Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Power Development in the Phillippines  

DOE Green Energy (OSTI)

The generation of electric power to meet the needs of industrial growth and dispersal in the Philippines is aimed at attaining self-reliance through availment of indigenous energy resources. The Philippines by virtue of her position in the high-heat flow region has in abundance a number of exploitable geothermal fields located all over the country. Results indicate that the geothermal areas of the Philippines presently in various stages of exploration and development are of such magnitude that they can be relied on to meet a significant portion of the country's power need. Large scale geothermal energy for electric power generation was put into operation last year with the inauguration of two 55-MW geothermal generating units at Tiwi, Albay in Southern Luzon. Another two 55-MW units were added to the Luzon Grid in the same year from Makiling-Banahaw field about 70 kilometers south of Manila. For 1979 alone, therefore, 220-MW of generating capacity was added to the power supply coming from geothermal energy. This year a total of 220-MW power is programmed for both areas. This will bring to 443-MW of installed generating capacity from geothermal energy with 3-MW contributed by the Tongonan Geothermal pilot plant in Tongonan, Leyte, Central Philippines in operation since July 1977. Financial consideration of Philippine experience showed that electric power derived from geothermal energy is competitive with other sources of energy and is a viable source of baseload electric power. Findings have proven the technical and economic acceptability of geothermal energy resources development. To realize the benefits that stem from the utilization of indigenous geothermal resources and in the light of the country's ever increasing electric power demand and in the absence of large commercial oil discovery in the Philippines, geothermal energy resource development has been accelerated anew. The program includes development of eight fields by 1989 by adding five more fields to the currently developed and producing geothermal areas.

Jovellanos, Jose U.; Alcaraz, Arturo; Datuin, Rogelio

1980-12-01T23:59:59.000Z

2

Annual US Geothermal Power Production and Development Report | Open Energy  

Open Energy Info (EERE)

US Geothermal Power Production and Development Report US Geothermal Power Production and Development Report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Annual US Geothermal Power Production and Development Report Details Activities (0) Areas (0) Regions (0) Abstract: To increase the accuracy and value of information presented in its annual US Geothermal Power Production and Development Report, the Geothermal Energy Association (GEA) developed a reporting system, known as the Geothermal Reporting Terms and Definitions, in 2010. The Geothermal Reporting Terms and Definitions serve as a guideline to project developers in reporting geothermal project development information to the GEA. A basic understanding of the Geothermal Reporting Terms and Definitions will also aid the reader in fully understanding the information presented in this

3

Kakkonda Geothermal Power Plant  

SciTech Connect

A brief general description is given of a geothermal resource. Geothermal exploration in the Takinoue area is reviewed. Geothermal drilling procedures are described. The history of the development at the Takinoue area (the Kakkonda Geothermal Power Plant), and the geothermal fluid characteristics are discussed. The technical specifications of the Kakkonda facility are shown. Photographs and drawings of the facility are included. (MHR)

DiPippo, R.

1979-01-01T23:59:59.000Z

4

Exploration and Development of Geothermal Power in California | Open Energy  

Open Energy Info (EERE)

Exploration and Development of Geothermal Power in California Exploration and Development of Geothermal Power in California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Exploration and Development of Geothermal Power in California Abstract From 1955 to 1962, approximately 40 wells were drilled in 15 California thermal areas for the purpose of exploring and developing natural steam to utilize for electric power generation. Twenty-four of the wells were drilled in the three areas which at present seem to have the greatest potential for the production of natural steam: The Geysers, Sonoma County; Casa Diablo, Mono County; and the Salton Sea area, Imperial County.Since June 1960, steam from The Geysers thermal area, produced at a rate of approximately 250,000 Ib/hr, has been utilized to operate a 12,500 kw

5

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

6

Geothermal power development in Hawaii. Volume I. Review and analysis  

DOE Green Energy (OSTI)

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

7

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

8

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

9

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

10

Overview of Geothermal Energy Development Webcast | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Overview of Geothermal Energy Development Webcast Overview of Geothermal Energy Development Webcast...

11

Today's geothermal power economics and risks  

DOE Green Energy (OSTI)

Capital and power generation costs are developed as a parameterized composite of a number of ongoing geothermal power projects, and evaluates several of the most commonly accepted risks of geothermal power in terms of cost penalties to a basic cost of power. The status of geothermal power in the US is also reviewed briefly.

Lawford, T.W.

1979-01-01T23:59:59.000Z

12

Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Phases of a Geothermal Development...

13

Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii  

DOE Green Energy (OSTI)

The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

Chapman, G.A.; Buevens, W.R.

1982-06-01T23:59:59.000Z

14

Property:GeothermalDevelopmentPhases | Open Energy Information  

Open Energy Info (EERE)

GeothermalDevelopmentPhases GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Geothermal/Power Plant + C CA-017-05-051 + Geothermal/Well Field + CA-170-02-15 + Geothermal/Exploration + CA-650-2005-086 + Geothermal/Exploration + CA-670-2010-CX + Geothermal/Exploration + CA-96062042 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + D DOE-EA-1116 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + DOE-EA-1621 + Geothermal/Power Plant + DOE-EA-1676 + Geothermal/Power Plant + DOE-EA-1733 + Geothermal/Well Field +

15

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

16

Geothermal Power of America | Open Energy Information  

Open Energy Info (EERE)

Power of America Power of America Jump to: navigation, search Name Geothermal Power of America Place Los Angeles, California Sector Geothermal energy Product A Nevada-based company focusing on geothermal project development and operation. References Geothermal Power of America[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geothermal Power of America is a company located in Los Angeles, California . References ↑ "Geothermal Power of America" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Power_of_America&oldid=345810" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

17

Nicaragua-San Jacinto-Tizate Geothermal Power Project | Open...  

Open Energy Info (EERE)

Geothermal Power Project AgencyCompany Organization Inter-American Development Bank Sector Energy Focus Area Renewable Energy, Geothermal Topics Background analysis...

18

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

19

Water use in the development and operation of geothermal power plants.  

DOE Green Energy (OSTI)

Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary significantly both among and within geothermal fields. Seven main chemical constituents were found to

Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

2010-09-17T23:59:59.000Z

20

Water use in the development and operation of geothermal power plants.  

Science Conference Proceedings (OSTI)

Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir characteristics, and local climate have various effects on elements such as drilling rate, the number of production wells, and production flow rates. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, plant operations is where the vast majority of water consumption occurs. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or non-geothermal aquifer that is not returned to that resource. For the EGS scenarios, plant operations consume between 0.29 and 0.72 gal/kWh. The binary plant experiences similar operational consumption, at 0.27 gal/kWh. Far less water, just 0.01 gal/kWh, is consumed during operations of the flash plant because geofluid is used for cooling and is not replaced. While the makeup water requirements are far less for a hydrothermal flash plant, the long-term sustainability of the reservoir is less certain due to estimated evaporative losses of 14.5-33% of produced geofluid at operating flash plants. For the hydrothermal flash scenario, the average loss of geofluid due to evaporation, drift, and blowdown is 2.7 gal/kWh. The construction stage requires considerably less water: 0.001 gal/kWh for both the binary and flash plant scenarios and 0.01 gal/kWh for the EGS scenarios. The additional water requirements for the EGS scenarios are caused by a combination of factors, including lower flow rates per well, which increases the total number of wells needed per plant, the assumed well depths, and the hydraulic stimulation required to engineer the reservoir. Water quality results are presented in Chapter 5. The chemical composition of geofluid has important implications for plant operations and the potential environmental impacts of geothermal energy production. An extensive dataset containing more than 53,000 geothermal geochemical data points was compiled and analyzed for general trends and statistics for typical geofluids. Geofluid composition was found to vary significantly both among and within geothermal fields. Seven main chemical constituents were found to

Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q. (Energy Systems); ( EVS)

2010-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

22

Geothermal Energy Development  

DOE Green Energy (OSTI)

The Nation has embarked on an aggressive program to develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy alternate to oil and gas for electric power generation, but during the last fifteen years, the total capacity in the U.S. has reached 502 MWe, about half the size of a single modern nuclear power plant. And yet, the United States, especially its western and Gulf coast states, is believed to possess a vast resource base of geothermal heat at depths up to 3 to 10 km. Many estimates of these potential resources suitable for the production of electric power have been published and they range over a spectrum of more than a factor of 100. This variation suggests that the potential is essentially unknown. Table 1 gives a range of published forecasts for the year 1985 and the equivalent potential in number of 1000 Mwe power plants and in oil consumption in millions of barrels per day. In view of the estimated construction of about 200 to 250 nuclear power reactors by 1985-90, the pessimistic forecasts clearly show that the contribution of geothermal energy to the Nation's energy supply may indeed be small. The optimistic forecasts represent more than 15% of the total electric power requirements estimated for the year 1985. The Task Force for Geothermal Energy, in the Federal Energy Administration Project Independence Blueprint report of November 1974, established a national goal for 1985 of 20,000 to 30,000 MWe, the latter value representing an equivalent energy supply of one million barrels of oil per day. This goal was clearly a compromise between what is worth a national effort and what might be realistically achieved. The potential for adding or replacing the equivalent of some 25 nuclear power plants or for conserving one million barrels of oil per day should be an adequate incentive for the Nation to accelerate the development of a viable geothermal industry.

Kruger, Paul

1975-11-03T23:59:59.000Z

23

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

Geothermal resources for electric power generation. i. PlantOF GEOTHERMAL SYSTEMS Electric Power Generation SystemsUSE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND

Apps, J.A.

2011-01-01T23:59:59.000Z

24

Today's geothermal power economics and risks  

SciTech Connect

Capital and power generation costs are developed as a parameterized composite of a number of ongoing geothermal power projects, and evaluates several of the most commonly accepted risks of geothermal power in terms of cost penalties to a basic cost of power. The status of geothermal power in the US is also reviewed briefly.

Lawford, T.W.

1979-01-01T23:59:59.000Z

25

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

26

Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment  

DOE Green Energy (OSTI)

The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

Not Available

1984-10-01T23:59:59.000Z

27

Rural Cooperative Geothermal Development Electric and Agriculture...  

Open Energy Info (EERE)

source of heat that is key to developing the Tilapia based aquaculture. The geothermal power plant will create up to 30 jobs during construction, and one permanent maintenance...

28

Category:Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

of 6 total. G GeothermalExploration GeothermalLand Use GeothermalLeasing GeothermalPower Plant GeothermalTransmission GeothermalWell Field Retrieved from "http:...

29

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

30

GeoPowering the West: Hawaii; Why Geothermal?  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Hawaii. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2004-04-01T23:59:59.000Z

31

Record of Decision for the Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements (DOE/EIS-0266) (11/20/00)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements Administrator's Record of Decision Summary The Bonneville Power Administration (BPA) has decided to execute Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project). Initially, BPA will execute one or more PPAs in order to acquire up to the entire Project output. TSAs will be executed before the Project becomes operational. The United States Forest Service (Forest Service) and the Bureau of Land Management (BLM) were the joint lead Federal agencies in the preparation of

32

Geothermal development in Australia  

DOE Green Energy (OSTI)

In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

Burns, K.L. [Los Alamos National Lab., NM (United States); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia); Buckingham, N.W. [Glenelg Shire Council, Portland, VIC (Australia); Harrington, H.J. [Australian National Univ., Canberra, ACT (Australia)]|[Sydney Univ., NSW (Australia)

1995-03-01T23:59:59.000Z

33

Small geothermal electric systems for remote powering  

DOE Green Energy (OSTI)

This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

1994-08-08T23:59:59.000Z

34

Geothermal development in Thailand  

SciTech Connect

San Kampaeng and Fang geothermal areas are considered areas of interest for exploitation of geothermal energy. The technologies of exploration and development have been studied by Thai scientists and engineers during the past four years. The first geothermal deep exploration well was drilled, in cooperation with Japan International Cooperation Agency (JICA), in the San Kampaeng geothermal area. In 1985, supplementary work is planned to define the deep structural setting in greater detail before starting to drill the next deep exploration well. In Fang geothermal area some shallow exploitation wells have been drilled to obtain fluid to feed a demonstration binary system of 120 kWe, with the technical cooperation of BRGM and GEOWATT, France.

Praserdvigai, S.

1986-01-01T23:59:59.000Z

35

Imperial County geothermal development annual meeting: summary  

DOE Green Energy (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

36

Report on Geothermal Power Plant Cost and Comparative Cost of Geothermal and Coal Fired Steam Power Plants  

DOE Green Energy (OSTI)

This report is to be used by Utah Power and Light Company (UP and L) in making studies of geothermal power plants. The dollars per kilowatt comparison between a geothermal plant and a UP and L coal-fired plant is to be developed. Geothermal gathering system costs and return to owner are to be developed for information.

None

1977-07-01T23:59:59.000Z

37

Engineering and Economic Evaluation of Geothermal Power Plants  

Science Conference Proceedings (OSTI)

Geothermal power plants are commercially mature, dispatchable, base-loaded renewable energy sources. Most existing geothermal power plants exploit moderate- to high-temperature geothermal resources greater than 150C. These conditions exist in a few, relatively small geographic areas of the world, but these areas currently host thousands of megawatts of reliable, base-loaded renewable power, with thousands more megawatts in development. According to the Geothermal Resources Council, between 4000 and 7000 ...

2010-12-31T23:59:59.000Z

38

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

39

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

40

Tongonan geothermal field Leyte, Philippines. Report on exploration and development  

DOE Green Energy (OSTI)

Geothermal exploration and development in the Philippines are reviewed. The geology, geophysics, and geochemistry of the Tongonan geothermal field are described. The well drilling, power development, and plans for a 112 MW power plant are included. (MHR)

Not Available

1979-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Financing Geothermal Power Projects - Overview of Financing  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Financing Geothermal Power Projects Overview of Financing Geothermal Power Projects Financing geothermal power projects involves specific processes, costs, and risks. There are also several advantages and challenges to developing and financing geothermal power projects. The financing strategies presented apply to geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). In 2008, the U.S. Geological Survey completed an assessment of moderate- and high-temperature geothermal resources in 13 states. These data help lower project costs and risks for project developers by shortening the resource identification phase of project development; yet geothermal resource development still has risk. Financing Processes, Costs, and Risks

42

State policies for geothermal development  

DOE Green Energy (OSTI)

The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

Sacarto, D.M.

1976-01-01T23:59:59.000Z

43

Kamchatka geothermal resources development: Problems and perspectives  

SciTech Connect

There are four long-term exploited geothermal fields in Kamchatka: one steam-water field Pauzhetka (south of Kamchatka peninsula) and three hot water fields: Paratunka (near by town of Petropavlovsk-Kamchatsky) and Esso and Anavgay (center of peninsula). Pauzhetka and Paratunka fields are exploited during almost 28 years. Esso and Anavgay fields are exploited during 25 years. In Pauzhetka 11 MWe geothermal power plant work and on the other fields thermal energy of hot water is directly used. Kamchatka region satisfies energetic demands mainly by organic imported fuels. At the same time electricity produced by geothermal fluids constitutes less than 2 per cent of total region electricity production, and thermal energy produced by geothermal fluids constitutes less than 3 per cent of total region thermal energy production. The main reasons of small geothermal portion in the energy production balance of Kamchatka are briefly discussed. The geothermal development reserves and perspectives of geothermal energy use increase in Kamchatka are outlined.

Pashkevich, Roman I.

1966-01-24T23:59:59.000Z

44

Geothermal Power: Meeting the Challenge of Electric Price Stabilizatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s):...

45

Assessment of geothermal development in Puna, Hawaii  

SciTech Connect

The following subjects are discussed: the district of Puna prior to geothermal development, socioeconomic conditions, alternative modes of geothermal development, social benefits and costs of geothermal development, and geothermal development policy and its direction. (MHR)

Kamins, R.M.; Tinning, K.J.

1977-01-01T23:59:59.000Z

46

Geothermal materials development activities  

DOE Green Energy (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

47

Geothermal resource development: laws and regulations  

DOE Green Energy (OSTI)

The development of geothermal resources in California is becoming of increasing interest because of the large amounts of these resources in the state. In response to this interest in development, the legislature and regulatory bodies have taken actions to increase geothermal power production. The important federal and California laws on the subject are presented and discussed. Pertinent federal and state provisions are compared, and inconsistencies are discussed. An important concept that needs clarification is the manner of designating an area as a ''known geothermal resource area.'' The question of designating geothermal resource as a mineral is not completely resolved, although there is authority tending toward the finding that it is a mineral.

Wharton, J.C.

1977-08-25T23:59:59.000Z

48

Geothermal drilling and completion technology development  

SciTech Connect

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the U.S. Department of Energy has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs by 25% by 1982 and by 50% by 1986. Sandia Laboratories has been selected to manage this technology development program, and this paper presents an overview of the program. Program justification which relates well cost to busbar energy cost and to DGE power-on-line goals is presented. Technological deficiencies in current rotary drilling techniques for geothermal wells are discussed. A program for correcting these deficiencies is described.

Varnado, S.G.; Stoller, H.M.

1978-01-01T23:59:59.000Z

49

Geothermal development and the Salton Sea  

DOE Green Energy (OSTI)

The relationship of the Salton Sea, a key element of the Imperial Valley water system, to potential geothermal development in that region is studied. The effects of direct discharge of brines into the Sea are discussed along with the use of Salton Sea water for cooling the geothermal power plants. Methods for controlling the salinity of the Salton Sea are described. (MOW)

Goldsmith, M.

1976-02-01T23:59:59.000Z

50

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

51

Capital cost models for geothermal power plants  

SciTech Connect

A computer code, titled GEOCOST, has been developed at Battelle, Pacific Northwest Laboratories, to rapidly and systematically calculate the potential costs of geothermal power. A description of the cost models in GEOCOST for the geothermal power plants is given here. Plant cost models include the flashed steam and binary systems. The data sources are described, along with the cost data correlations, resulting equations, and uncertainties. Comparison among GEOCOST plant cost estimates and recent A-E estimates are presented. The models are intended to predict plant costs for second and third generation units, rather than the more expensive first-of-a-kind units.

Cohn, P.D.; Bloomster, C.H.

1976-07-01T23:59:59.000Z

52

Guidebook to Geothermal Power Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidebook to Geothermal Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado Subcontract Report NREL/SR-6A20-49391 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado NREL Technical Monitor: Paul Schwabe Prepared under Subcontract No. LGJ-0-40242-01 Subcontract Report

53

Geothermal materials development  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

54

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

Science Conference Proceedings (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

55

Human Resources in Geothermal Development  

DOE Green Energy (OSTI)

Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

Fridleifsson, I.B.

1995-01-01T23:59:59.000Z

56

NREL: Financing Geothermal Power Projects - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

57

Definition of engineering development and research problems relating to the use of geothermal fluids for electric power generation and nonelectric heating  

DOE Green Energy (OSTI)

The use of geothermal fluids for electric power generation and nonelectric purposes causes problems not normally encountered when pure water is used for similar purposes. These problems must be identified and means developed to overcome them before geothermal energy resources can become an important source of electric power or thermal energy in the United States. Research and development projects aimed at solving problems arising from the use of geothermal fluids from known sources in the United States are listed. Problem areas covered are: impact on engineering design caused by chemical, thermodynamic, and transport properties of geothermal fluids; scaling and sludge formation; gases, volatile brine constituents, condensate chemistry; environmental problems. The research projects identified are general in nature and are not site specific. (JGB)

Apps, J.A.

1977-11-01T23:59:59.000Z

58

NREL: Financing Geothermal Power Projects - Policies and Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Policies and Regulations Affecting Geothermal Power Project Financing Policies and Regulations Affecting Geothermal Power Project Financing Federal and state policies, including leasing and permitting, federal financial incentives, renewable portfolio standards, and greenhouse gas emission reduction regulations, can affect geothermal power project development financing processes and timelines. The related issues that should be considered during the project development cycle regarding these policies are summarized in the following table and described in more detail below. Note that this table is not meant to guide developers through the entire policy landscape, and should not be assumed to include all related issues in geothermal power development. Roles of Policies and Regulations in the Geothermal Power Project Development Process*

59

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

60

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal pipeline: Progress and development update from the geothermal progress monitor  

SciTech Connect

This article is a progress and development update of new prospects for the utilization of geothermal energy. The city of San Bernadino, California uses high-quality geothermal fluids for laundry processes without the need for water softening or heating. Four geothermal prospects in Oregon including exploration work by Amadarko, CE Exploration Company, Trans-Pacific Geothermal Corporation, and Vulcan Power Company are also reviewed.

1994-07-01T23:59:59.000Z

62

GRC Workshop: The Power of the National Geothermal Data System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

63

NREL: Financing Geothermal Power Projects - Financing Options for  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Options for Geothermal Power Projects Financing Options for Geothermal Power Projects Different financing options are used at each stage in geothermal power project development, which include the exploration and drilling stage and construction and operation stage. The financing option in each stage earns a return proportionate with the risk accepted at that stage in the project's development. For each financing option, both financial and non-financial elements should be considered. Financing options and considerations for a typical geothermal power project are shown in the table below. Your project financing options and considerations may be different. Financing Options and Considerations for a Typical Geothermal Power Project* Financial Considerations Financing Stage Exploration and Drilling Construction and Operation

64

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power  

Open Energy Info (EERE)

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Geopressured Resources Project Description Within the Sweet Lake Oil and Gas Field, the existence of a geopressured-geothermal system was confirmed in the 1980s as part of the DOE's Gulf Coast Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and job creation it would entail, provide the opportunity to develop thousands of megawatts of geopressured-geothermal power in the South Eastern United States.

65

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

66

Geothermal development plan: Yuma county  

DOE Green Energy (OSTI)

One hot spring and 33 wells drilled in the county discharge water at temperatures sufficient for direct-use geothermal applications such as process heat and space heating and cooling. Currently, one industry within the county has been identified which may be able to use geothermal energy for its process heat requirements. Also, a computer simulation model was used to predict geothermal energy on line as a function of time under both private and city-owned utility development of the resource.

White, D.H.

1981-01-01T23:59:59.000Z

67

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

DOE Green Energy (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

68

Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Geotherm Power Fonds GmbH Co KG Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name Green Energy Geotherm Power Fonds GmbH & Co. KG Place Hannover, Lower Saxony, Germany Zip 30559 Sector Geothermal energy Product German-based fund that will invest in geothermal projects to be developed by Green Energy Group. References Green Energy Geotherm Power Fonds GmbH & Co. KG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Geotherm Power Fonds GmbH & Co. KG is a company located in Hannover, Lower Saxony, Germany . References ↑ "Green Energy Geotherm Power Fonds GmbH & Co. KG" Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Geotherm_Power_Fonds_GmbH_Co_KG&oldid=346014"

69

Geothermal energy in Nevada: development and utilization  

SciTech Connect

The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

1982-01-01T23:59:59.000Z

70

Energy Education and Workforce Development: Explore Geothermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Careers to someone by E-mail Share Energy Education and Workforce Development: Explore Geothermal Careers on Facebook Tweet about Energy Education and Workforce...

71

Geothermal Development Phases | Open Energy Information  

Open Energy Info (EERE)

Page Edit History Facebook icon Twitter icon Geothermal Development Phases Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field...

72

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s): Jon Wellinghoff Steve Munson Date: January 30, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Julie Osborn Existing data indicates that extensive geothermal resources of power production grade exist throughout the western United States. These resources may be capable of producing clean, reliable electric power in sufficient quantities to act as a hedge against the price volatility of gas-fired electric generation. The challenge facing energy policy makers is developing effective strategies and appropriate incentives to assist developers in moving competitive quantities of geothermal electric capacity into the western power marketplace. Issues related to achieving this goal

73

Geothermal Power Plants in China  

DOE Green Energy (OSTI)

Nine small experimental geothermal power plants are now operating at six sites in the People's Republic of China. These range in capacity from 50 kW to 3MW, and include plants of the flash-steam and binary type. All except two units utilize geofluids at temperatures lower than 100 C. The working fluids for the binary plants include normal- and iso-butane, ethyl chloride, and Freon. The first geothermal plant came on-line in 1970, the most recent ones in 1979. Figure 1 shows the location of the plants. Major cities are also shown for reference. Table 1 contains a listing of the plants and some pertinent characteristics. The total installed capacity is 5,186 kW, of which 4,386 kW is from flash-steam units. In the report, they given an example of the results of exploratory surveys, and show system diagrams, technical specifications, and test results for several of the power plants.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

74

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

75

Geothermal development plan: Pinal County  

SciTech Connect

The Pinal County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified three suspected geothermal resource areas with potential 70/sup 0/C (158/sup 0/F) temperatures. In addition, one geothermal test well near Coolidge encountered bottom hole temperatures of 120/sup 0/C (248/sup 0/F) at a depth of 2440 m (8005 ft) and produced 18.3 l/sec (290 gpm). Geothermal resources are found to occur near population centers where average growth rates of 1.5% to 2% per year are expected over the next 40 years. Mining, agriculture and manufacturing are all important sectors of the regional economy and provide opportunities for direct utilization of geothermal energy. A regional energy use analysis includes energy use projections and regional energy price information. Agriculture accounts for 95% of the annual water consumption and predicted decreases in water availability will result in less future agricultural activity. The analysis contains a detailed section matching geothermal resources to potential industrial users. Fourteen firms in 10 industrial classes were identified as having some potential for geothermal energy use. In addition, 25 agricultural firms were identified as having some potential for geothermal use, including the prepared feeds industry.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

76

Geothermal development opportunities in developing countries  

DOE Green Energy (OSTI)

This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

Kenkeremath, D.C.

1989-11-16T23:59:59.000Z

77

Geothermal development plan: Yuma County  

DOE Green Energy (OSTI)

The Yuma County Area Development Plan evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 90/sup 0/C (194/sup 0/F), and in addition, two areas are inferred to contain geothermal resources with intermediate (90/sup 0/C to 150/sup 0/C, 194/sup 0/F to 300/sup 0/F) temperature potential. The resource areas are isolated, although one resource area is located near Yuma, Arizona. One resource site is inferred to contain a hot dry rock resource. Anticipated population growth in the county is expected to be 2 percent per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without advese affect on agriculture. Six firms were found in Yuma County which may be able to utilize geothermal energy for process heat needs. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

78

Conceptual design of a geothermal site development forecasting system  

DOE Green Energy (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

79

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network (OSTI)

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed. The characteristics of the geothermal fields under consideration were not firm, with data indicating widely varying downhole temperatures. Thus, neither the resource nor the plant operating conditions could be set. To assist both the ultimate user of the resource, the utility, and the developer of the geothermal field, a series of parametric sensitivity studies were conducted for the initial evaluation of a field vis-a-vis the power plant. Using downhole temperature as the variable, the amount of brine, brine requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power plant. The selection of geothermal steam power plant design conditions must be related to the field in which the plant is located. The results of the work have proven to be valuable in two major respects: (1) to determine the production required of a particular geothermal field to meet electrical generation output and (2) as field characteristics become firm, operating conditions can be defined for the associated power plant.

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

80

Geothermal development plan: northern Arizona  

DOE Green Energy (OSTI)

Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GeoPowering the West: Geothermal Energy--The Bountiful, Clean Energy Source for the West  

DOE Green Energy (OSTI)

General fact sheet describing U.S. Department of Energy's GeoPowering the West program. Geothermal energy represents a major economic opportunity for the American West, an area characterized by a steadily increasing population that requires reliable sources of heat and power. GeoPowering the West is pursuing this opportunity by: (1) Bringing together national, state and local stakeholders for state-sponsored geothermal development workshops; (2) Working with public power companies and rural electric cooperatives to promote use of geothermal power; (3) Promoting increased federal use of geothermal energy; (4) Helping American Indians identify and develop geothermal resources on tribal lands; and (5) Sponsoring non-technical educational workshops.

Not Available

2002-04-01T23:59:59.000Z

82

Geothermal development plan: Pima County  

DOE Green Energy (OSTI)

The Pima County Area Development evaluated the county-wide market potential for utilizing geothermal energy. The study identified four potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F), and in addition, one area is identified as having a temperature of 147{sup 0}F (297{sup 0}F). Geothermal resources are found to occur in Tucson where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing sector and the existence of major copper mines provide opportunities for the direct utilization of geothermal energy. However, available water supplies are identified as a major constraint to projected growth. The study also includes a regional energy analysis, future predictions for energy consumption and energy prices. A major section of the report is aimed at identifying potential geothermal users in Pima County and providing projections of maximum economic geothermal utilization. The study identifies 115 firms in 32 industrial classes that have some potential for geothermal use. In addition, 26 agribusiness firms were found in the county.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

83

Brawley- Resurrection Of A Previously Developed Geothermal Field | Open  

Open Energy Info (EERE)

Brawley- Resurrection Of A Previously Developed Geothermal Field Brawley- Resurrection Of A Previously Developed Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Brawley- Resurrection Of A Previously Developed Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: The Brawley Geothermal Field was originally developed by Unocal. In addition to drilling geothermal wells, this development included building and operating a 10 MWe power plant. Corrosion and scaling issues resulted in Unocal abandoning the project in the 1980's. Ormat Nevada investigated the potential of the shallow sands in 2006. It was concluded that these matrixpermeable sands contained moderately saline water, high porosity, and could support a binary-type power plant. In 2007, Ormat Nevada drilled and tested five wells. These test results confirmed the

84

The Impact of Taxation on the Development of Geothermal Resources  

DOE Green Energy (OSTI)

This contractor report reviews past and current tax mechanisms for the development and operation of geothermal power facilities. A 50 MW binary plant is featured as the case study. The report demonstrates that tax credits with windows of availability of greater than one year are essential to allow enough time for siting and design of geothermal power systems. (DJE 2005)

Gaffen, Michael; Baker, James

1992-09-01T23:59:59.000Z

85

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

86

Report on Hawaii Geothermal Power Plant Project  

DOE Green Energy (OSTI)

The report describes the design, construction, and operation of the Hawaii Geothermal Generator Project. This power plant, located in the Puna District on the island of Hawaii, produces three megawatts of electricity from the steam phase of a geothermal well. (ACR)

Not Available

1983-06-01T23:59:59.000Z

87

Geothermal handbook. Geothermal project, 1976. [Ecological effects of geothermal resources development  

DOE Green Energy (OSTI)

The geothermal program of Fish and Wildlife Service, U.S. Dept. of Interior, aims to develop ecologically sound practices for the exploration, development, and management of geothermal resources and the identification of the biological consequences of such development so as to minimize adverse effects on fish and wildlife resources. This handbook provides information about the ecological effects of geothermal resource development. Chapters are included on US geothermal resources; geothermal land leasing; procedures for assessing the effects on fish and game; environmental impact of exploratory and field development operations; and wildlife habitat improvement methods for geothermal development.

Not Available

1976-06-01T23:59:59.000Z

88

EA-1893: Canby Cascaded Geothermal Development System, Canby, California |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93: Canby Cascaded Geothermal Development System, Canby, 93: Canby Cascaded Geothermal Development System, Canby, California EA-1893: Canby Cascaded Geothermal Development System, Canby, California Summary This EA will evaluate the environmental impacts of a proposal by Modoc Contracting Company to use DOE grant funds to fulfill its plan to expand its reliance on geothermal resources by producing more hot water and using it to produce power as well as thermal energy. The goal of the project is to complete a cascaded geothermal system that generates green power for the local community, provides thermal energy to support greenhouse and aquaculture operation, provide sustainable thermal energy for residential units, and eliminate the existing geothermal discharge to a local river. NOTE: NOTE: This EA has been cancelled.

89

Geothermal Development Associates | Open Energy Information  

Open Energy Info (EERE)

Associates Associates Jump to: navigation, search Name Geothermal Development Associates Place Reno, Nevada Zip 89502 Sector Geothermal energy, Services Product Geothermal power and direct use project development and consulting services Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Geothermal development plan: Maricopa County  

DOE Green Energy (OSTI)

The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

91

Hawaii's Geothermal Development  

DOE Green Energy (OSTI)

On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

Uemura, Roy T.

1980-12-01T23:59:59.000Z

92

Development of a geothermal thesaurus  

DOE Green Energy (OSTI)

An attempt was made to develop a thesaurus of terminology associated with geothermal energy for use in the information storage and retrieval system of LBL's Geothermal Information Group. The development of the thesaurus is discussed, beginning with an outline of its subject scope, sources, and methods used in compiling the list of terms. The tendency was to include, rather than exclude, terms of unknown usefulness, and to provide paths through the thesaurus to make these terms accessible. The thesaurus structure and links to other vocabularies are described. The thesaurus processing software developed at LBL is briefly mentioned.

Herr, J.J.

1975-10-01T23:59:59.000Z

93

Geothermal : Economic Impacts of Geothermal Development in Skamania County, Washington.  

DOE Green Energy (OSTI)

This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

Lesser, Jonathan A.

1992-07-01T23:59:59.000Z

94

Geothermal development plan: Graham-Greenlee counties  

DOE Green Energy (OSTI)

Geothermal potential in Graham and Greenlee counties both of which contain significant quantities of geothermal energy that could be used for industrial, agricultural or residential use, is described. Projections are made of geothermal heat on line under both private and city-owned utility development. Potential users of geothermal energy, however, are limited since this area is sparsely populated and lacks an industrial base. Only a couple of industries were identified which could use geothermal energy for their process heat needs.

White, D.H.

1981-01-01T23:59:59.000Z

95

Geothermal Turbine  

SciTech Connect

The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

1979-05-01T23:59:59.000Z

96

Geothermal Energy Development Webcast Transcript  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indian Energy Overview of Geothermal Energy Indian Energy Overview of Geothermal Energy Development Webcast (text version) Below is the text version of the webcast titled "Overview of Geothermal Energy Development," originally presented on January 10, 2012. In addition to this text version of the audio, you can access the recorded webcast and a PDF of the slides at www.energy.gov/indianenergy/resources/education-and-training. Alex Dane: All right, folks. We're going to go ahead and get started right now. It's my pleasure to introduce to you the Deputy Director of the Office of Indian Energy, Pilar Thomas, who's going to have a couple minutes here to introduce some background of the office of what they do and Pilar, I've un-muted your line so feel free to jump on in. I think we can hear

97

Development and Implementation of a Condition Based Maintenance Program for Geothermal Power Plants  

DOE Green Energy (OSTI)

This report describes the development of the RCM team, identifying plant assets and developing an asset hierarchy, the development of sample Failure Mode Effects Analysis (FMEAs), identifying and prioritizing plant systems and components for RCM analysis, and identifying RCM/CBM software/hardware vendors. It also includes the Failure Mode Effects Analysis (FMEA) for all Class I Systems, Maintenance Task Assignments, use of Conditioned Based Maintenance (CBM) Tools and Displays of the RCM software System Development to date.

Steve Miller; Jim Eddy; Murray Grande; Shawn Bratt; Manuchehr Shirmohamadi

2002-01-30T23:59:59.000Z

98

Environmental implications for geothermal energy development  

SciTech Connect

The nature of geothermal resources and the constraints that site characteristics place on their development are discussed. (MHR)

Craig, R.B.; Suter, G.W. II

1979-04-01T23:59:59.000Z

99

In-line process instrumentation for geothermal power plants  

DOE Green Energy (OSTI)

The economics of geothermal power depend on satisfactory plant reliability of continuous operation. Plant problems and extended downtime due to corrosion failures, scale buildup, or injection well plugging have affected many past geothermal projects. If in-line instrumentation can be developed to alert plant operators to correctable problems, then the cost and reliability of geothermal power will be improved. PNL has completed a problem of development of in-line corrosion and chemical instrumentation for binary cycle plants, and this technology has been used to set up a monitoring program at the Heber Binary Demonstration Power Plant. The current emphasis has shifted to development of particle meters for use on injection lines and CO/sub 2/ and pH probes for use in control of calcite scaling. Plans have been outlined to develop and demonstrate flash plant instrumentation for corrosion monitoring, scaling, steam purity, and injection line particle counting. 2 refs., 17 figs., 1 tab.

Shannon, D.W.; Robertus, R.J.; Sullivan, R.G.; Kindle, C.H.; Pierce, D.D.

1985-05-01T23:59:59.000Z

100

Monitoring Biological Activity at Geothermal Power Plants  

Science Conference Proceedings (OSTI)

The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

Peter Pryfogle

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal technology development at Sandia  

DOE Green Energy (OSTI)

Geothermal technology development at Sandia consists of work in two major project areas - Hard Rock Penetration and Magma Energy Extraction. The Hard Rock Penetration Program is directed at reducing drilling costs for geothermal wells. Current activities are focused in three areas: borehole mechanics, rock penetration mechanics, and industry cost-shared research. The Magma Energy Extraction Program is investigating the engineering feasibility of utilizing crustal magma bodies as a source of energy. Work is divided into four major areas: geophysics, geochemistry/materials, drilling, and energy extraction.

Dunn, J.C.

1987-04-01T23:59:59.000Z

102

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

103

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

Eleven: Lake County Geothermal Energy Resource. . . .by t h e Report of t h e State Geothermal Task Force WDISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOP~NTIN LAKE

Churchman, C.W.

2011-01-01T23:59:59.000Z

104

Brawley Resurrection of a Previously Developed Geothermal Field | Open  

Open Energy Info (EERE)

Brawley Resurrection of a Previously Developed Geothermal Field Brawley Resurrection of a Previously Developed Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Resurrection of a Previously Developed Geothermal Field Abstract The Brawley Geothermal Field was originally developed byUnocal. In addition to drilling geothermal wells, this developmentincluded building and operating a 10 MWe power plant.Corrosion and scaling issues resulted in Unocal abandoning theproject in the 1980's. Ormat Nevada investigated the potentialof the shallow sands in 2006. It was concluded that these matrixpermeablesands contained moderately saline water, high porosity,and could support a binary-type power plant. In 2007, OrmatNevada drilled and tested five wells. These test results confirmedthe earlier conclusions and

105

DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leverages Fossil Energy Expertise to Develop and Explore Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources February 7, 2011 - 12:00pm Addthis Washington, D.C. - Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields. DOE's Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy will combine efforts to have experts test and validate low temperature geothermal power generation technologies at the Rocky Mountain Oilfield Testing Center (RMOTC) near Casper, Wyoming.

106

Geothermal development plan: northern Arizona counties  

Science Conference Proceedings (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

107

Development of turbine driven centrifugal compressors for non-condensible gas removal at geothermal power plants. Final report  

SciTech Connect

Initial field tests have been completed for a Non-Condensible Gas (NCG) turbocompressor for geothermal power plants. It provides alternate technology to steam-jet ejectors and liquid-ring vacuum pumps that are currently used for NCG removal. It incorporates a number of innovative design features to enhance reliability, reduce steam consumption and reduce O&M costs. During initial field tests, the turbocompressor has been on-line for more than 4500 hours as a third stage compressor at The Geysers Unit 11 Power Plant. Test data indicates its overall efficiency is about 25% higher than a liquid-ring vacuum pump, and 250% higher than a steam-jet ejector when operating with compressor inlet pressures of 12.2 in-Hga and flow rates over 20,000 lbm/hr.

1997-12-16T23:59:59.000Z

108

Assessment of Geothermal Resources for Electric Generation in the Pacific Northwest, Draft Issue Paper for the Northwest Power Planning Council  

SciTech Connect

This document reviews the geothermal history, technology, costs, and Pacific Northwest potentials. The report discusses geothermal generation, geothermal resources in the Pacific Northwest, cost and operating characteristics of geothermal power plants, environmental effects of geothermal generation, and prospects for development in the Pacific Northwest. This report was prepared expressly for use by the Northwest Power Planning Council. The report contains numerous references at the end of the document. [DJE-2005

Geyer, John D.; Kellerman, L.M.; Bloomquist, R.G.

1989-09-26T23:59:59.000Z

109

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

110

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

111

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

112

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

113

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

114

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

115

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

116

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

117

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

118

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

119

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

120

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

122

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

123

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

124

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

125

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

126

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

127

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

128

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

129

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

130

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

131

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

132

Kenya geothermal private power project: A prefeasibility study  

DOE Green Energy (OSTI)

Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

Not Available

1992-10-01T23:59:59.000Z

133

HL Power Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » HL Power Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home HL Power Geothermal Facility General Information Name HL Power Geothermal Facility Facility HL Power Sector Geothermal energy Location Information Location Wendel, California Coordinates 40.3482346°, -120.2335461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3482346,"lon":-120.2335461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Report on Hawaii geothermal power plant project  

DOE Green Energy (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

135

Economic Impacts of Geothermal Development in Malheur County, Oregon.  

DOE Green Energy (OSTI)

This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance.

Sifford, Alex; Beale, Kasi

1993-01-01T23:59:59.000Z

136

Ahuachapan Geothermal Power Plant, El Salvador  

DOE Green Energy (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

137

Empire Geothermal Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Power LLC Jump to: navigation, search Name Empire Geothermal Power LLC Place Reno, Nevada Zip 89509 Sector Geothermal energy Product Empire owns and operates a 3.5MW geothermal project in Nevada. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Advanced Condenser Boosts Geothermal Power Plant Output (Fact ...  

... Indonesia, and Turkey. Promising greater efficiency and reduced costs ADCC technology holds great promise for geothermal power plants seeking ...

139

Regional Systems Development for Geothermal Energy Resources Pacific Region  

Open Energy Info (EERE)

Systems Development for Geothermal Energy Resources Pacific Region Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii). Task 3: water resources evaluation. Topical report Details Activities (1) Areas (1) Regions (0) Abstract: The fundamental objective of the water resources analysis was to assess the availability of surface and ground water for potential use as power plant make-up water in the major geothermal areas of California. The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the

140

G. R. I. P. S. activities in the development of direct use of geothermal resources and small-scale geothermal-power development. Final report  

DOE Green Energy (OSTI)

The activities of the G.R.I.P.S. Commission staff in the four Geysers-Calistoga KGRA counties (i.e. Lake, Mendocino, Napa, Sonoma) in California are reported. Activities in the G.R.I.P.S. information and outreach program, workshop presentations, pilot project development, permit processing improvements and Department of Energy reporting are described.

Not Available

1981-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

This study of waste heat rejection from geothermal power stations is concerned only with the heat rejected from the power cycle. The heat contained in reinjected or otherwise discharged geothermal fluids is not included with the waste heat considered here. The heat contained in the underflow from the flashtanks in such systems is not considered as part of the heat rejected from the power cycle. By following this definition of the waste heat to be rejected, various methods of waste heat dissipation are discussed without regard for the particular arrangement to obtain heat from the geothermal source. Recent conceptual design studies made for 50-MW(e) geothermal power stations at Heber and Niland, California, are of particular interst. The former uses a flashed-steam system and the latter a binary cycle that uses isopentane. In last-quarter 1976 dollars, the total estimated capital costs were about $750/kW and production costs about 50 mills/kWhr. If wet/dry towers were used to conserve 50% of the water evaporation at Heber, production costs would be about 65 mills/kWhr.

Robertson, R.C.

1978-12-01T23:59:59.000Z

142

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

143

Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.  

DOE Green Energy (OSTI)

This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

Lesser, Jonathan A.

1992-07-01T23:59:59.000Z

144

Economic incentive of geothermal resource development for direct applications  

DOE Green Energy (OSTI)

As part of a mission-oriented program for accelerating the commercialization of geothermal energy, research is sponsored which concerns the quantitative analysis of investment decisions by industries involved in the development of geothermal resources. The results of a quick-response study conducted during the course of this research are discussed. The report specifically compares the relative investment incentive offered by two categories of geothermal ventures: (a) geothermal electric power projects; and (b) geothermal direct application projects. The attributes of discounted cash flows for several typical projects within each of the two categories are compared and, by using statistically-strong industry decision models previously developed, the likelihood of a favorable investment decision is estimated for each project.

Cassel, T.A.V.; Amundsen, C.B.

1980-02-01T23:59:59.000Z

145

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

146

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

147

Program in geothermal well technology directed toward achieving DOE/DGE power-on-line goals  

DOE Green Energy (OSTI)

This document presents the material used in an oral presentation to the DOE/Division of Geothermal Energy, which was designed to illustrate the importance of well technology development in reducing geothermal well costs, and to achieve geothermal power-on-line goals. Examination of recent studies of the economics of geothermal energy leads to the conclusion that the overall sensitivity of geothermal power-on-line to well cost is in the range of one to two. Current data suggest that a vigorous R and D program in rotary drilling technology can reduce geothermal drilling costs by about 20%, but a reduction of 40 to 50% is needed to achieve DOE/DGE goals. Research in advanced drilling systems is needed to satisfy this more stringent requirement. Some critical technological deficiencies that occur when current rotary drilling techniques are used for geothermal drilling are discussed. A broadly based development program directed at correcting these deficiencies is defined.

Polito, J.; Varnado, S.G.

1978-10-01T23:59:59.000Z

148

Time frames for geothermal project development  

DOE Green Energy (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

149

Further Developments on the Geothermal System Scoping Model: Preprint  

Science Conference Proceedings (OSTI)

This paper discusses further developments and refinements for the uses of the Geothermal System Scoping Model in an effort to provide a means for performing a variety of trade-off analyses of surface and subsurface parameters, sensitivity analyses, and other systems engineering studies in order to better inform R&D direction and investment for the development of geothermal power into a major contributor to the U.S. energy supply.

Antkowiak, M.; Sargent, R.; Geiger, J. W.

2010-07-01T23:59:59.000Z

150

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through...

151

Development Operations Hypersaline Geothermal Brine Utilization...  

Open Energy Info (EERE)

Number NA DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial...

152

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems Through...

153

Geothermal exploration and development in Nevada through 1973  

SciTech Connect

A brief description is given of Nevada's geothermal resources, and exploration activity for geothermal power through 1973. The use, geology, exploration, and regulation of the State's geothermal energy resources are discussed.

Garside, L.J.

1974-01-01T23:59:59.000Z

154

Development Operations Hypersaline Geothermal Brine Utilization Imperial  

Open Energy Info (EERE)

Hypersaline Geothermal Brine Utilization Imperial Hypersaline Geothermal Brine Utilization Imperial County, California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Abstract N/A Authors Whitescarver and Olin D. Published U.S. Department of Energy, 1984 Report Number N/A DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California Citation Whitescarver, Olin D.. 1984. Development Operations Hypersaline Geothermal Brine Utilization Imperial County, California. (!) : U.S. Department of Energy. Report No.: N/A. Retrieved from "http://en.openei.org/w/index.php?title=Development_Operations_Hypersaline_Geothermal_Brine_Utilization_Imperial_County,_California&oldid=682648

155

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are presented. To assess the potential for geothermal resource development in Idaho, several kinds of data were obtained. These include information regarding institutional procedures for geothermal development, logistical procedures for utilization, energy needs and forecasted demands, and resource data. Area reports, data sheets, and scenarios were prepared that described possible geothermal development at individual sites. In preparing development projections, the objective was to base them on actual market potential, forecasted growth, and known or inferred resource conditions. To the extent possible, power-on-line dates and energy utilization estimates are realistic projections of the first events. Commercialization projections were based on the assumption that an aggressive development program will prove sufficient known and inferred resources to accomplish the projected event. This report is an estimate of probable energy developable under an aggressive exploration program and is considered extremely conservative. (MHR)

McClain, D.W.

1979-07-01T23:59:59.000Z

156

Pollution Control Guidance for Geothermal Energy Development  

DOE Green Energy (OSTI)

This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pollution control technologies that may be applicable are described along with preliminary cost estimates for their application. Finally discharge and emission limitations are suggested that may serve as interim guidance for pollution control during early geothermal development.

Hartley, Robert P.

1978-06-01T23:59:59.000Z

157

Waste heat rejection from geothermal power stations  

DOE Green Energy (OSTI)

Waste heat rejection systems for geothermal power stations have a significantly greater influence on plant operating performances and costs than do corresponding systems in fossil- and nuclear-fueled stations. With thermal efficiencies of only about 10%, geothermal power cycles can reject four times as much heat per kilowatt of output. Geothermal sites in the United States tend to be in water-short areas that could require use of more expensive wet/dry or dry-type cooling towers. With relatively low-temperature heat sources, the cycle economics are more sensitive to diurnal and seasonal variations in sink temperatures. Factors such as the necessity for hydrogen sulfide scrubbers in off-gas systems or the need to treat cooling tower blowdown before reinjection can add to the cost and complexity of goethermal waste heat rejection systems. Working fluids most commonly considered for geothermal cycles are water, ammonia, Freon-22, isobutane, and isopentane. Both low-level and barometric-leg direct-contact condensers are used, and reinforced concrete has been proposed for condenser vessels. Multipass surface condensers also have wide application. Corrosion problems at some locations have led to increased interest in titanium tubing. Studies at ORNL indicate that fluted vertical tubes can enhance condensing film coefficients by factors of 4 to 7.

Robertson, R C

1979-01-01T23:59:59.000Z

158

Measurement and control techniques in geothermal power plants  

DOE Green Energy (OSTI)

This information provided the background and source material used in preparing the chapter of the Geothermal Source Book on instrumentation, measurement, and control techniques. Here more complete and detailed information is presented than could be included in the source book chapter and is being published for reference. Included are detailed examples of instrumentation and control techniques currently being used in geothermal power plants. In addition, the basic guidelines and unique characteristics of instrumentation and control in geothermal systems, are presented. The instrumentation and control philosophy and the hardware involved in geothermal electric plants and their supply and injection systems are addressed. The intent is to address the unique characteristics of geothermal electric instrumentation and control (I and C) systems. Standard I and C practice is available in the general literature. Sources of information for standard I and C practice are listed in the Appendix. The information presents the philosophy of I and C system design; the development of the system, from power grid considerations through subsystem operation to specific system details; and component selection and operating considerations.

Whitbeck, J.F.; Dart, R.H.; Miller, J.D.; Brewer, D.R.

1979-01-01T23:59:59.000Z

159

Technical Proposal Salton Sea Geothermal Power Pilot Plant Program  

DOE Green Energy (OSTI)

The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and injection systems necessary to serve the pilot power and mineral recovery plants planned for Phase 3. The scope of the Area Resource Test Facility Subprogram will include evaluation, costing, design, construction and operation of an ARTF that can serve as a field facility for testing and evaluating high temperature, high salinity geothermal brine utilization components and systems being developed by various organizations and laboratories in the United States. [DJE-2005

None

1975-03-28T23:59:59.000Z

160

Imperial County geothermal development. Quarterly report, April 1, 1980-June 30, 1981  

DOE Green Energy (OSTI)

Three areas are reported: Geothermal Administration, Geothermal Planning; and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. Field inspections will cover the four new wells drilled by Magma at the Salton Sea in preparation for 28 MW power plant, the progress at Sperry at East Mesa, and the two on-line power plants in East Mesa and North Brawley. Evaluation of cooperative efforts will cover the Geothermal Subsidence Detection Network Resurvey, Master EIR for the Salton Sea and the Annual Imperial County Geothermal meeting. The status of Geothermal development throughout the County will cover existing proposed facilities. The summary of the Geothermal meeting (Appendix A) will also provide the status of several projects. Geothermal Planning addresses the EIR Notice of Exemption from CEQA, progress on the Master EIR for the Salton Sea, and the EIR for Phillips Petroleum for 6 exploratory wells in the Truckhaven area. Other Geothermal Activity addresses the Department of Energy Region IX meeting hosted by Imperial County, the Annual Imperial County Geothermal meeting, Class II-1 geothermal hazardous waste disposal siting study, and Imperial County Geothermal Direct Heat Study.

Not Available

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

Williams, Assessment of Geothermal Resources of the UnitedActivity coefficients i.n geothermal solutions J. L. Haas R.REPORT CHARACTERIZATION OF GEOTHERMAL FLUIDS A. Geothermal

Apps, J.A.

2011-01-01T23:59:59.000Z

162

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation  

Science Conference Proceedings (OSTI)

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

Not Available

2010-12-01T23:59:59.000Z

163

Guidebook to Geothermal Power Finance | Open Energy Information  

Open Energy Info (EERE)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Jump to: navigation, search Tool Summary Name: Guidebook to Geothermal Power Finance Agency/Company /Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Finance, Implementation Resource Type: Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49391.pdf Country: United States Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

Geothermal power production: impact assessments and environmental monitoring  

DOE Green Energy (OSTI)

The role that baseline and postoperational environmental monitoring plays in assessing impacts of geothermal power production is emphasized. Based on experience in the Imperial Valley, where substantial geothermal resources exist, the important characteristics of monitoring programs involving subsidence, seismicity, and air and water quality are examined. The importance of environmental monitoring for situations where predictive models either do not exist (e.g., seismicity), or are still being developed (e.g., land subsidence) are discussed. In these cases the need for acquiring and analyzing data that can provide timely information on changes caused by geothermal operations are emphasized. Monitoring is also useful in verifying predictions of air quality changes - in particular, violations of ambient standards after control technologies are implemented. Water quality can be monitored with existing sampling programs where the potential for geothermal impacts is thought to be rather small. The significant issues in these environmental areas, the status of baseline data and predictive capability that currently exists, and the need for future monitoring and modeling programs to assess the impacts of geothermal development are summarized.

Layton, D.W.; Pimentel, K.D.

1980-01-01T23:59:59.000Z

165

Nevada geothermal power plant project approved  

Science Conference Proceedings (OSTI)

A proposal to construct and test a 12.5-megawatt geothermal power plant in the Steamboat Hot Springs KGRA in Washoe County, Nevada, has been approved by the Bureau of Land Management (BLM). The power plant could be completed by October 1987. Several stipulations are included in the BLM approval. The stipulations include a program to monitor ground water, surface water, and hydrothermal features to detect any impacts on the hydrology in the Steamboat Hot Springs area. When plant operations are tested, an emission test will be required to verify that noncondensible gas concentrations are within federal and state standards. No geothermal fluid will be discharged on the land's surface. Other stipulations include the special construction of electrical distribution lines to protect birds of prey; the fencing of hazardous areas; and a minimal disturbance of surface areas.

Not Available

1987-07-01T23:59:59.000Z

166

Program Geothm: A thermodynamic process program for geothermal power plant cycles  

DOE Green Energy (OSTI)

Program GEOTHM is a thermodynamic process program now under development for the LBL Geothermal Energy Program. To date, the program development has centered upon the modeling of working fluid properties, developing thermodynamic process models, and modeling the design performance of geothermal power plants. When the program is completed, it will be able to optimize a power plant or refrigeration plant for minimum cost power or refrigeration. Furthermore, operation of the thermodynamic cycles at off design conditions will be able to be simulated. Program GEOTHM is currently able to calculate several types of geothermal power cycles using a wide variety of working fluids.

Green, M.A.; Pines, H.S.

1974-10-01T23:59:59.000Z

167

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

168

Geothermal development issues: Recommendations to Deschutes County  

DOE Green Energy (OSTI)

This report discusses processes and issues related to geothermal development. It is intended to inform planners and interested individuals in Deschutes County about geothermal energy, and advise County officials as to steps that can be taken in anticipation of resource development. (ACR)

Gebhard, C.

1982-07-01T23:59:59.000Z

169

Economic Impacts of Geothermal Development in Deschutes County, Oregon.  

DOE Green Energy (OSTI)

This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

Sifford, Alex; Beale, Kasi

1991-12-01T23:59:59.000Z

170

Economic Impacts of Geothermal Development in Harney County, Oregon.  

DOE Green Energy (OSTI)

This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

Sifford, Alex; Beale, Kasi

1991-12-01T23:59:59.000Z

171

Development Wells At Coso Geothermal Area (1985) | Open Energy...  

Open Energy Info (EERE)

Development Wells At Coso Geothermal Area (1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Development Wells Activity Date 1985 Usefulness...

172

Session 19: Geothermal Materials Development  

DOE Green Energy (OSTI)

Among the most pressing problems constraining the development of geothermal energy is the lack of satisfactory component and system reliability. This is due to the unavailability, on a commercial scale, of cost-effective materials that can function in a wide range of geothermal environments and to the unavailability of a comprehensive body of directly related test data or materials selection experience. In 1976, the GHTD started the Geothermal Materials Program to address materials-related problems, and since 1978 Brookhaven National Laboratory has provided technical and managerial assistance in the implementation of the effort. Major successes have been attained in the development of elastomers for high-temperature applications and in the use of polymer concrete liners for corrosion protection. Both technologies have been successfully transferred to industry. Current efforts in metallic and nonmetallic materials development and corrosion protection will be summarized. In the metals area, testing of a series of experimental stainless steels has led to compositions which show a very remarkable resistance to pitting corrosion in hot chloride electrolytes. Combinations of molybdenum and nitrogen are very beneficial. Alternate materials for line shaft pump bearings have been identified through tests in simulated hot brine. Cermets and carbides show promise of extending pump life. A series of drill bit steels has been examined for fatigue and hot fracture toughness. The work has indicated alloys with properties that exceed those of materials now in use. A major finding in the nonmetallic materials area has been the development of fluorinated elastomers for use in statis seals at temperatures greater than 300 C. Field testing has just commenced, but based upon laboratory results, the work is very promising. Commercialization of this material is underway. Technology transfer of a 240 C EPDM was completed earlier. Field testing of polymer concrete-lined pipe has been successful, and at least one commercial source of the material now exists. Programs started in FY 1983 include the development of high-thermal-conductivity composites for heat exchanger tubes and elastomers for dynamic seal applications. Cathodic protection measurements of carbon steel have been made, both in the laboratory and in the field, which showed the feasibility of such protection of some carbon steel components, e.g., the outer surface of well casing. More work is suggested to include heat exchanges. Studies of corrosion in binary systems is also reviewed.

van Rooyen, Daniel

1983-12-01T23:59:59.000Z

173

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

174

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

175

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

176

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

177

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

178

Geothermal development plan: Maricopa county  

DOE Green Energy (OSTI)

Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

White, D.H.

1981-01-01T23:59:59.000Z

179

Geothermal Development Plan: Pima County  

DOE Green Energy (OSTI)

Pima County is located entirely within the Basin and Range physiographic province in which geothermal resources are known to occur. Continued growth as indicated by such factors as population growth, employment and income will require large amounts of energy. It is believed that geothermal energy could provide some of the energy that will be needed. Potential users of geothermal energy within the county are identified.

White, D.H.

1981-01-01T23:59:59.000Z

180

Geothermal instrumentation development activities at Sandia  

DOE Green Energy (OSTI)

A major element of Sandia's Geothermal Technology Development Program is the effort directed toward development of instrumentation. This effort has two aspects, the development of high temperature components and prototype tools and the investigation of new concepts and capabilities. The focus of these activities is the acquisition of information to make geothermal drilling and resource development more efficient. Several projects of varying nature and scope make up the instrumentation development element, and this element will expand as the program emphasis on development of an advanced geothermal drilling system and the need for improved information grow. 13 refs.

Carson, C.C.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal development plan: Pinal county  

DOE Green Energy (OSTI)

Wells drilled in the county provide evidence of geothermal energy sufficient for process heat and space heating and cooling applications. Annual energy consumption was estimated for industries whose process heat requirements are less than 105/sup 0/C (221/sup 0/F). This information was then used to model the introduction of geothermal energy into the process heat market. Also, agriculture and agribusiness industries were identified. Many of these are located on or near a geothermal resource and might be able to utilize geothermal energy in their operations.

White, D.H.

1981-01-01T23:59:59.000Z

182

EA for Well Field Development at Patua Geothermal Area -  

Open Energy Info (EERE)

for Well Field Development at Patua Geothermal Area - for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA EA at Patua Geothermal Area for Geothermal/Exploration, Geothermal/Well Field, Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided

183

FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"  

Science Conference Proceedings (OSTI)

The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.

Gayle, Phillip A., Jr.

2012-01-13T23:59:59.000Z

184

Unalaska geothermal exploration project. Electrical power generation analysis. Final report  

DOE Green Energy (OSTI)

The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

Not Available

1984-04-01T23:59:59.000Z

185

Environmental overview of geothermal development: northern Nevada  

DOE Green Energy (OSTI)

Regional environmental problems and issues associated with geothermal development in northern Nevada are studied to facilitate environmental assessment of potential geothermal resources. The various issues discussed are: environmental geology, seismicity of northern Nevada, hydrology and water quality, air quality, Nevada ecosystems, noise effects, socio-economic impacts, and cultural resources and archeological values. (MHR)

Slemmons, D.B.; Stroh, J.M.; Whitney, R.A. (eds.) [eds.

1980-08-01T23:59:59.000Z

186

Geothermal resources development project: Phase I  

DOE Green Energy (OSTI)

Generic and site specific issues and problems are identified that relate directly to geothermal development in California, including changes in the state permitting process, land use issues, coordination between state entities, and geothermal revenues from BLM leased lands. Also discussed are the formation of working groups, preparation of a newsletter, the economic incentives workshops, and recommendations for future actions. (MHR)

Not Available

1979-09-30T23:59:59.000Z

187

Designing geothermal power plants to avoid reinventing the corrosion wheel  

DOE Green Energy (OSTI)

This paper addresses how designers can take into account, the necessary chemical and materials precautions that other geothermal power plants have learned. Current worldwide geothermal power plant capacity is presented as well as a comparison of steam composition from seven different geothermal resources throughout the world. The similarities of corrosion impacts to areas of the power plants are discussed and include the turbines, gas extraction system, heat rejection system, electrical/electronic systems, and structures. Materials problems and solutions in these corrosion impact areas are identified and discussed. A geothermal power plant design team organization is identified and the efficacy of a new corrosion/materials engineering position is proposed.

Conover, Marshall F.

1982-10-08T23:59:59.000Z

188

Deep Geothermal Well and Power Plant Project Final Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole...

189

Imperial County geothermal development. Summary report, 1979-1982  

DOE Green Energy (OSTI)

The progress of geothermal development during the past three years, county activities in support of geothermal development, and current challenges and future needs of the geothermal industry and the county are summarized. Exploration activities have resulted in the identification and definition of three additional Known Geothermal Resource Areas (KGRAs) during the grant period: the Westmorland KGRA, the East Brawley KGRA, both in 1980, and the South Brawley KGRA in 1982. Exploration is continuing in other areas of the county as well. Three 10 megawatt power plants have begun operations during the grant period: the Magma East Mesa 10 Megawatt Binary Power Plant, the Union/Southern California Edison 10 Megawatt Flash Power Plant in Brawley, both beginning operations in 1980, and the Union/Southern California Edison 10 Megawatt Flash Power Plant at the Salton Sea, initiating operations in 1982. Three commercial power plants are scheduled to begin construction during late 1982 or early 1983. Groundbreaking for the Heber Binary Project is scheduled for November 1982. Site work has already begun for the Heber Flash Power Plant. The Magma 28 megawatt power plant at the Salton Sea is to begin construction in early 1983. Two commercial power plants are in planning stages. (MHR)

Not Available

1982-10-01T23:59:59.000Z

190

SaskPower Geothermal and Self-Generated Renewable Power Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketing Administration Other Agencies You are here Home Savings SaskPower Geothermal and Self-Generated Renewable Power Loan Program (Saskatchewan, Canada) SaskPower...

191

Assessment of the Geothermal Development of Mexico  

DOE Green Energy (OSTI)

Mexico, with a 60 million population has an extension of almost 2 million square kilometers. A large number of volcanoes and hydrothermal manifestations are found in the area, particularly along the Pacific Coast. The electricity needs of this country require its installed capacity to be doubled every eight-and-a-half years. Although its main energy source is the hydrocarbons, new sources of energy are being investigated and developed. In 1973, at Cerro Prieto, a 75 MW plant was inaugurated utilizing geothermal steam, initiating in this way commercial exploitation of this energy. From there on an uninterrupted program of exploration and development has been followed, along and across the country. Probably the region with the highest potential of geothermal energy is the New-volcanic Belt, a zone 300 kilometers wide which crosses the country from the Pacific Coast to the Gulf of Mexico Coast. In this zone, the geothermal fields of Los Azufres, Los Negritos, Ixtlan de los Hervores, La Primavera and San Marcos are located. Sixteen wells have been drilled at Los Azufres, 14 good producers with an average temperature of 275 C. An area of 385 square kilometers is estimated can be exploited for steam production. By 1981, it is expected to have four wellhead turbogenerators rated 6 MW each. Two geothermal wells are now being drilled at La Primavera, with very good results. Temperatures of 275 C have been found at a depth of 800 m in the first well of the Rio Caliente module. The first two wells are now being drilled at Los Humeros geothermal zone. To date, 80 wells have been drilled at Cerro Prieto. In the last group of wells the producing stratum was found at a depth between 2000 and 3000 m. The temperature of this stratum is about 340 C, and each well has an average output of 200 tons per hour. Research is now being conducted to solve the problems encountered of casing corrosion, and for the development of better cementing materials and improved cementing techniques, since the results obtained have not been entirely satisfactory, being the life of the geothermal wells shortened, increasing the cost of power generation. Since its inauguration in 1973, Cerro Prieto has been generating electricity continuously, with increasing annual plant factors, better than 90 percent in the last three years. As of this date, the installed capacity at Cerro Prieto is 150 MW. The installation of a fifth unit of 30 MW is now underway. This unit will utilize low pressure steam flashed from the separated water, now being discarded from units 1 to 4. A flashing plant is currently being installed for this purpose. This means a 20 percent increase without drilling more wells. Future plans are the construction of two more plants of 200 MW each, for a total of 620 MW for May 1983. These units will be operating at slightly higher pressures than the existing ones. It is estimated that a total capacity of 40,000 MW could be installed by the year 2000, using steam obtained from the known geothermal areas of Mexico.

Dominguez, B.; Bermejo, F.; Guiza, J.

1980-12-01T23:59:59.000Z

192

Low Cost Exploration, Testing, And Development Of The Chena Geothermal...  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration,...

193

Risk And Risk Management In Geothermal Exploration And Development...  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Risk And Risk Management In Geothermal Exploration And Development Jump to: navigation, search GEOTHERMAL...

194

Overview of Proposed Geothermal Development in Hawaii  

DOE Green Energy (OSTI)

During the four hours of the public meeting held by the State Department of Business and Economic Development (DBED) in Maui in November 1989, not one of the 200 persons present spoke in favor of geothermal development on the Big Island to supply power to Oahu. However, we were all sure after the meeting that the State would proceed on its course to develop the project in spite of any public concerns. This situation we find incredible considering there are many unanswered questions on a subject of paramount importance to the economic and environmental well being of all of us. Our concerns are well expressed in the editorial of The Maui News, December 10, 1989 . We wish to set the record straight with some facts from an economic, financial and utility planning viewpoint, recognizing also the potentially serious social, health and other environmental impacts.

None

1990-02-15T23:59:59.000Z

195

Alaska: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

196

Oregon: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

197

Washington: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-01-01T23:59:59.000Z

198

Near-Term Developments in Geothermal Drilling  

DOE Green Energy (OSTI)

The DOE Hard Rock Penetration program is developing technology to reduce the costs of drilling geothermal wells. Current projects include: R & D in lost circulation control, high temperature instrumentation, underground imaging with a borehole radar insulated drill pipe development for high temperature formations, and new technology for data transmission through drill pipe that can potentially greatly improve data rates for measurement while drilling systems. In addition to this work, projects of the Geothermal Drilling Organization are managed. During 1988, GDO projects include developments in five areas: high temperature acoustic televiewer, pneumatic turbine, urethane foam for lost circulation control, geothermal drill pipe protectors, an improved rotary head seals.

Dunn, James C.

1989-03-21T23:59:59.000Z

199

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Comparison of elementary geothermal-brine power-production processes  

SciTech Connect

From applied technology geothermal committee meeting; Idaho Falls, Idaho, USA (7 Aug 1973). A comparison of three simple geothermal power- production systems shows that the flashed steam and the compound systems are favored for use with high-temperature brines. The binary system becomes economically competitive only when used on low-temperature brines (enthalpies less than 350 Btu/lb). Geothermal power appears to be economically attractive even when low-temperature brines are used. (auth)

Green, M.A.; Laird, A.D.K.

1973-08-01T23:59:59.000Z

202

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

203

Geothermal: Sponsored by OSTI -- Development of Models to Simulate...  

Office of Scientific and Technical Information (OSTI)

Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems...

204

Geothermal energy development in the Philippines: An overview  

Science Conference Proceedings (OSTI)

The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity has been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.

Sussman, D. [Philippine Geothermal, Inc., Makati (Philippines)] [Philippine Geothermal, Inc., Makati (Philippines); Javellana, S.P. [Philippine National Oil Co.--Energy Development Corp., Fort Bonifacio (Philippines)] [Philippine National Oil Co.--Energy Development Corp., Fort Bonifacio (Philippines); Benavidez, P.J. [National Power Corp., Biliman, Quezon City (Philippines)] [National Power Corp., Biliman, Quezon City (Philippines)

1993-10-01T23:59:59.000Z

205

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

206

Geothermal power economics: an annotated bibliography. Volume I  

DOE Green Energy (OSTI)

Volume 1 contains annotations and abstracts of thirty-two papers on geothermal exploration, worldwide geothermal development, geothermal by-products, economic aspects, and environmental and legal aspects. A bibliography of 192 citations is also included. Individual items were previously indexed for the energy data base. (LBS)

El-Ramly, N.; Peterson, R.; Seo, K.K.

1974-02-01T23:59:59.000Z

207

Geothermal Energy Research Development and Demonstration Program  

DOE Green Energy (OSTI)

The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

Not Available

1980-06-01T23:59:59.000Z

208

Regulation of geothermal energy development in Colorado  

Science Conference Proceedings (OSTI)

The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

Coe, B.A.; Forman, N.A.

1980-01-01T23:59:59.000Z

209

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

210

Geothermal policy development program: expediting the local geothermal permitting process  

DOE Green Energy (OSTI)

For a number of years, concerns have been raised about the length of time and the complexity involved in obtaining required permits in order to develop the geothermal resource at the Geysers. Perhaps the most important factor is jurisdiction. At the Geysers, all three levels of government - local, state, and federal - exercise significant authority over various aspects of geothermal development. In addition, several agencies within each governmental level play an active role in the permitting process. The present study is concerned primarily with the local permitting process, and the ways in which this process could be expedited. This report begins by looking at the local role in the overall permitting process, and then reviews the findings and conclusions that have been reached in other studies of the problem. This is followed by a case study evaluation of recent permitting experience in the four Geysers-Calistoga KGRA counties, and the report concludes by outlining several approaches to expediting the local permitting process.

Not Available

1981-07-01T23:59:59.000Z

211

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

212

Use of Geothermal Energy for Electric Power Generation  

DOE Green Energy (OSTI)

The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

Mashaw, John M.; Prichett, III, Wilson (eds.)

1980-10-23T23:59:59.000Z

213

Geothermal project summaries. Geothermal energy research, development and demonstration program  

DOE Green Energy (OSTI)

Summaries of all Division of Geothermal Energy supported projects for which contracts have been executed are compiled. Each summary includes pertinent statistical data for that project and an abstract summarizing the project plans and accomplishments. The projects summarized fall into six categories: engineering research and development, resource exploration and assessment, hydrothermal technology applications, advanced technology applications, utilization experiments, and environmental control and institutional studies. (MHR)

Not Available

1976-09-01T23:59:59.000Z

214

Supply of geothermal power from hydrothermal sources: A study of the cost of power in 20 and 40 years  

DOE Green Energy (OSTI)

This study develops estimates for the amount of hydrothermal geothermal power that could be on line in 20 and 40 years. This study was intended to represent a snapshot'' in 20 and 40 years of the hydrothermal energy available for electric power production should a market exist for this power. This does not represent the total or maximum amount of hydrothermal power, but is instead an attempt to estimate the rate at which power could be on line constrained by the exploration, development and support infrastructure available to the geothermal industry, but not constrained by the potential market for power.

Petty, S. (Petty (Susan) Consulting, Solano Beach, CA (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States)); Long, W.P. (Carlin Gold Co., Inc., Grass Valley, CA (United States)); Geyer, J. (Geyer (John) and Associates, Vancouver, WA (United States))

1992-11-01T23:59:59.000Z

215

Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981  

DOE Green Energy (OSTI)

The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

Not Available

1981-01-01T23:59:59.000Z

216

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

217

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

DOE Green Energy (OSTI)

This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

Ashwood, A.; Bharathan, D.

2011-03-01T23:59:59.000Z

218

Legal issues related to geopressured-geothermal resource development. Geopressured-geothermal technical paper No. 1  

DOE Green Energy (OSTI)

The legal aspects of geopressured-geothermal development in Texas are discussed. Many of the legal issues associated with geopressured-geothermal development in Texas are unsettled and represent areas of developing policy and law. Lawsuits can be expected either before or shortly after the first commercial development of geopressured-geothermal resources.

Not Available

1979-07-01T23:59:59.000Z

219

Geothermal Developments at San Diego Gas & Electric  

SciTech Connect

In 1972, the first well flow tests were conducted by NARCO and Magma Power to determine reservoir characteristics such as mass flow, temperature, stability, and mineral content of geothermal brine from the exploration wells. The results of these tests were encouraging. Brine temperatures were relatively hot, and salinity was less than previously experienced. Results were sufficient to justify further testing of the process design to determine an appropriate energy conversion cycle for a power plant. Both the flash cycle and binary cycle were considered. In the binary cycle, geothermal heat is transferred from hot brine to a secondary working fluid by means of heat exchangers. The heated secondary fluid expands to drive a turbine-generator. The flash cycle was rejected because the high measured noncondensible gas content of the brines seriously reduced the cycle efficiency. The reduced salinity was expected to result in reduced scaling characteristics. For these reasons the binary cycle was selected for initial design and field testing. In 1973, a series of field tests was conducted to support the design of the binary conversion cycle. Unfortunately, a rapid decline in heat exchanger performance resulting from scaling demonstrated a need to reevaluate the cycle design. A flash/binary process was chosen as the basis for facility design modifications and additional field testing. Design modifications were to use as much of the original design as possible in order to minimize cost. In March of 1974, SDG&E resumed field testing at Niland using reduced size models of the new flash/binary design. The 1974 test program confirmed the decision to modify the design, construction, and operation of the GLEF in a four-stage, flash/binary cycle configuration. In May of 1975, the design was completed and construction of the GLEF began. Startup operations were initiated and in June 1976 the facility was dedicated. In the fall of 1976 while debugging and initial operation was being accomplished, a test program was developed to provide additional basic information necessary for the design of a commercial flash/binary geothermal plant. The primary objective of the program was to develop binary heat exchanger heat design data under a variety of conditions.

Anastas, George; Hoaglin, Gregory J.

1980-12-01T23:59:59.000Z

220

Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants  

DOE Green Energy (OSTI)

An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

DiPippo, R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development Of Genetic Occurrence Models For Geothermal Prospecting | Open  

Open Energy Info (EERE)

Development Of Genetic Occurrence Models For Geothermal Prospecting Development Of Genetic Occurrence Models For Geothermal Prospecting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Development Of Genetic Occurrence Models For Geothermal Prospecting Details Activities (1) Areas (1) Regions (0) Abstract: Exploration strategies based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust, and foster the conditions for shallow hydrothermal circulation or enhanced geothermal systems (EGS) exploration, are required to search efficiently for 'blind' geothermal resources. We propose a genetically based screening protocol to assess potentially prospective geothermal resources, beginning at the plate boundary scale and progressively focusing in on the scale of a producing

222

Development of a geothermal acoustic borehole televiewer  

DOE Green Energy (OSTI)

Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

Heard, F.E.; Bauman, T.J.

1983-08-01T23:59:59.000Z

223

Support research for development of improved geothermal drill bits  

DOE Green Energy (OSTI)

Progress in background research needed to develop drill bits for the geothermal environment is reported. Construction of a full-scale geothermal wellbore simulator and geothermal seal testing machine was completed. Simulated tests were conducted on full-scale bits. Screening tests on elastometric seals under geothermal conditions are reported. (JGB)

Hendrickson, R.R.; Barker, L.M.; Green, S.J.; Winzenried, R.W.

1977-06-01T23:59:59.000Z

224

Sino Icelandic Green Energy Geothermal Development Corporation | Open  

Open Energy Info (EERE)

Icelandic Green Energy Geothermal Development Corporation Icelandic Green Energy Geothermal Development Corporation Jump to: navigation, search Name Sino-Icelandic Green Energy Geothermal Development Corporation Place China Sector Geothermal energy Product China-based geothermal development company. References Sino-Icelandic Green Energy Geothermal Development Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sino-Icelandic Green Energy Geothermal Development Corporation is a company located in China . References ↑ "Sino-Icelandic Green Energy Geothermal Development Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Sino_Icelandic_Green_Energy_Geothermal_Development_Corporation&oldid=351117"

225

Geothermal Power and Interconnection: The Economics of Getting to Market  

Science Conference Proceedings (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

226

Materials selection guidelines for geothermal power systems. First edition  

DOE Green Energy (OSTI)

Nine potential power cycles are defined and diagrammed for the generation of electricity from geothermal fluids. General fluid properties that influence the applicability of power cycles to a particular geothermal resource are discussed. The corrosivity of individual process streams in power cycles is described based on variations in chemical composition and temperature. Results of materials performance tests are analyzed based on the chemical composition of the corrosive medium and physical factors such as temperature, duration of exposure, and fluid velocity. The key chemical components in geothermal fluids that are significant in determining corrosivity are identified. Both summarized and detailed results of materials performance tests in U.S. liquid-dominated resources are given. Seven U.S. liquid-dominated KGRA's are classified according to relative corrosiveness and their key chemical components are defined. The various forms and mechanisms of corrosive attack that can occur in geothermal process streams are described. The application of nonmetallic materials in geothermal environments is discussed. The appendices contain information on (1) operating experience at geothermal power plants, (2) corrosion in desalination facilities, (3) reliability of geothermal plants, (4) elastomeric materials, (5) comparative alloy costs, and (6) geothermal equipment manufacturers. (MHR)

DeBerry, D.W.; Ellis, P.F.; Thomas, C.C.

1978-09-01T23:59:59.000Z

227

Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST  

SciTech Connect

The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.

Schulte, S.C.

1977-09-01T23:59:59.000Z

228

Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California  

DOE Green Energy (OSTI)

The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

Not Available

1976-10-01T23:59:59.000Z

229

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

230

Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware  

DOE Green Energy (OSTI)

This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

Mancus, J.; Perrone, E.

1982-08-01T23:59:59.000Z

231

Geothermal Field Developments in Iceland  

SciTech Connect

The exploration and research carried out in conjunction with the exploitation of the various geothernal fields has vastly deepened our understanding of the hydrothermal systems in Inceland. They have proved to be more diverse with respect to physical state, chemical composition, hydrological properties, and geological control than previously thought. The purpose of the present paper is to review the present state of knowledge regarding the Icelandic geothermal systems, with emphasis on the production and reservoir engineering aspects.

Palmason, G.; Stefansson, V.; Thorhallsson, S.; Thorsteinsson, T.

1983-12-15T23:59:59.000Z

232

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program < Back Eligibility Agricultural Commercial Industrial Residential Maximum Rebate 1,000/ton Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount $800 - $1,000/ton Provider Oklahoma Municipal Power Authority Program funds currently exhausted, additional funds have been requested. Visit the program website for the most up to date information on fund availability and to register for the waiting list for this program. The Oklahoma Municipal Power Authority (OMPA) and the Oklahoma Department of Commerce currently offer the Oklahoma Comfort Program for geothermal

233

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

SciTech Connect

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

1976-04-01T23:59:59.000Z

234

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

DOE Green Energy (OSTI)

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

Not Available

1976-04-01T23:59:59.000Z

235

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

236

Comparison of Geothermal Power Conversion Cycles  

SciTech Connect

Geothermal power conversion cycles are compared with respect to recovery of the available wellhead power. The cycles compared are flash steam, in which steam turbines are driven by steam separated from one or more flash states; binary, in which heat is transferred from flashed steam to an organic turbine cycle; and dual steam, in which two-phase expanders are driven by the flashing steam-brine mixture and steam turbines by the separated steam. Expander efficiencies assumed are 0.7 for steam turbines, 0.8 for organic turbines, and 0.6 for two-phase expanders. The fraction of available wellhead power delivered by each cycle is found to be about the same at all brine temperatures: 0.65 with one stage and 0.7 with four stages for dual stream; 0.4 with one stage and 0.6 with four stages for flash steam; 0.5 for binary; and 0.3 with one stage and 0.5 with four stages for flash binary.

Elliott, David G.

1976-12-01T23:59:59.000Z

237

Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.  

DOE Green Energy (OSTI)

The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

Taranik, James V.; Oppliger, Gary; Sawatsky, Don

2002-04-10T23:59:59.000Z

238

Basic research needed for the development of geothermal energy  

DOE Green Energy (OSTI)

Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

Aamodt, R.L.; Riecker, R.E.

1980-10-01T23:59:59.000Z

239

Five-megawatt geothermal-power pilot-plant project  

DOE Green Energy (OSTI)

This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

Not Available

1980-08-29T23:59:59.000Z

240

Fluid Temperature and Power Estimation of Geothermal Power Plants by a Simplified Numerical Model  

Science Conference Proceedings (OSTI)

This paper presents an estimation of power generated in a given geothermal heat pipe system. Such power generation is basically controlled by the ultimate temperature of fluid flowing through the u-shape pipes and could also be affected by power consumption ... Keywords: energy, geothermal power plant, numerical model, heat conduction, optimum design

Ge Ou; Itai Einav

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nevada manufacturer installing geothermal power plant | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

242

Hybrid Cooling Systems for Low-Temperature Geothermal Power Production  

NLE Websites -- All DOE Office Websites (Extended Search)

LLC. Contract No. DE-AC36-08GO28308 Hybrid Cooling Systems for Low-Temperature Geothermal Power Production Andrea Ashwood and Desikan Bharathan Technical Report NREL...

243

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

at www.nrel.govpublications. Contract No. DE-AC36-08GO28308 Hybrid Cooling for Geothermal Power Plants Final ARRA Project Report Desikan Bharathan Technical Report NREL...

244

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

DOE Green Energy (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

245

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

246

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

247

Geothermal development plan: Graham/Greenlee Counties  

DOE Green Energy (OSTI)

The Graham/Greenlee County Area Development Plan evaluated the region-wide market potential for utilizing geothermal energy. The study identified five potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F). In addition, seven areas are inferred to contain higher temperature resources with the Clifton Hot Springs area having electrical potential. Geothermal resources are found to occur near Safford and Clifton, the two major population centers. Future population growth in the two counties is expected to average less than two percent per year over the next 40 years. Growth in the mining, trade and services economic sectors provide opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate for urban needs, though agricultural and mineral water use may be limited in the future. The study also contains a preliminary economic analysis for two district heating systems as well as a section matching geothermal resources to potential users.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

248

Status of Nevada Geothermal Resource Development - Spring 2011 | Open  

Open Energy Info (EERE)

Resource Development - Spring 2011 Resource Development - Spring 2011 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Nevada Geothermal Resource Development - Spring 2011 Abstract Recent increases in geothermal exploration and power plant construction in Nevada are the first significant activities since the Steamboat II/III and Brady plants came on line in 1992.Exploration activity on existing projects grew between 2005 and 2010, culminating in the construction of several new power plants. The BLM's 2007 lease auction (first since the 2005 Energy Policy Act revisions) opened the door to exploration on green field properties. The number of wells permitted and drilled remained low from 1994 through 2003, but rose sharply to peak in 2009.However, over 760,000

249

Development of drilling foams for geothermal applications  

DOE Green Energy (OSTI)

The use of foam drilling fluids in geothermal applications is addressed. A description of foams - what they are, how they are used, their properties, equipment required to use them, the advantages and disadvantages of foams, etc. - is presented. Geothermal applications are discussed. Results of industry interviews presented indicate significant potential for foams, but also indicate significant technical problems to be solved to achieve this potential. Testing procedures and results of tests on representative foams provide a basis for work to develop high-temperature foams.

McDonald, W.J.; Remont, L.J.; Rehm, W.A.; Chenevert, M.E.

1980-01-01T23:59:59.000Z

250

Borehole survey instrumentation development for geothermal applications  

DOE Green Energy (OSTI)

The creation and subsequent study of hot dry rock geothermal reservoirs requires sophisticated tools and instruments that can function for relatively long periods of time in the hostile downhole environment. Detection of fracture dimensions and orientation of the geothermal reservoir is critical for the successful completion of the hot dry rock energy extraction system. The development of downhole instrumentation capable of characterizing the hydraulic-fracture systems must emphasize reliability of measuring devices and electro-mechanical components to function properly at borehole temperature exceeding 275/sup 0/C and pressures of 69 MPa (10,000 psi).

Dennis, B.R.

1980-01-01T23:59:59.000Z

251

High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation  

DOE Green Energy (OSTI)

Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that on a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.

Grijalva, R. L.; Sanemitsu, S. K.

1978-11-01T23:59:59.000Z

252

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

253

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

DOE Green Energy (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

254

Geothermal Logging Instrumentation Development Program Plan (U)  

DOE Green Energy (OSTI)

This Geothermal Logging Instrumentation Development Program Plan outlines a nine-year, industry-based program to develop and apply high temperature instrumentation technology which is needed by the borehole logging industry to serve the rapidly expanding geothermal market. Specifically, this program will upgrade existing materials and sondes to improve their high-temperature reliability. To achieve this goal specialized equipment such as high temperature electronics, cables and devices for measuring formation temperature, flow rate, downhole pressure, and fractures will be developed. In order to satisfy critical existing needs, the near-term (FY80) goal is for operation at or above 275/sup 0/C in pressures up to 48.3 MPa (7,000 psi). The long-term (FY84) goal is for operation up to 350/sup 0/C and 138 MPa (20,000 psi). This program plan has been prepared for the Department of Energy's Division of Geothermal Energy (DGE) and is a portion of the DGE long-range Geothermal Well Technology Program.

Veneruso, A.F.; Polito, J.; Heckman, R.C.

1978-08-01T23:59:59.000Z

255

Financing geothermal resource development in the Pacific Region states  

DOE Green Energy (OSTI)

State and federal tax treatment as an incentive to development and non-tax financial incentives such as: the federal geothermal loan guarantee program, the federal geothermal reservoir insurance, and state financial incentives are discussed. (MHR)

Not Available

1978-08-15T23:59:59.000Z

256

Site specific analysis of geothermal development. Volume 1. Summary report  

SciTech Connect

MITRE/Metrek has analyzed development scenarios for 37 hydrothermal and geopressured prospects in the United States to assist DOE's Division of Geothermal Energy in mission-oriented planning of geothermal resource development. A summary of the site-specific analyses is presented with particular emphasis on possible recommendations for the Federal Geothermal Program.

Leigh, J.; Cohen, A.; Jacobsen, W.; Trehan, R.

1978-08-01T23:59:59.000Z

257

Evaluation of the Geothermal Public Power Utility Workshops in California  

DOE Green Energy (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

258

Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market  

SciTech Connect

We are assembled today to discuss the opportunities and challenges for expanding the sales of geothermally-generated electric power in a competitive utility market. First, however, I would like to note that growth in geothermal sales might not be a germane topic were it not for the early participation in the development of the geothermal industry by utilities themselves. Without their contributions to research and development, environmental breakthroughs, and, perhaps, above all, their early use of geothermal power and continuing investment in the industry, we might still be at ''Square One''--confronting inhibiting doubts of the energy utilization industry. I feel certain that utility involvement has served to inspire far greater confidence in the reliability of the resource on the part of other utilities and other investors than could have been generated by federal programs and/or the resource developer arm of the geothermal community. While acknowledging that we have not completely resolved all problems which geothermal energy faced 20 years ago--confidence, institutional restraints, environmental compliance, and technical and economic uncertainties--this audience and our predecessors have addressed them, individually and collectively, and, to a large extent, we have surmounted them. But it took generation or contracted purchase of geothermal power by utilities--whatever their discrete reasons for doing so--to demonstrate to the public and government regulators that there is a place for geothermal power in the service areas of large utilities. In addition, in using an alternative fuel, the participating utilities have already exposed themselves to changing concepts and practices in their industry.

Mock, John E.

1992-03-24T23:59:59.000Z

259

Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market  

DOE Green Energy (OSTI)

We are assembled today to discuss the opportunities and challenges for expanding the sales of geothermally-generated electric power in a competitive utility market. First, however, I would like to note that growth in geothermal sales might not be a germane topic were it not for the early participation in the development of the geothermal industry by utilities themselves. Without their contributions to research and development, environmental breakthroughs, and, perhaps, above all, their early use of geothermal power and continuing investment in the industry, we might still be at ''Square One''--confronting inhibiting doubts of the energy utilization industry. I feel certain that utility involvement has served to inspire far greater confidence in the reliability of the resource on the part of other utilities and other investors than could have been generated by federal programs and/or the resource developer arm of the geothermal community. While acknowledging that we have not completely resolved all problems which geothermal energy faced 20 years ago--confidence, institutional restraints, environmental compliance, and technical and economic uncertainties--this audience and our predecessors have addressed them, individually and collectively, and, to a large extent, we have surmounted them. But it took generation or contracted purchase of geothermal power by utilities--whatever their discrete reasons for doing so--to demonstrate to the public and government regulators that there is a place for geothermal power in the service areas of large utilities. In addition, in using an alternative fuel, the participating utilities have already exposed themselves to changing concepts and practices in their industry.

Mock, John E.

1992-03-24T23:59:59.000Z

260

United Nations geothermal activities in developing countries  

SciTech Connect

The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

Beredjick, N.

1987-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Imperial County geothermal development. Quarterly report, October 1-December 31, 1983  

SciTech Connect

The highlights of geothermal development in Imperial County during October, November, and December 1983 are discussed. Topics include the status of geothermal development projects in the County, geothermal staff activities and research projects, and other geothermal-related topics.

1984-01-01T23:59:59.000Z

262

Imperial County geothermal development quarterly report, July 1-September 30, 1983  

SciTech Connect

The highlights of geothermal development in Imperial County during July, August, and September 1983 are discussed. Topics include the status of geothermal development projects in the county, geothermal staff activities and research projects, and other geothermal-related topics.

1983-10-01T23:59:59.000Z

263

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

The results of an analytical effort to determine the cost effectiveness of hybrid geothermal/fossil-fuel electrical-power generating stations. The analysis is directed at combining hydrothermal and coal energy in a Rankine steam cycle, for electrical power generation for the City of Burbank, California. This effort develops a methodology for hybrid power-plant cost analysis so that preliminary plant designs can be optimized as a function of specific site conditions and characteristics. It also defines cost-optimized site-specific plant designs for four potential sites: Roosevelt Hot Springs, Utah, Coso Thermal Area, California, East Mesa, California, and Long Valley, California. These optimized designs are compared for the costs, geothermal-resource utilization, and fossil fuel saved. The results indicate that development of geothermal resources to support a hybrid power plant are favorable for at least two of the four sites.

Anno, G.H.; Dore, M.A.; Grijalva, R.L.; Lang, G.D.; Thomas, F.J.

1977-04-01T23:59:59.000Z

264

Geothermal development plan: northern Arizona counties  

DOE Green Energy (OSTI)

The Northern Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. This study identified five potential geothermal resource areas, four of which have low temperature (<90{sup 0}C, 194{sup 0}F) potential and one possible igneous system. The average population growth rate in the Northern Counties is expected to be five percent per year over the next 40 years, with Mohave and Yavapai Counties growing the fastest. Rapid growth is anticipated in all major employment sectors, including trade, service, manufacturing, mining and utilities. A regional energy use analysis is included, containing information on current energy use patterns for all user classes. Water supplies are expected to be adequate for expected growth generally, though Yavapai and Gila Counties will experience water deficiencies. A preliminary district heating analysis is included for the towns of Alpine and Springerville. Both communities are believed located on geothermal resource sites. The study also contains a section identifying potential geothermal resource users in northern Arizona.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

265

Geothermal power plants of Japan: a technical survey of existing and planned installations. Report No. CATMEC/9  

SciTech Connect

The technical features of the existing and planned geothermal power plants in Japan are surveyed. A description is given of the Geothermal Energy Research and Development Co., Ltd. (GERD) which has capabilities in all areas of geothermal power development, from exploratory geological activities through construction and operation of the plants. The survey includes reports on four types of plants: natural, dry steam; separated steam or ''single flash;'' separated steam/flash or ''double flash;'' and binary fluid. For each geothermal power plant, the following are included or discussed: exploration and geology of the site; wells and gathering system; turbine-generator; condenser, gas extractor and cooling tower; economic data; environmental effects; and plant operations. Many tables and figures are included, and a summary is given of the geothermal resource utilization efficiency for each operating plant. Promising areas of new development are listed with estimates of potential capacity.

DiPippo, R.

1978-03-01T23:59:59.000Z

266

Geothermal power plants of Japan: a technical survey of existing and planned installations. Report No. CATMEC/9  

DOE Green Energy (OSTI)

The technical features of the existing and planned geothermal power plants in Japan are surveyed. A description is given of the Geothermal Energy Research and Development Co., Ltd. (GERD) which has capabilities in all areas of geothermal power development, from exploratory geological activities through construction and operation of the plants. The survey includes reports on four types of plants: natural, dry steam; separated steam or ''single flash;'' separated steam/flash or ''double flash;'' and binary fluid. For each geothermal power plant, the following are included or discussed: exploration and geology of the site; wells and gathering system; turbine-generator; condenser, gas extractor and cooling tower; economic data; environmental effects; and plant operations. Many tables and figures are included, and a summary is given of the geothermal resource utilization efficiency for each operating plant. Promising areas of new development are listed with estimates of potential capacity.

DiPippo, R.

1978-03-01T23:59:59.000Z

267

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

268

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

269

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

270

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

271

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

272

Geothermal Technologies Program: Washington  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

273

Geothermal Technologies Program: Alaska  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

274

Geothermal Technologies Program: Oregon  

DOE Green Energy (OSTI)

This fact sheets provides a summary of geothermal potential, issues, and current development in Oregon. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

Not Available

2005-02-01T23:59:59.000Z

275

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

276

Railroad Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Power Plants (0) Projects (0) Activities (1) NEPA(0) Geothermal Area Profile Location Nevada Exploration Region Northern Basin and Range Geothermal Region GEA Development Phase...

277

Geothermal development in the U.S.A. and future directions  

DOE Green Energy (OSTI)

The geothermal industry presently has an operating generation capacity of about 2,300 megawatts and generates about 17 billion kilowatt-hours per year in the United States. Although the domestic market is stagnant due to restructuring of the electricity industry and to the very low competing price of natural gas, the industry is doing well by developing geothermal fields and power plants in the Philippines and Indonesia. The industry strongly supports the Department of Energy research program to develop new and improved technology and help lower the costs of geothermal power generation.

Wright, P.M. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.

1998-10-01T23:59:59.000Z

278

Geothermal energy, research, development and demonstration program. Third annual report  

DOE Green Energy (OSTI)

The following topics are covered: the geothermal resource potential in the U.S., national geothermal utilization estimates, the Federal geothermal development strategy and program, Federal progress and achievements FY 1978, regional progress FY 1978, and Federal program plans for FY 1979. (MHR)

Not Available

1979-03-01T23:59:59.000Z

279

Geothermal Developers' Checklist | Open Energy Information  

Open Energy Info (EERE)

Developers' Checklist Developers' Checklist Jump to: navigation, search Tool Summary Name: Geothermal Developers' Checklist Agency/Company /Organization: National Renewable Energy Laboratory Partner: Geothermal Technologies Office Sector: Energy, Land, Water Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects, Create Early Successes Resource Type: Dataset, Guide/manual User Interface: Website Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network (OSTI)

costs. #12;15 Pre-feasibility investigation of water and energy options utilising geothermal energy program to investigate and encourage the use of geothermal and waste heat resources for heat-driven pre with an economic, technical and market analysis of various scales of technology application where geothermal energy

Scheel, David

282

Baca geothermal demonstration project. Power plant detail design document  

DOE Green Energy (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

283

Environmental development plan: geothermal energy systems  

DOE Green Energy (OSTI)

To ensure that environmental, health, and safety (EH and S) considerations are addressed adequately in the technology decision making process, the Environmental Development Plan (EDP) identifies and evaluates EH and S concerns; defines EH and S research and related assessments to examine or resolve the concerns; provides a coordinated schedule with the technology program for required EH and S research and developement; and indicates the timing for Environmental Assessments, Environmental Impact Statements, Environmental Readiness Documents, and Safety Analysis Reports. This EDP for geothermal energy systems covers all current and planned activities of the DOE Geothermal Energy Systems. Hydrothermal convection systems, geopressured systems, and hot-dry-rock systems are covered. Environmental concerns and requirements for resolution of these concerns are discussed at length. (MHR)

Not Available

1979-08-01T23:59:59.000Z

284

Development Wells At Raft River Geothermal Area (2004) | Open Energy  

Open Energy Info (EERE)

Development Wells At Raft River Geothermal Area (2004) Development Wells At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Development Wells Activity Date 2004 Usefulness not indicated DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

285

International data exchange for geothermal energy power production  

SciTech Connect

An approach to the problem of economic data handling and dissemination of geothermal information is the establishment of an international data exchange cooperative program with the idea to avoid unnecessary and expensive duplication of research and development effort.

Phillips, S.L.

1978-04-01T23:59:59.000Z

286

Geothermal energy: a brief assessment  

DOE Green Energy (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

287

Geothermal energy: a brief assessment  

SciTech Connect

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

288

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

289

The Power and Potential of Geothermal Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy October 3, 2011 - 7:03pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs As Secretary Chu noted this weekend, America finds itself in a fierce global competition for the clean energy jobs and industries of the future - with countries like China, Germany and others investing tens of billions of dollars to expand their domestic renewable energy industry and capture the lead in a rapidly growing field. In this context, the Department of Energy's loan programs have played a crucially important role in helping the United States compete, by providing affordable financing to innovative projects that might not otherwise happen but that hold the potential to seed entire new industries for U.S.

290

Economic Study for Geothermal Steam Production of Electric Power  

SciTech Connect

This report presents the results of economic analyses of geothermal electric power production facilities using selected geothermal resource temperature characteristics and relates the cost of power and rate of return on investment thus obtained to those being experienced at present and as projected from nuclear and fossil-fuel generating facilities. The results are set down in a manner to permit easy economic comparison of the various options of electric power generation. It is intended that this study will be a management assist in evaluating the rate of return on invested project capital and the resulting cost of electricity generated from geothermal resources as related to existing alternative generation methods. The resulting electric energy cost is compared with the selected alternative electric generation and their costs.

1977-03-18T23:59:59.000Z

291

An Overview of Geothermal Development in Tiwi and Mak-Ban, Philippines  

SciTech Connect

Commercial-scale geothermal development in the Philippines began i n 1972 with the completion of the discovery well in the southeastern portion of Luzon Island. A second geothermal anomaly was discovered i n 1975 on the southern flank of Mt . Makiling, forty miles south of Manila. Both fields are being developed and operated by Philippine Geothermal, Inc. (PGI) , a wholly-owned subsidiary of Union Oil Company of California. Currently the Philippines ranks second worldwide in installed geothermal-powered electrical generation capacity with 443 MW and PGI has developed 440 PW of the 443 MW country total. Additional generation capacity is planned or under construction in both fields. Over 1.9 billion kilowatt-hours of electrical power have been produced to date. This represents a savings of approximately three million barrels of imported fuel oil for power generation.

Raasch, G.D.

1980-12-16T23:59:59.000Z

292

EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV Summary...

293

BACA Project: geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

Not Available

1982-12-01T23:59:59.000Z

294

Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report  

DOE Green Energy (OSTI)

The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.

Matthews, K.M.

1983-07-01T23:59:59.000Z

295

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

296

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. This report explores the feasible limits on efficiency of a plant given practical limits on equipment performance and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. (Here feasible is intended to mean reasonably achievable and not cost-effective.) No direct economic analysis has been made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered in this report. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, this report presents a standard of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies. 18 refs., 16 figs., 1 tab.

Bliem, C.J.; Mines, G.L.

1991-01-01T23:59:59.000Z

297

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Authors Ileana M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford University; 2013 Published PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University;, 2013 DOI Not Provided Check for DOI availability: http://crossref.org

298

Site-specific analysis of hybrid geothermal/fossil power plants  

DOE Green Energy (OSTI)

A preliminary economic analysis of a hybrid geothermal/coal power plant has been completed for four geothermal Resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. Brown University provided the theoretical basis for the hybrid study. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant. Costing methods followed recommendations issued by the Energy research and Development Administration.

Not Available

1977-06-01T23:59:59.000Z

299

Northern California Power Association--Shell Oil Company Geothermal Project No. 2: energy and materials resources  

DOE Green Energy (OSTI)

The potential environmental impact of the energy and material resources expended in site preparation, construction, operation, maintenance, and abandonment of all phases of the Northern California Power Association--Shell Geothermal Project in The Geysers--Calistoga Known Geothermal Resource Area is described. The impact of well field development, operation, and abandonment is insignificant, with the possible exception of geothermal resource depletion due to steam withdrawal from supply wells during operation. The amount of resource renewal that may be possible through reinjection is unknown because of uncertainties in the exact amount of heat available in the steam supply field. Material resources to be used in construction, operation, and abandonment of the power plant and transmission lines are described. Proposed measures to mitigate the environmental impacts from the use of these resources are included. Electric power supply and demand forecasts to the year 2005 are described for the area served by the NCPA.

Hall, C.H.; Ricker, Y.E.

1979-01-01T23:59:59.000Z

300

Geothermal power plants of the United States: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

The development of geothermal energy as a source of electric power in the United States is reviewed. A thorough description is given of The Geysers geothermal power project in northern California. The recent efforts to exploit the hot-water resources of the Mexicali-Imperial Rift Valley are described. Details are given concerning the geology of the several sites now being used and for those at which power plants will soon be built. Attention is paid to the technical particulars of all existing plants, including wells, gathering systems, energy conversion devices, materials, environmental impacts, economics and operating characteristics. Specifically, plants which either exist or are planned for the following locations are covered: The Geysers, CA; East Mesa, CA; Heber, CA; Roosevelt Hot Springs, UT; Valles Caldera, NM; Salton Sea, CA; Westmorland, CA; Brawley, CA; Desert Peak, NV; and Raft River, ID. The growth of installed geothermal electric generating capacity is traced from the beginning in 1960 and is projected to 1984.

DiPippo, R.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Case studies of geothermal leasing and development on federal lands  

DOE Green Energy (OSTI)

In response to a widely expressed need to examine the impact of the federal regulatory system on the rate of geothermal power development, the Department of Energy-Division of Geothermal Energy (DGE) has established a Streamlining Task Force in cooperation with appropriate federal agencies. The intent is to find a way of speeding development by modification of existing laws or regulations or by better understanding and mechanization of the existing ones. The initial focus was on the leasing and development of federal lands. How do the existing processes work? Would changes produce positive results in a variety of cases? These are questions which must be considered in a national streamlining process. This report presents case studies of federal leasing actions on seven diverse locations in the western region. Characteristics of existing high geothermal potential areas are quite diverse; geography, environment, industry interest and the attitudes and activities of the responsible federal land management agencies and the interested public vary widely. Included are descriptions of post and current activities in leasing exploration and development and discussions of the probable future direction of activities based on current plans. Implications of these plans are presented. The case studies were based on field interviews with the appropriate State and District BLM officer and with the regional forester's office and the particular forest office. Documentation was utilized to the extent possible and has been included in whole or in part in appendices as appropriate.

Trummel, Marc

1978-09-29T23:59:59.000Z

302

Exergetic Performance Investigation of Medium-Low Enthalpy Geothermal Power Generation  

Science Conference Proceedings (OSTI)

The renewable energy sources are becoming attractive solutions for clean and sustainable energy needs. Geothermal energy is increasingly contributing to the power supply worldwide. In evaluating the efficiency of energy conservation systems, the most ... Keywords: geothermal energy, power generation, binary cycle, exergetic efficiency, exergy analysis, geothermal power plant

Junkui Cui; Jun Zhao; Chuanshan Dai; Bin Yang

2009-10-01T23:59:59.000Z

303

Geothermal materials development at Brookhaven National Laboratory  

DOE Green Energy (OSTI)

As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

Kukacka, L.E.

1997-06-01T23:59:59.000Z

304

Honey Lake hybrid geothermal wood residue power plant, Lassen County, California  

DOE Green Energy (OSTI)

The feasibility of a proposed 50 MW (gross) electric power project located near Wendel, California about 25 miles east of Susanville was studied. The project would be the first commercial power plant to combine the use of geothermal energy and wood fuel for power production. Wood fuel consisting primarily of various forms of forest management residues would be processed and partially dehydrated with geothermal energy prior to combustion. Geothermal energy would also be used for boiler feedwater heating and combustion air preheating. The study defines the range of site-specific benefits and economics of using wood fuel and moderate temperature geothermal energy, both of which are abundant and often located in proximity at many locations in the western United States. The study results document conclusively that overall project economics can be very favorable and that in addition to providing an important source of electric power, many benefits to forest land managers, local communities, project developers and the state of the environment can be derived from the combined use of moderate temperature geothermal energy and wood fuel.

Not Available

1982-06-01T23:59:59.000Z

305

Imperial County geothermal development. Quarterly report, January 1-March 31, 1982  

Science Conference Proceedings (OSTI)

The activities of the Geothermal Office are reported including: important geothermal events, geothermal waste disposal, grant applications to the California Energy Commission, the planned geothermal development meeting, and other geothermal planning activities. The activities of the Geothermal Planner include processing of applications for geothermal permits, processing of environmental impact reports, and other geothermal planning activities. The progress on the VTN Corporation direct heat study is discussed.

Not Available

1982-03-31T23:59:59.000Z

306

Economic Study of Geothermal Steam Production and Power Generation  

SciTech Connect

This report presents the results of the study to determine the required selling price of geothermal flash steam in order for Phillips Petroleum Company to obtain a rate of return on investment of 10, 15 or 20% on its discovery in Nevada. The economic evaluations are based on an order-of-magnitude type of estimate of capital costs for the flash steam production, steam gathering and brine reinjection system to supply steam to a 55 MW (Gross) geothermal power generating plant, using mixed pressure (double flash steam) and turbine design. Geothermal well costs, brine quality and well productivity data were provided by Phillips Petroleum Company and are based on the discovery wells in Nevada. Power plant costs are based on current technology and available hardware, under construction at the present time. Costs have been escalated to 1977.

1977-02-01T23:59:59.000Z

307

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

308

Program planner's guide to geothermal development in California  

DOE Green Energy (OSTI)

The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

1980-09-30T23:59:59.000Z

309

Identification of environmental issues: Hybrid wood-geothermal power plant, Wendel-Amedee KGRA, Lassen County, California: First phase report  

DOE Green Energy (OSTI)

The development of a 55 MWe power plant in Lassen County, California, has been proposed. The proposed power plant is unique in that it will utilize goethermal heat and wood fuel to generate electrical power. This report identifies environmental issues and constraints which may impact the proposed hybrid wood-geothermal power plant. (ACR)

Not Available

1981-08-14T23:59:59.000Z

310

Federal hot dry rock geothermal energy development program: an overview  

DOE Green Energy (OSTI)

The formulation and evolution of the Federal Hot Dry Rock Geothermal Energy Development Program at the Los Alamos Scientific Laboratory are traced. Program motivation is derived from the enormous potential of the resource. Accomplishments to date, including the establishment and evaluation of the 5-MW/sub t/ Phase 1 reservoir at Fenton Hill, NM and various instrument and equipment developments, are discussed. Future plans presented include (1) establishment of a 20- to 50-MW/sub t/ Phase 2 reservoir at Fenton Hill that will be used to demonstrate longevity and, eventually, electric power production and (2) the selection of a second site at which a direct thermal application will be demonstrated.

Nunz, G.J.

1979-01-01T23:59:59.000Z

311

Analysis of requirements for accelerating the development of geothermal energy resources in California  

SciTech Connect

Various resource data are presented showing that geothermal energy has the potential of satisfying a significant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospect in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

Fredrickson, C.D.

1977-11-15T23:59:59.000Z

312

Analysis of requirements for accelerating the development of geothermal energy resources in California  

DOE Green Energy (OSTI)

Various resource data are presented showing that geothermal energy has the potential of satisfying a significant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospect in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

Fredrickson, C.D.

1977-11-15T23:59:59.000Z

313

Experience with the Development of Advanced Materials for Geothermal Systems  

Science Conference Proceedings (OSTI)

This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

Sugama, T.; Butcher, T.; Ecker, L.

2011-01-01T23:59:59.000Z

314

Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii's Rainforest Crunch: Land, People, and Geothermal Development...

315

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Council, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal...

316

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Open Energy Info (EERE)

Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type ...

317

Low Cost Exploration, Testing, And Development Of The Chena Geothermal  

Open Energy Info (EERE)

Cost Exploration, Testing, And Development Of The Chena Geothermal Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Details Activities (2) Areas (1) Regions (0) Abstract: The Chena Hot Springs geothermal field was intensively explored, tested, and developed without a wireline unit between October 2005 and August 2006. Due to the remote location of the project and its small size of 0.4 MW, it was necessary to perform the work without the geothermal industry infrastructure typically utilized in the 48 contiguous states. This could largely be done because some of the wells were capable of artesian flow at below boiling temperatures. The geology, consisting of

318

Use of program GEOTHM to design and optimize geothermal power cycles  

SciTech Connect

The Lawrence Berkeley Laboratory program GEOTHM has been under development for nearly two years. GEOTHM will design and optimize a wide variety of thermodynamic cycles. The most recent improvements in the GEOTHM program are included. These improvements include: a model for concentrated saline brines and a single step cycle optimization process. Geothermal power cycles are given as examples.

Pines, H.S.; Green, M.A.

1976-06-01T23:59:59.000Z

319

Geothermal resource areas database for monitoring the progress of development in the United States  

DOE Green Energy (OSTI)

The Geothermal Resource Areas Database (GRAD) and associated data system provide broad coverage of information on the development of geothermal resources in the United States. The system is designed to serve the information requirements of the National Progress Monitoring System. GRAD covers development from the initial exploratory phase through plant construction and operation. Emphasis is on actual facts or events rather than projections and scenarios. The selection and organization of data are based on a model of geothermal development. Subjects in GRAD include: names and addresses, leases, area descriptions, geothermal wells, power plants, direct use facilities, and environmental and regulatory aspects of development. Data collected in the various subject areas are critically evaluated, and then entered into an on-line interactive computer system. The system is publically available for retrieval and use. The background of the project, conceptual development, software development, and data collection are described here. Appendices describe the structure of the database in detail.

Lawrence, J.D.; Lepman, S.R.; Leung, K.; Phillips, S.L.

1981-01-01T23:59:59.000Z

320

Geothermal energy abstract sets. Special report No. 14  

DOE Green Energy (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heber geothermal demonstration power plant. Final report  

DOE Green Energy (OSTI)

The binary power plant is to be a 45 MW net electrical facility deriving energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) Heber reservoir in Southern California. The optimized baseline design established for the power plant is described, and the design and optimization work that formed the basis for the baseline design is documented. The work accomplished during Phase II, Preliminary Design is also recorded, and a base provided from which detailed plant design could be continued. Related project activities in the areas of licensing, environmental, cost, and schedule are also described. The approach used to establish the Phase II optimized baseline design was to (1) review the EPRI Phase I conceptual design and feasibility studies; (2) identify current design criteria and state-of-the-art technology; and (3) develop a preliminary design optimized to the Heber site based on utiliity standards.

Not Available

1979-06-01T23:59:59.000Z

322

Hydrogen sulfide stress corrosion cracking in materials for geothermal power  

DOE Green Energy (OSTI)

Studies to evaluate the performance of alloys used in geothermal power systems are reported. Alloys which are commercially available and those which have modified metallurgical structures and/or composition modifications were tested to determine the corrosive effects of the H/sub 2/S and thermal environments in geothermal fluids. Hydrogen embrittlement and sulfide stress corrosion cracking were tested. Test results showing the effects of alloy composition, tempering temperatures, fluid temperature and salt content, and ageing on sulfide stress cracking are tabulated. (LCL)

Hehemann, R.F.; Troiano, A.R.; Abu-Khater, B.; Ferrigno, S.

1976-01-01T23:59:59.000Z

323

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

DOE Green Energy (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

324

Geothermal Energy Development annual report 1979  

DOE Green Energy (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

325

Geothermal institutional handbook for the State of Wyoming: a user's guide of agencies regulations, permits and aids for geothermal development  

DOE Green Energy (OSTI)

The agencies involved in geothermal development are listed and individually described. A summary of existing geothermal resource laws and their statute numbers are given followed by a discussion on the problems associated with them. The local agencies and their regulations of geothermal development are discussed. The local, state, and federal agencies directly involved in geothermal development and their permitting requirements are tabulated. Some step-by-step instructions for determining what permits are necessary for developing a specific geothermal resource are given. A list of selected references and a list of additional resources for geothermal information and referral are included. (MHR)

Aspinwall, C.; Caplan, J.; James, R.; Marcotte, K.

1980-05-01T23:59:59.000Z

326

Geothermal Electricity Technologies Evaluation Model DOE Tool for Assessing Impact of Research on Cost of Power  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) has developed a spreadsheet model to provide insight as to how its research activities can impact of cost of producing power from geothermal energy. This model is referred to as GETEM, which stands for Geothermal Electricity Technologies Evaluation Model. Based on user input, the model develops estimates of costs associated with exploration, well field development, and power plant construction that are used along with estimated operating costs to provide a predicted power generation cost. The model allows the user to evaluate how reductions in cost, or increases in performance or productivity will impact the predicted power generation cost. This feature provides a means of determining how specific technology improvements can impact generation costs, and as such assists DOE in both prioritizing research areas and identifying where research is needed.

Greg Mines

2008-01-01T23:59:59.000Z

327

Control of hydrogen sulfide emission from geothermal power plants  

DOE Green Energy (OSTI)

A process for controlling H/sub 2/S emissions at geothermal power plants was evaluated in laboratory scale equipment and by process engineering analysis. The process is based on scrubbing geothermal steam with a metal salt solution to selectively remove and precipitate the contained H/sub 2/S. The metal sulfide is roasted or oxygen/acid leached to regenerate the metal salt, and sulfur is rejected from the system as elemental sulfur or as sulfate. Up to 95 percent removal of H/sub 2/S from simulated geothermal steams was obtained in a 2'' diameter scrubbing column packed with 3 feet of 5/8'' Flexirings by use of a recirculating slurry of copper sulfate/copper sulfide. Information is included on the chemistry, thermodynamics, kinetics and process control aspects of the process, scrubber system design, operation, and corrosion, and design proposals and cost estimates for a H/sub 2/S removal system. (LCL)

Harvey, W.W.; Brown, F.C.; Turchan, M.J.

1976-07-01T23:59:59.000Z

328

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

329

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

330

Modeling and optimization of geothermal power plants using the binary fluid cycle  

SciTech Connect

A computer simulation of a binary fluid cycle power plant for use with geothermal energy sources, and the subsequent optimization of this power plant type over a range of geothermal source conditions are described. The optimization technique employed for this analysis was based upon the principle of maximum use of geothermal energy.

Walter, R.A.

1976-09-01T23:59:59.000Z

331

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

332

SaskPower Geothermal and Self-Generated Renewable Power Loan Program (Saskatchewan, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

SaskPower offers a loan program for residential and farm customers who choose to install a Canadian Geoexchange Coalition (CGC) certified geothermal heating and/or a renewable electricity system.

333

Geopressured-geothermal energy development: government incentives and institutional structures  

DOE Green Energy (OSTI)

The following subjects are included: a geothermal resource overview, the evolution of the current Texas geopressured-geothermal institutional structure, project evaluation with uncertainty and the structure of incentives, the natural gas industry, the electric utility industry, potential governmental participants in resource development, industrial users of thermal energy, current government incentives bearing on geopressured-geothermal development, six profiles for utilization of the geopressured-geothermal resources in the mid-term, and probable impacts of new government incentives on mid-term resource utilization profiles. (MHR)

Frederick, D.O.; Prestwood, D.C.L.; Roberts, K.; Vanston, J.H. Jr.

1979-01-01T23:59:59.000Z

334

Cumulative impacts study of The Geysers KGRA: public-service impacts of geothermal development  

DOE Green Energy (OSTI)

Geothermal development in The Geysers KGRA has affected local public services and fiscal resources in Sonoma, Lake, Mendocino, and Napa counties. Each of these counties underwent rapid population growth between 1970 and 1980, some of which can be attributed to geothermal development. The number of workers currently involved in the various aspects of geothermal development in The Geysers is identified. Using three different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in The Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development to local jurisdictions are examined and compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed, and a framework is presented for calculating mitigation costs per unit of public service.

Matthews, K.M.

1982-05-01T23:59:59.000Z

335

Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley  

DOE Green Energy (OSTI)

Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project.

Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

2001-03-02T23:59:59.000Z

336

Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics  

DOE Green Energy (OSTI)

Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

Layton, D. (ed.)

1980-07-01T23:59:59.000Z

337

Dual-temperature Kalina cycle for geothermal-solar hybrid power systems  

E-Print Network (OSTI)

This thesis analyzes the thermodynamics of a power system coupling two renewable heat sources: low-temperature geothermal and a high-temperature solar. The process, referred to as a dual-temperature geothermal-solar Kalina ...

Boghossian, John G

2011-01-01T23:59:59.000Z

338

Heber Geothermal Demonstration Power Plant. Interim report No. 1, August 1977--January 1978  

DOE Green Energy (OSTI)

The work performed from August 1977 through January 1978 pertinent to the design of the Heber Geothermal Demonstration Power Plant is summarized. The report discusses review of earlier baseline geothermal studies performed by Holt/Procon and the design optimization performed by Fluor Engineers and Constructors, Inc., and The Ben Holt Company. The Heber project objective is to design, construct and operate a power plant to produce a net power output of 45 MW/sub e/, deriving energy from a low-salinity, moderate temperature (360/sup 0/F, 182/sup 0/C) brine heat source available from the Heber geothermal reservoir. A binary cycle conversion system employs a light aliphatic hydrocarbon mixture to derive heat from the brine supply, throuh heat exchangers, and drive the turbine-generator to produce power. Chevron Resources Company develops the geothermal resource for sale to San Diego Gas and Electric Company. Power output will be distributed to California's Imperial Valley by the Imperial Valley Irrigation District.

Unitt, S.G.

1978-08-01T23:59:59.000Z

339

Geothermal energy in Montana: site data base and development status  

DOE Green Energy (OSTI)

A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

Brown, K.E.

1979-11-01T23:59:59.000Z

340

Geothermal energy in Montana: site data base and development status  

DOE Green Energy (OSTI)

A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

Brown, K.E.

1979-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal energy in Alaska: site data base and development status  

DOE Green Energy (OSTI)

The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

Markle, D.

1979-04-01T23:59:59.000Z

342

BACA Project: geothermal demonstration power plant. Final report  

SciTech Connect

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

1982-12-01T23:59:59.000Z

343

Aspects of the Kalina technology applied to geothermal power production  

DOE Green Energy (OSTI)

This report contains the results of studies conducted at the Idaho National Engineering Laboratory (INEL) concerning the applicability of the Kalina technology to geothermal (hydrothermal) power production. This report represents a correction and addition to that report. The Heat Cycle Research Program (HCRP) has as its primary goal the cost-effective production of electric power from moderate temperature hydrothermal resources. Recent work has included the study of supercritical cycles with counterflow condensation which utilize mixtures as working fluids. These advanced concepts are projected to give a 20 to 30% improvement in power produced per unit geofluid flow rate (geofluid effectiveness, w hr/lb). The original Kalina cycle is a system which is similar to the cycles being studied in the Heat Cycle Research program and it was felt that this new cycle should be studied in the geothermal context. 15 refs., 9 figs., 2 tabs.

Bliem, C.J.

1989-09-21T23:59:59.000Z

344

Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report  

DOE Green Energy (OSTI)

The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

Not Available

1981-08-01T23:59:59.000Z

345

Engineering and Economic Evaluation of Low-Temperature Binary Geothermal Power Plants  

Science Conference Proceedings (OSTI)

Geothermal power plants are commercially mature, dispatchable, base-loaded renewable energy sources. Most existing geothermal power plants exploit moderate-to-high-temperature geothermal resources greater than 150C (300F). These conditions exist in a few relatively small geographic areas of the world, which has limited the amount of geothermal deployment. Emerging technologies, new exploration and drilling techniques, and pre-engineered systems are contributing to make generation from lower-temperature r...

2010-12-31T23:59:59.000Z

346

Conceptual design of a 10MW regenerative isobutane geothermal power plant. Technical report No. 18  

DOE Green Energy (OSTI)

At present, there are basically three different systems for converting energy in geothermal fluid into power: vapor-flashing system, total flow system, and binary system. A comparison of the power production processes was made on the basis of work output in Kwh per 1000 pounds of geothermal fluid for self flowing wells with wellhead pressure of 100 psia and for wells with downhole pumps. For simplicity, the assumptions were made that the enthalpy of the geothermal fluid in the reservoir is approximately equal to that at the wellhead, that the thermodynamic properties of geothermal fluid may be approximated by those of water, and that the pressure effects on the properties of fluid are negligible. The results showed that the performance of the two-stage vapor-flashing system is not appreciably improved by using a downhole pump. The total flow system is simple, but its success depends mainly on the development of a reliable machine with sufficiently high thermal efficiency. The regenerative isobutane system is impractical, if the geothermal fluid temperature is below 380/sup 0/F. But, when the brine temperatures range from 485 to 600/sup 0/F, the regenerative isobutane system with downhole pump exhibits superior performance as compared to two-stage vapor-flashing system, basic isobutane system, or total flow system.

Gupta, A.K.; Chou, J.C.S.

1976-10-15T23:59:59.000Z

347

Floating power optimization studies for the cooling system of a geothermal power plant  

DOE Green Energy (OSTI)

The floating power concept was studied for a geothermal power plant as a method of increasing the plant efficiency and decreasing the cost of geothermal power. The stored cooling concept was studied as a method of reducing the power fluctuations of the floating power concept. The studies include parametric and optimization studies for a variety of different types of cooling systems including wet and dry cooling towers, direct and indirect cooling systems, forced and natural draft cooling towers, and cooling ponds. The studies use an indirect forced draft wet cooling tower cooling system as a base case design for comparison purposes.

Shaffer, C.J.

1977-08-01T23:59:59.000Z

348

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Development of Exploration Methods for Engineered Geothermal Systems Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Abstract N/A Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Citation U.S. Department of Energy. Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and

349

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

The various factors affecting geothermal resource development are summarized for Idaho, including: resource data base, geological description, reservoir characteristics, environmental character, lease and development status, institutional factors, legal aspects, population and market, and development. (MHR)

Not Available

1979-07-01T23:59:59.000Z

350

Geothermal energy in Alaska: site data base and development status  

DOE Green Energy (OSTI)

The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

Markle, D.R.

1979-04-01T23:59:59.000Z

351

Shaanxi Geothermal Energy Development Co Ltd CGCO | Open Energy Information  

Open Energy Info (EERE)

Shaanxi Geothermal Energy Development Co Ltd CGCO Shaanxi Geothermal Energy Development Co Ltd CGCO Jump to: navigation, search Name Shaanxi Geothermal Energy Development Co Ltd (CGCO) Place Xianyang, Shaanxi Province, China Zip 712000 Sector Geothermal energy Product A Chinese geothermal project developer Coordinates 34.33968°, 108.688713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.33968,"lon":108.688713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

353

Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report  

DOE Green Energy (OSTI)

This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

Janes, J.

1984-06-01T23:59:59.000Z

354

Geotechnical Environmental Aspects of Geothermal Power Generation at Heber, Imperial Valley, California. Topical report 1  

DOE Green Energy (OSTI)

This report presents a portion of the results from a one-year feasibility study sponsored by the Electric Power Research Institute (EPRI) to assess the feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source. The impact of power generation from hydrothermal resources on subsurface water flow, seismicity and subsidence are of acute interest in the determination of the environmental acceptance of geothermal energy. At the same time, the experience and data bases in these areas are very limited. The objective of the project was to assess the technical, geotechnical, environmental and economic feasibility of producing electricity from hydrothermal resources like those known to exist in the US. The objective of this part of the study was to investigate the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California. This report discusses geology, geophysics, hydrogeology, seismicity and subsidence in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. it also discusses estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds.

None

1976-10-01T23:59:59.000Z

355

Alaska: a guide to geothermal energy development  

DOE Green Energy (OSTI)

Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

356

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

for Engineered Geothermal Systems (EGS). Awardees (Company Institution) AltaRock Energy, Inc. Awardee Website http:www.altarockenergy.com Partner 1 University of Nevada at...

357

Oregon: a guide to geothermal energy development  

DOE Green Energy (OSTI)

Oregon's geothermal potential, exploration, drilling, utilization, legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

358

Technology assessment of geothermal energy resource development  

DOE Green Energy (OSTI)

Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

Not Available

1975-04-15T23:59:59.000Z

359

Washington: a guide to geothermal energy development  

DOE Green Energy (OSTI)

Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

360

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

362

Shaanxi Green Energy Geothermal Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Green Energy Geothermal Development Co Ltd Green Energy Geothermal Development Co Ltd Jump to: navigation, search Name Shaanxi Green Energy Geothermal Development Co Ltd Place Xianyang, Shaanxi Province, China Sector Geothermal energy Product Sino Icelandic joint venture for the exploitation and utilization of geothermal energy in China. Coordinates 34.33968°, 108.688713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.33968,"lon":108.688713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Geothermal power plants of Mexico and Central America: a technical survey of existing and planned installations  

DOE Green Energy (OSTI)

In this report, the fifth in a series describing the geothermal power plants of the world, the countries of Mexico and of Central America are studied. The geothermal plants are located in areas of recent and active volcanism; the resources are of the liquid-dominated type. Details are given about the plants located at Cerro Prieto in Mexico and at Ahuachapan in El Salvador. In both cases, attention is paid to the geologic nature of the fields, the well programs, geofluid characteristics, energy conversion systems, materials of construction, effluent handling systems, economic factors and plant operating experience. Exploration and development activities are described for other promising geothermal areas in Mexico and El Salvador, along with those in the countries of Costa Rica, Nicaragua, Guatemala, Honduras, and Panama.

DiPippo. R.

1978-07-01T23:59:59.000Z

364

An assessment of leadership in geothermal energy technology research and development  

DOE Green Energy (OSTI)

Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).

Bruch, V.L.

1994-03-01T23:59:59.000Z

365

Analysis of Power Cycles for Geothermal Wellhead Conversion Systems  

Science Conference Proceedings (OSTI)

Using the guidelines and data developed from 240 representative cases, utility engineers can make preliminary estimates of the performance of alternative energy conversion systems proposed for specific geothermal sites. This approach can reduce the cost and scope of initial engineering studies.

1985-06-14T23:59:59.000Z

366

Geothermal power economics: an annotated bibliography. Volume II  

DOE Green Energy (OSTI)

Annotations and abstracts of fifteen papers on geothermal energy economics, utilization, development, and legal and environmental aspects are presented. A bibliography of 198 citations is included. A separate abstract was prepared for each of 5 papers. Ten papers were previously abstracted for EDB. (LCL)

Peterson, R.E.; Seo, K.K.

1974-09-01T23:59:59.000Z

367

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

368

Environmental impacts during geothermal development: Some examples from Central America  

DOE Green Energy (OSTI)

The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development.

Goff, S.; Goff, F.

1997-04-01T23:59:59.000Z

369

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

370

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network (OSTI)

Socio-Economic Impacts of Geothermal Develop- ment. LawrenceMatlock, 1978. Summary of 1977 Geothermal Drilling - WesternUnited States, Geothermal Energy Magazine vo. 6, no. 5, pp.

Haven, Kendal F.

2012-01-01T23:59:59.000Z

371

An Economic Analysis of the Kilauea Geothermal Development and Inter-Island Cable Project  

Science Conference Proceedings (OSTI)

A study by NEA completed in April 1987 shows that a large scale (500 MW) geothermal development on the big island of Hawaii and the inter-island power transmission cable is economically infeasible. This updated report, utilizing additional information available since 1987, reaches the same conclusion: (1) The state estimate of $1.7 billion for development cost of the geothermal project is low and extremely optimistic. more realistic development costs are shown to be in the range of $3.4 to $4.3 billion and could go as high as $4.6 billion. (2) Compared to alternative sources of power generation, geothermal can be 1.7 to 2.4 times as costly as oil, and 1.2 to 1.7 times as costly as a solar/oil generating system. (3) yearly operation and maintenance costs for the large scale geothermal project are estimated to be 44.7 million, 72% greater than a solar/oil generating system. (4) Over a 40-year period ratepayers could pay, on average, between 1.3 (17.2%) and 2.4 cents (33%) per kWh per year more for electricity produced by geothermal than they are currently paying (even with oil prices stabilizing at $45 per barrel in 2010). (5) A comparable solar/oil thermal energy development project is technologically feasible, could be island specific, and would cost 20% to 40% less than the proposed geothermal development. (6) Conservation is the cheapest alternative of all, can significantly reduce demand, and provides the greatest return to ratepayers. There are better options than geothermal. Before the State commits the people of Hawaii to future indebtedness and unnecessary electricity rate increases, more specific study should be conducted on the economic feasibility, timing, and magnitude of the geothermal project. The California experience at The Geyers points up the fact that it can be a very risky and disappointing proposition. The state should demand that proponents and developers provide specific answers to geothermals troubling questions before they make an irreversible commitment to it. The state should also more carefully assess the potential risks and hazards of volcanic disturbances, the degree of environmental damage that could occur, the future demand for electricity, and the potential of supplying electricity from alternative energy sources, conservation and small scale power units. As they stated in the April 1987 study, to move ahead with rapid large scale geothermal development on Hawaii without thoroughly studying these aspects of its development is ill-advised and economically unsound.

None

1990-03-01T23:59:59.000Z

372

Power Production from Geothermal Brine with the Rotary Separator Turbine  

SciTech Connect

The rotary separator turbine is a new turbine device that operates with gas-liquid mixtures. This device achieves complete gas-liquid separation, generates power from the liquid and repressurizes the liquid. The use of the rotary separator turbine for geothermal power generation was investigated on this program. A pilot scale unit was designed and tested. Tests were conducted with a clean water/steam mixture and with geothermal brine/steam flows at East Mesa, California; Raft River, Idaho; and Roosevelt Hot Springs, Utah. The test results were used to calculate the performance advantage of a rotary separator turbine power system compared to a flash steam power system and a binary power system. The calculated performance advantages were then used to estimate market potential for wellhead and central station Biphase units. The measured performance in the laboratory and in the field agreed to within {+-} 10% of the predicted values. The design goal of 20 kWe was generated both in the laboratory and from brine. Separated steam quality was measured to be greater than 99.96% at all three geothermal resources and in the laboratory. Brine pressure leaving the test unit was greater than reinjection pressure requirements. Maximum brine outlet pressure of 90 psig was demonstrated. The measured performance values would result in a 34% increase in electric power production above a single stage flash steam system. Increasing the size from the pilot size unit (20kWe) to a wellhead unit (2000 kWe) gave a calculated performance advantage of 40%. Based on these favorable results, design, construction and testing of a full-size well-head unit was initiated.

Cerini, Donald J.; Hays, Lance G.

1980-12-01T23:59:59.000Z

373

East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis  

SciTech Connect

During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an R & D facility, with its primary goal to explore the necessary technology improvements required to make the binary cycle an efficient, cost effective and reliable conversion process. Magma Power's exploration activities, carried out in other parts of the Western United States after the initial discovery and development at The Geyser's, gave evidence that The Geyser's type of steam reservoir was unique and that the majority of geothermal resources would be of the hydrothermal, or pressurized hot water type. Initial flow tests throughout different locations where this type of resource was discovered indicated that well bore scaling occurred at the flash point in the wells. Initial evaluations indicated that if the well fluid could be maintained under pressure as it traversed the well bore, the potential for scaling would be mitigated. Tests carried out in the late 60's at Magma's Brady Hot Springs development in Nevada indicated that scaling was mitigated with the installation of a pump in the geothermal well. Subsequently, designs were developed of a binary process, utilizing heat exchangers for power generation. Magma was able to acquire process patents associated with this and had a patent issued (Magmamax Power Process). This incorporates the concept of pumping a geothermal well and transferring the heat in the geothermal fluid to a secondary power fluid in heat exchangers. Magma's desire to demonstrate this technology was one of the prime motivations associated with the installation of the East Mesa plant.

Hinrichs, T.C.; Dambly, B.W.

1980-12-01T23:59:59.000Z

374

Potential growth of electric power production from Imperial Valley geothermal resources  

DOE Green Energy (OSTI)

The growth of geothermal electric power operations in Imperial Valley, California is projected over the next 40 years. With commercial power forecast to become available in the 1980's, the scenario considers three subsequent growth rates: 40, 100, and 250 MW per year. These growth rates, along with estimates of the total resource size, result in a maximum level of electric power production ranging from 1000 to 8000 MW to be attained in the 2010 to 2020 time period. Power plant siting constraints are developed and used to make siting patterns for the 400- through 8000-MW level of power production. Two geothermal technologies are included in the scenario: flashed steam systems that produce cooling water from the geothermal steam condensate and emit noncondensable gases to the atmosphere; and high pressure, confined flow systems that inject the geoghermal fluid back into the ground. An analysis of the scenario is made with regard to well drilling and power plant construction rates, land use, cooling water requirements, and hydrogen sulfide emissions.

Ermak, D.L.

1977-09-30T23:59:59.000Z

375

Documentation of the status of international geothermal power plants and a list by country of selected geothermally active governmental and private sector entities  

DOE Green Energy (OSTI)

This report includes the printouts from the International Geothermal Power Plant Data Base and the Geothermally Active Entity Data Base. Also included are the explanation of the abbreviations used in the power plant data base, maps of geothermal installations by country, and data base questionnaires and mailing lists.

Not Available

1992-10-01T23:59:59.000Z

376

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

DOE Green Energy (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

377

Imperial County geothermal development. Quarterly report, April 1-June 30, 1982  

SciTech Connect

The activities of the Geothermal Office during the quarter are discussed, including: important geothermal events, geothermal waste disposal, a grant award by the California Energy Commission, the geothermal development meeting, and the current status of geothermal development in Imperial County. Activities of the Geothermal Planner are addressed, including permits, processing of EIR's, and other planning activities. Progress on the direct heat study is reported.

1982-06-30T23:59:59.000Z

378

Economic assessment of polymer concrete usage in geothermal power plants  

DOE Green Energy (OSTI)

Results of a study established to review the Heber and Niland, California 50 MWe conceptual geothermal power plants designs and to identify areas where non-metallic materials, such as polymer concrete, can be technically and economically employed are reported. Emphasis was directed toward determining potential economic advantages and resulting improvements in plant availability. It is estimated that use of polymer concrete in the Heber plant will effect a savings of 6.18 mills per KWH in the cost of power delivered to the network, a savings of 9.7%. A similar savings should be effected in the Niland plant.

Not Available

1977-11-01T23:59:59.000Z

379

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

380

Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace  

DOE Green Energy (OSTI)

Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

Not Available

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

SMUDGEO No. 1: economic impacts on geothermal power plant design  

SciTech Connect

The Sacramento Municipal Utility District (SMUD) is currently in the design phase of a geothermal power plant located in The Geysers area of Northern California. The unit, SMUDGEO No. 1, has a turbine nameplate rating of 55 MWe at 4.0 in hgA, and is expected to be in commercial operation by December 1983. The benefits of efficient steam utilization for SMUDGEO No. 1 differ greatly from other units already installed due to the purchase of geothermal steam on a per pound basis. For this reason, SMUDGEO No. 1 will be the most efficient yet installed in The Geysers area. The efficiency-conscious design of the turbine cycle is described.

Tucker, R.E. (Stone and Webster Engineering Corp., Denver, CO); Kleinhans, P.V. Jr.; Keilman, L.R.

1980-09-01T23:59:59.000Z

382

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report  

DOE Green Energy (OSTI)

Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

Bharathan, D.

2013-06-01T23:59:59.000Z

383

DOE Research and Development for the Geothermal Marketplace  

DOE Green Energy (OSTI)

This audience is well aware that the major goal of all geothermal R&D is the successful application of advanced technology in the marketplace. In support of that goal, the Geothermal Technology Division has forged a close link between its research objectives and potentially competitive market applications. Our technical objectives are all expressed in quantified reductions in the cost of geothermal power; these cost reductions are the force that will drive the geothermal industry for the foreseeable future. I agree with the recent statement of Stephen Fye of Unocal that without a legislated incentive for geothermal or disincentive for competing fuels-such as mandated carbon dioxide reductions--any premium the public is willing to pay for the use of this premium fuel will be too small to greatly impact geothermal economics. His conclusion is that the geothermal industry must be fully competitive in the marketplace at current prices. His further conclusion--with which I fully concur--is that the avenue to competitiveness is through research, by both industry and government.

Mock, John E.

1989-03-21T23:59:59.000Z

384

Geothermal energy in Idaho: site data base and development status  

DOE Green Energy (OSTI)

A summary of known information about the nature of the resource, its potential for development, and the infrastructure of government which will guide future development is presented. Detailed site specific data regarding the commercialization potential of the proven, potential, and inferred geothermal resource areas in Idaho are included. Leasing and development status, institutional parameters, and a legal overview of geothermal resources in Idaho are given. (MHR)

McClain, D.V.

1979-07-01T23:59:59.000Z

385

Environmental Development Plan (EDP). Geothermal energy systems, 1977  

DOE Green Energy (OSTI)

The Geothermal Energy Systems Environmental Development Plan (EDP) identifies the environmental, health, safety, social, and economic issues which are associated with the development, demonstration, and commercialization of geothermal resources and conversion technology. The EDP also describes the actions and implementation strategy required to resolve the issues identified. These actions may include the initiation of R and D activities, operations monitoring, baseline characterization studies, or activities leading to the development of standards and criteria in concert with other responsible agencies.

Not Available

1978-03-01T23:59:59.000Z

386

Geothermal Materials Development. Annual report FY 1991  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored ``full cost`` recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

387

Geothermal Materials Development, Annual Report FY 1991  

DOE Green Energy (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level I and II Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY 1991, utility company sponsored full cost'' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY 1991 the DOE/GD-sponsored R D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO{sub 2}- resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

Kukacka, L.E.

1991-12-01T23:59:59.000Z

388

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

for maps has never been easier. A screen capture of the MapSearch Map view option Geothermal Maps These maps show existing and developing geothermal power plants, geothermal...

389

Public opinion concerning geothermal development in Lake County, California  

DOE Green Energy (OSTI)

A random sample of 2500 of the registered voters of Lake County, California, were polled about their opinions regarding the prospect of the development of geothermal energy in Lake County. The results of a secondary analysis of their responses are presented. The main conclusions are: (1) A large majority of the respondents are in favor of geothermal development provided that it is suitably regulated to minimize negative environmental impacts. (2) The main determinants of the respondents' approval or disapproval of geothermal development are their expectations concerning the environmental impacts of geothermal development and the economic benefits of development for the county. Essentially all respondents who do not perceive negative environmental impacts support development, and the expectation of increased job opportunities and/or tax revenues is a nearly absolute prerequisite for support of development. (auth) (3) Pro- and anti-geothermal bias have strong effects upon the formation of opinions about leasing and the perception of environmental impacts. (4) Purely demographic characteristics of the respondents, such as employment status and years of residence in the county, have only limited effects upon their attitudes toward geothermal development except in the southern portion of the county, where longer term residents and those who live in the county for reasons of employment are more in favor of development.

Vollintine, L.; Weres, O.

1976-03-01T23:59:59.000Z

390

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

DOE Green Energy (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

391

Ace Development Aquaculture Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Ace Development Aquaculture Low Temperature Geothermal Facility Ace Development Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Ace Development Aquaculture Low Temperature Geothermal Facility Facility Ace Development Sector Geothermal energy Type Aquaculture Location Bruneau, Idaho Coordinates 42.8804516°, -115.7973081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

392

Geothermal Development in Imperial County | Open Energy Information  

Open Energy Info (EERE)

in Imperial County in Imperial County Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Development in Imperial County Abstract Imperial County is estimated to have a potential geothermal energy resource of 10,000 to 20,000 megawatts of electricity, of which 4,500 MW appears feasible for development with present technology in the next forty years. Imperial County, under NSF/ERDA Grant AER75-08793, contracted with UCR and Cal Tech for research covering the areas of: (a) resource assessment, (b) engineering, (c) geography, (d) social, (e) economic, and (f) political and legal implications of geothermal development. This summary reports the findings. Imperial County has been the site of active geothermal exploration and development by oil and utility companies for the past

393

Geothermal energy: Geology, exploration, and developments. Part I  

DOE Green Energy (OSTI)

Geology, exploration, and initial developments of significant geothermal areas of the world are summarized in this report which is divided into two parts. Part 1 is a review of the geological and explorational aspects of geothermal energy development; areas of potential development in the Western United States are also discussed. The most favorable geological environment for exploration and development of geothermal steam is characterized by recent normal faulting, volcanism, and high heat flow. Successful exploration for steam consists of coordinated multidisciplinary application of geological, geophysical, and geochemical knowledge and techniques. These are reviewed. California leads in known geothermal reserves and is followed by Nevada, Oregon, and New Mexico. Specific prospective areas in these 11 Western States are described.

Grose, Dr. L.T.

1971-11-01T23:59:59.000Z

394

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

resources for electric power generation. i. Plant size ii.SYSTEMS Electric Power Generation Systems NonelectricFLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

Apps, J.A.

2011-01-01T23:59:59.000Z

395

Geothermal development plan: Cochise/Santa Cruz Counties  

DOE Green Energy (OSTI)

The Cochise/Santa Cruz Counties Area Development Plan evaluated the regional market potential for utilizing geothermal energy. The study identified three potential geothermal resource areas with potential for resource temperatures less than 90/sup 0/C (194/sup 0/F). Geothermal resources are found to occur near the towns of Willcox, San Simon, and Bowier. Population growth rates are expected to average three percent per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy-use analysis is also included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan also contains a section identifying potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

396

Mono County geothermal activity  

SciTech Connect

Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

Lyster, D.L.

1986-01-01T23:59:59.000Z

397

Geothermal energy in Washington: site data base and development status  

DOE Green Energy (OSTI)

This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

Bloomquist, R.G.

1979-04-01T23:59:59.000Z

398

Recent developments in geothermal waste treatment biotechnology  

DOE Green Energy (OSTI)

Continuing studies at Brookhaven National Laboratory (BNL) have shown that cost-efficient biotechnology for the removal of toxic trace metals from geothermal sludge is feasible. Pilot-scale experiments have shown that fast rates (< 24-h) of metal removal at 55{degree}C--60{degree}C can be achieved with removal efficiencies of better than 80%, yielding a product well within the environmental regulatory limits. Recent studies have shown that radionuclides, such as radium present in low concentrations in some sludges, can also be removed by means of a secondary biotreatment. The process produces an aqueous phase which contains all of the regulatory metals in a soluble form. A follow-up technology for the treatment of the aqueous phase is concurrently being developed at BNL. Preliminary results indicate that a small volume concentrate of metals can be generated producing an aqueous phase which meets drinking water standards. In this paper the current state-of-the-biotechnology will be discussed.

Premuzic, E.T.; Lin, M.S.; Jin, J.Z.

1993-05-01T23:59:59.000Z

399

Evaluation of geothermal energy in Arizona. Quarterly progress report, July 1-September 30, 1981  

SciTech Connect

Progress is reported on the following: legislative and institutional program, cities program, geothermal applications utilization technology, integrated alcohol/feedlot/geothermal operation, geothermal energy in the mining industry, geothermal space heating and cooling, identification of a suitable industry for a remote geothermal site, irrigation pumping, coal-fired/geothermal-assisted power plants, area development plans, and outreach. (MHR)

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

400

Geothermal Loan Guaranty Program and its impact on geothermal exploration and development  

DOE Green Energy (OSTI)

The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

Nasr, L.H.

1978-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown  

E-Print Network (OSTI)

utility options such as pumped storage or compressed air energy storage (CAES) is that the HDR power plant1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los energy resources lies right beneath our feet in the form of hot dry rock (HDR), the common geologic

402

Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide  

Science Conference Proceedings (OSTI)

The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.

Johnson, C.; Augustine, C.; Goldberg, M.

2012-09-01T23:59:59.000Z

403

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

404

Advanced binary geothermal power plants: Limits of performance  

SciTech Connect

The Heat Cycle Research Program is currently investigating the potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperatures, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single boiling cycles. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasibility plant and discusses the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to find the best plant for a given service. 16 refs., 12 figs.

Bliem, C.J.; Mines, G.L.

1990-01-01T23:59:59.000Z

405

Prospects and problems of development of geothermal resources of Russia  

SciTech Connect

This article discusses the pros and cons of geothermal energy source development in the Russian Federation. It estimates the geothermal reserves in each area of the Federation and presents the data in terms of tons of conventional fuels. Across the region, the average specific density exceeds 2,000,000 tons of conventional fuel per cubic kilometer. In the administrative regions of central Russia, the geothermal reserves are estimated to range from 160 years to 4200 years. The economic feasibility of developing these resources in the administrative regions is also explored, and it is concluded that the geothermal heat source is a source of hot water that is far superior to the conventional electric boiler-house source.

Boguslavskii, E.I.

1995-12-01T23:59:59.000Z

406

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

DOE Green Energy (OSTI)

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

407

Solicitation - Geothermal Drilling Development and Well Maintenance Projects  

DOE Green Energy (OSTI)

Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

Sattler, A.R.

1999-07-07T23:59:59.000Z

408

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network (OSTI)

7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

409

Geothermal Power and Interconnection: The Economics of Getting to Market  

NLE Websites -- All DOE Office Websites (Extended Search)

Power and Power and Interconnection: The Economics of Getting to Market David Hurlbut Technical Report NREL/TP-6A20-54192 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Geothermal Power and Interconnection: The Economics of Getting to Market David Hurlbut Prepared under Task No. WE11.0815 Technical Report NREL/TP-6A20-54192 April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

410

Imperial County, geothermal development. Quarterly report, October 1-December 31, 1981  

DOE Green Energy (OSTI)

Geothermal development activities have increased during the October to December period. Nine power plant projects are proceeding, this includes two constructed facilities, one facility under construction, three facilities scheduled to begin construction in 1982, and three facilities in the planning or permitting stage. Geothermal exploration activities are continuing with activities in East Brawley, Truckhaven, and near the Superstition Mountains. Interest in direct heat development seems to be increasing. The City of El Centro project is under construction and there are several direct heat projects in preliminary planning stages. Permitting, planning, and waste disposal activities are reviewed.

Not Available

1981-01-01T23:59:59.000Z

411

Legal and institutional problems facing geothermal development in Hawaii  

DOE Green Energy (OSTI)

The problems discussed confronting future geothermal development in Hawaii include: a seemingly insoluble mismatch of resource and market; the burgeoning land claims of the Native Hawaiian community; a potential legal challenge to the State's claim to hegemony over all of Hawaii's geothermal resources, regardless of surface ownership; resistance to any sudden, large scale influx of Mainland industry, and questionable economics for the largest potential industrial users. (MHR)

Not Available

1978-10-01T23:59:59.000Z

412

Geothermal energy in Wyoming: site data base and development status  

DOE Green Energy (OSTI)

An overview of geothermal energy and its current and potential uses in Wyoming is presented. Chapters on each region are concluded with a summary of thermal springs in the region. The uniqueness of Yellowstone is discussed from both an institutional point of view and a natural one. The institutional situation at the federal and state level is discussed as it applies to geothermal development in Wyoming. (MHR)

James, R.W.

1979-04-01T23:59:59.000Z

413

Population analysis relative to geothermal energy development, Imperial County, California  

DOE Green Energy (OSTI)

The historical and current population characteristics of Imperial County, California, are examined. These include vital rates, urbanization, town sizes, labor force composition, income, utility usage, and ethnic composition. Inferences are drawn on some of the important social and economic processes. Multivariate statistical analysis is used to study present relationships between variables. Population projections for the County were performed under historical, standard, and geothermal projection assumptions. The transferability of methods and results to other geothermal regions anticipating energy development is shown. (MHR)

Pick, J.B.; Jung, T.H.; Butler, E.

1977-01-01T23:59:59.000Z

414

Vulcan Power Company | Open Energy Information  

Open Energy Info (EERE)

Bend, Oregon Zip 97702 Sector Geothermal energy Product Oregon-based geothermal power plant developer active in California. References Vulcan Power Company1 LinkedIn...

415

Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems  

DOE Green Energy (OSTI)

A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

2010-06-01T23:59:59.000Z

416

Review and analysis of the adequacy of the legal and institutional framework for geothermal development in Washington State  

DOE Green Energy (OSTI)

The legal and institutional framework within which geothermal energy must develop has its origin in the early 1970s. In 1970, the Federal Geothermal Steam Act was passed into law and in 1974 the Washington State Geothermal Act was passed. The legal and institutional framework thus established by the state and federal governments differed substantially in format, content, and direction. In many instances, the legal and institutional framework established left as many questions unanswered as answered, and in some cases, the framework has proven to be more of an obstacle to development than an aid. From an examination of how the state and federal governments have addressed the varying needs of geothermal development and how the courts have interpreted some of their decisions, it is clear that in order to ensure that the legal and institutional framework is adequate to serve the needs of geothermal development, it must address, at a minimum, the following topics: (1) providing developers with access and a priority right to carry out exploration and development activities; (2) characterization of the resource so as to minimize conflicts with other natural resources; (3) establishing ownership; and (4) giving careful consideration to such lease terms as rentals and royalties, lease renewals, and diligence requirements. In addition, the framework must address groundwater law and its implications for geothermal development and how geothermal development will be considered in terms of establishing utility law. At the local level, it is imperative that geothermal be given careful consideration when decisions on resource management, zoning, and regulation are made. Local governments also have the power to establish programs which can provide substantial incentives for geothermal development and, by so doing, ensure that geothermal energy contributes to economic stability and growth.

Bloomquist, R.G.

1985-12-01T23:59:59.000Z

417

City of Klamath Falls, Oregon Geothermal Power Plant Feasibility Study  

DOE Green Energy (OSTI)

The purpose of the Klamath Falls project is to demonstrate the effectiveness of a combined thermal distribution system and power generation facility. The city of Klamath Falls operates a geothermal district heating system which would appear to be an attractive opportunity to install a power generation system. Since the two wells have operated reliably and consistently over many years, no new sources or resource exploration would be necessary. It appears that it will cost more to construct, operate, maintain and amortize a proposed geothermal facility than the long?term value of the power it would produce. The success of a future project will be determined by whether utility power production costs will remain low and whether costs of construction, operations, or financing may be reduced. There are areas that it would be possible to reduce construction cost. More detailed design could enable the city to obtain more precise quotes for components and construction, resulting in reduction in contingency projections. The current level of the contingency for uncertainty of costs is between $200,000 and $300,000. Another key issue with this project appears to be operation cost. While it is expected that only minimal routine monitoring and operating expenses will occur, the cost of water supply and waste water disposal represents nearly one quarter of the value of the power. If the cost of water alone could be reduced, the project could become viable. In addition, the projected cost of insurance may be lower than estimated under a city?wide policy. No provisions have been made for utilization of federal tax incentives. If a transaction with a third-party owner/taxpayer were to be negotiated, perhaps the net cost of ownership could be reduced. It is recommended that these options be investigated to determine if the costs and benefits could be brought together. The project has good potential, but like many alternative energy projects today, they only work economically if the federal tax incentives come into play.

Brian Brown, PE; Stephen Anderson, PE, Bety Riley

2011-07-31T23:59:59.000Z

418

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

419

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

420

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "geothermal power developers" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Worldwide Geothermal Power Plants: Status as of June 1980  

DOE Green Energy (OSTI)

There are 100 geothermal power units now in operation throughout 12 countries, with a total installed capacity of just over 2110 MW. The average unit thus is rated at 21.1 MW. Newer units may be broadly classified as follows: (a) wellhead units of less than 5 MW; (b) small plants of about 10 MW; (c) medium plants of 30-35 MW; (d) large plants of about 55 MW; and (e) complexes typically consisting of several 55 MW units in a large geothermal field. There is a trend toward turbine units of the double-flow type with a 55 MW rating, used either alone or in a tandem-compound arrangement giving 110 MW in a single power house. This is particularly evident at The Geysers field in California. Double-flash units (separated-steam followed by a surface flash) are suited to high quality reservoirs having high temperature, high steam fractions at the wellhead, and low scaling potential. Single-flash units (separated steam) may be called for where scaling by the spent brine is a potential problem for the liquid disposal system. Binary plants are being used for some very low temperature reservoirs, particularly in the People's Republic of China, albeit in extremely small units. A large-scale pilot plant of the binary type is being planned for the Imperial Valley of California.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

422

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

423

Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development  

SciTech Connect

This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

NONE

1994-10-01T23:59:59.000Z

424

Feasibility and Risk Study of a Geothermal Power Plant at the Salton Sea KGRA  

DOE Green Energy (OSTI)

This report contains the results of a feasibility and risk study performed by Bechtel National, Inc. and the Ben Holt Company under contract to the San Diego Gas and Electric Company (SDG&E). The purpose of the study was to define the most technically feasible and lowest cost near-term energy conversion process for a 50 MWe geothermal power plant at the Salton Sea known Geothermal Resource Area (KGRA). Using the latest information from the Geothermal This report contains the results of a feasibility and risk study performed by Bechtel National, Inc. and the Ben Holt Company under contract to the San Diego Gas and Electric Company (SDG&E). The purpose of the study was to define the most technically feasible and lowest cost near-term energy conversion process for a 50 MWe geothermal power plant at the Salton Sea known Geothermal Resource Area (KGRA). Using the latest information from the Geothermal Loop Experimental Facility (GLEF), which is currently in operation at the Salton Sea KGRA, conceptual designs, capital cost estimates, and busbar energy production cost estimates were developed for power plants employing several versions of flashed steam and flash binary energy conversion processes. A power plant and well field risk analysis was also performed. The results show that while the flashed steam plant has the advantage of lower plant capital cost, the brine flow rate required by the binary plant is lower. This results in busbar energy production costs for the two plants that are the same. However, the risk analysis indicates that the technical risks are less for the flashed steam further work at the GLEF. The version of the flashed steam process with lowest energy production cost was the dual-flash process with three 50 percent capacity trains of flash tanks with unmodified brine. Thus, it was determined that GLEF testing in the immediate future should be directed primarily toward this process. A series of GLEP tests and further studies were defined for the purpose of alleviating or minimizing the major risks associated with the flash steam process. The most important risks were found to be those associated with brine handling. They include producing the brine, carrying it through the plant, and injecting it into the subsurface formation. The report includes details of costs of a binary plant and a flash plant. [DJE-2005

None

1978-05-10T23:59:59.000Z

425

Colorado geothermal commercialization program: community development of geothermal energy in Pagosa Springs, Colorado  

DOE Green Energy (OSTI)

A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)

Coe, B.A.

1980-01-01T23:59:59.000Z

426

Performance Assessment of Flashed Steam Geothermal Power Plant  

DOE Green Energy (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

427

Geothermal power plants around the world. A sourcebook on the production of electricity from geothermal energy, draft of Chapter 10  

DOE Green Energy (OSTI)

This report constitutes a consolidation and a condensation of several individual topical reports dealing with the geothermal electric power stations around the world. An introduction is given to various types of energy conversion systems for use with geothermal resouces. Power plant performance and operating factors are defined and discussed. Existing geothermal plants in the following countries are covered: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, the Philippines, Turkey, the Union of Soviet Socialist Republics, and the United States. In each case, the geological setting is outlined, the geothermal fluid characteristics are given, the gathering system, energy conversion system, and fluid disposal method are described, and the environmental impact is discussed. In some cases the economics of power generation are also presented. Plans for future usage of geothermal energy are described for the above-mentioned countries and the following additional ones: the Azores (Portugal), Chile, Costa Rica, Guatemala, Honduras, Indonesia, Kenya, Nicaragua, and Panama. Technical data is presented in twenty-two tables; forty-one figures, including eleven photographs, are also included to illustrate the text. A comprehensive list of references is provided for the reader who wishes to make an in-depth study of any of the topics mentioned.

DiPippo, R.

1979-02-01T23:59:59.000Z

428

Microsoft Word - BlueMountainGeotherm_FONSI_FinalDrft v3 Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FINDING OF NO SIGNIFICANT IMPACT DEPARTMENT OF ENERGY LOAN GUARANTEE FOR NEVADA GEOTHERMAL POWER'S BLUE MOUNTAIN GEOTHERMAL DEVELOPMENT PROJECT IN HUMBOLDT AND PERSHING...

429

Western Regional Final Supplemental Environmental Impact Statement: Rulemaking for Small Power Production and Cogeneration Facilities - Exemptions for Geothermal Facilities  

DOE Green Energy (OSTI)

Section 643 of the Energy Security Act of 1980 directed the Federal Energy Regulatory Commission to develop rules to further encourage geothermal development by Small Power Production Facilities. This rule amends rules previously established in Dockets No. RM79-54 and 55 under Section 201 and 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). The analysis shows that the rules are expected to stimulate the development of up to 1,200 MW of capacity for electrical generation from geothermal facilities by 1995--1,110 MW more than predicted in the original PURPA EIS. This Final Supplemental EIS to the DEIS, issued by FERC in June 1980, forecasts likely near term development and analyzes environmental effects anticipated to occur due to development of geothermal resources in the Western United States as a result of this additional rulemaking.

Heinemann, Jack M.; Nalder, Nan; Berger, Glen

1981-02-01T23:59:59.000Z

430

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory a