal energy resources.

487

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

488

Neutron imaging for geothermal energy systems  

SciTech Connect (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

489

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

Rayapati Power Generation Pvt Ltd RPGPL Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name Rayapati Power Generation Pvt. Ltd. (RPGPL) Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Biomass plant developer and operater. References Rayapati Power Generation Pvt. Ltd. (RPGPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rayapati Power Generation Pvt. Ltd. (RPGPL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "[ Rayapati Power Generation Pvt. Ltd. (RPGPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Rayapati_Power_Generation_Pvt_Ltd_RPGPL&oldid=350208" Categories: Clean Energy Organizations

490

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

491

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

492

Power generation from nuclear reactors in aerospace applications  

SciTech Connect (OSTI)

Power generation in nuclear powerplants in space is addressed. In particular, the states of technology of the principal competitive concepts for power generation are assessed. The possible impact of power conditioning on power generation is also discussed. For aircraft nuclear propulsion, the suitability of various technologies is cursorily assessed for flight in the Earth's atmosphere. A program path is suggested to ease the conditions of first use of aircraft nuclear propulsion.

English, R.E.

1982-01-01T23:59:59.000Z

493

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

494

An analysis of geothermal resource development on Unalaska Island, Alaska  

SciTech Connect (OSTI)

A rapid expansion in the seafood industry and projected oil, gas and mining developments have resulted in a shortage of power on Unalaska Island. Currently, all power is supplied by small diesel generators at a cost of 340 mills/kwh for the local utility system. Available data indicate the potential for a significant high temperature geothermal resource on Makushin Volcano, west of the town of Unalaska. A summary of the considerations affecting the development of the Makushin resource to supply power to Unalaska is presented. A preliminary economic analysis of various resource and development assumptions indicated that geothermal power can be competitive with diesel power even though capital investment is high.

Spencer, S.G.; Chapman-Riggsbee, W.; Long, G.A.

1982-10-01T23:59:59.000Z

495

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary Cycle Power Plants) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators.

496

Binary Cycle Power Plant | Open Energy Information  

Open Energy Info (EERE)

Binary Cycle Power Plant Binary Cycle Power Plant (Redirected from Binary) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Binary Cycle Power Plant General List of Binary Plants Binary power plant process diagram - DOE EERE 2012 Binary cycle geothermal power generation plants differ from Dry Steam and Flash Steam systems in that the water or steam from the geothermal reservoir never comes in contact with the turbine/generator units. Low to moderately heated (below 400°F) geothermal fluid and a secondary (hence, "binary") fluid with a much lower boiling point that water pass through a heat exchanger. Heat from the geothermal fluid causes the secondary fluid to flash to vapor, which then drives the turbines and subsequently, the generators. Binary cycle power plants are closed-loop systems and virtually nothing

497

NREL: Geothermal Technologies Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Photo of a red-hot pool of molten lava withi