Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

2

BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power  

Broader source: Energy.gov [DOE]

The U.S. Department of Interior's Bureau of Land Management (BLM) has made official its plans to open more than 190 million acres of federal lands for leasing and potential development of geothermal energy resources.

3

BLM Increases Acreage for Geothermal Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Acreage for Geothermal Development BLM Increases Acreage for Geothermal Development December 29, 2008 - 2:11pm Addthis The U.S. Bureau of Land Management (BLM) earlier this...

4

BLM Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » BLM Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home BLM Geothermal Facility General Information Name BLM Geothermal Facility Facility BLM Sector Geothermal energy Location Information Location Coso Junction, California, Coordinates 36.002382119189°, -117.78880119324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.002382119189,"lon":-117.78880119324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

BLM Finalizes Plans to Open 190 Million Acres to Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States." The publication followed the release of the Final Geothermal Programmatic Environmental Impact Statement (PEIS), which the Interior Department published in October...

6

BLM Geothermal Guidance Documents Website | Open Energy Information  

Open Energy Info (EERE)

Documents Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Geothermal Guidance Documents Website Abstract This website contains a list...

7

Template:BLM Geothermal Case | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:BLM Geothermal Case Jump to: navigation, search This is the 'BLM_Geothermal_Case' template. To present BLM Geothermal Leases related to Geothermal Resource Areas, please use the BLM Geothermal Case Form. Parameters Location Information GeothermalArea - Geothermal Resource Area (category=Geothermal_Resource_Areas) Meridian - Longitude line from which the PLSS is measured (number) State - State within the Geothermal Area (pages) Township - For example: T3N (string) Range - For example: R34W (string) Section - For example: 26 (number) Aliquot - For example: SW1/4 or all (string)

8

BLM and Forest Service Consider Large-Scale Geothermal Leasing...  

Energy Savers [EERE]

Geothermal Leasing June 18, 2008 - 4:29pm Addthis In an effort to encourage appropriate geothermal energy development on public lands, the Bureau of Land Management (BLM) and the...

9

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

10

BLM Approves Salt Wells Geothermal Energy Projects | Open Energy  

Open Energy Info (EERE)

Energy Projects Energy Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Energy Projects Abstract Abstract unavailable. Author Colleen Sievers Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/28/2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Approves Salt Wells Geothermal Energy Projects Citation Colleen Sievers. BLM Approves Salt Wells Geothermal Energy Projects [Internet]. 09/28/2011. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada. [updated 2011/09/28;cited 2013/08/21]. Available from: http://www.blm.gov/nv/st/en/fo/carson_city_field/blm_information/newsroom/2011/september/blm_approves_salt.html

11

Category:BLM Geothermal Case | Open Energy Information  

Open Energy Info (EERE)

Case Case Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home BLM Geothermal Case US Bureau of Land Management (BLM) Case. Add.png Add a new BLM Geothermal Case Pages in category "BLM Geothermal Case" The following 200 pages are in this category, out of 6,833 total. (previous 200) (next 200) A AZA-009168 AZA-009169 AZA-009170 AZA-009171 AZA-009172 AZA-009173 AZA-009174 AZA-009175 AZA-009176 AZA-009177 AZA-009178 AZA-009179 AZA-009180 AZA-009181 AZA-009182 AZA-009183 AZA-009184 AZA-009185 AZA-009186 AZA-009187 AZA-009188 AZA-009189 AZA-009190 AZA-009191 AZA-009192 AZA-009193 AZA-009194 AZA-009949 AZA-009950 AZA-009951 AZA-009952 AZA-009953 AZA-010186 AZA-010466 AZA-011687 AZA-011688 AZA-012533 AZA-012534 AZA-012535 AZA-012537 AZA-012607 AZA-012608 AZA-014687 AZA-014688 AZA-014689 AZA-017725

12

BLM and Forest Service Consider Large-Scale Geothermal Leasing  

Broader source: Energy.gov [DOE]

In an effort to encourage appropriate geothermal energy development on public lands, the Bureau of Land Management (BLM) and the U.S. Forest Service have prepared a Draft Programmatic Environmental Impact Statement (PEIS) for geothermal leasing in the West, including Alaska.

13

BLM/DOI - Notice of Intent to Conduct Geothermal Resource Exploration...  

Open Energy Info (EERE)

BLMDOI - Notice of Intent to Conduct Geothermal Resource Exploration Operations < BLM Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: BLMDOI - Notice of...

14

Closed BLM Public Lands: Geothermal Leases Not Permitted | OpenEI  

Open Energy Info (EERE)

Closed BLM Public Lands: Geothermal Leases Not Permitted Closed BLM Public Lands: Geothermal Leases Not Permitted Dataset Summary Description The U.S. Bureau of Land Management (BLM) released a series of GIS layers of public lands closed to geothermal leases (obtaining leases is not permitted in these regions). The various types of closed areas included here are: National Monuments, National Recreation Areas, National Conservation Areas, National Wildlife Refuges, National Historic Trails, Wilderness Areas, Wilderness Study Areas, and the Island Park Geothermal Area. The GIS layers were made available upon publication of the BLM's Nationwide Geothermal Resources Leasing Programmatic Environmental Impact Statement (PEIS). Each GIS layer contains: .SBX, .XML, .SHX, .DBF (.XLS), .PRJ, .SBN, and .SHP data.

15

BLM Approves Salt Wells Geothermal Plant in Churchill County | Open Energy  

Open Energy Info (EERE)

Plant in Churchill County Plant in Churchill County Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Plant in Churchill County Abstract Abstract unavailable. Author Mark Struble Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 02/13/2005 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Approves Salt Wells Geothermal Plant in Churchill County Citation Mark Struble. BLM Approves Salt Wells Geothermal Plant in Churchill County [Internet]. 02/13/2005. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada. [updated 2005/02/13;cited 2013/08/21]. Available from: http://www.blm.gov/nv/st/en/info/newsroom/Carson_City_News_Archives/2005/02/blm_approves_salt.html

16

File:BLM MOU Geothermal.pdf | Open Energy Information  

Open Energy Info (EERE)

MOU Geothermal.pdf MOU Geothermal.pdf Jump to: navigation, search File File history File usage File:BLM MOU Geothermal.pdf Size of this preview: 435 × 599 pixels. Other resolution: 436 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Go! next page → next page → Full resolution ‎(1,275 × 1,755 pixels, file size: 187 KB, MIME type: application/pdf, 15 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 13:20, 5 November 2012 Thumbnail for version as of 13:20, 5 November 2012 1,275 × 1,755, 15 pages (187 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage There are no pages that link to this file.

17

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

18

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

19

BLM Notice of Completion of Geothermal Resource Exploration Operations...  

Open Energy Info (EERE)

of Geothermal Resource Exploration Operations.pdf Retrieved from "http:en.openei.orgwindex.php?titleBLMNoticeofCompletionofGeothermalResourceExplorationOperations&old...

20

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOI-BLM-OR-P000-????-????-EA | Open Energy Information  

Open Energy Info (EERE)

P000-????-????-EA P000-????-????-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-P000-????-????-EA EA at {{{GeothermalArea}}} for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Davenport Power LLC Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Prineville District Office Managing Field Office none provided Funding Agencies none provided Surface Manager USFS Mineral Manager none provided

22

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

23

DOI-BLM-NV-CO1000-2010-0010-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0010-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

24

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

25

DOI-BLM-CA-ES-2013-002+1793-EIS | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-CA-ES-2013-002+1793-EIS DOI-BLM-CA-ES-2013-002+1793-EIS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-ES-2013-002+1793-EIS EIS at Long Valley Caldera Geothermal Area for Geothermal/Power Plant Casa Diablo IV Geothermal Development Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EIS Applicant ORNI 50 LLC Consultant Environmental Science Associates Geothermal Area Long Valley Caldera Geothermal Area Project Location California Project Phase Geothermal/Power Plant Techniques Time Frame (days) Application Time 1272 NEPA Process Time 269 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Central California District Office Managing Field Office BLM Bishop Field Office

26

DOI-BLM-UT-C010-????-????-CX | Open Energy Information  

Open Energy Info (EERE)

C010-????-????-CX C010-????-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-C010-????-????-CX CX at Cove Fort Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant ENEL Green Power North America Geothermal Area Cove Fort Geothermal Area Project Location Utah, Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Color Country District Office Managing Field Office BLM Cedar City Field Office Funding Agencies none provided Surface Manager BLM, USFS Mineral Manager none provided Selected Dates Relevant Numbers

27

DOI-BLM-OR-P000-2011-0003-EA | Open Energy Information  

Open Energy Info (EERE)

3-EA 3-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-P000-2011-0003-EA EA at Newberry Caldera Geothermal Area for Geothermal/Well Field Newberry Volcano Enhanced Geothermal System (EGS) Demonstration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Davenport Power LLC Consultant PLS Environmental, LLC Geothermal Area Newberry Caldera Geothermal Area Project Location Oregon Project Phase Geothermal/Well Field Techniques Drilling Techniques Comments EGS demonstration project Time Frame (days) Application Time 692 NEPA Process Time 532 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office BLM Prineville District Office

28

DOI-BLM-NV-B020-2008-????-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2008-????-CX CX at Silver Peak Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 27 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Application Date 9/29/2008

29

DOI-BLM-NV-B020-2008-????-?? | Open Energy Information  

Open Energy Info (EERE)

?? ?? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2008-????-?? {{{EnvironmentalAnalysisType}}} at Reese River Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type Applicant Sierra Geothermal Power Geothermal Area Reese River Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques, Thermal Gradient Holes Time Frame (days) Application Time 0 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager none provided

30

DOI-BLM-NV-B020-2010-0106-CX | Open Energy Information  

Open Energy Info (EERE)

-0106-CX -0106-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2010-0106-CX CX at Alum Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Alum Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Hyperspectral Imaging, Magnetic Techniques, Magnetotellurics, Slim Holes, Z-Axis Tipper Electromagnetics Comments airborne thermal survey Time Frame (days) Application Time 182 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office

31

DOI-BLM-NV-C010-2010-0016-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2010-0016-EA DOI-BLM-NV-C010-2010-0016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0016-EA EA at Patua Geothermal Area for Geothermal/Well Field, Geothermal/Power Plant Patua Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Vulcan Power Company Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field, Geothermal/Power Plant Techniques Airborne Electromagnetic Survey Time Frame (days) Application Time 417 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR, Nevada, Privately Held

32

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

33

DOI-BLM-UT-C010-2010-0042-EA | Open Energy Information  

Open Energy Info (EERE)

10-0042-EA 10-0042-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-C010-2010-0042-EA EA at Cove Fort Geothermal Area for Geothermal/Power Plant Cove Fort/Sulphurdale Geothermal Utilization Plan General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant ENEL Green Power North America Consultant Western Land Services Geothermal Area Cove Fort Geothermal Area Project Location Utah, Utah Project Phase Geothermal/Power Plant Techniques Comments BLM LR2000 Case Number UTU-083422: Geothermal Utilization Site Time Frame (days) Application Time 927 NEPA Process Time 946 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Color Country District Office

34

DOI-BLM-NV-B020-2009-0030-CX | Open Energy Information  

Open Energy Info (EERE)

NV-B020-2009-0030-CX NV-B020-2009-0030-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2009-0030-CX CX at Alum Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Sierra Geothermal Power Geothermal Area Alum Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 35 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 12/11/2008 Decision Document Date 1/15/2009

35

DOI-BLM-NV-CC-ES-11-10-1793 | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-CC-ES-11-10-1793 DOI-BLM-NV-CC-ES-11-10-1793 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CC-ES-11-10-1793 EIS at Salt Wells Geothermal Area for Geothermal/Power Plant Salt Wells Geothermal Energy Projects EIS General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EIS Applicant Ormat Technologies Inc, Gradient Resources (formerly Vulcan Power), Sierra Pacific Power Co, Consultant EMPSi Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Development Drilling Time Frame (days) NEPA Process Time 749 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

36

Andean Geothermal Power | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Andean Geothermal Power Place: Texas Sector: Geothermal energy Product: Texas-based geothermal project developer company. References: Andean...

37

DOI-BLM-NV-C010-2009-0030-CX | Open Energy Information  

Open Energy Info (EERE)

09-0030-CX 09-0030-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2009-0030-CX CX at Carson Lake Corral Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Vulcan Power Company Geothermal Area Carson Lake Corral Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-W010-2009-0030-CX

38

BLM-NV-WN-ES-08-01-1310, NV-020-08-01 | Open Energy Information  

Open Energy Info (EERE)

BLM-NV-WN-ES-08-01-1310, NV-020-08-01 BLM-NV-WN-ES-08-01-1310, NV-020-08-01 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: BLM-NV-WN-ES-08-01-1310, NV-020-08-01 EA at Blue Mountain Geothermal Area for Geothermal/Power Plant Blue Mountain Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Nevada Geothermal Power Consultant Environmental Management Associates Geothermal Area Blue Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Development Drilling, Downhole Techniques, Drilling Techniques, Well Testing Techniques Comments Power Plant on Adjacent Private lands Time Frame (days) NEPA Process Time 380 Participating Agencies Lead Agency BLM

39

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

40

DOI-BLM-NV-B020-2011-0026-EA | Open Energy Information  

Open Energy Info (EERE)

26-EA 26-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2011-0026-EA EA at Silver Peak Geothermal Area for Geothermal/Exploration Clayton Valley Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ram Power Consultant EPG, Inc., Environmental Management Associates Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Drilling Techniques, Exploration Drilling, Well Testing Techniques Comments Project abandoned; Unitization #: NVN-89376X Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOI-BLM-NV-C010-2010-0010-EA | Open Energy Information  

Open Energy Info (EERE)

EA EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0010-EA EA at Dixie Valley Geothermal Area for Geothermal/Exploration Coyote Canyon and Dixie Meadows Geothermal Exploration General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant CH2M Hill Ltd Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 265 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

42

Turkerler Alasehir Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Turkerler Alasehir Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Turkerler Alasehir Geothermal Power Plant Project...

43

DOI-BLM-NV-C010-2011-0001-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2011-0001-EA DOI-BLM-NV-C010-2011-0001-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0001-EA EA at Coyote Canyon Geothermal Area for Geothermal/Power Plant TGP Coyote Canyon Utilization Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant CH2M Hill Ltd Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Power Plant Techniques Exploration Drilling, Observation Wells, Well Testing Techniques Comments Utilization Time Frame (days) NEPA Process Time 214 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

44

Tuzla Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Tuzla Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Location Ayvacik, Canakkale Coordinates 39.553940696342, 26.161228192504 Loading...

45

BLM | OpenEI  

Open Energy Info (EERE)

BLM BLM Dataset Summary Description The U.S. Bureau of Land Management (BLM) released a series of GIS layers of National Forest Service Lands that area closed to goethermal leasing (leases are not granted in these areas). The various types of areas included in this set of GIS layers are: National Monuments, National Recreation Areas, National Wildlife Refuges, National Historic Trails, Wild and Scenic Rivers, Wilderness Areas, and Island Park Geothermal Area. The GIS layers were made available upon publication of the BLM's Nationwide Geothermal Resources Leasing Programmatic Environmental Impact Source BLM Date Released Unknown Date Updated Unknown Keywords BLM geothermal GIS National Forest Service Data application/zip icon 2 GIS files: Historic Trails, Island Park Geothermal Area (zip, 2.4 MiB)

46

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

47

DOE and Partners Demonstrate Mobile Geothermal Power System at...  

Broader source: Energy.gov (indexed) [DOE]

Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo...

48

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

49

DOI-BLM-NV-W010-2012-0005-EA | Open Energy Information  

Open Energy Info (EERE)

2-0005-EA 2-0005-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2012-0005-EA EA at New York Canyon Geothermal Area for Geothermal/Power Plant, Geothermal/Transmission, Geothermal/Well Field New York Canyon Geothermal Utilization and Interconnect Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant EMPSi Geothermal Area New York Canyon Geothermal Area Project Location Lovelock, Nevada Project Phase Geothermal/Power Plant, Geothermal/Transmission, Geothermal/Well Field Techniques Development Drilling, Downhole Techniques Time Frame (days) Application Time 735 NEPA Process Time 509 Participating Agencies Lead Agency BLM

50

DOI-BLM-NV-C010-2010-0008-CX | Open Energy Information  

Open Energy Info (EERE)

0-0008-CX 0-0008-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0008-CX CX at Dixie Meadows Geothermal Area for Geothermal/Exploration Dixie Meadows Seismic Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/30/2009

51

DOI-BLM-NV-W010-2012-0057-EA | Open Energy Information  

Open Energy Info (EERE)

57-EA 57-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2012-0057-EA EA at Brady Hot Springs Geothermal Area for Geothermal/Well Field Brady Hot Springs Well 15-12 Hydro-Stimulation General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Brady Power Partners Geothermal Area Brady Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Downhole Techniques Time Frame (days) Application Time 378 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 1/5/2012

52

DOI-BLM-NV-CO1000-2010-0022-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-CO1000-2010-0022-CX DOI-BLM-NV-CO1000-2010-0022-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0022-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques, Magnetotelluric Techniques, Seismic Techniques Time Frame (days) Application Time 213 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

53

DOI-BLM-NV-CO1000-2010-0009-CX | Open Energy Information  

Open Energy Info (EERE)

10-0009-CX 10-0009-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0009-CX CX at Dixie Meadows Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/30/2009

54

DOI-BLM-NV-W010-2010-0039-CX | Open Energy Information  

Open Energy Info (EERE)

-0039-CX -0039-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0039-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Micro-Earthquake Time Frame (days) Application Time 64 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 5/12/2010

55

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

56

Matsukawa Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Matsukawa Geothermal Power Plant Facility ower Plant Sector Geothermal energy Location Information Location Iwate, Japan Coordinates 39.980897288029,...

57

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

58

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties,

59

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

60

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOI-BLM-NV-CO1000-2010-0011-CX | Open Energy Information  

Open Energy Info (EERE)

CO1000-2010-0011-CX CO1000-2010-0011-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Terra-Gen Power LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Electromagnetic Techniques Time Frame (days) Application Time 209 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/30/2009 Decision Document Date 1/25/2010 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-C010-2010-0011-CX

62

DOI-BLM-NV-C010-2012-0050-EA | Open Energy Information  

Open Energy Info (EERE)

EA EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0050-EA EA at Dead Horse Wells Geothermal Area for Geothermal/Well Field, Geothermal/Power Plant Wild Rose Geothermal Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant EMPSi Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field, Geothermal/Power Plant Techniques Development Drilling, Drilling Techniques Time Frame (days) Application Time 245 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

63

DOI-BLM-OR-V040-2009-0059-EA | Open Energy Information  

Open Energy Info (EERE)

OR-V040-2009-0059-EA OR-V040-2009-0059-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-V040-2009-0059-EA EA at Neal Hot Springs Geothermal Area for Geothermal/Power Plant, Department of Energy Loan Guarantee for U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, Oregon. General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant US Geothermal Inc Geothermal Area Neal Hot Springs Geothermal Area Project Location Oregon Project Phase Geothermal/Power Plant Techniques Time Frame (days) Participating Agencies Lead Agency DOE Funding Agency DOE Managing District Office none provided Managing Field Office none provided Funding Agencies none provided Surface Manager BLM, private

64

Miravalles V Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Miravalles V Geothermal Power Plant Project Location Information Coordinates...

65

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

66

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado Subcontract Report NREL/SR-6A20-49391 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado NREL Technical Monitor: Paul Schwabe Prepared under Subcontract No. LGJ-0-40242-01 Subcontract Report

67

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

68

Property:GeothermalDevelopmentPhases | Open Energy Information  

Open Energy Info (EERE)

GeothermalDevelopmentPhases GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Geothermal/Power Plant + C CA-017-05-051 + Geothermal/Well Field + CA-170-02-15 + Geothermal/Exploration + CA-650-2005-086 + Geothermal/Exploration + CA-670-2010-CX + Geothermal/Exploration + CA-96062042 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + D DOE-EA-1116 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + DOE-EA-1621 + Geothermal/Power Plant + DOE-EA-1676 + Geothermal/Power Plant + DOE-EA-1733 + Geothermal/Well Field +

69

NREL: Financing Geothermal Power Projects - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

70

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

71

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

72

Geothermal Power of America | Open Energy Information  

Open Energy Info (EERE)

Power of America Power of America Jump to: navigation, search Name Geothermal Power of America Place Los Angeles, California Sector Geothermal energy Product A Nevada-based company focusing on geothermal project development and operation. References Geothermal Power of America[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geothermal Power of America is a company located in Los Angeles, California . References ↑ "Geothermal Power of America" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Power_of_America&oldid=345810" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

73

DOI-BLM-OR-P000-2010-0003-EA | Open Energy Information  

Open Energy Info (EERE)

-2010-0003-EA -2010-0003-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-P000-2010-0003-EA EA at Newberry Caldera Geothermal Area for Geothermal/Exploration Drilling, Testing and Monitoring of up to 12 Temperature Gradient / Passive Seismic Geothermal Exploratory Wells General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Davenport Power LLC Consultant PLS Environmental, LLC Geothermal Area Newberry Caldera Geothermal Area Project Location Oregon Project Phase Geothermal/Exploration Techniques Drilling Techniques, Exploration Drilling, Passive Seismic Techniques, Seismic Techniques, Well Testing Techniques Time Frame (days) NEPA Process Time 302 Participating Agencies

74

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

75

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

76

DOI-BLM-NV-C010-2012-0051-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0051-EA EA at Coyote Canyon Geothermal Area for Geothermal/Exploration Coyote Canyon South Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant EMPSi Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Exploratory Well Comments This EA covers an extension of a previously approved exploration project, "Coyote Canyon Geothermal Exploration Project." Exploration results indicated the resource may be to the south of the already approved area. The BLM determined that this new EA would be needed to cover this new land area proposed for disturbance.

77

geothermal_test.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

78

DOI-BLM-NV-063-EA08-091 | Open Energy Information  

Open Energy Info (EERE)

-EA08-091 -EA08-091 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-063-EA08-091 EA at Buffalo Valley Hot Springs Geothermal Area for Geothermal/Power Plant Jersey Valley and Buffalo Valley Geothermal Development Projects General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates; Great Basin Ecology; Cogstone Resource Management; Kautz Environmental Consultants Geothermal Area Buffalo Valley Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Production Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain

79

Uenotai Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Akita, Japan Coordinates 39.001204660867, 140.60390925355 Loading map... "minzoom":false,"mapp...

80

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOI-BLM-NV-W010-2010-0004-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0004-EA EA at New York Canyon Geothermal Area for Geothermal/Exploration New York Canyon Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Terra-Gen Power LLC Consultant CH2M Hill Ltd Geothermal Area New York Canyon Geothermal Area Project Location Lovelock, Nevada Project Phase Geothermal/Exploration Techniques Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 326 NEPA Process Time 354 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided

82

Record of Decision for the Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements (DOE/EIS-0266) (11/20/00)  

Broader source: Energy.gov (indexed) [DOE]

BONNEVILLE POWER ADMINISTRATION BONNEVILLE POWER ADMINISTRATION Fourmile Hill Geothermal Development Project Power Purchase and Transmission Service Agreements Administrator's Record of Decision Summary The Bonneville Power Administration (BPA) has decided to execute Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project). Initially, BPA will execute one or more PPAs in order to acquire up to the entire Project output. TSAs will be executed before the Project becomes operational. The United States Forest Service (Forest Service) and the Bureau of Land Management (BLM) were the joint lead Federal agencies in the preparation of

83

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers [EERE]

Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is...

84

Water Use in the Development and Operations of Geothermal Power...  

Energy Savers [EERE]

Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle...

85

Water Use in the Development and Operation of Geothermal Power...  

Energy Savers [EERE]

Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water...

86

Dora-3 Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Information Name Dora-3 Geothermal Power Plant Facility Power Plant Sector Geothermal energy Location Information Coordinates 37.875046144284, 28.102602480794 Loading...

87

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

88

RAPID/Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

for compensation. Geothermal Power Plant in Federal Bureau of Land Management Federal Energy Regulatory Commission Geothermal Power Plant in New Mexico None NA Every person...

89

DOI-BLM-NV-B010-2011-0015-EA | Open Energy Information  

Open Energy Info (EERE)

-2011-0015-EA -2011-0015-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B010-2011-0015-EA EA at McGuiness Hills Geothermal Area for Geothermal/Power Plant McGinness Hills Geothermal Development Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Great Basin Ecology, Inc.; JBR Environmental Consultants; NAVCON; WCRM, Inc. Geothermal Area McGuiness Hills Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant Techniques Drilling Techniques, Production Wells, Well Testing Techniques Comments McGinnis Hills Geothermal Area, not on Master list of geothermal areas - no adjacent areas are appropriate. Time Frame (days)

90

NEPA Process for Geothermal Power Plants in the Deschutes National...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: NEPA Process for Geothermal Power Plants in the Deschutes National Forest EIS at Newberry...

91

Purchase and Installation of a Geothermal Power Plant to Generate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation....

92

Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals  

Broader source: Energy.gov [DOE]

Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

93

Geothermal Power Plants Meeting Clean Air Standards  

Broader source: Energy.gov [DOE]

Geothermal power plants can meet the most stringent clean air standards. They emit little carbon dioxide, very low amounts of sulfur dioxide, and no nitrogen oxides. See Charts 1, 2, and 3 below.

94

Template:BLM Lease | Open Energy Information  

Open Energy Info (EERE)

Lease Lease Jump to: navigation, search This is the 'BLM_Lease' template. To present BLM Leases related to Geothermal Resource Areas, please use the BLM Lease Form. Parameters Location Information GeothermalArea - Geothermal Resource Area (category=Geothermal_Resource_Areas) Meridian - Longitude line from which the PLSS is measured (number) State - State within the Geothermal Area (pages) Township - For example: T3N (string) Range - For example: R34W (string) Section - For example: 26 (number) Aliquot - For example: SW1/4 or all (string) SurveyType - For example: Unsurveyed - uprotracted, Aliquot Part (40 Acres) (string) Lease Data LeaseStatus - Status of lease at most recent import from LR2000 (BLM_LeaseStatus) LeaseType - Type of lease (category=BLM_Lease_Types) TotalAcreage - Total acreage of the lease (number)

95

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

96

DOI-BLM-NV-C010-2012--044-DNA | Open Energy Information  

Open Energy Info (EERE)

-044-DNA -044-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012--044-DNA DNA at {{{GeothermalArea}}} for Geothermal/Power Plant, Ormatt Nevada Sundry Notice -Geotechnical Work General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormatt Nevada, Inc Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Power Plant Techniques Drilling Methods Comments Sundry Notice to drill 3 boreholes to evaluate engineering characteristics of potential power plant location Time Frame (days) Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Carson City

97

DOI-BLM-NV-B020-????-???-EA | Open Energy Information  

Open Energy Info (EERE)

B020-????-???-EA B020-????-???-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-????-???-EA EA at Grass Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Geothermal Area Grass Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Relevant Numbers Lead Agency

98

DOI-BLM-CA-EA-2002-??? | Open Energy Information  

Open Energy Info (EERE)

EA-2002-??? EA-2002-??? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-EA-2002-??? EA at Glass Mountain Geothermal Area for Geothermal/Well Field, Glass Mountain Exploration Environmental Assessment/Initial Study General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Calpine Corporation (Calpine) and CPN Telephone Flat Inc. (CPN) Consultant MHA Environmental Consulting, Inc. Geothermal Area Glass Mountain Geothermal Area Project Location California, California Project Phase Geothermal/Well Field Techniques Exploration Drilling, Thermal Gradient Holes Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Northern California District Office

99

Annual US Geothermal Power Production and Development Report | Open Energy  

Open Energy Info (EERE)

US Geothermal Power Production and Development Report US Geothermal Power Production and Development Report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Annual US Geothermal Power Production and Development Report Details Activities (0) Areas (0) Regions (0) Abstract: To increase the accuracy and value of information presented in its annual US Geothermal Power Production and Development Report, the Geothermal Energy Association (GEA) developed a reporting system, known as the Geothermal Reporting Terms and Definitions, in 2010. The Geothermal Reporting Terms and Definitions serve as a guideline to project developers in reporting geothermal project development information to the GEA. A basic understanding of the Geothermal Reporting Terms and Definitions will also aid the reader in fully understanding the information presented in this

100

DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ahuachapan Geothermal Power Plant, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

102

HL Power Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » HL Power Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home HL Power Geothermal Facility General Information Name HL Power Geothermal Facility Facility HL Power Sector Geothermal energy Location Information Location Wendel, California Coordinates 40.3482346°, -120.2335461° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3482346,"lon":-120.2335461,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Report on Hawaii geothermal power plant project  

SciTech Connect (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

104

Empire Geothermal Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Power LLC Jump to: navigation, search Name Empire Geothermal Power LLC Place Reno, Nevada Zip 89509 Sector Geothermal energy Product Empire owns and operates a 3.5MW geothermal project in Nevada. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Geothermal Power Plants Meeting Water Quality and Conservation Standards  

Broader source: Energy.gov [DOE]

U.S. geothermal power plants can easily meet federal, state, and local water quality and conservation standards.

106

DOI-BLM-CA-C050-2009-0005-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-C050-2009-0005-EA EA at Geysers Geothermal Area for Geothermal/Well Field Engineered Geothermal Enhancement System Demonstration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant AltaRock Energy Inc Consultant ICF International Geothermal Area Geysers Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Development Drilling Time Frame (days) NEPA Process Time 155 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office BLM Central California District Office Managing Field Office BLM Ukiah Field Office Funding Agencies none provided

107

DOI-BLM-NV-C010-2012-0068-DNA | Open Energy Information  

Open Energy Info (EERE)

DNA DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0068-DNA DNA at Tungsten Mountain Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit Well # 14-23 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

108

DOI-BLM-ID-T020-2012-0003-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-ID-T020-2012-0003-CX DOI-BLM-ID-T020-2012-0003-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-T020-2012-0003-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Agua Caliente LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Twin Falls District Office Managing Field Office BLM Burley Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

109

Geothermal/Land Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Land Use Geothermal/Land Use < Geothermal(Redirected from Land Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Land Use Planning General Regulatory Roadmap The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Land Use Planning is ... Example Land Use Plans References Information for Publication Standards for EA/EIS/Planning Documents IM 2004-110.pdf Fluid Mineral Leasing and Related Planning and National Environmental Policy Act (NEPA) Processes April 11, 2004 and

110

Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources  

Broader source: Energy.gov [DOE]

Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

111

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

112

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

113

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network [OSTI]

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed...

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

114

International Data Exchange for Geothermal Energy Power Production  

Science Journals Connector (OSTI)

During the past five years great strides have been made in the development of geothermal energy resources for electrical power production. However, ... seen an enormous growth in publications dealing with geothermal

Sidney L. Phillips

1979-01-01T23:59:59.000Z

115

DOI-BLM-NV-C010-2012-0046-DNA | Open Energy Information  

Open Energy Info (EERE)

-DNA -DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0046-DNA DNA at Tungsten Mountain Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 4/16/2012 Relevant Numbers

116

DOI-BLM-ID-I020-2012-0017-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-ID-I020-2012-0017-CX DOI-BLM-ID-I020-2012-0017-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-I020-2012-0017-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Environmental Analysis Type CX Applicant Idaho Geological Survey Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 272 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Idaho Falls District Office Managing Field Office BLM Pocatello Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 10/21/2011

117

NREL: Financing Geothermal Power Projects - Overview of Financing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Financing Geothermal Power Projects Overview of Financing Geothermal Power Projects Financing geothermal power projects involves specific processes, costs, and risks. There are also several advantages and challenges to developing and financing geothermal power projects. The financing strategies presented apply to geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). In 2008, the U.S. Geological Survey completed an assessment of moderate- and high-temperature geothermal resources in 13 states. These data help lower project costs and risks for project developers by shortening the resource identification phase of project development; yet geothermal resource development still has risk. Financing Processes, Costs, and Risks

118

DOI-BLM-NV-C010-2013-0020-DNA | Open Energy Information  

Open Energy Info (EERE)

DNA DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0020-DNA DNA at Patua Geothermal Area for Geothermal/Well Field Gradient Resources Geothermal Drilling Permit General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Gradient Resources Geothermal Drilling Permit Application Well 14-28 Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field Techniques Production Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR Mineral Manager BLM Selected Dates

119

DOI-BLM-NV-W010-2011-0100-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2011-0100-CX DOI-BLM-NV-W010-2011-0100-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0100-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Nevada Inc. Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 149 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Winnemucca Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 1/31/2011

120

California Geothermal Power Plant to Help Meet High Lithium Demand  

Broader source: Energy.gov [DOE]

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOI-BLM-NV-C010-2011-0016-EA | Open Energy Information  

Open Energy Info (EERE)

EA EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0016-EA EA at Patua Geothermal Area for Well Field Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Consultant Panorama Environmental, Inc. Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Well Field Techniques Exploratory Well, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Nevada Managing Field Office Carson City Funding Agencies none provided Surface Manager BLM, BOR Mineral Manager BLM Selected Dates

122

DOI-BLM-NM-L000-2012-0218-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NM-L000-2012-0218-DNA DOI-BLM-NM-L000-2012-0218-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NM-L000-2012-0218-DNA DNA at Lightning Dock Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Lightning Dock Geothermal Inc Geothermal Area Lightning Dock Geothermal Area Project Location New Mexico Project Phase Geothermal/Exploration Techniques Well Testing Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Las Cruces District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager BLM

123

DOI-BLM-NV-C010-2012-0016-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2012-0016-DNA DOI-BLM-NV-C010-2012-0016-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0016-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Production Wells Comments Geothermal Drilling Permit 85-5 Production Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

124

DOI-BLM-NM-L000-2012-0200-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NM-L000-2012-0200-DNA DOI-BLM-NM-L000-2012-0200-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NM-L000-2012-0200-DNA DNA at Lightning Dock Geothermal Area for Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Lightning Dock Geothermal Inc Geothermal Area Lightning Dock Geothermal Area Project Location New Mexico Project Phase Geothermal/Well Field Techniques Drilling Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Las Cruces District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager BLM

125

DOI-BLM-NV-C010-????-????-CX | Open Energy Information  

Open Energy Info (EERE)

????-????-CX ????-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-????-????-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments No Doc Number- CX was never processed. Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager none provided

126

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power  

Broader source: Energy.gov [DOE]

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado.

127

Geothermal Energy: Clean Power from the Earth's Heat | Open Energy...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Geothermal Energy: Clean Power from the Earth's Heat Abstract Societies in the 21st century require enormous...

128

North Brawley Geothermal Power Plant Project Overview | Open...  

Open Energy Info (EERE)

Project Overview Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: North Brawley Geothermal Power Plant Project Overview Author PCL Construction...

129

New Ways to Produce Geothermal Power at Lower Temperatures |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15, 2013 - 2:13pm Addthis Note: This article appeared in the April 2013 issue of Power Engineering magazine. By Tim Reinhardt, physical scientist, DOE's Geothermal Technologies...

130

Construction Underway on First Geothermal Power Plant in New Mexico  

Broader source: Energy.gov [DOE]

New Mexico Governor Bill Richardson and Raser Technologies, Inc. announced in late August that construction has begun on the first commercial geothermal power plant in New Mexico.

131

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

132

Suginoi Hotel Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Facility Power Plant Sector Geothermal energy Location Information Location Beppu, Japan Coordinates 33.283191762234, 131.47605371632 Loading map... "minzoom":false,"mapp...

133

North Brawley Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Brawley Geothermal Power Plant Brawley Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North Brawley Geothermal Power Plant General Information Name North Brawley Geothermal Power Plant Facility North Brawley Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.015046°, -115.542267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.015046,"lon":-115.542267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Neal Hot Springs Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Neal Hot Springs Geothermal Power Plant Neal Hot Springs Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Neal Hot Springs Geothermal Power Plant General Information Name Neal Hot Springs Geothermal Power Plant Facility Neal Hot Springs Sector Geothermal energy Location Information Location Malheur County, Oregon Coordinates 44.02239°, -117.4631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.02239,"lon":-117.4631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

136

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power...

137

DOI-BLM-ID-110-2009-3825-CE | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-ID-110-2009-3825-CE DOI-BLM-ID-110-2009-3825-CE Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-110-2009-3825-CE CX at Crane Creek Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Agua Caliente LLC Geothermal Area Crane Creek Geothermal Area Project Location Idaho Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 113 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Boise Managing Field Office BLM Four Rivers Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 6/4/2009

138

DOI-BLM-NV-C010-2013-0026-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2013-0026-DNA DOI-BLM-NV-C010-2013-0026-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0026-DNA DNA at Dixie Valley Geothermal Area for Geothermal/Well Field, Above ground drilling water pipeline (temporary) General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant TGP Coyote Canyon LLC Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Production Wells Time Frame (days) Application Time 56 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

139

DOI-BLM-NV-C010-2013-0037-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2013-0037-DNA DOI-BLM-NV-C010-2013-0037-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0037-DNA DNA at Gabbs Valley Geothermal Area for Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant ORNI 47 LLC Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Drilling Methods Comments GDP Wild Rose Unit Well 57-11 Time Frame (days) Application Time 1 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

140

DOI-BLM-NV-C010-2012-0069-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2012-0069-CX DOI-BLM-NV-C010-2012-0069-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0069-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 27 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2011-0004-CX DOI-BLM-NV-W010-2011-0004-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0004-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration, AltaRock Seismic Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Application Time 160 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

142

DOI-BLM-NV-W010-2010-0043-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2010-0043-CX DOI-BLM-NV-W010-2010-0043-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0043-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Oski Energy LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 68 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 6/2/2010

143

DOI-BLM-NV-C010-2011-0517-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2011-0517-DNA DOI-BLM-NV-C010-2011-0517-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0517-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Exploration Techniques Drilling Techniques Time Frame (days) Application Time 26 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

144

Binary Cycle Geothermal Demonstration Power Plant New Developments  

SciTech Connect (OSTI)

San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

Lacy, Robert G.; Jacobson, William O.

1980-12-01T23:59:59.000Z

145

Geothermal/Land Use | Open Energy Information  

Open Energy Info (EERE)

Use Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Land Use Planning General Regulatory Roadmap The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Land Use Planning is ... Example Land Use Plans References Information for Publication Standards for EA/EIS/Planning Documents IM 2004-110.pdf Fluid Mineral Leasing and Related Planning and National Environmental Policy Act (NEPA) Processes April 11, 2004 and

146

Geothermal Energy--Clean Power From the Earth's Heat  

E-Print Network [OSTI]

G. Groat Director, U.S. Geological Survey #12;iv Conversion Factors Geothermal Energy--Clean Power From the Earth's Heat Circular 1249 U.S. Department of the Interior U.S. Geological Survey #12;Geothermal Energy--Clean Power From the Earth's Heat By Wendell A

147

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

148

NREL: Financing Geothermal Power Projects - Policies and Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policies and Regulations Affecting Geothermal Power Project Financing Policies and Regulations Affecting Geothermal Power Project Financing Federal and state policies, including leasing and permitting, federal financial incentives, renewable portfolio standards, and greenhouse gas emission reduction regulations, can affect geothermal power project development financing processes and timelines. The related issues that should be considered during the project development cycle regarding these policies are summarized in the following table and described in more detail below. Note that this table is not meant to guide developers through the entire policy landscape, and should not be assumed to include all related issues in geothermal power development. Roles of Policies and Regulations in the Geothermal Power Project Development Process*

149

NREL: Financing Geothermal Power Projects - Financing Options for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financing Options for Geothermal Power Projects Financing Options for Geothermal Power Projects Different financing options are used at each stage in geothermal power project development, which include the exploration and drilling stage and construction and operation stage. The financing option in each stage earns a return proportionate with the risk accepted at that stage in the project's development. For each financing option, both financial and non-financial elements should be considered. Financing options and considerations for a typical geothermal power project are shown in the table below. Your project financing options and considerations may be different. Financing Options and Considerations for a Typical Geothermal Power Project* Financial Considerations Financing Stage Exploration and Drilling Construction and Operation

150

BLM | Open Energy Information  

Open Energy Info (EERE)

BLM BLM Jump to: navigation, search Logo: Bureau of Land Management Name Bureau of Land Management Short Name BLM Parent Organization United States Department of Interior Address 1849 C Street NW, Rm. 5665 Place Washington DC Zip 20240 Phone number 202-208-3801 Website http://www.blm.gov/wo/st/en.ht References http://www.blm.gov/wo/st/en.html Divisions Place BLM Alaska State Office Anchorage, Alaska BLM Arizona State Office Phoenix, Arizona BLM California State Office Sacramento, California BLM Color Country District Office Cedar City, Utah BLM Colorado State Office Lakewood, Colorado BLM Eastern States Office Springfield, Virginia BLM Fire and Aviation Office Washington, District of Columbia BLM Idaho State Office Boise, Idaho BLM Montana State Office Billings, Montana

151

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

152

DOI-BLM-NV-C010-2011-0501-EA | Open Energy Information  

Open Energy Info (EERE)

501-EA 501-EA EA at Patua Geothermal Area for Geothermal/Well Field Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Consultant Panorama Environmental, Inc. Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field Techniques Development Drilling, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 494 NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Sierra Front, Stillwater Funding Agencies none provided Surface Manager BLM, BOR, Private Mineral Manager BLM Selected Dates Application Date 2011/01/14

153

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power  

Open Energy Info (EERE)

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Geopressured Resources Project Description Within the Sweet Lake Oil and Gas Field, the existence of a geopressured-geothermal system was confirmed in the 1980s as part of the DOE's Gulf Coast Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and job creation it would entail, provide the opportunity to develop thousands of megawatts of geopressured-geothermal power in the South Eastern United States.

154

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

155

DOI-BLM-NV-C010-2011-0516-EA | Open Energy Information  

Open Energy Info (EERE)

516-EA 516-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0516-EA EA at Dixie Meadows Geothermal Area for Geothermal/Exploration, Geothermal/Well Field Dixie Meadows Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant JBR Environmental Consultants, Inc. Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) Application Time 308 NEPA Process Time 510 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

156

Salton Sea Power Plant Recognized as Most Innovative Geothermal Project  

Broader source: Energy.gov [DOE]

The first power plant to be built in the Salton Sea area in 20 years was recognized in December by Power Engineering magazine as the most innovative geothermal project of the year.

157

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama

2007-01-01T23:59:59.000Z

158

How a Geothermal Power Plant Works (Simple) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from...

159

DOI-BLM-OR-P040-0021-EA | Open Energy Information  

Open Energy Info (EERE)

-0021-EA -0021-EA (Redirected from DOI-BLM-OR-P040-2011-????-EA) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-P040-0021-EA EA at Glass Buttes Geothermal Area for Geothermal/Exploration Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Cardno ENTRIX Geothermal Area Glass Buttes Geothermal Area Project Location Oregon Project Phase Geothermal/Exploration Techniques Drilling Techniques Time Frame (days) Application Time 1018 NEPA Process Time 853 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office BLM Prineville District Office, BLM Burns District Office

160

DOI-BLM-NV-B020-2008-0071-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-B020-2008-0071-DNA DOI-BLM-NV-B020-2008-0071-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2008-0071-DNA DNA at Reese River Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Sierra Geothermal Partners Geothermal Area Reese River Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 26 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOI-BLM-ID-220-2009-EA-3709 | Open Energy Information  

Open Energy Info (EERE)

ID-220-2009-EA-3709 ID-220-2009-EA-3709 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-220-2009-EA-3709 EA at Raft River Geothermal Area for Geothermal/Exploration Raft River Geothermal Drilling Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Agua Caliente, LLC Consultant EMPSi Geothermal Area Raft River Geothermal Area Project Location Idaho Project Phase Geothermal/Exploration Techniques Exploration Drilling Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Twin Falls District Office Managing Field Office Burley Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM

162

DOI-BLM-NV-W030-2010-0021-CX | Open Energy Information  

Open Energy Info (EERE)

30-2010-0021-CX 30-2010-0021-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2010-0021-CX CX at San Emidio Desert Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Geothermal Inc Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 132 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 4/23/2010

163

BLM | Open Energy Information  

Open Energy Info (EERE)

BLM BLM (Redirected from Bureau of Land Management) Jump to: navigation, search Logo: Bureau of Land Management Name Bureau of Land Management Short Name BLM Parent Organization United States Department of Interior Address 1849 C Street NW, Rm. 5665 Place Washington DC Zip 20240 Phone number 202-208-3801 Website http://www.blm.gov/wo/st/en.ht References http://www.blm.gov/wo/st/en.html Divisions Place BLM Alaska State Office Anchorage, Alaska BLM Arizona State Office Phoenix, Arizona BLM California State Office Sacramento, California BLM Color Country District Office Cedar City, Utah BLM Colorado State Office Lakewood, Colorado BLM Eastern States Office Springfield, Virginia BLM Fire and Aviation Office Washington, District of Columbia BLM Idaho State Office Boise, Idaho

164

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program |  

Broader source: Energy.gov (indexed) [DOE]

Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate Program < Back Eligibility Agricultural Commercial Industrial Residential Maximum Rebate 1,000/ton Program Info Funding Source American Recovery and Reinvestment Act of 2009 State Oklahoma Program Type Utility Rebate Program Rebate Amount $800 - $1,000/ton Provider Oklahoma Municipal Power Authority Program funds currently exhausted, additional funds have been requested. Visit the program website for the most up to date information on fund availability and to register for the waiting list for this program. The Oklahoma Municipal Power Authority (OMPA) and the Oklahoma Department of Commerce currently offer the Oklahoma Comfort Program for geothermal

165

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s): Jon Wellinghoff Steve Munson Date: January 30, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Julie Osborn Existing data indicates that extensive geothermal resources of power production grade exist throughout the western United States. These resources may be capable of producing clean, reliable electric power in sufficient quantities to act as a hedge against the price volatility of gas-fired electric generation. The challenge facing energy policy makers is developing effective strategies and appropriate incentives to assist developers in moving competitive quantities of geothermal electric capacity into the western power marketplace. Issues related to achieving this goal

166

Berln Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Sector Geothermal energy Location Information Location Montanita Joy, Usulutan, El Salvador Coordinates 13.525, -88.5089 Loading map... "minzoom":false,"mappingservice":"go...

167

DOI-BLM-NV-CO1000-2010-0021-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-CO1000-2010-0021-CX DOI-BLM-NV-CO1000-2010-0021-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0021-CX CX at Coyote Canyon Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant TGP Dixie Development LLC Geothermal Area Coyote Canyon Geothermal Area Project Location Churchill County, NV, Churchill County, NV Project Phase Geothermal/Exploration Techniques Magnetotelluric Methods Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager Nevada Mineral Manager BLM

168

DOI-BLM-NV-B020-2011-0017-CX | Open Energy Information  

Open Energy Info (EERE)

1-0017-CX 1-0017-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2011-0017-CX CX at Silver Peak Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant CHB Metal Foote Corporation Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 49 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 10/22/2010 Decision Document Date 12/10/2010

169

DOI-BLM-NV-B020-2010-????-CX | Open Energy Information  

Open Energy Info (EERE)

10-????-CX 10-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2010-????-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 36 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office Battle Mountain Managing Field Office BLM Mount Lewis Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 12/20/2010

170

Nevada manufacturer installing geothermal power plant | Department of  

Broader source: Energy.gov (indexed) [DOE]

Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant Nevada manufacturer installing geothermal power plant August 26, 2010 - 4:45pm Addthis Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Chemetall extracts lithium carbonate, a powder, from brine, a salty solution from within the earth. | Photo courtesy Chemetall Joshua DeLung Chemetall supplies materials for lithium-ion batteries for electric vehicles $28.4 million in Recovery Act funding going toward geothermal plant Plant expected to produce 4 MW of electrical power, employ 25 full-time workers Chemetall produces lithium carbonate to customers in a wide range of industries, including for batteries used in electric vehicles, and now the

171

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

172

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

173

Salton Sea Power Plant Recognized as Most Innovative Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

as Most Innovative Geothermal Project February 10, 2013 - 3:32pm Addthis The first power plant to be built in the Salton Sea area in 20 years was recognized in December by...

174

DOI-BLM-NV-W030-2012-0011-DNA | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-W030-2012-0011-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2012-0011-DNA DNA at San Emidio Desert Geothermal Area for Geothermal/Well Field 2012 San Emidio Geothermal 2 Observation Wells General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant US Geothermal Inc Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided

175

DOI-BLM-NV-W030-2010-0006-EA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W030-2010-0006-EA DOI-BLM-NV-W030-2010-0006-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2010-0006-EA EA at San Emidio Desert Geothermal Area for Geothermal/Exploration San Emidio Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant US Geothermal Inc Consultant JBR Environmental Consultants Inc. Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Drilling Methods, Flow Test Time Frame (days) NEPA Process Time 725 Participating Agencies Lead Agency DOE Funding Agency DOE Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided

176

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

177

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

178

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

179

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

2013-11-15T23:59:59.000Z

180

DOI-BLM-NV-C010-2010-0006-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0006-EA EA at Gabbs Valley Geothermal Area for Geothermal/Exploration Gabbs Valley and Dead Horse Wells Geothermal Exploration Projects General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 363 NEPA Process Time 363 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOI-BLM-NV-C010-2012-0029-EA | Open Energy Information  

Open Energy Info (EERE)

29-EA 29-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0029-EA EA at Tungsten Mountain Geothermal Area for Geothermal/Well Field Tungsten Mountain Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Environmental Management Associates Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) NEPA Process Time 407 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City

182

GRC Workshop: The Power of the National Geothermal Data System | Department  

Broader source: Energy.gov (indexed) [DOE]

GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System GRC Workshop: The Power of the National Geothermal Data System October 2, 2013 (All day) Flyer for the National Geothermal Data System workshop at the Geothermal Resources Council Annual Meeting on October 2, 2013 in Las Vegas. Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development-The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects

183

DOI-BLM-UT-W020-2010-0042-EA | Open Energy Information  

Open Energy Info (EERE)

20-2010-0042-EA 20-2010-0042-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-W020-2010-0042-EA EA at {{{GeothermalArea}}} for Geothermal/Exploration, Geothermal/Well Field Drum Mountains and Whirlwind Valley Geothermal Exploration Projects General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Thermal Gradient Holes Time Frame (days) Application Time 250 NEPA Process Time 126 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM West Desert District Office

184

Evaluation of the Geothermal Public Power Utility Workshops in California  

SciTech Connect (OSTI)

The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

Farhar, B. C.

2004-10-01T23:59:59.000Z

185

Geothermal slim holes for small off-grid power projects  

Science Journals Connector (OSTI)

Economically viable, small (100 kWe to 1000 kWe), geothermal power generation units using slim holes are available for the production of electrical power in remote areas and for rural electrification in developing countries. Based on borehole data from geothermal fields in the United States and Japan, slim holes have been proven as adequate fuel sources for small-scale geothermal power plants (SSGPPs) and can deliver enough geothermal fluid to the wellhead in a baseload mode to be of practical interest for off-grid electrification projects. The electrical generating capacity of geothermal fluids which can be produced from typical slim holes (150-mm diameter or less), both by conventional, self-discharge, flash-steam methods for hotter geothermal reservoirs, and by binary-cycle technology with downhole pumps for low- to moderate-temperature reservoirs are estimated using a simplified theoretical approach. Depending mainly on reservoir temperature, the numerical simulations indicate that electrical capacities from a few hundred kilowatts to over one megawatt per slim hole are possible. In addition to the advantage of price per kilowatt-hour in off-grid applications, \\{SSGPPs\\} fueled by slim holes are far more environmentally benign than fossil-burning power plants, which is crucial in view of current worldwide climate-change concerns and burgeoning electricity demand in the less-developed and developing countries.

Jim Combs; Sabodh K Garg; John W Pritchett

1997-01-01T23:59:59.000Z

186

DOI-BLM-ID-B010-2010-??-CX | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » DOI-BLM-ID-B010-2010-??-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-B010-2010-??-CX CX at Weiser Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Environmental Analysis Type CX Applicant Agua Caliente LLC Geothermal Area Weiser Geothermal Area Project Location Idaho Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Boise Managing Field Office BLM Four Rivers Field Office Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Decision Document Date 9/30/2010

187

DOI-BLM-NV-C010-2012-0073-DNA | Open Energy Information  

Open Energy Info (EERE)

2-0073-DNA 2-0073-DNA DNA at Tungsten Mountain Geothermal Area for Geothermal/Well Field Ormat Nevada Inc. Geothermal Drilling Permit 24-23 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Tungsten Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit 24-23 Observation Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 9/26/2012 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-C010-2012-0073-DNA

188

DOI-BLM-NV-C010-2012-0020-DNA | Open Energy Information  

Open Energy Info (EERE)

-DNA -DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0020-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit 11A-32 Observation Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 1/27/2012

189

DOI-BLM-NV-C010-2011-0514-EA | Open Energy Information  

Open Energy Info (EERE)

-EA -EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0514-EA EA at McCoy Geothermal Area for Geothermal/Well Field McCoy II Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Magma Energy Geothermal Area McCoy Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Time Frame (days) NEPA Process Time 560 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type ROW Scoping Initiated Date 2010/04/06

190

DOI-BLM-NV-C010-2013-0007-DNA | Open Energy Information  

Open Energy Info (EERE)

07-DNA 07-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0007-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permit Well 38-12 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates

191

DOI-BLM-OR-P040-0021-EA | Open Energy Information  

Open Energy Info (EERE)

OR-P040-0021-EA OR-P040-0021-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-P040-0021-EA EA at Glass Buttes Geothermal Area for Geothermal/Exploration Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant Cardno ENTRIX Geothermal Area Glass Buttes Geothermal Area Project Location Oregon Project Phase Geothermal/Exploration Techniques Drilling Techniques Time Frame (days) Application Time 1018 NEPA Process Time 853 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office BLM Prineville District Office, BLM Burns District Office

192

DOI-BLM-NV-W010-2010-0043-CX-2 | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-W010-2010-0043-CX-2 DOI-BLM-NV-W010-2010-0043-CX-2 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2010-0043-CX-2 CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Geothermal Technical Partners Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Geophysical Techniques, Slim Holes, Thermal Gradient Holes, Well Testing Techniques Time Frame (days) Application Time 148 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided

193

DOI-BLM-NM-L000-2012-0046-CX | Open Energy Information  

Open Energy Info (EERE)

6-CX 6-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NM-L000-2012-0046-CX CX at Lightning Dock Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Lightning Dock Geothermal Inc Geothermal Area Lightning Dock Geothermal Area Project Location New Mexico Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 16 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Las Cruces District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager BLM Selected Dates Application Date 1/4/2012

194

DOI-BLM-NV-C010-2012-0035-DNA | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2012-0035-DNA DOI-BLM-NV-C010-2012-0035-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0035-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Production Wells Comments Geothermal Drilling Permits 12-A-12, 54A-11, 62-11, and Sundry Notice Well 65-11 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

195

DOI-BLM-NM-L000-2012-0111-DNA | Open Energy Information  

Open Energy Info (EERE)

NM-L000-2012-0111-DNA NM-L000-2012-0111-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NM-L000-2012-0111-DNA DNA at Lightning Dock Geothermal Area for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Lightning Dock Geothermal Inc Geothermal Area Lightning Dock Geothermal Area Project Location New Mexico Project Phase Geothermal/Exploration Techniques Drilling Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Las Cruces District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager BLM Selected Dates

196

DOI-BLM-NM-L000-2012-0020-DNA | Open Energy Information  

Open Energy Info (EERE)

20-DNA 20-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NM-L000-2012-0020-DNA DNA at Lightning Dock Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Lightning Dock Geothermal Inc Geothermal Area Lightning Dock Geothermal Area Project Location New Mexico Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Las Cruces District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager BLM Selected Dates Application Document Type Sundry Notice

197

DOI-BLM-NV-W030-20??-????-CX | Open Energy Information  

Open Energy Info (EERE)

NV-W030-20??-????-CX NV-W030-20??-????-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-20??-????-CX CX at Mcgee Mountain Geothermal Area for Geothermal/Exploration McGee Mountain Gravity Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Geothermal Technical Partners Geothermal Area Mcgee Mountain Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Gravity Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Relevant Numbers

198

DOI-BLM-NV-W030-2011-0007-CX | Open Energy Information  

Open Energy Info (EERE)

7-CX 7-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2011-0007-CX CX at San Emidio Desert Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Geothermal Inc Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 39 Participating Agencies Lead Agency BLM Funding Agency US Department of Energy Office of Energy Efficiency and Renewable Energy (DOE EERE) Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided Surface Manager BLM,

199

Green Energy Geotherm Power Fonds GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

Geotherm Power Fonds GmbH Co KG Geotherm Power Fonds GmbH Co KG Jump to: navigation, search Name Green Energy Geotherm Power Fonds GmbH & Co. KG Place Hannover, Lower Saxony, Germany Zip 30559 Sector Geothermal energy Product German-based fund that will invest in geothermal projects to be developed by Green Energy Group. References Green Energy Geotherm Power Fonds GmbH & Co. KG[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Green Energy Geotherm Power Fonds GmbH & Co. KG is a company located in Hannover, Lower Saxony, Germany . References ↑ "Green Energy Geotherm Power Fonds GmbH & Co. KG" Retrieved from "http://en.openei.org/w/index.php?title=Green_Energy_Geotherm_Power_Fonds_GmbH_Co_KG&oldid=346014"

200

Exploration and Development of Geothermal Power in California | Open Energy  

Open Energy Info (EERE)

Exploration and Development of Geothermal Power in California Exploration and Development of Geothermal Power in California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Exploration and Development of Geothermal Power in California Abstract From 1955 to 1962, approximately 40 wells were drilled in 15 California thermal areas for the purpose of exploring and developing natural steam to utilize for electric power generation. Twenty-four of the wells were drilled in the three areas which at present seem to have the greatest potential for the production of natural steam: The Geysers, Sonoma County; Casa Diablo, Mono County; and the Salton Sea area, Imperial County.Since June 1960, steam from The Geysers thermal area, produced at a rate of approximately 250,000 Ib/hr, has been utilized to operate a 12,500 kw

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

202

The Power and Potential of Geothermal Energy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy The Power and Potential of Geothermal Energy October 3, 2011 - 7:03pm Addthis Dan Leistikow Dan Leistikow Former Director, Office of Public Affairs As Secretary Chu noted this weekend, America finds itself in a fierce global competition for the clean energy jobs and industries of the future - with countries like China, Germany and others investing tens of billions of dollars to expand their domestic renewable energy industry and capture the lead in a rapidly growing field. In this context, the Department of Energy's loan programs have played a crucially important role in helping the United States compete, by providing affordable financing to innovative projects that might not otherwise happen but that hold the potential to seed entire new industries for U.S.

203

EIS-0256: Sierra Pacific Power Company Alturas Transmission Line Project (adopted from BLM)  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental setting and consequences of the construction and operation of the proposal Alturas Transmission Line Project. Sierra Pacific Power Company (SPPCO) has proposed this electric power transmission line to improve the existing operational capacity and reliability of its power transmission system and provide for anticipated growth in demand for electric power.

204

EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power...  

Energy Savers [EERE]

EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV EA-1849-S1: Phase II Facility - Ormat Tuscarora Geothermal Power Plant in Tuscarora, NV...

205

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue...

206

Geothermal Brine Brings Low-Cost Power with Big Potential | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Brine Brings Low-Cost Power with Big Potential Geothermal Brine Brings Low-Cost Power with Big Potential January 3, 2014 - 9:05am Addthis John Fox, CEO of Electratherm,...

207

DOI-BLM-NV-C010-2012-0005-DNA | Open Energy Information  

Open Energy Info (EERE)

05-DNA 05-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0005-DNA DNA at McCoy Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Magma Energy Geothermal Area McCoy Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments GDP Well # 62-8 and 17-20 Time Frame (days) Application Time 1 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 2011/10/18

208

DOI-BLM-NV-C010-2011-0527-CX | Open Energy Information  

Open Energy Info (EERE)

27-CX 27-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0527-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Decision Document Date 6/6/2011 Relevant Numbers Lead Agency

209

DOI-BLM-NV-C010-2009-0051-CX | Open Energy Information  

Open Energy Info (EERE)

DOI-BLM-NV-C010-2009-0051-CX DOI-BLM-NV-C010-2009-0051-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2009-0051-CX CX at Soda Lake Geothermal Area for Geothermal/Exploration, Magnetotelluric Survey at Soda Lake General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Global Magma Energy Group Geothermal Area Soda Lake Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Magnetotelluric Techniques Comments The Bureau of Reclamation has deferred surface management authority to the BLM for this project. Time Frame (days) Application Time 27 Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Carson City

210

DOI-BLM-NV-W010-2010-0040-CX | Open Energy Information  

Open Energy Info (EERE)

W010-2010-0040-CX W010-2010-0040-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Presco Energy LLC Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Reflection Survey Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM, BOR Mineral Manager BLM, BOR Selected Dates Application Date 1/25/2010 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-W030-2010-???-CX Serial Number NVN-088196

211

DOI-BLM-NV-E030-2011-0017-CX | Open Energy Information  

Open Energy Info (EERE)

E030-2011-0017-CX E030-2011-0017-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-E030-2011-0017-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant USGS Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 134 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Elko District Office Managing Field Office none provided Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 2/24/2011

212

DOI-BLM-NM-L000-2012-0042-DNA | Open Energy Information  

Open Energy Info (EERE)

2-DNA 2-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NM-L000-2012-0042-DNA DNA at Lightning Dock Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Environmental Analysis Type DNA Applicant Lightning Dock Geothermal Inc Geothermal Area Lightning Dock Geothermal Area Project Location New Mexico Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Las Cruces District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager BLM Selected Dates Application Document Type Sundry Notice Relevant Numbers Lead Agency

213

DOI-BLM-UT-W020-2010-042-EA | Open Energy Information  

Open Energy Info (EERE)

UT-W020-2010-042-EA UT-W020-2010-042-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-W020-2010-042-EA EA at Drum Mountain Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant JBR Geothermal Area Drum Mountain Geothermal Area Project Location Delta, Utah, Delta, Utah Project Phase Geothermal/Exploration Techniques Development Drilling, Exploration Drilling Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM West Desert District Office Managing Field Office Fillmore Field Office Funding Agencies none provided Surface Manager BLM,

214

DOI-BLM-NV-C010-2012-0057-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0057-CX CX at Dixie Meadows Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 25 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 5/24/2012 Decision Document Date 6/18/2012

215

DOI-BLM-NV-C010-2012-0019-DNA | Open Energy Information  

Open Energy Info (EERE)

-DNA -DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0019-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments GDP Well 18-5 Observation Well Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type GPD

216

DOI-BLM-NV-C010-2013-0022-DNA | Open Energy Information  

Open Energy Info (EERE)

22-DNA 22-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2013-0022-DNA DNA at Dixie Meadows Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments Core hole/TGH Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type NOI

217

DOI-BLM-NV-W010-2009-0018-CX | Open Energy Information  

Open Energy Info (EERE)

-0018-CX -0018-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2009-0018-CX CX at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Geophysical Methods Time Frame (days) Application Time 7 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 2/19/2009

218

Standard Guide for Specifying Thermal Performance of Geothermal Power Systems  

E-Print Network [OSTI]

1.1 This guide covers power plant performance terms and criteria for use in evaluation and comparison of geothermal energy conversion and power generation systems. The special nature of these geothermal systems makes performance criteria commonly used to evaluate conventional fossil fuel-fired systems of limited value. This guide identifies the limitations of the less useful criteria and defines an equitable basis for measuring the quality of differing thermal cycles and plant equipment for geothermal resources. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

219

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

220

DOI-BLM-OR-V040-2011-0008-EA | Open Energy Information  

Open Energy Info (EERE)

V040-2011-0008-EA V040-2011-0008-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-V040-2011-0008-EA EA at Neal Hot Springs Geothermal Area for Geothermal/Well Field Neal Hot Springs Geothermal Well Construction Right of Way, Phase 2 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant US Geothermal Inc Consultant None Geothermal Area Neal Hot Springs Geothermal Area Project Location Oregon Project Phase Geothermal/Well Field Techniques Development Drilling, Well Testing Techniques Time Frame (days) Application Time 227 NEPA Process Time 125 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Vale District Office Managing Field Office

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOI-BLM-NV-C010-2013-0023-DNA | Open Energy Information  

Open Energy Info (EERE)

3-0023-DNA 3-0023-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Document Type GPD Decision Document Date 1/31/2013 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-C010-2013-0023-DNA Serial Number NVN-083929 Lease Numbers

222

DOI-BLM-NV-W010-2010-0041-CX | Open Energy Information  

Open Energy Info (EERE)

W010-2010-0041-CX W010-2010-0041-CX CX at Brady Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Stephen D. Muir Geothermal Area Brady Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 115 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 4/2/2010 Application Document Type POO Decision Document Date 7/26/2010 Relevant Numbers Lead Agency Doc Number DOI-BLM-NV-W010-2010-0041-CX

223

Geothermal power production: impact assessments and environmental monitoring  

SciTech Connect (OSTI)

The role that baseline and postoperational environmental monitoring plays in assessing impacts of geothermal power production is emphasized. Based on experience in the Imperial Valley, where substantial geothermal resources exist, the important characteristics of monitoring programs involving subsidence, seismicity, and air and water quality are examined. The importance of environmental monitoring for situations where predictive models either do not exist (e.g., seismicity), or are still being developed (e.g., land subsidence) are discussed. In these cases the need for acquiring and analyzing data that can provide timely information on changes caused by geothermal operations are emphasized. Monitoring is also useful in verifying predictions of air quality changes - in particular, violations of ambient standards after control technologies are implemented. Water quality can be monitored with existing sampling programs where the potential for geothermal impacts is thought to be rather small. The significant issues in these environmental areas, the status of baseline data and predictive capability that currently exists, and the need for future monitoring and modeling programs to assess the impacts of geothermal development are summarized.

Layton, D.W.; Pimentel, K.D.

1980-01-01T23:59:59.000Z

224

Geothermal power in Italy: A social multi-criteria evaluation  

Science Journals Connector (OSTI)

Abstract Italy was the first country in the world to exploit geothermal resources for electricity production. In Europe it is still the first country in terms of installed capacity. Currently, the only region in Italy with geothermal power plants is Tuscany. This study focuses on Mt. Amiata, one of the two geothermal areas in Tuscany. In Mt. Amiata a strong opposition to the exploitation of geothermal resources is rising. The context is characterized by contested scientific results regarding crucial issues such as the impact of geothermal exploitation on human health and the conservation of water resources. A social multi-criteria evaluation is proposed to explore the different legitimate perspectives of the actors involved. Scenarios are distinguished in terms of their technology, plant site and installed capacity. Criteria reflect economic considerations, social aspects and environmental concerns. A Condorcet consistent aggregation algorithm is applied and results are analyzed using a sensitivity analysis. The alternative scenarios are evaluated by attaching different weights to the criteria reflecting divergent points of view.

Matteo Borzoni; Francesco Rizzi; Marco Frey

2014-01-01T23:59:59.000Z

225

Guidebook to Geothermal Power Finance | Open Energy Information  

Open Energy Info (EERE)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Jump to: navigation, search Tool Summary Name: Guidebook to Geothermal Power Finance Agency/Company /Organization: J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Partner: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal Phase: Create a Vision, Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Finance, Implementation Resource Type: Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49391.pdf Country: United States Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Water Use in the Development and Operations of Geothermal Power Plants  

Broader source: Energy.gov [DOE]

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

227

Water Use in the Development and Operation of Geothermal Power Plants  

Broader source: Energy.gov [DOE]

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

228

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems  

Broader source: Energy.gov [DOE]

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

229

DOI-BLM-NV-B020-2012-0214-EA | Open Energy Information  

Open Energy Info (EERE)

2-0214-EA 2-0214-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2012-0214-EA EA at Silver Peak Geothermal Area for Geothermal/Exploration Silver Peak Area Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Rockwood Lithium Inc Consultant Environmental Management Associates, Inc. Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Drilling Techniques, Well Testing Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Battle Mountain Managing Field Office BLM Tonopah Field Office Funding Agencies none provided

230

DOI-BLM-NV-W030-2012-0020-CX | Open Energy Information  

Open Energy Info (EERE)

20-CX 20-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W030-2012-0020-CX CX at Pinto Hot Springs Geothermal Area for Geothermal/Exploration, Pinto Hot Springs Geothermal Gradient Well Drilling General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Nevada Bureau of Mines and Geology Geothermal Area Pinto Hot Springs Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 128 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock Field Office Funding Agencies none provided Surface Manager none provided

231

DOI-BLM-UT-W019-2011-0006-CX | Open Energy Information  

Open Energy Info (EERE)

W019-2011-0006-CX W019-2011-0006-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-W019-2011-0006-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Utah Geological Survey Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Comments Utah Geological Survey Temperature Gradient Wells at Pavant Valley, Millard County Time Frame (days) Application Time Expression error: Unexpected < operator. Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM West Desert District Office

232

DOI-BLM-ID-B010-2010-0083-CX | Open Energy Information  

Open Energy Info (EERE)

ID-B010-2010-0083-CX ID-B010-2010-0083-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-ID-B010-2010-0083-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Agua Caliente Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments ROW across BLM managed lands for access to TGH locations Time Frame (days) Participating Agencies Lead Agency Idaho Funding Agency none provided Managing District Office Boise Managing Field Office BLM Four Rivers Field Office

233

DOI-BLM-NV-CO10-2011-0501-EA | Open Energy Information  

Open Energy Info (EERE)

CO10-2011-0501-EA CO10-2011-0501-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-CO10-2011-0501-EA EA at Patua Geothermal Area for Geothermal/Well Field Gradient Resources, Inc. Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Well Field Techniques Production Wells, Thermal Gradient Holes Time Frame (days) NEPA Process Time 85 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM, BOR

234

DOI-BLM-OR-V040-2009-0059-CX | Open Energy Information  

Open Energy Info (EERE)

V040-2009-0059-CX V040-2009-0059-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-V040-2009-0059-CX CX at Neal Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Geothermal Inc Geothermal Area Neal Hot Springs Geothermal Area Project Location Oregon Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 58 Participating Agencies Lead Agency BLM Funding Agency DOE Managing District Office BLM Vale District Office Managing Field Office none provided Funding Agencies none provided Surface Manager Private Mineral Manager Private Selected Dates Application Date 9/17/2009 Decision Document Date 11/14/2009

235

DOI-BLM-OR-P000-2012-0043-CX | Open Energy Information  

Open Energy Info (EERE)

43-CX 43-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-OR-P000-2012-0043-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Ormat Technologies Inc Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Prineville District Office Managing Field Office none provided Funding Agencies none provided Surface Manager USFS Mineral Manager none provided

236

Investigation of geothermal power plant performance using sequestered carbon dioxide as a heat transfer or working fluid.  

E-Print Network [OSTI]

??This study investigates the potential for combining carbon dioxide (CO2) sequestration with geothermal power production in areas with low geothermal resource temperatures. Using sequestered CO2 (more)

Janke, Brian D.

2011-01-01T23:59:59.000Z

237

Geothermal, an alternate energy source for power generation  

SciTech Connect (OSTI)

The economic development of nations depends on an escalating use of energy sources. With each passing year the dependence increases, reaching a point where the world will require, in the next six years, a volume of energetics equal to that consumed during the last hundred years. Statistics show that in 1982 about 70% of the world's energy requirements were supplied by oil, natural gas and coal. The remaining 30% came from other sources such as nuclear energy, hydroelectricity, and geothermal. In Mexico the situation is more extreme. For the same year (1982) 85% of the total energy consumed was supplied through the use of hydrocarbons, and only 15% through power generated by the other sources of electricity. Of the 15%, 65% used hydrocarbons somewhere in the power generation system. Geothermal is an energy source that can help solve the problem, particularly in Mexico, because the geological and structural characteristics of Mexico make it one of the countries in the world with a tremendous geothermal potential. The potential of geothermal energy for supplying part of Mexico's needs is discussed.

Espinosa, H.A.

1985-02-01T23:59:59.000Z

238

DOI-BLM-CA-ES-2007-017-3200 | Open Energy Information  

Open Energy Info (EERE)

CA-ES-2007-017-3200 CA-ES-2007-017-3200 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-CA-ES-2007-017-3200 EIS at Truckhaven Geothermal Area for Geothermal/Leasing, Final Environmental Impact Statement for the Truckhaven Geothermal Leasing Area General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EIS Applicant Consultant ASM Affliates; Epsilon Systems Solutions; GeothermEx; Burro Canyon Enterprises Geothermal Area Truckhaven Geothermal Area Project Location California Project Phase Geothermal/Leasing Techniques Comments This is an EIS analyzing the effects of geothermal leasing in the Truckhaven Geothermal Leasing Area Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided

239

geothermal_test.cdr  

Office of Legacy Management (LM)

Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility....

240

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Broader source: Energy.gov (indexed) [DOE]

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Okeanskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

242

Mendeleevskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Information Facility Type Single Flash Owner Ministry of Natural Resources of Russia Commercial Online Date 2007 Power Plant Data Type of Plant Number of Generating Units...

243

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

244

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains with geothermal power. GeothermalResourcesgains with geothermal power. GeothermalResourcesofTables: Table1:GeothermalPowerPlantsOperatingat

Brophy, P.

2012-01-01T23:59:59.000Z

245

DOI-BLM-NV-C010-2009-0018-EA | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-C010-2009-0018-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2009-0018-EA EA at Soda Lake Geothermal Area for Geothermal/Well Field Environmental Assessment: Magma Energy Soda Lake Well 41B-33 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Magma Energy Geothermal Area Soda Lake Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Production Wells Time Frame (days) Application Time 112 NEPA Process Time 3 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

246

DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information  

Open Energy Info (EERE)

W010-2011-0004-CX W010-2011-0004-CX (Redirected from DOI-BL-NV-W010-2011-0004-CX) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0004-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration, AltaRock Seismic Survey General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Passive Seismic Techniques Time Frame (days) Application Time 160 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided Surface Manager BLM

247

DOI-BLM-NV-C010-2011-0004-CX | Open Energy Information  

Open Energy Info (EERE)

CX CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0004-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant AltaRock Energy Inc Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Seismic Techniques Time Frame (days) Application Time 77 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 11/4/2010 Decision Document Date 1/20/2011

248

DOI-BLM-UT-W020-2009-0028-EA | Open Energy Information  

Open Energy Info (EERE)

20-2009-0028-EA 20-2009-0028-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-W020-2009-0028-EA EA at Drum Mountain Geothermal Area for Geothermal/Exploration Drum Mountain Temperature Gradient Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Standard Steam Trust LLC Consultant EMPSi Geothermal Area Drum Mountain Geothermal Area Project Location Delta, Utah, Delta, Utah Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Time Frame (days) Application Time 460 NEPA Process Time 292 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM West Desert District Office Managing Field Office

249

DOI-BLM-NV-C010-2012-0058-DNA | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-C010-2012-0058-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0058-DNA DNA at Dixie Meadows Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dixie Meadows Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided

250

DOI-BLM-NV-C010-2012-0070-CX | Open Energy Information  

Open Energy Info (EERE)

C010-2012-0070-CX C010-2012-0070-CX CX at Dixie Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant US Navy Geothermal Program Office Geothermal Area Dixie Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Magnetotelluric Methods, Reflection Survey Time Frame (days) Application Time 115 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager BLM Selected Dates Application Date 4/30/2012 Revised Application Date 7/27/2012 Decision Document Date 8/23/2012 Relevant Numbers

251

DOI-BLM-NV-E030-20??-????-?? | Open Energy Information  

Open Energy Info (EERE)

0-20??-????-?? 0-20??-????-?? Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-E030-20??-????-?? EA at Abraham Hot Springs Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Standard Steam Trust LLC Geothermal Area Abraham Hot Springs Geothermal Area Project Location Utah Project Phase Geothermal/Exploration Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office BLM Elko District Office Managing Field Office none provided Funding Agencies none provided Surface Manager none provided Mineral Manager none provided Selected Dates Relevant Numbers Lead Agency

252

DOI-BLM-NV-B020-2011-0048-CX | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » DOI-BLM-NV-B020-2011-0048-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-B020-2011-0048-CX CX at Silver Peak Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant CHB Metal Foote Corporation Geothermal Area Silver Peak Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 36 Participating Agencies Lead Agency BLM Funding Agency none provided

253

DOI-BLM-NV-C010-2011-0019-CX | Open Energy Information  

Open Energy Info (EERE)

9-CX 9-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0019-CX CX at Gabbs Valley Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Geoglobal US Gabbs LLC Geothermal Area Gabbs Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 0 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BLM Mineral Manager none provided Selected Dates Application Date 2/17/2011 Decision Document Date 2/17/2011

254

DOI-BLM-NV-W010-2011-0001-EA | Open Energy Information  

Open Energy Info (EERE)

10-2011-0001-EA 10-2011-0001-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-W010-2011-0001-EA EA at Grass Valley Geothermal Area for Geothermal/Exploration, Geothermal/Well Field Leach Hot Springs Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Consultant JBR Environmental Consultants, Inc. Geothermal Area Grass Valley Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Development Drilling, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 345 NEPA Process Time 274 Participating Agencies Lead Agency BLM Funding Agency none provided

255

Property:GeothermalArea | Open Energy Information  

Open Energy Info (EERE)

GeothermalArea GeothermalArea Jump to: navigation, search Property Name GeothermalArea Property Type Page Description Geothermal Resource Area Subproperties This property has the following 23 subproperties: C CA-670-2010-107 CA-670-2010-CX D DOE-EA-1849 DOE-EA-1961 DOI-BLM-ID-B010-2010-0083-CX DOI-BLM-NV-0063-EA06-100 DOI-BLM-NV-C010-2012--044-DNA DOI-BLM-NV-W010-2010-0040-CX D cont. DOI-BLM-OR-P000-2012-0043-CX DOI-BLM-OR-P000-????-????-EA DOI-BLM-UT-W019-2011-0006-CX DOI-BLM-UT-W019-2011-0007-CX DOI-BLM-UT-W020-2010-0042-EA N NV-020-06-EA-12 NV-020-08-DNA-52 NVN-086761 NVN-086762 N cont. NVN-088208 NVN-89278 NVN-89292 NVN-89306 NVN-91276 T TransWest Old Pages using the property "GeothermalArea" Showing 25 pages using this property. (previous 25) (next 25) A Aidlin Geothermal Facility + Geysers Geothermal Area +

256

DOE Awards $20 Million to Develop Geothermal Power Technologies  

Broader source: Energy.gov [DOE]

DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids.

257

Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

258

Geothermal Power - the Future is Now | Department of Energy  

Office of Environmental Management (EM)

States Department of Energy is breaking the sound barrier, delivering next generation geothermal energy today. At the newly reopened Geysers Geothermal Visitor Center, located...

259

Interior Department to Open 190 Million Acres to Geothermal Power...  

Energy Savers [EERE]

to make more than 190 million acres of federal land in 12 western states available for geothermal energy development. DOI's Final Geothermal Programmatic Environmental Impact...

260

California Geothermal Power Plant to Help Meet High Lithium Demand...  

Energy Savers [EERE]

brines in California. Batteries from Brine California: Geothermal Plant to Help Meet High Lithium Demand Mineral Recovery Creates Revenue Stream for Geothermal Energy Development...

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

EA for Well Field Development at Patua Geothermal Area -  

Open Energy Info (EERE)

for Well Field Development at Patua Geothermal Area - for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA EA at Patua Geothermal Area for Geothermal/Exploration, Geothermal/Well Field, Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided

262

DOI-BLM-NV-0063-EA06-100 | Open Energy Information  

Open Energy Info (EERE)

0063-EA06-100 0063-EA06-100 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-0063-EA06-100 EA at {{{GeothermalArea}}} for Geothermal/Exploration Jersey Valley Geothermal Exploration Project General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Ormat Technologies Inc Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Drilling Techniques, Well Testing Techniques Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office Humboldt River Funding Agencies none provided

263

ENVIRONMENTAL ASSESSMENT DOI-BLM-NV-W030-2010-0006-EA; DOE/EA-1810  

Broader source: Energy.gov (indexed) [DOE]

DOI-BLM-NV-W030-2010-0006-EA; DOE/EA-1810 SAN EMIDIO GEOTHERMAL EXPLORATION PROJECT Geothermal Drilling Permits Geothermal Leases NVN-42707, NVN-75233, and NVN-74196 Exploration Well Numbers 62-4, 68-33, 57-33, 73-9, 84-16, and 87-16 Washoe County, Nevada October 2010 Prepared by: U.S. Bureau of Land Management Winnemucca District Office BLM Black Rock Field Office/Nevada 5100 E. Winnemucca Blvd. Winnemucca NV 89445-2921 U. S. Department of Energy Cooperating Agency Environmental Assessment San Emidio Geothermal Exploration Project It is the mission of the Bureau of Land Management to sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/WN/EA-10/31+1792 DOI-BLM-NV-W030--2010-0006-EA;

264

Heber binary-cycle geothermal demonstration power plant: Startup and low-power testing: Special report  

SciTech Connect (OSTI)

In 1974 the geothermal industry recognized the need for binary cycle technology in the development of moderate temperature geothermal resources. The electric utilities further expressed a need to demonstrate the technology on a scale representative of commercial operation in order to resolve issues of performance cost and environmental acceptability, and to confirm the maturity of the technology. In response to the needs, EPRI conducted feasibility studies and a series of field experiments intended to culminate with the construction and demonstration of a nominal 50 MWe binary cycle power plant in cooperation with other interested organizations. The early work by EPRI, the Department of Energy and the San Diego Gas and Electric Company led to the formation of the present multi-sponsored project in late 1980. Construction of the demonstration plant was completed in June 1985 at the Heber geothermal field in the Imperial Valley of Southern California. The plant is rated at 46 MWe and converts the thermal energy from 360 F (182 C) geothermal fluid to electricity. Start-up of the plant was completed in December 1985 and the first extended run at low power was completed in June 1986. The results from this run and other tests associated with the plant and the geothermal production facilities during this period are contained in this report. During this period, the brine supply was lower than expected and the reinjection pressure higher than expected. The power cycle performed essentially as projected for the load levels at which the plant was tested.

Berning, J.; Bigger, J.E.; Fishbaugher, J.

1987-10-01T23:59:59.000Z

265

Greenhouse Gas emissions from California Geothermal Power Plants  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

266

Greenhouse Gas emissions from California Geothermal Power Plants  

SciTech Connect (OSTI)

The information given in this file represents GHG emissions and corresponding emission rates for California flash and dry steam geothermal power plants. This stage of the life cycle is the fuel use component of the fuel cycle and arises during plant operation. Despite that no fossil fuels are being consumed during operation of these plants, GHG emissions nevertheless arise from GHGs present in the geofluids and dry steam that get released to the atmosphere upon passing through the system. Data for the years of 2008 to 2012 are analyzed.

Sullivan, John

2014-03-14T23:59:59.000Z

267

7-88 A geothermal power plant uses geothermal liquid water at 160C at a specified rate as the heat source. The actual and maximum possible thermal efficiencies and the rate of heat rejected from this power plant  

E-Print Network [OSTI]

and potential energy changes are zero. 3 Steam properties are used for geothermal water. Properties Using7-31 7-88 A geothermal power plant uses geothermal liquid water at 160ºC at a specified rate saturated liquid properties, the source and the sink state enthalpies of geothermal water are (Table A-4) k

Bahrami, Majid

268

GRR/Section 4-FD-a - Exploration Permit BLM | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » GRR/Section 4-FD-a - Exploration Permit BLM < GRR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Resource Area: Details Technical Info Geology Power Plants (70 Projects (56 Activities (1574 Geothermal Area Profile Location Exploration Region GEA Development Phase 2008 USGS Resource Estimate Mean Reservoir Temp Estimated Reservoir Volume Mean Capacity Power Production Profile Gross Production Capacity 300.7 MW300,700 kW 300,700,000 W 300,700,000,000 mW 0.301 GW 3.007e-4 TW Net Production Capacity 206,358 MW206,358,000 kW 206,358,000,000 W 206,358,000,000,000 mW 206.358 GW

269

Geothermal/Land Use Planning | Open Energy Information  

Open Energy Info (EERE)

Print PDF Geothermal Land Use Planning General Regulatory Roadmap The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic...

270

RAPID/Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

receive approval from the Bureau of Land Management (BLM) of a Notice of Intent (NOI) to Conduct Geothermal Resource Exploration Operations. For other types of wells on federal...

271

Geothermal Power and Interconnection: The Economics of Getting to Market  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power and Power and Interconnection: The Economics of Getting to Market David Hurlbut Technical Report NREL/TP-6A20-54192 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Geothermal Power and Interconnection: The Economics of Getting to Market David Hurlbut Prepared under Task No. WE11.0815 Technical Report NREL/TP-6A20-54192 April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

272

Property:BLM CaseStatus | Open Energy Information  

Open Energy Info (EERE)

BLM CaseStatus BLM CaseStatus Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Property Name BLM CaseStatus Property Type String Description Status of case at most recent import from LR2000. Most of these cases are actually leases. Allows Values Authorized, Cancelled, Closed, Expired, Pending, Rejected, Relinquished, Withdrawn This is a property of type String. The allowed values for this property are: Authorized Cancelled Closed Expired Pending Rejected Relinquished Withdrawn Subproperties This property has the following 5 subproperties: C CACA-005224 N NVN-075549 NVN-076209 NVN-076822 NVN-076825 Pages using the property "BLM CaseStatus" Showing 25 pages using this property. (previous 25) (next 25) A AZA-009168 + Closed + AZA-009169 + Closed + AZA-009170 + Closed +

273

North Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Power Plants in North Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Dakota No areas listed....

274

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Operational Geothermal Power Plants in Wisconsin No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wisconsin No areas listed....

275

Geothermal power development in Hawaii. Volume I. Review and analysis  

SciTech Connect (OSTI)

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

276

DOI-BLM-UT-W019-2011-0007-CX | Open Energy Information  

Open Energy Info (EERE)

19-2011-0007-CX 19-2011-0007-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-UT-W019-2011-0007-CX CX at {{{GeothermalArea}}} for Geothermal/Exploration, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Utah Geological Survey Geothermal Area {{{GeothermalArea}}}"{{{GeothermalArea}}}" cannot be used as a page name in this wiki. Project Location Project Phase Geothermal/Exploration Techniques Thermal Gradient Holes Comments Utah Geological Survey Temperature Gradient Wells at Crater Bench, Juab County Time Frame (days) Participating Agencies Lead Agency BLM -Utah Funding Agency none provided Managing District Office none provided Managing Field Office

277

Supersaturated Turbine Expansions for Binary Geothermal Power Plants  

SciTech Connect (OSTI)

The Heat Cycle Research project is developing the technology base that will permit a much greater utilization of the moderate-temperature, liquid-dominated geothermal resources, particularly for the generation of electrical power. The emphasis in the project has been the improvement of the performance of binary power cycles. The investigations have been examining concepts projected to improve the brine utilization by 20% relative to a ''Heber-type'' binary plant; these investigations are nearing completion. preparations are currently underway in the project to conduct field investigations of the condensation behavior of supersaturated turbine expansions. These investigations will evaluate whether the projected additional 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Future program efforts will focus on the problems associated with heat rejection and on the transfer of the technology being developed to industry.

Bliem, C.J.; Mines, G.L.

1992-03-24T23:59:59.000Z

278

The Award-Winning Environmental Performance of Geothermal Power in California  

Broader source: Energy.gov [DOE]

For more than a decade now, three power companies and one community in California have received awards for their outstanding environmental performance from the use of geothermal power. Here's a...

279

Performance Assessment of Flashed Steam Geothermal Power Plant  

SciTech Connect (OSTI)

Five years of operating experience at the Comision Federal de Electricidad (CFE) Cerro Prieto flashed steam geothermal power plant are evaluated from the perspective of U. S. utility operations. We focus on the design and maintenance of the power plant that led to the achievement of high plant capacity factors for Units No. 1 and 2 since commercial operation began in 1973. For this study, plant capacity factor is the ratio of the average load on the machines or equipment for the period of time considered to the capacity rating of the machines or equipment. The plant capacity factor is the annual gross output in GWh compared to 657 GWh (2 x 37.5 MW x 8760 h). The CFE operates Cerro Prieto at base load consistent with the system connected electrical demand of the Baja California Division. The plant output was curtailed during the winter months of 1973-1975 when the system electric demand was less than the combined output capability of Cerro Prieto and the fossil fuel plant near Tijuana. Each year the system electric demand has increased and the Cerro Prieto units now operate at full load all the time. The CFE added Units 3 and 4 to Cerro Prieto in 1979 which increased the plant name plate capacity to 150 MW. Part of this additional capacity will supply power to San Diego Gas and Electric Company through an interconnection across the border. The achievement of a high capacity factor over an extensive operating period was influenced by operation, design, and maintenance of the geothermal flash steam power plant.

Alt, Theodore E.

1980-12-01T23:59:59.000Z

280

Water Use in the Development and Operation of Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

...48 Appendix C - Summary of Water Consumption for Electricity Generation Technologies ...51 v FIGURES 1 Example GIS Map: Geothermal Water...

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Design and simulation of a geothermalsolar combined chimney power plant  

Science Journals Connector (OSTI)

Abstract The solar chimney power plant (SCPP) is dominated by the solar radiation, and therefore its discontinuous operation is an unavoidable problem. In this paper, low temperature geothermal water is introduced into the SCPP for overcoming this problem. Based on a developed transient model, theoretical analyses are carried out to investigate the performance of the geothermalsolar chimney power plant (GSCPP) with main dimensions the same as the Manzanares prototype in Spain. Three operation models, viz. the full solar model, the full geothermal model and the geothermalsolar combined model are compared in typical summer and winter days and throughout the year. It is found that the GSCPP can attractively run in the GSM to deliver power continuously. Due to the ambient-dependant geothermal water outlet temperature, introducing the geothermal water makes greater contribution in winter days than in summer days, in the night than in the daytime. Power generation under GSM is larger than the sum of FSM and FGM. GSM is not the simple superposition of FSM and FGM, but makes better utilization of solar and geothermal energy. In addition, introducing high temperature and mass flow rate geothermal water can doubled and redoubled improve the GSCPPs power capacity.

Fei Cao; Huashan Li; Qiuming Ma; Liang Zhao

2014-01-01T23:59:59.000Z

282

GRR/Section 4-FD-d - BLM Exploration Operations | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 4-FD-d - BLM Exploration Operations < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-d - BLM Exploration Operations 04-FD-d - BLM Exploration Operations .pdf Click to View Fullscreen Contact Agencies BLM Regulations & Policies 43 CFR 3252 43 CFR 3253. Triggers None specified Exploration operations on Bureau of Land Management (BLM) managed public lands must comply with BLM rules for conducting exploration operations 43 CFR 3252 and require a completion report at the conclusion of exploration

283

Geothermal Power and Interconnection: The Economics of Getting to Market  

SciTech Connect (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

284

Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

285

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

286

Map of Geothermal Facilities/Data | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facilities/Data Geothermal Facilities/Data < Map of Geothermal Facilities Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W 90,000,000,000 mW

287

DOI-BLM-NV-C010-2012-0028-DNA | Open Energy Information  

Open Energy Info (EERE)

C010-2012-0028-DNA C010-2012-0028-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0028-DNA DNA at Dead Horse Wells Geothermal Area for Geothermal/Well Field {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Ormat Technologies Inc Geothermal Area Dead Horse Wells Geothermal Area Project Location California Project Phase Geothermal/Well Field Techniques Flow Test, Injectivity Test Comments Sundry Notice: Flow Test Well 85-11 and simultaneously Inject Test Well 68-1 and 24A-6 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

288

DOI-BLM-NV-C010-2010-0008-EA | Open Energy Information  

Open Energy Info (EERE)

C010-2010-0008-EA C010-2010-0008-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2010-0008-EA EA at Soda Lake Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Magma Energy Consultant JBR Environmental Consultants, Inc. Geothermal Area Soda Lake Geothermal Area Project Location Nevada Project Phase Geothermal/Exploration Techniques Downhole Techniques, Drilling Techniques, Exploration Drilling, Well Testing Techniques Time Frame (days) Application Time 292 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided

289

DOI-BLM-NV-C010-2011-0015-CX | Open Energy Information  

Open Energy Info (EERE)

5-CX 5-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0015-CX CX at Patua Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 23 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR Mineral Manager none provided Selected Dates Application Date 1/18/2011 Decision Document Date 2/10/2011

290

DOI-BLM-NV-C010-2011-0504-CX | Open Energy Information  

Open Energy Info (EERE)

04-CX 04-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0504-CX CX at Patua Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Time Frame (days) Application Time 32 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City, Winnemucca Managing Field Office none provided Funding Agencies none provided Surface Manager BOR Mineral Manager none provided Selected Dates Application Date 4/22/2011 Decision Document Date 5/24/2011

291

DOI-BLM-NV-C010-2011-0014-CX | Open Energy Information  

Open Energy Info (EERE)

4-CX 4-CX Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2011-0014-CX CX at Patua Geothermal Area for Geothermal/Exploration {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type CX Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration Techniques Reflection Survey Time Frame (days) Application Time 8 Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater Funding Agencies none provided Surface Manager BOR Mineral Manager none provided Selected Dates Application Date 1/5/2011 Decision Document Date 1/13/2011

292

Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya  

Science Journals Connector (OSTI)

Geothermal energy and the other renewable energy sources are becoming attractive solutions for clean and sustainable energy needs of Turkey. Geothermal energy is being used for electricity production and it has direct usage in Turkey, which is among the first five countries in the world for the geothermal direct usage applications. Although, Turkey is the second country to have the highest geothermal energy potential in Europe, the electricity production from geothermal energy is quite low. The main purpose of this study is to investigate the status of the geothermal energy for the electricity generation in Turkey. Currently, there is one geothermal power plant with an installed capacity of 20.4MWe already operating in the DenizliKizildere geothermal field and another is under the construction in the AydinGermencik field. This study examines the potential and utilization of the existing geothermal energy resources in KutahyaSimav region. The temperature of the geothermal fluid in the SimavEynal field is too high for the district heating system. Therefore, the possibility of electrical energy generation by a binary-cycle has been researched and the preliminary feasibility studies have been conducted in the field. For the environmental reasons, the working fluid used in this binary power plant has been chosen as HCFC-124. It has been concluded that the KutahyaSimav geothermal power plant has the potential to produce an installed capacity of 2.9MWe energy, and a minimum of 17,020MWh/year electrical energy can be produced from this plant. As a conclusion, the pre-feasibility study indicates that the project is economically feasible and applicable.

Ramazan Kose

2007-01-01T23:59:59.000Z

293

Low-Temperature, Coproduced, and Geopressured Geothermal Power  

Broader source: Energy.gov [DOE]

The Geothermal Technology Program (GTP) low-temperature subprogram aims to provide the global geothermal community with the means to achieve development and widespread deployment of economically viable, innovative, and scalable technologiesincluding those involving coproductsthat will capture a significant portion of the low-temperature geothermal resource base over the next two decades. To that end, GTP held a Technology Roadmapping Workshop on July 13-14, 2010 in Golden, Colorado.

294

Low-Temperature, Coproduced, and Geopressured Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

innovative, and scalable technologies-including those involving coproducts-that will capture a significant portion of the low-temperature geothermal resource base over the next...

295

Water Use in the Development and Operations of Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the...

296

Los Azufres II Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal energy Location Information Location Los Azufres, Cd. Hidalgo, Michoacan, Mexico Coordinates 19.783947724044, -100.60854434967 Loading map... "minzoom":false,"map...

297

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

298

Salt Wells Geothermal Exploratory Drilling Program EA  

Open Energy Info (EERE)

Salt Wells Geothermal Exploratory Drilling Program EA Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Abstract No abstract available. Author Bureau of Land Management Published U.S. Department of the Interior- Bureau of Land Management, Carson City Field Office, Nevada, 09/14/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Citation Bureau of Land Management. Salt Wells Geothermal Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) [Internet]. 09/14/2009. Carson City, NV. U.S. Department of the Interior- Bureau of Land Management,

299

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

300

400kW Geothermal Power Plant at Chena Hot Springs, Alaska | Open...  

Open Energy Info (EERE)

Springs, Alaska Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: 400kW Geothermal Power Plant at Chena Hot Springs, Alaska Abstract This document...

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nevada Geothermal Area | Department of Energy  

Energy Savers [EERE]

Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately...

302

Supply of geothermal power from hydrothermal sources: A study of the cost of power in 20 and 40 years  

SciTech Connect (OSTI)

This study develops estimates for the amount of hydrothermal geothermal power that could be on line in 20 and 40 years. This study was intended to represent a snapshot'' in 20 and 40 years of the hydrothermal energy available for electric power production should a market exist for this power. This does not represent the total or maximum amount of hydrothermal power, but is instead an attempt to estimate the rate at which power could be on line constrained by the exploration, development and support infrastructure available to the geothermal industry, but not constrained by the potential market for power.

Petty, S. (Petty (Susan) Consulting, Solano Beach, CA (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States)); Long, W.P. (Carlin Gold Co., Inc., Grass Valley, CA (United States)); Geyer, J. (Geyer (John) and Associates, Vancouver, WA (United States))

1992-11-01T23:59:59.000Z

303

Value analysis of advanced heat rejection systems for geothermal power plants  

SciTech Connect (OSTI)

A computer model is developed to evaluate the performance of the binary geothermal power plants (Organic Rankine Cycles) with various heat rejection systems and their impact on the levelized cost of electricity. The computer model developed in this work is capable of simulating the operation of a geothermal power plant which consists mainly of an Organic Rankine Cycle (binary plants) with different types of working fluids such as pure hydrocarbons and some binary mixtures of the most promising combinations of hydrocarbons.

Bliem, C. [CJB Consulting, Longmont, CO (United States); Zangrando, F.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1996-04-10T23:59:59.000Z

304

Tailored Working Fluids for Enhanced Binary Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

305

BLM to Invest Recovery Act Funds on Renewable Energy Permitting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Reinvestment Act funds in reducing the backlog of pending applications for wind and solar power projects on BLM-managed land. The investment is part of a 305 million...

306

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

307

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

308

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

309

GRR/Section 9-FD-d - BLM Appeals Process | Open Energy Information  

Open Energy Info (EERE)

d - BLM Appeals Process d - BLM Appeals Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-FD-d - BLM Appeals Process 09FDDBLMAppealsProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Department of Interior Regulations & Policies 43 CFR 4.21: Hearings and Appeals - General Provisions 43 CFR 3200: Geothermal Resource Leasing Triggers None specified Click "Edit With Form" above to add content 09FDDBLMAppealsProcess.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Bureau of Land Management (BLM) has an appeals process that allows

310

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

311

GRR/Section 4-FD-a - Exploration Application Process BLM | Open Energy  

Open Energy Info (EERE)

GRR/Section 4-FD-a - Exploration Application Process BLM GRR/Section 4-FD-a - Exploration Application Process BLM < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-FD-a - Exploration Application Process BLM 04FDAExplorationApplication.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management United States Forest Service Regulations & Policies 43 CFR 3250 Exploration Operations - General 43 CFR 3251 Exploration Operations: Getting BLM Approval 43 CFR 3252 Exploration Operations: Conducting Exploration Operations 43 CFR 3253 Exploration Operations: Reports 43 CFR 3261 Drilling Operations: Getting a Permit Triggers None specified Before any (non-casual use) exploration operations are conducted, the Bureau of Land Management (BLM) must approve a Notice of Intent (NOI) to

312

DOE Awards $20 Million to Develop Geothermal Power Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fluid will then be used as the heat source for a heating system, a greenhouse, and a fish farm. This "cascading" use of the geothermal resource is meant to improve the economics...

313

Interior Department to Open 190 Million Acres to Geothermal Power  

Broader source: Energy.gov [DOE]

The U.S. Department of the Interior (DOI) announced last week that it plans to make more than 190 million acres of federal land in 12 western states available for geothermal energy development.

314

Tailored Working Fluids for Enhanced Binary Geothermal Power...  

Broader source: Energy.gov (indexed) [DOE]

R245fa R245fa Concepts Optimization Demonstration 2 | US DOE Geothermal Program eere.energy.gov * Timeline - Project started on December 29, 2009, ends April 21, 2012 -...

315

Economic comparison of a well-head geothermal power plant and a traditional one  

Science Journals Connector (OSTI)

Abstract The objective of this paper was to do an economic comparison between the traditional approach to geothermal projects and a well-head method, where smaller power plants were installed on each well to considerably reduce the time until energy production begins. The two methods were compared in a hypothetical steamfield, based on their NPV and net power production. The comparison showed that wellhead power plants benefit geothermal projects by increasing the power output and NPV by as much as 5% and 16% respectively, depending on how early they can start production and the rate of installation.

Carlos Atli Crdova Geirdal; Maria S. Gudjonsdottir; Pall Jensson

2015-01-01T23:59:59.000Z

316

Geothermal well-field and power-plant investment-decision analysis  

SciTech Connect (OSTI)

Investment decisions pertaining to hydrothermal well fields and electric power plants are analyzed. Geothermal investment decision models were developed which, when coupled to a site-specific stochastic cash flow model, estimate the conditional probability of a positive decision to invest in the development of geothermal resource areas. Quantitative decision models have been developed for each major category of investor currently involved in the hydrothermal projects. These categories include: large, diversified energy resource corporations; independently operating resource firms; investor-owned electric utilities; municipal electric utilities; state-run resource agencies; and private third-party power plant investors. The geothermal cash flow, the investment decision analysis, and an example of model application for assessing the likely development of geothermal resource areas are described. The sensitivity of this investment behavior to federal incentives and research goals is also analyzed and discussed.

Cassel, T.A.V.; Amundsen, C.B.; Edelstein, R.H.; Blair, P.D.

1981-05-31T23:59:59.000Z

317

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

318

BLM Approves California Geothermal Development Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

16 new production and injection wells, multiple pipelines, and an electric transmission line. Ormat Nevada Inc. will develop the project on public and private land. When completed,...

319

BLM Nevada State Office | Open Energy Information  

Open Energy Info (EERE)

BLM Nevada State Office BLM Nevada State Office Jump to: navigation, search Logo: BLM Nevada State Office Name BLM Nevada State Office Short Name Nevada Parent Organization Bureau of Land Management Address 1340 Financial Blvd Place Reno, NV Zip 89502 Phone number 775-861-6400 Website http://www.blm.gov/nv/st/en/in References BLM Nevada State Office[1] Divisions Place BLM Battle Mountain District Office Battle Mountain, Nevada Battle Mountain, Nevada BLM Carson City District Office Carson City, Nevada Carson City, Nevada BLM Winnemucca District Office Winnemucca, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Nevada State Office is an organization based in Reno, Nevada. References ↑ "BLM Nevada State Office" Retrieved from "http://en.openei.org/w/index.php?title=BLM_Nevada_State_Office&oldid=606459"

320

DOI-BLM-NV-C010-2012-0048-DNA | Open Energy Information  

Open Energy Info (EERE)

48-DNA 48-DNA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: DOI-BLM-NV-C010-2012-0048-DNA DNA at Salt Wells Geothermal Area for Geothermal/Well Field, Enell Salt Wells LLC Geothermal Drilling Permits 44-35, 61-2, 68-35, and 16-36 General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type DNA Applicant Enel Salt Wells LLC Geothermal Area Salt Wells Geothermal Area Project Location Nevada Project Phase Geothermal/Well Field Techniques Observation Wells Comments Geothermal Drilling Permits 44-35, 61-2, 68-35, and 16-36 Observation Wells Time Frame (days) Participating Agencies Lead Agency Nevada Funding Agency none provided Managing District Office Carson City Managing Field Office Stillwater

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BLM Ukiah Field Office | Open Energy Information  

Open Energy Info (EERE)

search Name: BLM Ukiah Field Office Address: 2550 North State Street Place: Ukiah, CA Zip: 95482 Phone Number: (707) 468-4000 Website: http:www.blm.govcastenfo...

322

Study of the influential leaders, power structure, community decisions, and geothermal energy development in Imperial County, California  

SciTech Connect (OSTI)

The economy of Imperial County, California, is now dominated by agriculture, but economic studies indicate that the emerging geothermal sector could grow to a size comparable to that of agriculture. The purpose of this study is to discover the kind of power structure operating in Imperial County, the influential leaders, the source of their power, their probable reactions to geothermal development, and the possible effects geothermal development will have on the power structure. Several social science research methods are used to identify the influential leaders and to describe the power structure in Imperial County. An analysis of the opinions of leadership and the public shows the likely response to geothermal development. The power structure analysis, combined with forecasts of the economic effects of geothermal development, indicates the ways in which the power structure itself may change.

Butler, E.W.; Hall, C.H.; Pick, J.B.

1980-04-01T23:59:59.000Z

323

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

324

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

325

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

326

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

327

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

328

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

329

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

330

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

331

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

332

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

333

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

334

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

335

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

336

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

337

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

338

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

339

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

340

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

342

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

343

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

344

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

345

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

346

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

347

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

348

Next Generation Geothermal Power Plants (NGGPP) process data for binary cycle plants  

SciTech Connect (OSTI)

The Next Generation Geothermal Power Plants (NGGPP) study provides the firm estimates - in the public domain - of the cost and performance of U.S. geothermal systems and their main components in the early 1990s. The study was funded by the U.S. Department of Energy Geothermal Research Program, managed for DOE by Evan Hughes of the Electric Power Research Institute, Palo Alto, CA, and conducted by John Brugman and others of the CE Holt Consulting Firm, Pasadena, CA. The printed NGGPP reports contain detailed data on the cost and performance for the flash steam cycles that were characterized, but not for the binary cycles. The nine Tables in this document are the detailed data sheets on cost and performance for the air cooled binary systems that were studied in the NGGPP.

Not Available

1996-10-02T23:59:59.000Z

349

Cumulative energy, emissions, and water consumption for geothermal electric power production  

Science Journals Connector (OSTI)

A life cycle analysis has been conducted on geothermal electricity generation. The technologies covered in the study include flash binary enhanced geothermal systems (EGS) and coproduced gas and electricity plants. The life cycle performance metrics quantified in the study include materials water and energy use and greenhouse gas (GHG) emissions. The life cycle stages taken into account were the plant and fuel cycle stages the latter of which includes fuel production and fuel use (operational). The plant cycle includes the construction of the plant wells and above ground piping and the production of the materials that comprise those systems. With the exception of geothermal flash plants GHG emissions from the plant cycle are generally small and the only such emissions from geothermal plants. Some operational GHGs arise from flash plants and though substantial when compared to other geothermal power plants these are nonetheless considerably smaller than those emitted from fossil fuel fired plants. For operational geothermal emissions an emission rate (g/kW h) distribution function vs. cumulative capacity was developed using California plant data. Substantial GHG emissions arise from coproduced facilities and two other renewable power plants but these are almost totally due to the production and use of natural gas and biofuels. Nonetheless those GHGs are still much less than those from fossil fuel fired plants. Though significant amounts of water are consumed for plant and well construction especially for well field stimulation of EGS plants they are small in comparison to estimated water consumed during plant operation. This also applies to air cooled plants which nominally should consume no water during operation. Considering that geothermal operational water use data are scarce our estimates show the lowest water consumption for flash and coproduced plants and the highest for EGS though the latter must be considered provisional due to the absence of field data. The EGS estimate was based on binary plant data.

J. L. Sullivan; C. Clark; J. Han; C. Harto; M. Wang

2013-01-01T23:59:59.000Z

350

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

SciTech Connect (OSTI)

A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

Hays, Lance G

2014-07-07T23:59:59.000Z

351

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

352

Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.  

SciTech Connect (OSTI)

A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M. (Energy Systems)

2012-02-08T23:59:59.000Z

353

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

354

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal resources-the steam and water that lie below the earth's surface-have the Geothermal resources-the steam and water that lie below the earth's surface-have the potential to supply vast amounts of clean energy. But continuing to produce geothermal power efficiently and inexpensively can require innovative adjustments to the technology used to process it. Located in the Mayacamas Mountains of northern California, The Geysers is the world's larg- est geothermal complex. Encompassing 45 square miles along the Sonoma and Lake County border, the complex harnesses natural steam reservoirs to create clean renewable energy that accounts for one-fifth of the green power produced in California. In the late 1990s, the pressure of geothermal steam at The Geysers was falling, reducing the output of its power plants. NREL teamed with Pacific

355

A consortium of three brings real geothermal power for California's Imperial valley -- at last  

SciTech Connect (OSTI)

Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication of the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.

Wehlage, E.F.

1983-04-01T23:59:59.000Z

356

Power production from a moderate temperature geothermal resource with regenerative Organic Rankine Cycles  

Science Journals Connector (OSTI)

Much remains to be done in binary geothermal power plant technology, especially for exploiting low-enthalpy resources. Due to the great variability of available resources (temperature, pressure, chemical composition), it is really difficult to standardize the technology.The problem involves many different variables: working fluid selection, heat recovery system definition, heat transfer surfaces sizing and auxiliary systems consumption. Electricity generation from geothermal resources is convenient if temperature of geothermal resources is higher than 130C. Extension of binary power technology to use low-temperature geothermal resources has received much attention in the last years. This paper analyzes and discusses the exploitation of low temperature, water-dominated geothermal fields with a specific attention to regenerative Organic Rankine Cycles (ORC). The geothermal fluid inlet temperatures considered are in the 100130C range, while the return temperature of the brine is assumed to be between 70 and 100C. The performances of different configurations, two basic cycle configurations and two recuperated cycles are analyzed and compared using dry organic fluids as the working fluids. The dry organic fluids for this study are R134a, isobutane, n-pentane and R245fa. Effects of the operating parameters such as turbine inlet temperature and pressure on the thermal efficiency, exergy destruction rate and Second Law efficiency are evaluated. The possible advantages of recuperated configurations in comparison with basic configurations are analyzed, showing that in a lot of cases the advantage in terms of performance increase is minimal but significant reductions in cooling systems surface area can be obtained (up to 20%).

Alessandro Franco

2011-01-01T23:59:59.000Z

357

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

358

Germany Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

359

Russia Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Russia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0)...

360

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Potential of geothermal energy in China .  

E-Print Network [OSTI]

??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in (more)

Sung, Peter On

2010-01-01T23:59:59.000Z

362

Geothermal Energy Photos | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information Resources Geothermal Energy Photos Geothermal Energy Photos Image of the Week: Energy Department investments are exploring for geothermal power from abundant natural...

363

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

364

Property:BLM CaseType | Open Energy Information  

Open Energy Info (EERE)

CaseType CaseType Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Property Name BLM CaseType Property Type Page This is a property of type Page. Pages using the property "BLM CaseType" Showing 25 pages using this property. (previous 25) (next 25) A AZA-009168 + GEO LSE NONCOMP PRE 2005 + AZA-009169 + GEO LSE NONCOMP PRE 2005 + AZA-009170 + GEO LSE NONCOMP PRE 2005 + AZA-009171 + GEO LSE NONCOMP PRE 2005 + AZA-009172 + GEO LSE NONCOMP PRE 2005 + AZA-009173 + GEO LSE NONCOMP PRE 2005 + AZA-009174 + GEO LSE NONCOMP PRE 2005 + AZA-009175 + GEO LSE NONCOMP PRE 2005 + AZA-009176 + GEO LSE NONCOMP PRE 2005 + AZA-009177 + GEO LSE NONCOMP PRE 2005 + AZA-009178 + GEO LSE NONCOMP PRE 2005 + AZA-009179 + GEO LSE NONCOMP PRE 2005 + AZA-009180 + GEO LSE NONCOMP PRE 2005 +

365

An in-depth assessment of hybrid solargeothermal power generation  

Science Journals Connector (OSTI)

Abstract A major problem faced by many standalone geothermal power plants, particularly in hot and arid climates such as Australia, is the adverse effects of diurnal temperature change on the operation of air-cooled condensers which typically leads to fluctuation in the power output and degradation of thermal efficiency. This study is concerned with the assessment of hybrid solargeothermal power plants as a means of boosting the power output and where possible moderating the impact of diurnal temperature change. The ultimate goal is to explore the potential benefits from the synergies between the solar and geothermal energy sources. For this purpose the performances of the hybrid systems in terms of power output and the cost of electricity were compared with that of stand-alone solar and geothermal plants. Moreover, the influence of various controlling parameters including the ambient temperature, solar irradiance, geographical location, resource quality, and the operating mode of the power cycle on the performance of the hybrid system were investigated under steady-state conditions. Unsteady-state case studies were also performed to examine the dynamic behaviour of hybrid systems. These case studies were carried out for three different Australian geographic locations using raw hourly meteorological data of a typical year. The process simulation package Aspen-HYSYS was used to simulate plant configurations of interest. Thermodynamic analyses carried out for a reservoir temperature of 120C and a fixed brine flow rate of 50kg/s revealed that under Australian climatic conditions (with a typical ambient temperature of 31C in summer) a hybrid plant would outperform stand-alone geothermal and solar power plants if at least 68% of its energy input is met by solar energy (i.e. a solar energy fraction of ?68%). This figure drops to about 19% for reservoir temperatures greater than 170C. Case studies also showed that, for a mid-range reservoir temperature of 150C, the cost of electricity production can be reduced by 20% when a hybrid plant is used instead of the stand-alone Enhanced Geothermal System (EGS).

Cheng Zhou; Elham Doroodchi; Behdad Moghtaderi

2013-01-01T23:59:59.000Z

366

Rural Electrification with Renewable Energy: Geothermal Power in Arid Regions  

Science Journals Connector (OSTI)

Abundant sources of alternative energy are available in various parts of the world. Big is Beautiful was the unstated motto of Western power planners, in designing power additions in the Northern hemisphere....

Dr. Tsvi Meidav

1998-01-01T23:59:59.000Z

367

Status of Nevada Geothermal Resource Development - Spring 2011 | Open  

Open Energy Info (EERE)

Resource Development - Spring 2011 Resource Development - Spring 2011 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Status of Nevada Geothermal Resource Development - Spring 2011 Abstract Recent increases in geothermal exploration and power plant construction in Nevada are the first significant activities since the Steamboat II/III and Brady plants came on line in 1992.Exploration activity on existing projects grew between 2005 and 2010, culminating in the construction of several new power plants. The BLM's 2007 lease auction (first since the 2005 Energy Policy Act revisions) opened the door to exploration on green field properties. The number of wells permitted and drilled remained low from 1994 through 2003, but rose sharply to peak in 2009.However, over 760,000

368

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

369

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

370

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

371

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

372

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

373

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

374

Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants  

Open Energy Info (EERE)

June 2000 * NREL/SR-550-28329 June 2000 * NREL/SR-550-28329 Martin Vorum, P.E. Englewood, Colorado Eugene A. Fritzler, P.E. Fort Morgan, Colorado Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants April 1999-March 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 June 2000 * NREL/SR-550-28329 Comparative Analysis of Alternative Means for Removing Noncondensable Gases from Flashed-Steam Geothermal Power Plants April 1999-March 2000 Martin Vorum, P.E. Englewood, Colorado Eugene A. Fritzler, P.E. Fort Morgan, Colorado NREL Technical Monitor: C. Kutscher

375

BLM Winnemucca District Office | Open Energy Information  

Open Energy Info (EERE)

BLM Winnemucca District Office BLM Winnemucca District Office Jump to: navigation, search Name BLM Winnemucca District Office Short Name Winnemucca Parent Organization BLM Nevada State Office Address 5100 E. Winnemucca Blvd. Place Winnemucca, Nevada Zip 89445 Phone number 775-623-1500 Website http://www.blm.gov/nv/st/en/fo References Winnemucca District Office website[1] Divisions Place BLM Humboldt River Field Office Winnemucca, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Winnemucca District Office is an organization based in Winnemucca, Nevada. References ↑ "Winnemucca District Office website" Retrieved from "http://en.openei.org/w/index.php?title=BLM_Winnemucca_District_Office&oldid=640908" Categories: Government Agencies Stubs

376

BLM Burley Field Office | Open Energy Information  

Open Energy Info (EERE)

Directory1 This article is a stub. You can help OpenEI by expanding it. BLM Burley Field Office is an organization based in Burley, Idaho. References "Idaho BLM Directory"...

377

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

378

The Chena Hot Springs 400kw Geothermal Power Plant: Experience...  

Open Energy Info (EERE)

efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the Chena...

379

Olkaria III Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Type Single Flash Owner Ormat Technologies, Inc. Developer Ormat Technologies, Inc. Energy Purchaser Kenya Power and Lighting Company Limited Commercial Online Date 2014...

380

How a Geothermal Power Plant Works (Simple) - Text Version |...  

Energy Savers [EERE]

Lines Deliver Electricity Electrical current from the generator is sent to a step-up transformer outside the power plant. Voltage is increased in the transformer and electrical...

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Los Humeros III Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Contracts have already been signed with the Mexican Comision Federal de Electricidad (CFE) for the installation of an additional 25 MW Single Flash power generation unit and...

382

Backgrounder: Geothermal resource production, steam gathering, and power generation at Salton Sea Unit 3, Calipatria, California  

SciTech Connect (OSTI)

The 10,000-kilowatt Salton Sea Unit 1 power plant was designed to demonstrate that electrical power generation, using the highly saline brines from the Salton Sea geothermal reservoir, was technically and economically feasible. Unit 1, owned by Earth Energy, a Unocal subsidiary, began operating in 1982, initiating an intensive testing program which established the design criteria necessary to construct the larger 47,500-kilowatt Unit 3 power plant, unit 3 contains many of the proprietary or patented technological innovations developed during this program. Design, construction and start-up of the Unit 3 power generating facility began in December, 1986, and was completed in 26 months. By the end of 1988, the brine handling system was in full operation, and the turbine had been tested at design speed. Desert Power Company, a Unocal subsidiary, owns the power generating facility. Unocal owns the brine resource production facility. Power is transmitted by the Imperial Irrigation District to Southern California Edison Company.

None

1989-04-01T23:59:59.000Z

383

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

384

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

385

Heber Binary-Cycle Geothermal Demonstration Power Plant: Half-load testing, performance, and thermodynamics  

SciTech Connect (OSTI)

This report describes the project's activities during the period July 1986 through June 1987; and includes results of two annual outages and eight months of low power testing and operating. The Heber Binary-Cycle Geothermal Demonstration Power Plant is a 45 MWe electric power generating plant in the Imperial Valley of Southern California. The purpose of the Heber Binary Project is to demonstrate the capability of binary-cycle technology to economically utilize moderate-temperature (300/degree/F to 410/degree/F (150/degree/C to 210/degree/C)) geothermal resources for electric power production. The main objective of the project is to show performance, cost, and environmental acceptability of binary-cycle technology. Experience with demonstration plant and heat supply facilities is described. Details of equipment problems are included. Heat supply shortfall prevented the planned ascent to full power, but binary-cycle experience was favorable at power levels up to 50% of design. 68 refs., 80 figs., 34 tabs.

Berning, J.L.; Fishbaugher, J.R.

1988-08-01T23:59:59.000Z

386

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

387

Turbine repair at Nesjavellir geothermal power plant: An Icelandic case study  

Science Journals Connector (OSTI)

Abstract During a quadrennial inspection of a 30MW Mitsubishi steam turbine at Nesjavellir geothermal power plant, corrosion products were found on the last set of labyrinth packing in the gland seal system which resulted in erosion corrosion of the turbine rotor. The rotor had worn by approximately 8mm. Because of the tight timeframe of the overhaul, it was decided to repair this failure on site using the experience of the staff and domestic industry. Labyrinth seals were built by a domestic machine shop, decreasing cost and shutdown time dramatically. This article describes the occurring failure and how it was repaired within days with cooperation between the energy company and domestic industry. It further discusses probable causes for such failure and how it may be prevented. The article describes in essence how valuable it can prove to build maintenance knowledge domestically in the geothermal sector.

R.S. Atlason; A. Gunnarsson; R. Unnthorsson

2015-01-01T23:59:59.000Z

388

Final Environmental Assessment Small-Scale Geothermal Power Plant and Direct-Use Geothermal Application at AmeriCulture Inc., Cotton City, NM  

Broader source: Energy.gov (indexed) [DOE]

Colorado 80401-3393 Colorado 80401-3393 August 26, 2002 DOE/EA-1396 FINDING OF NO SIGNIFICANT IMPACT For the SMALL-SCALE POWER PLANT AND DIRECT-USE GEOTHERMAL APPLICATION At AMERICULTURE, INC., COTTON CITY, NEW MEXICO AGENCY: U.S. Department of Energy, Golden Field Office ACTION: Finding of No Significant impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) conducted an Environmental Assessment (EA) of the Small-Scale Power Plant and Direct-Use Application at AmeriCulture, Inc. to evaluate potential impacts of construction and operations that would be funded in part by DOE. Small geothermal power plants have the potential for widespread application, but achieving cost- effectiveness in small plant sizes presents a number of challenges. To address these challenges, DOE is supporting the small-scale field verification projects to (1) determine and validate the

389

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

390

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

391

GRR/Section 9-FD-a - BLM and USFS NEPA Process | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 9-FD-a - BLM and USFS NEPA Process GRR/Section 9-FD-a - BLM and USFS NEPA Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 9-FD-a - BLM and USFS NEPA Process 09-FD-a - NEPAProcess.pdf Click to View Fullscreen Contact Agencies Council on Environmental Quality Environmental Protection Agency US Army Corps of Engineers Regulations & Policies National Environmental Policy Act CEQ Regulations for implementing NEPA NEPA Policy (integration with other planning procedures): 40 CFR 1500.2(c) NEPA Time Limits: 40 CFR 1501.8 Interdisciplinary Preparation of an EIS: 40 CFR 1502.6 Elimination of Duplication with State and Local Procedures 40 CFR 1506.2 Categorical Exclusion: 40 CFR 1508.4 Finding of no Significant Impact (FONSI): 40 CFR 1508.13

392

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

393

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

394

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

395

Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii  

SciTech Connect (OSTI)

The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

Chapman, G.A.; Buevens, W.R.

1982-06-01T23:59:59.000Z

396

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

397

Investigations of supercritical CO2 Rankine cycles for geothermal power plants  

SciTech Connect (OSTI)

Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

Sabau, Adrian S [ORNL; Yin, Hebi [ORNL; Qualls, A L [ORNL; McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

398

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network [OSTI]

for Competitive Geothermal Power Generation, Energy & Fuels,of Power Generation Prospects from Enhanced Geothermal

Pruess, K.

2010-01-01T23:59:59.000Z

399

Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California  

E-Print Network [OSTI]

D I P IPPO , R. (2012). Geothermal Power Plants: Principles,in the vicinity of geothermal power plants worldwide, it isregional effects of geothermal power production. This study

Lajoie, Lia Joyce

2012-01-01T23:59:59.000Z

400

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

Kegion KGKA 2. On-going Geothermal Power Plant Activity inof 50MW Demonstration Geothermal Power Plant, Presentationrates Table 2 On-Going Geothermal Power Plane Activity in

Haven, Kendal F.

2012-01-01T23:59:59.000Z

402

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

CORROS ION; METALLURGY; GEOTHERMAL POWER PLANTS; GEOTHERMALOF MATERIALS FOR GEOTHERMAL POWER PLANT APPLICATIONS. PAPERu AIDLIN 71 1 ITlE- GEOTHERMAL POWER IN THE WEST. TALK GIVEN

Cosner, S.R.

2010-01-01T23:59:59.000Z

403

BLM-JCI | Open Energy Information  

Open Energy Info (EERE)

BLM-JCI BLM-JCI Jump to: navigation, search Name BLM-JCI Facility BLM-JCI Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner BLM-JCI Energy Purchaser BLM-JCI Location Rawlins WY Coordinates 41.79754379°, -107.2415829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79754379,"lon":-107.2415829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

405

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

406

BLM Extraordinary Circumstances Checklist | Open Energy Information  

Open Energy Info (EERE)

Circumstances Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM Extraordinary Circumstances ChecklistLegal Published...

407

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

Til, C. J. Van

2012-01-01T23:59:59.000Z

408

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region Details Areas (0) Power...

409

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

410

Geothermal Resources Leasing Programmatic EIS | Open Energy Information  

Open Energy Info (EERE)

Geothermal Resources Leasing Programmatic EIS Geothermal Resources Leasing Programmatic EIS Jump to: navigation, search The Bureau of Land Management (BLM) and the United States Forest Service (USFS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and USFS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska.[1] Objectives of the PEIS Programmatically assess the direct, indirect, and cumulative effects of leasing, exploration and development of geothermal resources on high priority areas (critical locations) on BLM- and USFS-administered lands in order to expedite leasing. Additional environmental documentation would be required prior to actual exploration drilling and development.

411

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

D. E. Appendix Small Geothermal Power Plants . . . . . . .Assessment, (4) Small Geothermal Power Plants and (5) Hoti - b u t i o n of geothermal power (1400 W e ) . (XBL 785-

Bresee, J. C.

2011-01-01T23:59:59.000Z

412

BLM Instruction Memorandum No. 2011-003 | Open Energy Information  

Open Energy Info (EERE)

Regulatory GuidanceInner-Office Memorandum Abstract This document outlines BLM's solar energy development policy. Author Bureau of Land Management Recipient BLM Published...

413

Assessment of geothermal assisted coal-fired power generation using an Australian case study  

Science Journals Connector (OSTI)

Abstract A systematic techno-economic analysis of geothermal assisted power generation (GAPG) was performed for a 500MW unit of a typical coal-fired power plant located at the upper Hunter region of New South Wales, Australia. Specifically, the GAPG viability and performance was examined by investigating the impacts of reservoir temperature, resource distance, hybridisation scheme, and economic conditions including carbon tax and Renewable Energy Certificates (REC). The process simulation package, Aspen HYSYS, was employed for all simulation purposes. Thermodynamically, GAPG system was found to increase the power output of the plant by up to 19% under the booster mode whilst in fuel saving mode the coal consumption reduced by up to 0.3 million tonne/year decreasing the Green House Gas (GHG) emission by up to 15% (0.6 million tonne/year). Economic analyses showed that for a typical HDR resource with a reservoir temperature about 150C located within a 5km radius from the power plant, the GAPG system becomes economically competitive to the stand-alone fossil fuel based plant when minimum carbon tax and \\{RECs\\} rates of 40 $/tonne and 60 cents/kWh are introduced. The figure of merit analyses comparing GAPG system with both stand-alone fossil fuel and stand-alone geothermal plants showed that an economically feasible GAPG system requires the use of HDR resources located no further than 20km from the plants. Reference maps were also developed to predict suitable conditions for which the hybrid plant outperforms the stand-alone plants.

Cheng Zhou; Elham Doroodchi; Behdad Moghtaderi

2014-01-01T23:59:59.000Z

414

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

415

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

416

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

417

Risk analysis of geothermal power plants using Failure Modes and Effects Analysis (FMEA) technique  

Science Journals Connector (OSTI)

Abstract Renewable energy plays a key role in the transition toward a low carbon economy and the provision of a secure supply of energy. Geothermal energy is a versatile source as a form of renewable energy that meets popular demand. Since some Geothermal Power Plants (GPPs) face various failures, the requirement of a technique for team engineering to eliminate or decrease potential failures is considerable. Because no specific published record of considering an FMEA applied to \\{GPPs\\} with common failure modes have been found already, in this paper, the utilization of Failure Modes and Effects Analysis (FMEA) as a convenient technique for determining, classifying and analyzing common failures in typical \\{GPPs\\} is considered. As a result, an appropriate risk scoring of occurrence, detection and severity of failure modes and computing the Risk Priority Number (RPN) for detecting high potential failures is achieved. In order to expedite accuracy and ability to analyze the process, XFMEA software is utilized. Moreover, 5 major parts of a GPP is studied to propose a suitable approach for developing \\{GPPs\\} and increasing reliability by recommending corrective actions for each failure mode.

Hamid Reza Feili; Navid Akar; Hossein Lotfizadeh; Mohammad Bairampour; Sina Nasiri

2013-01-01T23:59:59.000Z

418

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

419

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

420

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

422

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

423

Mulitdimensional reactive transport modeling of CO2 minreal sequestration in basalts at the Helllisheidi geothermal field, Iceland  

E-Print Network [OSTI]

3 km SW of the Hellisheidi geothermal power plant, owned andbuilt next to Hellisheidi geothermal power plant. The pilotfrom Hellisheidi geothermal power plant. In simulations of

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

424

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

425

Western Regional Final Supplemental Environmental Impact Statement: Rulemaking for Small Power Production and Cogeneration Facilities - Exemptions for Geothermal Facilities  

SciTech Connect (OSTI)

Section 643 of the Energy Security Act of 1980 directed the Federal Energy Regulatory Commission to develop rules to further encourage geothermal development by Small Power Production Facilities. This rule amends rules previously established in Dockets No. RM79-54 and 55 under Section 201 and 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). The analysis shows that the rules are expected to stimulate the development of up to 1,200 MW of capacity for electrical generation from geothermal facilities by 1995--1,110 MW more than predicted in the original PURPA EIS. This Final Supplemental EIS to the DEIS, issued by FERC in June 1980, forecasts likely near term development and analyzes environmental effects anticipated to occur due to development of geothermal resources in the Western United States as a result of this additional rulemaking.

Heinemann, Jack M.; Nalder, Nan; Berger, Glen

1981-02-01T23:59:59.000Z

426

Geothermal status report  

SciTech Connect (OSTI)

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

427

High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants  

SciTech Connect (OSTI)

A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

Zia, Jalal [GE Global Research; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

2013-06-29T23:59:59.000Z

428

STATE-OF-THE-ART OF MODELS FOR GEOTHERMAL RECOVERY PROCESSES  

E-Print Network [OSTI]

mental effects of geothermal power production, phase I. SSS-geothermal fluid with the well casing, fluid pipelines, and power

Tsang, C.F.

2012-01-01T23:59:59.000Z

429

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

430

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation  

SciTech Connect (OSTI)

Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

2014-12-30T23:59:59.000Z

431

Idaho/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Idaho/Geothermal Idaho/Geothermal < Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Idaho Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Idaho Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Raft River II Geothermal Project U.S. Geothermal Raft River, AK 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase III - Permitting and Initial Development Raft River Geothermal Area Northern Basin and Range Geothermal Region Raft River III Geothermal Project U.S. Geothermal Raft River, ID 114 MW114,000 kW 114,000,000 W 114,000,000,000 mW 0.114 GW 1.14e-4 TW Phase I - Resource Procurement and Identification Raft River Geothermal Area Northern Basin and Range Geothermal Region

432

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

433

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

434

Performance of Deep Geothermal Energy Systems .  

E-Print Network [OSTI]

??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation (more)

Manikonda, Nikhil

2012-01-01T23:59:59.000Z

435

Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines  

SciTech Connect (OSTI)

The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

Vimmerstedt, L.

1998-11-30T23:59:59.000Z

436

An energy return on investment for a geothermal power plant on the Texas Gulf Coast.  

E-Print Network [OSTI]

??This thesis examines the energy return on investment (EROI) of a model 3 MW hybrid gas-geothermal plant on the Texas Gulf Coast. The model plant (more)

Kampa, Kyle Benjamin

2013-01-01T23:59:59.000Z

437

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential  

Office of Energy Efficiency and Renewable Energy (EERE)

Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

438

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...  

Office of Environmental Management (EM)

April at the Florida Canyon Mine, Nevada, marked the beginning of another promising clean energy commercial enterprise. The Geothermal Technologies Office researches, develops, and...

439

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

440

Geothermal: Related Links  

Office of Scientific and Technical Information (OSTI)

E-print Network Sign up for weekly E-print Alerts on a topic of interest Bonneville Power Administration California Energy Commission California Energy Commission (Geothermal...

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Stanford Geothermal Workshop  

Energy Savers [EERE]

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

442

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Broader source: Energy.gov (indexed) [DOE]

EA-1925: Midnight Point and Mahogany Geothermal Exploration EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

443

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Broader source: Energy.gov (indexed) [DOE]

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

444

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental  

Broader source: Energy.gov (indexed) [DOE]

921: Silver Peak Area Geothermal Exploration Project 921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada SUMMARY The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation. Rockwood has submitted to the BLM, Tonopah Field Office, an Operations Plan for the construction, operation, and maintenance of the Silver Peak Area Geothermal Exploration Project within Esmeralda County, Nevada. The purpose of the project is to determine subsurface temperatures, confirm the existence of geothermal resources, and

445

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass  

Broader source: Energy.gov (indexed) [DOE]

5: Midnight Point and Mahogany Geothermal Exploration 5: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon SUMMARY This EA evaluates Ormat Nevada, Inc.'s (Ormat's) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on

446

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

447

BLM ROW Grant Template | Open Energy Information  

Open Energy Info (EERE)

Grant Template Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM ROW Grant TemplateLegal Published NA Year Signed or Took Effect...

448

Utah Geothermal Area | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy...

449

Casa Diablo Geothermal Area | Department of Energy  

Energy Savers [EERE]

Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough...

450

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2012-01-01T23:59:59.000Z

451

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2010-01-01T23:59:59.000Z

452

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Broader source: Energy.gov (indexed) [DOE]

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

453

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Michael Hillesheim and Gail Mosey Produced under direction of the U.S. Environmental Protection Agency (EPA) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement IAG-09-1751 and Task No. WFD4.1001. Technical Report NREL/TP-6A10-60251 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy

454

Alaska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alaska/Geothermal Alaska/Geothermal < Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alaska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alaska Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Akutan Geothermal Project City Of Akutan Akutan, Alaska 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase II - Resource Exploration and Confirmation Akutan Fumaroles Geothermal Area Alaska Geothermal Region Pilgrim Hot Springs Geothermal Project Unaatuq (Near Nome), OR 10 MW10,000 kW 10,000,000 W 10,000,000,000 mW 0.01 GW 1.0e-5 TW Phase I - Resource Procurement and Identification Pilgrim Hot Springs Geothermal Area Alaska Geothermal Region Add a geothermal project.

455

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

456

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

457

Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy  

Energy Savers [EERE]

The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS fact sheet provides an overview of this...

458

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic...

459

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

460

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald DiPippo  

Office of Scientific and Technical Information (OSTI)

f f - r h COO-405 1 -44 COMPOUND H Y B R I D GEOTHERMAL-FOSSIL POWER PLANTS BY Ronald DiPippo MASTER Eileen M. Avelar June 1979 Work Performed Under Contract No. EY-76-S-02-4051 Division of Engineering Brown University Providence, Rhode Island U. S. DEPARTMENT OF ENERGY Geothermal Energy DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product,

462

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

463

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

464

BLM Carson City District Office | Open Energy Information  

Open Energy Info (EERE)

Carson City District Office Carson City District Office Jump to: navigation, search Logo: BLM Carson City District Office Name BLM Carson City District Office Short Name Carson City Parent Organization BLM Nevada State Office Address 5665 Morgan Mill Road Place Carson City, Nevada Zip 89701 Phone number 775-885-6000 Website http://www.blm.gov/nv/st/en/fo References BLM Carson City District Office website[1] Divisions Place BLM Sierra Front Field Office Carson City, Nevada BLM Stillwater Field Office Carson City, Nevada This article is a stub. You can help OpenEI by expanding it. BLM Carson City District Office is a field office for Bureau of Land Management based in Carson City, Nevada, Carson City, Nevada. NEPA Documents Document # Serial Number Analysis Type Applicant Field

465

BLM - Solar and Wind Energy Applications - Pre-Application and...  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: BLM - Solar and Wind Energy Applications - Pre-Application and ScreeningLegal Abstract This BLM instruction...

466

BLM IM 2011-003 | Open Energy Information  

Open Energy Info (EERE)

link for BLM IM 2011-003 Citation BLM IM 2011-003 (2010). Related Files IM2011-003 Solar Development Policy.pdf Retrieved from "http:en.openei.orgwindex.php?titleBLMIM...

467

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

468

Geothermal Steam Act of 1970 | Open Energy Information  

Open Energy Info (EERE)

Steam Act of 1970 Steam Act of 1970 Jump to: navigation, search To encourage the development of geothermal energy, the United States government passed the Geothermal Steam Act in 1970 allowing the leasing of land containing geothermal resources; however, Congress excluded any lands within the National Park System, U.S. Fish and Wildlife Service lands, and any other lands prohibited from leasing by the Mineral Leasing Act of 1920. The Bureau of Land Management (BLM) administrates the Act, issuing distinct authorizations for the exploration, development, production, and closeout of a geothermal resource. When a lessee first receives a lease, they have ten years to reach a certain level of development with the land; upon demonstrating such development, BLM extends their lease to 40 years, after

469

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

470

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Geothermal Power) (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy is heat extracted from the Earth [Geo (Earth) + thermal (heat)].The temperature of the Earth varies widely, and a wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from several sources, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located both near the Earth's surface as well as several miles deep into the Earth, even reaching the Earth's magma.[2][3] Geothermal

471

Assessment of the suitability of agricultural waste water for geothermal power plant cooling in the Imperial Valley. I. Water quality  

SciTech Connect (OSTI)

Evaluation of the quality of agricultural waste water is the first step in assessing the sitability of agricultural waste water for geothermal power plant cooling. In this study samples of agricultural waste water from the New and Alamo rivers located in the Imperial Valley of California are analyzed. Determinations of standard water quality parameters, solids content, and inorganic compositions of the solids are made. The results are compared with data on samples of irrigation water and steam condensate also obtained from sites in the Imperial Valley. The data are evaluated in relation to cooling tower operation, waste generation, and waste disposal.

Morris, W.F.; Rigdon, L.P.

1981-09-01T23:59:59.000Z

472

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

473

Performance characteristics of the Lysholm engine as tested for geothermal power applications in the Imperial Valley  

SciTech Connect (OSTI)

This paper contains a description of the performance tests of a Lysholm engine completed at the Lawrence Livermore National Laboratory at the University of California. The Lysholm engine is a rotary displacement engine which can accept a low quality (vapor fraction) two-phase mixture. Generally, the well-head condition of geothermal fluids is a mixture of liquid and vapor, with quality up to 40 percent, although for most liquid dominated geothermal resources the vapor fraction is considerably less than 40 percent. 13 refs.

Steidel, R.F. Jr.; Weiss, H.; Flower, J.E.

1982-01-01T23:59:59.000Z

474

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

475

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

476

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

477

geothermal2.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

478

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

479

DOI-BLM-OR-P040-2011-0021-EA Final  

Broader source: Energy.gov (indexed) [DOE]

Environmental Assessment Environmental Assessment Final Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon July 2013 Prepared By Bureau of Land Management - Prineville and Burns Districts DOI-BLM-OR-P040-2011-0021-EA DOE/EA-1925 Environmental Assessment Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon July 2013 Lead Agency United States Department of the Interior Bureau of Land Management Prineville District 3050 N.E. 3rd Street, Prineville, OR 97754 Tel: 541 416 6700 Burns District 28910 Hwy 20 West, Hines, OR 97738 Tel: 541 573 4400 Cooperating Agency United States Department of Energy Golden Field Office Golden, Colorado 80401 Tel: 720-356-1563 Fax: 720-356-1560 f July 2013 Environmental Assessme ent Table of Cont

480

Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas  

Broader source: Energy.gov [DOE]

Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

Note: This page contains sample records for the topic "geothermal power blm" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

482

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

483

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

484

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

485

Geothermal Noise Control  

Science Journals Connector (OSTI)

In these times of growing need for new energy sources geothermal has shown great promise. Geothermal is a green relatively nonpolluting energy source that can provide power on a scale large enough to make a significant contribution to our needs. One of the challenges of geothermal development is noise emission. This occurs after a well encounters steam and before a plant is constructed. It also arises from the necessity of shutting down a power plant for periodic maintenance. While the power plant is down the steam and noise is vented to the atmosphere.

Marshall Long

2009-01-01T23:59:59.000Z

486

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

487