Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nevada Geothermal Operating Company LLC | Open Energy Information  

Open Energy Info (EERE)

Operating Company LLC Operating Company LLC Jump to: navigation, search Name Nevada Geothermal Operating Company LLC Place Blue Mountain, NV Sector Geothermal energy Website http://www.nevadageothermal.co References Alternative Earth Resources Inc Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Nevada Geothermal Operating Company LLC is a subsidiary of Alternative Earth Resources Inc based in Blue Mountain, NV. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

2

Empire Geothermal Power LLC | Open Energy Information  

Open Energy Info (EERE)

Power LLC Power LLC Jump to: navigation, search Name Empire Geothermal Power LLC Place Reno, Nevada Zip 89509 Sector Geothermal energy Product Empire owns and operates a 3.5MW geothermal project in Nevada. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

4

Comments of Oncor Electric Delivery Company LLC | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC Comments of Oncor Electric Delivery Company LLC on Implementing the National...

5

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

6

True Electric LLC | Open Energy Information  

Open Energy Info (EERE)

True Electric LLC Jump to: navigation, search Name: True Electric LLC Place: Texas References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id...

7

GETEM - Geothermal Electricity Technology Evaluation Model |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GETEM - Geothermal Electricity Technology Evaluation Model GETEM - Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal...

8

Geothermal electric power plant status  

SciTech Connect (OSTI)

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

9

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

10

NREL: Learning - Geothermal Electricity Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

11

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

12

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

Office of Scientific and Technical Information (OSTI)

Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

13

Copyright 2013 Gaia Geothermal, LLC 1Hybrid Design Slide 1.1 -Hybrid Design with the New GLD  

E-Print Network [OSTI]

Copyright © 2013 ­ Gaia Geothermal, LLC 1Hybrid Design ­ Slide 1.1 - Hybrid Design Geothermal, LLC 2Hybrid Design ­ Slide 1.1 - The new hybrid design tool in GLD provides: · Precision peak;Copyright © 2013 ­ Gaia Geothermal, LLC 3Hybrid Design ­ Slide 1.1 - In previous versions of GLD, the hybrid

14

Geothermal Electricity Production  

Science Journals Connector (OSTI)

...georef;1974029979 development economics geothermal energy global production...space heating and cooling and water desalination, and (for the long term) to...produLced in thermiial stations. Economics and Rate of Developnment The National...

Geoffrey R. Robson

1974-04-19T23:59:59.000Z

15

GETEM-Geothermal Electricity Technology Evaluation Model  

Broader source: Energy.gov [DOE]

A guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of Energy in estimating some of the technical and economic values of its research projects and subprograms. The tool is intended to estimate and summarize the performance and cost of various geothermal electric power systems at geothermal reservoirs with a wide variety of physical characteristics.

16

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

17

Geothermal Electricity Production Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

18

EA-357 Hunt Electric Power Marketing, L.L.C. | Department of...  

Broader source: Energy.gov (indexed) [DOE]

7 Hunt Electric Power Marketing, L.L.C. EA-357 Hunt Electric Power Marketing, L.L.C. Order authorizing Hunt Electric Power Marketing, L.L.C. to export electric energy to Mexico...

19

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network [OSTI]

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

20

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

22

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

23

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

24

U.S. Department of Energy Geothermal Electricity Technology Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar...

25

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation...

26

Biomass Gas Electric LLC BG E | Open Energy Information  

Open Energy Info (EERE)

BG E Jump to: navigation, search Name: Biomass Gas & Electric LLC (BG&E) Place: Norcross, Georgia Zip: 30092 Sector: Biomass Product: Project developer specialising in biomass...

27

Geothermal electric cash flow model (GCFM)  

SciTech Connect (OSTI)

The Geothermal Cash Flow Model (GCFM) is a user-interactive computer model that estimates the costs and cash flow patterns of geothermal electric development projects. It was developed as a financial analysis tool for the US Department of Energy Geothermal Loan Guaranty Program. It contains a power-plant sizing and costing routine that is useful for preliminary feasibility studies of geothermal projects. The model can be operated using either a few preliminary estimates of geothermal resource characteristics or detailed estimates from reservoir engineering and power plant engineering studies. GCFM is available for public distribution.

Entingh, D.J.; Keimig, M.A.

1981-10-01T23:59:59.000Z

28

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

29

EA-357-A Hunt Electric Power Marketing, L.L.C. | Department of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-A Hunt Electric Power Marketing, L.L.C. EA-357-A Hunt Electric Power Marketing, L.L.C. Order authorizing Hunt Electric to export electric energy to Mexico. EA-357-A Hunt Electric...

30

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search...

31

Geothermal: Sponsored by OSTI -- Project Title: Small Scale Electrical...  

Office of Scientific and Technical Information (OSTI)

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

32

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC (Redirected from Oncor Electric Delivery Company, LLC) Jump to: navigation, search Name Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

33

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

34

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

35

Application Of Electrical Resistivity And Gravimetry In Deep Geothermal  

Open Energy Info (EERE)

Resistivity And Gravimetry In Deep Geothermal Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The electrical resistivity method has been proven applicable to geothermal exploration because of the direct relationship between fluid and rock temperatures on the one hand electrical conductivity on the other. The problem of exploitation of a surface technique, such as resistivity, to the determination of geothermal gradients or 'hot spots' is complicated by the other geological parameters which affect resistivity: porosity, fluid salinity, cementation factor and clay content. However, by rational

36

Progress report on electrical resistivity studies, COSO Geothermal Area,  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The first phase of an electrical geophysical survey of the Coso Geothermal Area is described. The objective of the survey was to outline areas of anomalously conductive ground that may be associated with geothermal activity and to assist in locating drilling sites to test the geothermal potential. Author(s): Ferguson, R. B. Published: Publisher Unknown, 6/1/1973 Document Number: Unavailable DOI: Unavailable Source: View Original Report Electrical Resistivity At Coso Geothermal Area (1972)

37

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

38

Rural Cooperative Geothermal Development Electric & Agriculture...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

39

2010 Geothermal Technology Program Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validation of Geothermally- produced Electricity from Co-produced Water at Existing OilGas Wells in TX Alcorn, Universal GeoPower LLC Electric Power Generation from Co-produced...

40

A study of geothermal drilling and the production of electricity from geothermal energy  

SciTech Connect (OSTI)

This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mid-Kansas Electric Company, LLC (MKEC) | Open Energy Information  

Open Energy Info (EERE)

Company, LLC (MKEC) Company, LLC (MKEC) Jump to: navigation, search Name Mid-Kansas Electric Company, LLC (MKEC) Place Kansas Utility Id 56324 Utility Location Yes Ownership W NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Controlled Private Area Lighting (Frozen) High Pressure sodium 100 Lighting Controlled Private Area Lighting (Frozen) High Pressure sodium 150 Lighting Controlled Private Area Lighting (Frozen) High Pressure sodium 200 Lighting

42

Oncor Electric Delivery Company, LLC Smart Grid Demonstration Project |  

Open Energy Info (EERE)

Company, LLC Smart Grid Demonstration Project Company, LLC Smart Grid Demonstration Project Jump to: navigation, search Project Lead Oncor Electric Delivery Company, LLC Country United States Headquarters Location Dallas, Texas Recovery Act Funding $3,471,681.00 Total Project Value $7,279,166.00 Coordinates 32.802955°, -96.769923° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

43

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Broader source: Energy.gov (indexed) [DOE]

1 Greg Mines Idaho National Laboratory June 30, 2011 U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar EERE Business Administration...

44

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

45

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting:  

Open Energy Info (EERE)

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Authors H.M. Bibby, G.F. Risk, T.G. Caldwell and S.L. Bennie Conference World Geothermal Congress 2005; Antalya, Turkey; 2005/04/24 Published ?, 2005 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Citation H.M. Bibby,G.F. Risk,T.G. Caldwell,S.L. Bennie. 2005. Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from

46

Oncor Electric Delivery Company LLC | Open Energy Information  

Open Energy Info (EERE)

Oncor Electric Delivery Company LLC Oncor Electric Delivery Company LLC Place Texas Service Territory Texas Website www.oncor.com/EN/Pages/de Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 44372 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Metered Facilities - Company-Owned (Closed to new installations) Lighting

47

List of Geothermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 1258 Geothermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1258) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

48

First Solar Electric LLC formerly DT Solar | Open Energy Information  

Open Energy Info (EERE)

Electric LLC formerly DT Solar Electric LLC formerly DT Solar Jump to: navigation, search Name First Solar Electric LLC (formerly DT Solar) Place Branchburg, New Jersey Zip 8876 Sector Solar Product PV project developer and installer, acquired by First Solar in November 2007, to develop large solar power projects in the US Southwest. Coordinates 40.56089°, -74.70034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.56089,"lon":-74.70034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

49

Realizing the geothermal electricity potential?water use and consequences  

Science Journals Connector (OSTI)

Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l?kWh ? 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8?100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

Gouri Shankar Mishra; William E Glassley; Sonia Yeh

2011-01-01T23:59:59.000Z

50

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s): Jon Wellinghoff Steve Munson Date: January 30, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Julie Osborn Existing data indicates that extensive geothermal resources of power production grade exist throughout the western United States. These resources may be capable of producing clean, reliable electric power in sufficient quantities to act as a hedge against the price volatility of gas-fired electric generation. The challenge facing energy policy makers is developing effective strategies and appropriate incentives to assist developers in moving competitive quantities of geothermal electric capacity into the western power marketplace. Issues related to achieving this goal

51

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

52

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

53

Application Of Geothermal Energy To The Supply Of Electricity...  

Open Energy Info (EERE)

To The Supply Of Electricity In Rural Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geothermal Energy To The Supply Of...

54

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

55

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

56

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

57

Record of Categorical Exclusion (CX) Determination: Office of Electricity Delivery and Energy Reliability (OE): EA-384 NRG Power Marketing LLC  

Broader source: Energy.gov [DOE]

Record of Categorical Exclusion (CX) Determination, Office of Electricity Delivery and Energy Reliability (OE): Application from NRG Power Marketing LLC to export electric energy to Mexico.

58

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

59

Geothermal Electric Plant Planned in N.M. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Electric Plant Planned in N.M. Geothermal Electric Plant Planned in N.M. July 3, 2008 - 3:57pm Addthis Publicly traded Raser Technologies Inc. of Provo, Utah, said...

60

Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development  

Broader source: Energy.gov [DOE]

This report explores the effectiveness of the historical and current body of policies in terms of increased geothermal electricity development. Insights are provided into future policies that may drive the market to optimize development of available geothermal electricity resources.

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Policy Makers' Guidebook for Geothermal Electricity Generation | Open  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Electricity Generation Policy Makers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

62

Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A  

Open Energy Info (EERE)

Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Abstract N/A Authors James Kauahikaua and Douglas Klein Published Journal Geothermal Resources Council, TRANSACTIONS, 1978 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Citation James Kauahikaua,Douglas Klein. 1978. Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A. Geothermal Resources Council, TRANSACTIONS. 2:363-366. Retrieved from "http://en.openei.org/w/index.php?title=Results_of_Electric_Survey_in_the_Area_of_Hawaii_Geothermal_Test_Well_HGP-A&oldid=682499

63

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

64

Application to Export Electric Energy OE Docket No. EA-327-A DC Energy LLC:  

Broader source: Energy.gov (indexed) [DOE]

Energy LLC: Federal Register Notice, Volume 77, No. 102 - May 25, 2012 Energy LLC: Federal Register Notice, Volume 77, No. 102 - May 25, 2012 Application to Export Electric Energy OE Docket No. EA-327-A DC Energy LLC: Federal Register Notice, Volume 77, No. 102 - May 25, 2012 Application from DC Energy to export electric energy to Canada. Federal Register Notice. EA-327_A DC Energy CN.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-321-A to EA-325-A Emera Energy Svcs. Subsidiaries: Federal Register Notice, Volume 77, No. 102 - May 25, 2012 Application to Export Electric Energy OE Docket No. EA-386 IPR-GDF SUEZ Energy Marketing (GSEMNA): Federal Register Notice, Volume 77, No. 129 - July 5, 2012 Application to export electric energy OE Docket No. EA-315-A BP Energy: Federal Register Notice Volume 76, No. 217 - Nov. 9, 2011

65

Employment Impacts of Geothermal Electric Projects  

SciTech Connect (OSTI)

Table 1 summarizes the number of jobs associated with the development and operation of a 50 MW geothermal dual flash power system. The values shown are person years (PY) of employment for the 50 MW system. About 1500 person years (PY) of labor are incorporated in the manufacture and installation of capital components of the system. Of these, about 300 PY are local to the area of the geothermal system, and about 1200 are dispersed elsewhere in the U.S. or other countries. About 71 PY of labor per year are required for the operation of the system. Of those, about 39 PY are local to the plant, and about 32 are dispersed. The total person years of labor over the entire life cycle of such a system, assuming a 30-year operational life, is on the order of 3630 person years. These include jobs during the 5 to 10 years of exploration and construction activities prior to plant start up. Of these jobs, about 1470 PY are local to the system, and about 21 60 are dispersed elsewhere.

Entingh, Daniel J.

1993-05-23T23:59:59.000Z

66

Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to  

Broader source: Energy.gov (indexed) [DOE]

Answer of Potomac Electric Power Company and PJM lnterconnection, Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Answer of Potomac Electric Power Company and PJM lnterconnection, L.L.C. to the October 6, 2005 motion filed by the Virginia Department of Environmental Quality Docket No. EO-05-01: Pursuant to Rule 213 of the rules of Practice and Procedure of the Federal Energy Regulatory Commission ("FERC" or "Commission"), 18 C.F.R. § 385.213, Potomac Electric Power Company ("Pepco") and PJM Interconnection, L.L.C. ("PJM") hereby answer the Motion of Robert G. Bumley, Director the Commonwealth of Virginia Department of Environmental Quality To Deny the District of Columbia Public Service

67

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

68

KGRA Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: KGRA Energy LLC Place: Short Hills, New Jersey Zip: 7078 Sector: Geothermal energy Product: New jersey-based firm systems developer to convert the geothermal...

69

Bar Gadda LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: Palo Alto, California Zip: 94306 Sector: Geothermal energy, Hydro, Hydrogen Product: Has developed a new technology to produce hydrogen from water or geothermal...

70
71

Application to export electric energy OE Docket No. EA-212-C Coral Power, LLC: Federal Register Notice Volume 72, No. 118- Jun. 20, 2007  

Broader source: Energy.gov [DOE]

Application from Coral Power, LLC to export electric energy to Mexico. Federal Register Notice Vol 72 No 118

72

Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

73

Strategies for compensating for higher costs of geothermal electricity with environmental benefits  

Science Journals Connector (OSTI)

After very high growth in the 1980s, geothermal electricity production has slowed in the mid- and late-1990s. While Japanese, Indonesian and Philippine geothermal growth has remained high as a consequence of supportive government policies, geothermal electricity production has been flat or reduced in much of Europe and North America. Low prices for coal and natural gas, combined with deregulation, means that in much of the world electricity from new fuel-burning electricity plants can be provided at half the cost of new geothermal electricity. Cost-cutting must be pursued, but is unlikely to close the price gap by itself. Geothermal production is widely perceived as being environmentally clean, but this is not unambiguously true, and requires reinjection to be fully realized. Strategies for monetizing the environmental advantages of geothermal, including the carbon tax, are discussed.

Hugh Murphy; Hiroaki Niitsuma

1999-01-01T23:59:59.000Z

74

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona  

Open Energy Info (EERE)

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Details Activities (1) Areas (1) Regions (0) Abstract: The U.S Department of Energy's "Geopowering the West" initiative seeks to double the number of states (currently 4) that generate geothermal electric power over the next few years. Some states, like New Mexico and Oregon, have plentiful and conspicuous geothermal manifestations, and are thus likely to further DOE'S goal relatively easily. Other states, including Arizona, demonstrate less geothemal potential, but nevertheless

75

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical  

Open Energy Info (EERE)

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Details Activities (21) Areas (4) Regions (0) Abstract: For many years, there has been speculation about "hidden" or "blind" geothermal systems- reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose

76

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

77

Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources  

Broader source: Energy.gov [DOE]

Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

78

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

79

Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

80

GeoLectric Power Company NM LLC | Open Energy Information  

Open Energy Info (EERE)

GeoLectric Power Company NM LLC Jump to: navigation, search Name: GeoLectric Power Company NM LLC Place: New Mexico Sector: Geothermal energy Product: Owns geothermal rights to the...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Application to Export Electric Energy OE Docket No. EA-352 NaturEner Tie Line, LLC: Federal Register Notice Volume 74, No. 98- May 22, 2009  

Broader source: Energy.gov [DOE]

Application from NaturEner Tie Line, LLC to export electric energy to Canada. Federal Register Notice Vol 74 No 98

82

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii...

83

COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Electrical and acoustic image logs collected from well 58A-10 in crystalline rock on the eastern margin of the Coso Geothermal Field, CA, reveal different populations of planar structures intersecting the borehole. Electrical image logs appear to be sensitive to variations in

84

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

Broader source: Energy.gov [DOE]

Project Will Take Advantage of Abundant Water in Shallow Aquifer. Demonstrate Low Temperature GSHP System Design. Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits.

85

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

86

EA-249 Exelon Generation Company LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exelon Generation Company LLC EA-249 Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249 Exelon Generation...

87

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect (OSTI)

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

88

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

89

Electric Micro Imager Log At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Electric Micro Imager Log At Coso Geothermal Area (2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture/stress analysis Notes A preliminary fracture/stress analysis was conducted for the recently drilled well 38C-9 as part of a continuing effort to characterize the

90

EA-209-B Cargill Power Markets, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets, LLC EA-209-B Cargill Power Markets, LLC Order authorizing Cargill Power Markets, LLC to export electric energy to Canada. EA-209-B Cargill Power Markets, LLC More...

91

EA-220 NRG Power Marketing LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 NRG Power Marketing LLC EA-220 NRG Power Marketing LLC Order authorizing NRG Power Marketing LLC to export electric energy to Canada. EA-220-NRG Power Marketing LLC More...

92

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

93

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energygeo (earth) + thermal (heat)is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

94

Cumulative energy, emissions, and water consumption for geothermal electric power production  

Science Journals Connector (OSTI)

A life cycle analysis has been conducted on geothermal electricity generation. The technologies covered in the study include flash binary enhanced geothermal systems (EGS) and coproduced gas and electricity plants. The life cycle performance metrics quantified in the study include materials water and energy use and greenhouse gas (GHG) emissions. The life cycle stages taken into account were the plant and fuel cycle stages the latter of which includes fuel production and fuel use (operational). The plant cycle includes the construction of the plant wells and above ground piping and the production of the materials that comprise those systems. With the exception of geothermal flash plants GHG emissions from the plant cycle are generally small and the only such emissions from geothermal plants. Some operational GHGs arise from flash plants and though substantial when compared to other geothermal power plants these are nonetheless considerably smaller than those emitted from fossil fuel fired plants. For operational geothermal emissions an emission rate (g/kW h) distribution function vs. cumulative capacity was developed using California plant data. Substantial GHG emissions arise from coproduced facilities and two other renewable power plants but these are almost totally due to the production and use of natural gas and biofuels. Nonetheless those GHGs are still much less than those from fossil fuel fired plants. Though significant amounts of water are consumed for plant and well construction especially for well field stimulation of EGS plants they are small in comparison to estimated water consumed during plant operation. This also applies to air cooled plants which nominally should consume no water during operation. Considering that geothermal operational water use data are scarce our estimates show the lowest water consumption for flash and coproduced plants and the highest for EGS though the latter must be considered provisional due to the absence of field data. The EGS estimate was based on binary plant data.

J. L. Sullivan; C. Clark; J. Han; C. Harto; M. Wang

2013-01-01T23:59:59.000Z

95

Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator  

SciTech Connect (OSTI)

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, Gerhard; Ruhland, Johannes

1996-01-24T23:59:59.000Z

96

Altheim geothermal plant for electricity production by organic Rankine cycle turbogenerator  

SciTech Connect (OSTI)

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, G. [Municipality of Altheim (Austria); Ruhland, J. [TERRAWAT GmbH, Schwaben (Germany)

1996-12-31T23:59:59.000Z

97

Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6/ kWh by 2030.

98

Geothermal: Sponsored by OSTI -- Structure of the Electric Double...  

Office of Scientific and Technical Information (OSTI)

Structure of the Electric Double Layer in Hydrothermal Systems. Molecular Simulation Approach and Interpretation of Experimental Results...

99

Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy  

Science Journals Connector (OSTI)

In the Republic of Croatia there are some medium temperature geothermal sources by means of which it is possible to produce electricity. However, only recently concrete initiatives for the construction of geothermal power plants have been started. Consequently, the paper provides proposals of the possible cycles for the Republic of Croatia. On the example of the most prospective geothermal source in the Republic of Croatia detailed analysis for the proposed energy conversion cycles is performed: for Organic Rankine Cycle (ORC) and Kalina cycle. On the basis of analysis results both the most suitable cycle for selected and for other geothermal sources in the Republic of Croatia are proposed. It is ORC which in case of the most prospective geothermal source in the Republic of Croatia has better both the thermal efficiency (the First Law efficiency) and the exergetic efficiency (the Second Law efficiency): 14.1% vs. 10.6% and 52% vs. 44%. The ORC gives net power of 5270kW with mass flow rate 80.13kg/s, while the Kalina cycle gives net power of 3949kW with mass flow rate 35.717kg/s.

Z. Guzovi?; D. Lon?ar; N. Ferdelji

2010-01-01T23:59:59.000Z

100

The use of geothermal energy: A reliable, cheap, and environmentally friendly method for generating electricity and heat  

Science Journals Connector (OSTI)

The economical and environmental aspects of generating electricity at traditional thermal power stations and at geothermal power stations are considered. The dynamics of prices for fossil fuel and results from...

O. A. Povarov; O. M. Dubnov; A. I. Nikolskii

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems  

Broader source: Energy.gov [DOE]

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

102

Levelized costs of electricity and direct-use heat from Enhanced Geothermal Systems  

Science Journals Connector (OSTI)

GEOPHIRES (GEOthermal energy for the Production of Heat and Electricity (IR) Economically Simulated) is a software tool that combines reservoir wellbore and power plant models with capital and operating cost correlations and financial levelized cost models to assess the technical and economic performance of Enhanced Geothermal Systems (EGS). It is an upgrade and expansion of the MIT-EGS program used in the 2006 Future of Geothermal Energy study. GEOPHIRES includes updated cost correlations for well drilling and completion resource exploration and Organic Rankine Cycle (ORC) and flash power plants. It also has new power plant efficiency correlations based on AspenPlus and MATLAB simulations. The structure of GEOPHIRES enables feasibility studies of using geothermal resources not only for electricity generation but also for direct-use heating and combined heat and power (CHP) applications. Full documentation on GEOPHIRES is provided in the supplementary material. Using GEOPHIRES the levelized cost of electricity (LCOE) and the levelized cost of heat (LCOH) have been estimated for 3 cases of resource grade (low- medium- and high-grade resource corresponding to a geothermal gradient of 30 50 and 70?C/km) in combination with 3 levels of technological maturity (today's mid-term and commercially mature technology corresponding to a productivity of 30 50 and 70?kg/s per production well and thermal drawdown rate of 2% 1.5% and 1%). The results for the LCOE range from 4.6 to 57 /kWhe and for the LCOH from 3.5 to 14 $/MMBTU (1.2 to 4.8 /kWhth). The results for the base-case scenario (medium-grade resource and mid-term technology) are 11 /kWhe and 5 $/MMBTU (1.7 /kWhth) respectively. To account for parameter uncertainty a sensitivity analysis has been included. The results for the LCOE and LCOH have been compared with values found in literature for EGS as well as other energy technologies. The key findings suggest that given today's technology maturity electricity and direct-use heat from EGS are not economically competitive under current market conditions with other energy technologies. However with moderate technological improvements electricity from EGS is predicted to become cost-effective with respect to other renewable and non-renewable energy sources for medium- and high-grade geothermal resources. Direct-use heat from EGS is calculated to become cost-effective even for low-grade resources. This emphasizes that EGS for direct-use heat may not be neglected in future EGS development.

2014-01-01T23:59:59.000Z

103

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

104

DOE Updated U.S. Geothermal: Supply Curve (Presentation)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov The Parker Ranch installation in Hawaii Geothermal Technologies Program (GTP) DOE Updated U.S. Geothermal Supply Curve Chad Augustine National Renewable Energy Laboratory Strategic Energy Analysis Center Chad.Augustine@nrel.gov February 1, 2010 Chad Augustine (NREL) Katherine R. Young (NREL) Arlene Anderson (DOE-GTP) NREL/PR-6A2-47527 Pacific Gas & Electric/PIX 00059 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 | 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov

105

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

SciTech Connect (OSTI)

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

John Sullivan

2013-06-04T23:59:59.000Z

106

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

107

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

108
109

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

110

Caithness Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Caithness Energy LLC Caithness Energy LLC Jump to: navigation, search Name Caithness Energy LLC Place New York, New York Zip 10017 Sector Geothermal energy, Renewable Energy, Solar, Wind energy Product Caithness Energy is a renewable energy project developer, plant owner and investor focusing on geothermal, wind and solar power. References Caithness Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Caithness Energy LLC is a company located in New York, New York . References ↑ "Caithness Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=Caithness_Energy_LLC&oldid=343142" Categories: Clean Energy Organizations Companies Organizations

111

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

112

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas  

Broader source: Energy.gov [DOE]

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

113

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

114

EA-378 Cargill Power Markets LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets LLC EA-378 Cargill Power Markets LLC Order authorizing Cargill Power Markets to export electric energy to Mexico. EA-378 CPM MX.pdf More Documents &...

115

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Executive Summary  

SciTech Connect (OSTI)

In 1983, the Bonneville Power Administration contracted for an evaluation and ranking of all geothermal resource sites in the states of Idaho, Montana, Oregon, and Washington which have a potential for electrical generation and/or electrical offset through direct utilization of the resource. The objective of this program was to consolidate and evaluate all geologic, environmental, legal, and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of all known geothermal sites. This data base would enhance the making of credible forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. The four states, working together under a cooperative agreement, identified a total of 1,265 potential geothermal sites. The 1,265 sites were screened to eliminate those with little or no chance of providing either electrical generation and/or electrical offset. Two hundred and forty-five of the original 1,265 sites were determined to warrant further study. The Four-State team proceeded to develop a methodology which would rank the sites based upon an estimate of development potential and cost. Development potential was estimated through the use of weighted variables selected to approximate the attributes which a geothermal firm might consider in its selection of a site for exploration and possible development. Resource; engineering; and legal, institutional, and environmental factors were considered. Cost estimates for electrical generation and direct utilization sites were made using the computer programs CENTPLANT, WELLHEAD, and HEATPLAN. Finally, the sites were ranked utilizing a technique which allowed for the integration of development and cost information. On the basis of the developability index, 78 high temperature sites and 120 direct utilization sites were identified as having ''good'' or ''average'' potential for development and should be studied in detail. On the basis of cost, at least 29 of the high temperature sites appear to be technically capable of supporting a minimum total of at least 1,000 MW of electrical generation which could be competitive with the busbar cost of conventional thermal generating technologies. Sixty direct utilization sites have a minimum total energy potential of 900+ MW and can be expected to provide substantial amounts of electrical offset at or below present conventional energy prices. The combined development and economic rankings can be used to assist in determining sites with superior characteristics of both types. Five direct utilization sites and eight high temperature sites were identified with both high development and economic potential. An additional 27 sites were shown to have superior economic characteristics, but development problems. The procedure seems validated by the fact that two of the highest ranking direct utilization sites are ones that have already been developed--Boise, Idaho and Klamath Falls, Oregon. Most of the higher ranking high temperature sites have received serious examination in the past as likely power production candidates.

Bloomquist, R.G.; Black, G.L.; Parker, D.S.; Sifford, A.; Simpson, S.J.; Street, L.V.

1985-06-01T23:59:59.000Z

116

EA-250 PSEG Energy Resources & Trade LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0 PSEG Energy Resources & Trade LLC EA-250 PSEG Energy Resources & Trade LLC Order authorizing PSEG Energy Resources & Trade LLC to export electric energy to Canada. EA-250 PSEG...

117

EA-329 Sierra Power Asset Marketing, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9 Sierra Power Asset Marketing, LLC EA-329 Sierra Power Asset Marketing, LLC Order authorizing Sierra Power Asset Marketing, LLC to export electric energy to Canada EA-329 Sierra...

118

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

119

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

120

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LLNL-CONF-614333 STOCHASTIC JOINT INVERSION OF A GEOTHERMAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. PROCEEDINGS, Thirty-Eighth Workshop on Geothermal...

122

Global Power Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Power Solutions LLC Power Solutions LLC Jump to: navigation, search Name Global Power Solutions LLC Place Colorado Zip CO 80401 Sector Geothermal energy Product String representation "Global Power So ... sition support." is too long. References Global Power Solutions LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Global Power Solutions LLC is a company located in Colorado . References ↑ "Global Power Solutions LLC" Retrieved from "http://en.openei.org/w/index.php?title=Global_Power_Solutions_LLC&oldid=345917" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

123

Natsource LLC | Open Energy Information  

Open Energy Info (EERE)

Natsource LLC Natsource LLC Jump to: navigation, search Name Natsource LLC Place New York, New York Zip NY 10038 Sector Services Product Natsource provides brokerage and advisory services for natural gas, coal, and electricity, as well as weather hedging and environmental issues. References Natsource LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Natsource LLC is a company located in New York, New York . References ↑ "Natsource LLC" Retrieved from "http://en.openei.org/w/index.php?title=Natsource_LLC&oldid=349086" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

124

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

125

Eric Heinicke Energy Elements LLC  

E-Print Network [OSTI]

and East CTA Snapshots; Cost Effective Energy Saving Measures And Supplemental Issues Benchmarking and FineEric Heinicke Energy Elements LLC 702-683-5067 eric@energyelements.net NW CTA, Burkholder MS Tuning High Performance HYBRID GX Systems Cary Smith Sound Geothermal Corporation 801-942-6100 dcsmith

126

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

127

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

128

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

129

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

130

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

131

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

132

Record of Decision for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project (DOE/EIS-0183)(10/19/01)  

Broader source: Energy.gov (indexed) [DOE]

for the for the Electrical Interconnection of TransAlta Centralia Generation LLC Big Hanaford Project INTRODUCTION The Bonneville Power Administration (BPA) has decided to offer contract terms for integrating power from the TransAlta Centralia Generation LLC Big Hanaford Project, a 248-megawatt (MW) gas-fired, combined-cycle combustion turbine (CCCT) power generation project (Project), into the Federal Columbia River Transmission System (FCRTS). The Project is located within an industrial area adjacent to TransAlta's existing Centralia Steam Plant in Lewis County, Washington. The West Coast is experiencing a shortfall in electric energy supply, as well as a volatile wholesale power market in which prices have reached record highs. The Project is one of

133

Draft Supplemental Environmental Assessment For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland, DOE/EA-1723S (December 2010)  

Broader source: Energy.gov (indexed) [DOE]

DRAFT SUPPLEMENTAL ENVIRONMENTAL DRAFT SUPPLEMENTAL ENVIRONMENTAL ASSESSMENT For General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative White Marsh, Maryland May 2011 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment i May 2011 ACKNOWLEDGEMENT This report was prepared with the support of the U.S. Department of Energy (DOE) under Award Number DE-EE0002629. U.S. Department of Energy General Motors National Energy Technology Laboratory Supplemental Environmental Assessment ii May 2011 COVER SHEET Responsible Agency: U.S. Department of Energy (DOE) Title: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing

134

DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

135

Microsoft Word - 338M_Geothermal_Project_Descriptions  

Broader source: Energy.gov (indexed) [DOE]

Grant Amount Project Location (City) Project Location (State) Description 1) Innovative Exploration and Drilling Projects El Paso County $5,000,000 El Paso County TX El Paso County will utilize new portable drilling technology and geological analysis techniques in Ft. Bliss, TX. Flint Geothermal LLC $4,778,234 (5 sites) CO Flint Geothermal LLC will utilize a combination of geological mapping tools to identify resources in Colorado. GeoGlobal Energy LLC $4,040,375 Gabbs NV GeoGlobal Energy LLC will combine geological with geochemical analysis to discover hidden resources in the Basin and Range region of Nevada. Geothermal Technical Partners, Inc.

136

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

137

Bethel Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name: Bethel Energy LLC Place: Cardiff, California Zip: 92007 Sector: Solar Product: Solar thermal electricity generation (STEG) project developer, to use parabolic trough...

138

NREL: Geothermal Policymakers' Guidebooks - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webmaster Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Policymakers' Guidebooks Home Electricity Generation Heating & Cooling Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

139

Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado  

SciTech Connect (OSTI)

Geothermal Geodatabase for Routt Hot Springs, Routt County, Colorado By Richard Rick Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,500,000 South boundary: approximately 4,480,000 West boundary: approximately 330,000 East boundary: approximately 358,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs and wells in the Routt Hot Spring and Steamboat Springs areahave geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRIs GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

Richard Zehner

2012-11-01T23:59:59.000Z

140

Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado  

SciTech Connect (OSTI)

Geothermal Geodatabase for Wagon Wheel Hot Springs, Mineral County, Colorado By Richard Rick Zehner Geothermal Development Associates Reno Nevada USA 775.737.7806 rzehner@gdareno.com For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,189,000 South boundary: approximately 4,170,000 West boundary: approximately 330,000 East boundary: approximately 351,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs at Wagon Wheel Gap have geochemistry and geothermometry values indicative of high-temperature systems. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRIs GIS servers. Datasets include: 1. Results of reconnaissance shallow (2 meter) temperature surveys 2. Air photo lineaments 3. Groundwater geochemistry 4. Power lines 5. Georeferenced geologic map of Routt County 6. Various 1:24,000 scale topographic maps

Richard Zehner

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EA-163-A Duke Energy Trading and Marketing, L.L.C | Department...  

Broader source: Energy.gov (indexed) [DOE]

-A Duke Energy Trading and Marketing, L.L.C EA-163-A Duke Energy Trading and Marketing, L.L.C Order authorizing Duke Energy Trading and Marketing, L.L.C to export electric energy...

142

EA-166-A Duke Energy Trading and Marketing, L.L.C | Department...  

Broader source: Energy.gov (indexed) [DOE]

-A Duke Energy Trading and Marketing, L.L.C EA-166-A Duke Energy Trading and Marketing, L.L.C Order authorizing Duke Energy Trading and Marketing, L.L.C to export electric energy...

143

EA-166 Duke Energy Trading and Marketing, L.L.C | Department...  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy Trading and Marketing, L.L.C EA-166 Duke Energy Trading and Marketing, L.L.C Order authorizing Duke Energy Trading and Marketing, L.L.C to export electric energy to...

144

EA-348-A NextEa Energy Power Marketing, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-A NextEa Energy Power Marketing, LLC EA-348-A NextEa Energy Power Marketing, LLC Order authorizing NextEa Energy Power Marketing, LLC to export electric energy to Canada EA-348-A...

145

PP-39-1 Boise White Paper, L.L.C | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

-1 Boise White Paper, L.L.C PP-39-1 Boise White Paper, L.L.C Presidential Permit authorizing Boise White Paper, L.L.C to construct, operate, and maintain electric transmission...

146

PP-96-2 Boise White Paper, L.L.C. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2 Boise White Paper, L.L.C. PP-96-2 Boise White Paper, L.L.C. Presidental Permit authorizing Boise White Paper, L.L.C. to construct, operatr and maintain electric transmission...

147

Utah/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Geothermal < Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Utah Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Utah Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Cove Fort Geothermal Project Oski Energy LLC 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Phase II - Resource Exploration and Confirmation Cove Fort Geothermal Area Northern Basin and Range Geothermal Region Drum Mountain Geothermal Project Raser Technologies Inc Delta, Utah 0 MW0 kW

148

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

149

An integrated model to compare net electricity generation for CO?- and water-based geothermal systems.  

E-Print Network [OSTI]

??Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed byBrown in 2000 and its advantages have been discussed by him (more)

Agarwal, Vikas, 1986-

2010-01-01T23:59:59.000Z

150

A Thermogravimetric Loop for Converting Low Enthalpy Geothermal Energy into Electricity  

Science Journals Connector (OSTI)

ENEL is completing, under contract with the Commission of the European Communities, the construction in Larderello of a pilot plant suitable for the exploitation of low temperatures geothermal sources.

G. Trebbi

1980-01-01T23:59:59.000Z

151

Utah Geothermal Area | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy...

152

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

Pope, W.L.

2011-01-01T23:59:59.000Z

153

Application to Export Electric Energy OE Docket No. EA-329 Sierra...  

Broader source: Energy.gov (indexed) [DOE]

9 Sierra Power Asset Marketing, LLC Application to Export Electric Energy OE Docket No. EA-329 Sierra Power Asset Marketing, LLC Application from Sierra Power Asset Marketing, LLC...

154

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

155

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

156

EA-209-C Cargill Power Markets LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Power Markets LLC EA-209-C Cargill Power Markets LLC Order authorizing Cargill Power Markets to export electric energy to Canada. EA-209-C CPM CN.pdf More Documents &...

157

EA-384 NRG Power Marketing LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4 NRG Power Marketing LLC EA-384 NRG Power Marketing LLC Order authorizing NRG Power Marketing to export electric energy to Mexico. EA-384 NRGPML MX.pdf More Documents &...

158

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

159

New Bio LLC | Open Energy Information  

Open Energy Info (EERE)

New Bio LLC New Bio LLC Jump to: navigation, search Name New Bio LLC Place Eden Prarie, Minnesota Zip MN 55344-3446 Sector Biomass Product Working on the development and commercialization of an Integrated Biomass to Electricity System (IBES) References New Bio LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Bio LLC is a company located in Eden Prarie, Minnesota . References ↑ "New Bio LLC" Retrieved from "http://en.openei.org/w/index.php?title=New_Bio_LLC&oldid=349152" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

160

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas  

Broader source: Energy.gov [DOE]

Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

162

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

163

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume I.  

SciTech Connect (OSTI)

The objective was to consolidate and evaluate all geologic, environmental, and legal and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of sites to allow the making of creditable forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. A total of 1265 potential geothermal resource sites were identified from existing literature. Site selection was based upon the presence of thermal and mineral springs or wells and/or areas of recent volcanic activity and high heat flow. 250 sites were selected for detailed analysis. A methodology to rank the sites by energy potential, degree of developability, and cost of energy was developed. Resource developability was ranked by a method based on a weighted variable evaluation of resource favorability. Sites were ranked using an integration of values determined through the cost and developability analysis. 75 figs., 63 tabs.

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

164

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC | Open Energy...  

Open Energy Info (EERE)

Gateway Ethanol LLC formerly Wildcat Bio Energy LLC Jump to: navigation, search Name: Gateway Ethanol LLC (formerly Wildcat Bio-Energy LLC) Place: Pratt, Kansas Zip: 67124 Product:...

165

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Steam Trust LLC Steam Trust LLC (Redirected from Standard Steam Trust) Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Standard Steam Trust LLC | Open Energy Information  

Open Energy Info (EERE)

Trust LLC Trust LLC Jump to: navigation, search Name Standard Steam Trust LLC Place Denver, Colorado Sector Geothermal energy Product Subsidiary of Denver-based geothermal project developer, Terra Caliente. Coordinates 39.74001°, -104.992259° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.74001,"lon":-104.992259,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Gerlach Green Energy LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Gerlach Green Energy LLC Place Gerlach, Nevada Sector Geothermal energy Product Gerlach has formed an exploration joint venture with US Geothermal. Coordinates 40.652978°, -119.351906° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.652978,"lon":-119.351906,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

168

Oski Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Oski Energy LLC Oski Energy LLC (Redirected from Oski Energy) Jump to: navigation, search Name Oski Energy LLC Place Reno, Nevada Sector Geothermal energy Product Nevada geothermal project developer. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

170

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

171

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

172

Assessment of low temperature electricity production with focus on geothermal energy.  

E-Print Network [OSTI]

??With the rise of environmental awareness and increased electricity prices, low temperature electricity production cycles are getting more and more into focus. These include applications (more)

Scheyhing, Andreas

2012-01-01T23:59:59.000Z

173

California/Geothermal | Open Energy Information  

Open Energy Info (EERE)

California/Geothermal California/Geothermal < California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF California Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in California Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Bald Mountain Geothermal Project Oski Energy LLC Susanville, California 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase II - Resource Exploration and Confirmation Black Rock I Geothermal Project CalEnergy Generation Phase III - Permitting and Initial Development North Shore Mono Lake Geothermal Area Walker-Lane Transition Zone Geothermal Region

174

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

175

Fibrowatt LLC | Open Energy Information  

Open Energy Info (EERE)

Fibrowatt LLC Fibrowatt LLC Jump to: navigation, search Name Fibrowatt LLC Place Langhorne, Pennsylvania Zip 19047 Product Fibrowatt LLC is a developer, builder, owner and operator of electricity power plants fueled by poultry litter. Coordinates 40.176396°, -74.918884° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.176396,"lon":-74.918884,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

176

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect (OSTI)

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

177

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

178

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

179

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

180

Lightning Dock KGRA, New Mexico's Largest Geothermal Greenhouse...  

Open Energy Info (EERE)

Largest Geothermal Greenhouse, Largest Aquaculture Facility, and First Binary Electrical Power Plant. Geo-Heat Center Bulletin. 23:37-41. Related Geothermal Exploration Activities...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal Energy (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Geothermal energy is one of the components of the National Energy Policy: Reliable, Affordable, and Environmentally Sound Energy for Americas Future. This lesson includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity.

182

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

183

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

184

Geothermal Glossary | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Use of geothermal heat without first converting it to electricity, such as for space heating and cooling, food preparation, industrial processes, etc. District Heating A type of...

185

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

186

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

187

U.S. Geothermal Announces Successful Completion  

Broader source: Energy.gov [DOE]

U.S. Geothermal Inc. (U.S. Geothermal), a renewable energy company focused on the production of electricity from geothermal energy, announced today that the first full size production well (NHS-1) at the Neal Hot Springs Project was successfully completed on May 23 and an initial flow test confirms the presence of a geothermal reservoir.

188

EA-373 EDF Trading North America, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Electricity Delivery and Energy Reliability (OE): EA-367 EDF Trading North America, LLC (EDF) EA-386 IPR-GDF Suez Energy Marketing North America, Inc. (GSEMNA)...

189

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

public acceptance of geothermal energy and, for that matter,Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systems

Apps, J.A.

2011-01-01T23:59:59.000Z

190

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

191

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systemstubes used. in geothermal energy plants Feasibility study of

Apps, J.A.

2011-01-01T23:59:59.000Z

192

Practical Approach in Design of HVAC Systems Utilizing Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal is the Earths thermal energy. In recent years geothermal energy has been utilized for generation of electricity, heating and air conditioning (HVAC). Geothermal HVAC systems are cost effective, energy

M. Fathizadeh; D. Seims

2014-01-01T23:59:59.000Z

193

Geothermal Energy: Current abstracts  

SciTech Connect (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

194

BSST LLC | Open Energy Information  

Open Energy Info (EERE)

BSST LLC BSST LLC Jump to: navigation, search Name BSST LLC Place Irwindale, California Zip 91706 Product Their core-competency is thermo-electrics (heat to electricity), using alternate thermodynamic cycles. Coordinates 34.105143°, -117.933771° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.105143,"lon":-117.933771,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Agile Energy LLC | Open Energy Information  

Open Energy Info (EERE)

of renewable electric power generation assets in North America and select overseas markets. References: Agile Energy LLC1 This article is a stub. You can help OpenEI by...

196

Sun Energy Group LLC | Open Energy Information  

Open Energy Info (EERE)

in New Orleans to produce electricity from trash via plasma gasification. References: Sun Energy Group LLC1 This article is a stub. You can help OpenEI by expanding it. Sun...

197

Geothermal News and Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

About Us » News & Blog » Geothermal News and Blog About Us » News & Blog » Geothermal News and Blog Geothermal News and Blog Blog This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 1:31 PM This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. Read The Full Story Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

198

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

199

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

200

NREL: Financing Geothermal Power Projects - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

202

Oski Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Oski Energy LLC Oski Energy LLC Place Reno, Nevada Sector Geothermal energy Product Nevada geothermal project developer. Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Free Green Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Free Green Energy LLC Free Green Energy LLC Place Houston, Texas Zip 77060 Sector Geothermal energy Product Houston-based company formed to develop geothermal and geopressure projects. The company also does some work in enhanced oil recovery. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Freedom Energy Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Freedom Energy Solutions LLC Freedom Energy Solutions LLC Place Westminster, Maryland Zip 21157 Sector Geothermal energy, Solar Product Retailer and installer of solar passive, PV and geothermal systems for household use. Coordinates 43.07212°, -72.465748° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07212,"lon":-72.465748,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

206

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

207

Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing LLC: Request to Suspend Consideration of Application  

Broader source: Energy.gov [DOE]

Application from Lonestar to export electric energy to Mexico. Received letter requesting to suspend consideration of application of Fronteraand Lonestar.

208

Geothermal: Distributed Search Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

209

EA-381 E-T Global Energy, LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1 E-T Global Energy, LLC EA-381 E-T Global Energy, LLC Order authorizing E-T Global to export electric energy to Mexico. EA-381 E-T Global MX.pdf More Documents & Publications...

210

EA-348-B NextEra Energy Power Marketing, LLC | Department of...  

Broader source: Energy.gov (indexed) [DOE]

-B NextEra Energy Power Marketing, LLC EA-348-B NextEra Energy Power Marketing, LLC Order authorizing NextEra Energy to export electric energy to Canada. EA-348-B NextEra...

211

Enforcement Letter, CH2M-Washington Group Idaho LLC , - May 20...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho LLC , - May 20, 2009 May 20, 2009 Issued to CH2M-Washington Group Idaho, LLC, for Electrical Safety Deficiencies at the Idaho National Laboratory On May 20, 2009, the U.S....

212

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

213

Geothermal Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

214

Application to Export Electric Energy OE Docket No. EA-403 Frontera Marketing, LLC- Motion to Intervene of Electric Reliability Council of Texas, Inc (ERCOT)  

Broader source: Energy.gov [DOE]

ERCOT submits this motion to intervene in the referenced proceeding of Frontera Marketing application to export electric energy to Mexico.

215

EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan  

Broader source: Energy.gov [DOE]

DOEs Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States consumption of petroleum. This Proposed Action will also meaningfully assist in the nations economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

216

Application to export electric energy OE Docket No. EA-220-C...  

Broader source: Energy.gov (indexed) [DOE]

20-C NRG Power Marketing LLC Application to export electric energy OE Docket No. EA-220-C NRG Power Marketing LLC Application from NRG Power Marketing LLC to export electric energy...

217

Wind Energy Systems Technologies LLC WEST | Open Energy Information  

Open Energy Info (EERE)

LLC WEST LLC WEST Jump to: navigation, search Name Wind Energy Systems Technologies LLC (WEST) Place New Iberia, Louisiana Sector Wind energy Product Wants to install wind turbines on abandoned Gulf of Mexico oil and natural gas platforms to generate electric power for both homes and secondary recovery efforts. References Wind Energy Systems Technologies LLC (WEST)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Wind Energy Systems Technologies LLC (WEST) is a company located in New Iberia, Louisiana . References ↑ "Wind Energy Systems Technologies LLC (WEST)" Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Systems_Technologies_LLC_WEST&oldid=353071

218

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

219

2008 Geothermal Technologies Market Report  

Broader source: Energy.gov [DOE]

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

220

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal Energy Technology: a current-awareness bulletin  

SciTech Connect (OSTI)

This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

Smith, L.B. (ed.)

1983-01-15T23:59:59.000Z

222

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

223

Preliminary Notice of Violation, Los Alamos National Security, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Security, LLC Security, LLC - WEA-2012-03 Preliminary Notice of Violation, Los Alamos National Security, LLC - WEA-2012-03 October 17, 2012 Issued to Los Alamos National Security, LLC, related to Four Electrical Safety-Related Events that occurred at the Los Alamos National Laboratory (LANL) This letter refers to the Office of Health, Safety and Security's Office of Enforcement and Oversight investigation into the facts and circumstances surrounding four electrical safety-related events that occurred at the Los Alamos National Laboratory (LANL) from October 2010 through January 2011. Preliminary Notice of Violation, Los Alamos National Security, LLC - WEA-2012-03 More Documents & Publications Sandia Sled Track PNOV Press Release Enforcement Letter, Computer Services, LLC - WEL-2012-03

224

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Health and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-FuelHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

225

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

226

Hudson Ranch Power I LLC | Open Energy Information  

Open Energy Info (EERE)

I LLC I LLC Jump to: navigation, search Name Hudson Ranch Power I, LLC Place Dallas, Texas Zip 75204 Sector Geothermal energy Product A company proposing to build a 49.9MW geothermal energy plant in southern California. Coordinates 32.778155°, -96.795404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.778155,"lon":-96.795404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Water Use in the Development and Operation of Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

...48 Appendix C - Summary of Water Consumption for Electricity Generation Technologies ...51 v FIGURES 1 Example GIS Map: Geothermal Water...

228

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network [OSTI]

FLUID CONTROL: PROJECTS FY 1977 THE DEFINITION OF ENGINEERINGengineering problems resulting from the use of geothermal fluidsengineering design caused by chemical, thermodynamic, and transport properties of geothermal fluids;

Apps, J.A.

2011-01-01T23:59:59.000Z

229

Geothermal progress monitor. Progress report No. 7  

SciTech Connect (OSTI)

A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

Not Available

1983-04-01T23:59:59.000Z

230

Geothermal Energy in Iceland Spring 2009  

E-Print Network [OSTI]

Geothermal Energy in Iceland Kaeo Ahu CEE 491 Spring 2009 Final Presentation #12;HISTORY Iceland has five major geothermal power plants (GPP) Two produce electric and thermal energy Three produce Creating the availability of geothermal resources #12;HISTORY & BACKGROUND Iceland's first settlers used

Prevedouros, Panos D.

231

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado Subcontract Report NREL/SR-6A20-49391 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Guidebook to Geothermal Power Finance J. Pater Salmon, J. Meurice, N. Wobus, F. Stern, and M. Duaime Navigant Consulting Boulder, Colorado NREL Technical Monitor: Paul Schwabe Prepared under Subcontract No. LGJ-0-40242-01 Subcontract Report

232

"1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "1. Moss Landing Power Plant","Gas","Dynegy -Moss Landing LLC",2529 "2. Diablo Canyon","Nuclear","Pacific Gas & Electric Co",2240 "3. San Onofre","Nuclear","Southern California Edison Co",2150 "4. AES Alamitos LLC","Gas","AES Alamitos LLC",1997 "5. Castaic","Pumped Storage","Los Angeles City of",1620 "6. Haynes","Gas","Los Angeles City of",1524 "7. Ormond Beach","Gas","RRI Energy Ormond Bch LLC",1516 "8. Pittsburg Power","Gas","Mirant Delta LLC",1311 "9. AES Redondo Beach LLC","Gas","AES Redondo Beach LLC",1310

233

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

234

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

235

Geothermal Resources and Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

236

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

237

E-Print Network 3.0 - altheim geothermal plant Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facility, and biofuel plants. Geothermal energy could be used for electricity generation, district heating... Combining geothermal energy capture with geologic carbon dioxide ......

238

Jules Verne or Joint Venture? Investigation of a Novel Concept for Deep Geothermal Energy Extraction.  

E-Print Network [OSTI]

?? Geothermal energy is an energy source with potential to supply mankind with both heat and electricity in nearly unlimited amounts. Despite this potential geothermal (more)

Wachtmeister, Henrik

2012-01-01T23:59:59.000Z

239

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

Geothermal Resource Exploration And Definition Project Geothermal Resource Exploration And Definition Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Project Details Activities (23) Areas (8) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) project is a cooperative DOEhdustry project to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to aid in the development of geographically diverse geothermal resources and increase electrical power generation from geothermal resources in the continental United States. The project was initiated in April 2000 with a solicitation for industry participation in the project, and this solicitation resulted in seven successful awards in

240

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal developers remain optimistic | Department of Energy  

Office of Environmental Management (EM)

"As it takes relatively longer to develop geothermal power capacity compared to wind or solar installations, many projects in development today won't generate electricity until...

242

NREL: Energy Analysis - Geothermal Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by...

243

Southwest Alaska Regional Geothermal Energy Project  

Broader source: Energy.gov (indexed) [DOE]

Project Donna Vukich Gary Friedmann Naknek Electric Association Engineered Geothermal Systems Demonstration Projects May 19, 2010 This presentation does not contain any...

244

Enhanced Geothermal Systems Webinar | Department of Energy  

Energy Savers [EERE]

Electric Cooperative Associate, Western Area Power Administration, and U.S. Department of Energy Geothermal Technologies Office. The Webinar covered topics including federal...

245

Geothermal Brief: Market and Policy Impacts Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal...

246

Technical Demonstration and Economic Validation of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic Validation of...

247

Production engineering in geothermal technology: A review  

Science Journals Connector (OSTI)

Geothermal energy is abundant and renewable, but only a very small fraction can currently be converted commercially to electricity and heating value with today's technology. In recent years, the installed geothermal capacity worldwide has more than doubled. The increase in the use of geothermal energy is the result of a multi-disciplinary effort. Highlighted are some production engineering advances that have played a significant part in making geothermal a competitive renewable energy resource.

Darrell L. Gallup

2009-01-01T23:59:59.000Z

248

Cuttings Analysis At International Geothermal Area, Philippines (Laney,  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area Cuttings Analysis At International Geothermal Area Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of

249

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... The Geysers . Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

250

Geothermal News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

News News Geothermal News RSS April 12, 2013 Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. September 8, 2011 Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and

251

Davenport Power LLC | Open Energy Information  

Open Energy Info (EERE)

Davenport Power LLC Davenport Power LLC Jump to: navigation, search Name Davenport Power, LLC Address Newberry Geothermal Project c/o Davenport Newberry 225 NW Franklin Ave., Suite 1 Place Bend, Oregon Zip 97701 Sector Geothermal energy Product String representation "Davenport Power ... term contracts." is too long. Year founded 1997 Phone number (541) 323-1190 Website http://www.newberrygeothermal. Coordinates 42.75294°, -73.068531° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.75294,"lon":-73.068531,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Print PDF Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal energy. It is possible for a resource to be technically capable of both electricity production and heating purposes, but the basic classifications

253

Geothermal pipeline  

SciTech Connect (OSTI)

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

254

Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado  

SciTech Connect (OSTI)

Geothermal Geodatabase for Rico Hot Springs Area and Lemon Hot Springs, Dolores and San Miguel Counties, Colorado By Richard Rick Zehner Geothermal Development Associates Reno Nevada USA For Flint Geothermal LLC, Denver Colorado Part of DOE Grant EE0002828 2013 This is an ESRI geodatabase version 10, together with an ESRI MXD file version 10.2 Data is in UTM Zone 13 NAD27 projection North boundary: approximately 4,215,000 South boundary: approximately 4,160,000 West boundary: approximately 216,000 East boundary: approximately 245,000 This geodatabase was built to cover several geothermal targets developed by Flint Geothermal in 2012 during a search for high-temperature systems that could be exploited for electric power development. Several of the thermal springs have geochemistry and geothermometry values indicative of high-temperature systems. In addition, the explorationists discovered a very young Climax-style molybdenum porphyry system northeast of Rico, and drilling intersected thermal waters at depth. The datasets in the geodatabase are a mixture of public domain data as well as data collected by Flint Geothermal, now being made public. It is assumed that the user has internet access, for the mxd file accesses ESRIs GIS servers. Datasets include: 1. Structural data collected by Flint Geothermal 2. Point information 3. Mines and prospects from the USGS MRDS dataset 4. Results of reconnaissance shallow (2 meter) temperature surveys 5. Air photo lineaments 6. Areas covered by travertine 7. Groundwater geochemistry 8. Land ownership in the Rico area 9. Georeferenced geologic map of the Rico Quadrangle, by Pratt et al. 10. Various 1:24,000 scale topographic maps

Richard Zehner

2012-11-01T23:59:59.000Z

255

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC- WEA-2010-05  

Broader source: Energy.gov [DOE]

Issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site

256

Preliminary Notice of Violation, Los Alamos National Security, LLC- WEA-2010-04  

Broader source: Energy.gov [DOE]

Issued to Los Alamos National Security, LLC related to the Electrical Shock that occurred at Technical Area 16 at the Los Alamos National Laboratory

257

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Water Use Geothermal/Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

258

Preliminary Notice of Violation, Los Alamos National Security, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Security, LLC Los Alamos National Security, LLC - WEA-2010-04 Preliminary Notice of Violation, Los Alamos National Security, LLC - WEA-2010-04 October 18, 2010 Preliminary Notice of Violation issued to Los Alamos National Security, LLC related to the Electrical Shock that occurred at Technical Area 16 at the Los Alamos National Laboratory This letter refers to a U.S. Department of Energy (DOE) investigation into the facts and circumstances surrounding the electrical shock event that occurred in building 300 at Technical Area 16 (TA-16) at the Los Alamos National Laboratory (LANL) on March 20, 2009. The results of the investigation were provided to Los Alamos National Security, LLC (LANS) in an Investigation Report dated March 2, 2010. An enforcement conference was held on March 23, 2010, with you and members of your staff to discuss the

259

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

260

Energy 101: Geothermal Energy  

ScienceCinema (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-06-23T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy 101: Geothermal Energy  

SciTech Connect (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-05-27T23:59:59.000Z

262

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation  

SciTech Connect (OSTI)

Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

2014-12-30T23:59:59.000Z

263

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

264

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

265

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

266

Stanford Geothermal Workshop- Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

267

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

268

Geothermal Technologies FY14 Budget At-a-Glance  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Geothermal Technologies accelerates the development technologies in pre-commercial stages of development. and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce both the risks and costs of bringing geothermal power online. As a key component of our clean energy mix, geothermal is a renewable energy that generates power around the clock. What We Do The EERE geothermal technologies portfolio consists of a three-pronged investment approach to facilitate the growth of installed electrical capacity:  Research and Development invests in innovative technologies and techniques to improve the process of identifying, accessing, and developing geothermal

269

NREL: Geothermal Technologies - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Webmaster Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

270

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

271

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

272

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

273

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

274

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

275

International Data Exchange for Geothermal Energy Power Production  

Science Journals Connector (OSTI)

During the past five years great strides have been made in the development of geothermal energy resources for electrical power production. However, ... seen an enormous growth in publications dealing with geothermal

Sidney L. Phillips

1979-01-01T23:59:59.000Z

276

Geothermal energy systems: research perspective for domestic energy provision  

Science Journals Connector (OSTI)

This article is focused on research demand for the environmental and economic sustainable utilization of geothermal reservoirs for base load supply of heat and electricity by Enhanced Geothermal Sy...

Ernst Huenges; Thomas Kohl; Olaf Kolditz; Judith Bremer

2013-12-01T23:59:59.000Z

277

Fortistar LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: New York, New York Zip: 10650 Product: Fortistar is a privately owned US power generation company largely based on landfill gas. References: Fortistar LLC1 This...

278

Draft Environmental Assessment Ormat Nevada Northern Nevada Geothermal Power Plant Projects  

Broader source: Energy.gov (indexed) [DOE]

9 9 FINAL ENVIRONMENTAL ASSESSMENT Ormat Nevada Northern Nevada Geothermal Power Plant Projects Department of Energy Loan Guarantee for ORMAT LLC's Tuscarora Geothermal Power Plant, Elko County, Nevada; Jersey Valley Geothermal Project, Pershing County, Nevada; and McGinness Hills Geothermal Project, Lander County, Nevada U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 August 2011 NORTHERN NEVADA GEOTHERMAL POWER PLANT PROJECTS - ORMAT NEVADA AUGUST 2011 FINAL ENVIRONMENTAL ASSESSMENT i TABLE OF CONTENTS 1.0 INTRODUCTION.................................................................................................................1 1.1 SUMMARY AND LOCATION OF PROPOSED ACTION .....................................................1

279

Geothermal Energy; (USA)  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

280

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Virginia Geothermal Resources Conservation Act (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) Virginia Geothermal Resources Conservation Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Buying & Making Electricity Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia Department of Mines, Minerals, and Energy It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to the resource, protect existing high quality state waters and safeguard potable waters from pollution, safeguard the natural environment, and promote geothermal and

282

Geothermal News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

283

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Communitys supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

284

Forecast of geothermal drilling activity  

SciTech Connect (OSTI)

The numbers of each type of geothermal well expected to be drilled in the United States for each 5-year period to 2000 AD are specified. Forecasts of the growth of geothermally supplied electric power and direct heat uses are presented. The different types of geothermal wells needed to support the forecasted capacity are quantified, including differentiation of the number of wells to be drilled at each major geothermal resource for electric power production. The rate of growth of electric capacity at geothermal resource areas is expected to be 15 to 25% per year (after an initial critical size is reached) until natural or economic limits are approached. Five resource areas in the United States should grow to significant capacity by the end of the century (The Geysers; Imperial Valley; Valles Caldera, NM; Roosevelt Hot Springs, UT; and northern Nevada). About 3800 geothermal wells are expected to be drilled in support of all electric power projects in the United States between 1981 and 2000 AD. Half of the wells are expected to be drilled in the Imperial Valley. The Geysers area is expected to retain most of the drilling activity for the next 5 years. By the 1990's, the Imperial Valley is expected to contain most of the drilling activity.

Brown, G.L.; Mansure, A.J.

1981-10-01T23:59:59.000Z

285

ORNI 9, LLC, AND ORMAT NEVADA INC. APPLICATIONS FOR PERMIT TO DRILL  

Broader source: Energy.gov (indexed) [DOE]

ORNI 9, LLC, AND ORMAT NEVADA INC. ORNI 9, LLC, AND ORMAT NEVADA INC. APPLICATIONS FOR PERMIT TO DRILL GEOTHERMAL OBSERVATION WELLS 82-14 AND 55-14 AND GEOTHERMAL PRODUCTION WELL 15-12 AND POSSIBLE FUTURE GEOTHERMAL WELLS LOCATED IN SECTIONS 12, and 14, T22N, R26E, MDB&M BLM Geothermal Leases NVN-065558 and NVN-065561 BLM Environmental Assessment No. NV-020-05-07 CONDITIONS OF APPROVAL 1. This approval is contingent upon the lessee/operator being in receipt of and in compliance with all appropriate federal, state, and local permits. 2. When cultural or paleontological resources, including but not limited to historic ruins, prehistoric artifacts and fossils, are discovered in the performance of the permit, the resources shall be left intact and immediately brought to the attention of the BLM authorized officer.

286

Federal Energy Management Program: Geothermal Resources and Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

287

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

288

Economic Impact Analysis for EGS Geothermal Project | Open Energy  

Open Energy Info (EERE)

Impact Analysis for EGS Geothermal Project Impact Analysis for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Economic Impact Analysis for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This proposed study will involve studying the impacts associated with jobs, energy and environment (as a result of investments in geothermal industry and specific EGS technologies) through the creation of a Geothermal Economic Calculator tool (GEC). The study will cover Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. The GEC created will be capable of helping end users (public and the industry) perform region specific economic impact analyses using a web platform that will be hosted by EGI for different geothermal technologies under EGS that will be used for electric power production.

289

Geothermal Resources (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) Geothermal Resources (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Nebraska Program Type Siting and Permitting Provider Conservation and Survey Division School of Natural Resources This section establishes the support of the state for the efficient development of Nebraska's geothermal resources, as well as permitting

290

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

291

Geothermal Mill Redevelopment Project in Massachusetts  

SciTech Connect (OSTI)

Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (DOE) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

Vale, A.Q.

2009-03-17T23:59:59.000Z

292

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

293

Geothermal energy for American Samoa  

SciTech Connect (OSTI)

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

Not Available

1980-03-01T23:59:59.000Z

294

Ovonic Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC |  

Open Energy Info (EERE)

Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Hydrogen Systems LLC formerly Texaco Ovonic Hydrogen Systems LLC Jump to: navigation, search Name Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) Place Rochester Hills, Michigan Zip 48309 Sector Hydro, Hydrogen, Vehicles Product It commercializes hydrogen storage technology based on metal-hydrides for portable and stationary power systems as well as fuel-cell vehicles. References Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ovonic Hydrogen Systems LLC (formerly Texaco Ovonic Hydrogen Systems LLC) is a company located in Rochester Hills, Michigan . References

295

Geothermal: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

296

Geothermal Project Data and Personnel Resumes  

SciTech Connect (OSTI)

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

297

Coatings in geothermal energy production  

Science Journals Connector (OSTI)

Geothermal energy has a forecasted potential of 25000 MW years of electrical and 16 000-67 000 MW years of thermal energy capacity by the year 2000. Current estimates indicate that lower temperature resources exist in at least 39 states. The development of these resources requires a wide range of cost-effective materials. The purpose of this paper is to review geothermal conditions and the present use of coatings in geothermal production, and to assess the potential for their future applications. The early identification of such materials needs is an essential step for planning the total requirements for well drilling and facilities construction in all sectors of the energy program.

Robert R. Reeber

1980-01-01T23:59:59.000Z

298

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

299

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

300

Solar Panels Plus LLC | Open Energy Information  

Open Energy Info (EERE)

Panels Plus LLC Jump to: navigation, search Name: Solar Panels Plus LLC Place: Chesapeake, Virginia Zip: 23320 Sector: Solar Product: Solar Panels Plus LLC distributes solar energy...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Enforcement Letter, Battelle Energy Alliance, LLC - September...  

Broader source: Energy.gov (indexed) [DOE]

Energy Alliance, LLC - September 14, 2009 Enforcement Letter, Battelle Energy Alliance, LLC - September 14, 2009 September 14, 2009 Issued to Battelle Energy Alliance, LLC related...

302

Current Group LLC | Open Energy Information  

Open Energy Info (EERE)

Group LLC Group LLC Jump to: navigation, search Name Current Group, LLC Place Germantown, Maryland Zip 20874 Sector Services Product Current provides electric utilities with smart grid technologies combining two-way high-speed communications, 24/7 monitoring and enterprise analysis software and related services. Coordinates 43.220985°, -88.118584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.220985,"lon":-88.118584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Juice Technologies LLC | Open Energy Information  

Open Energy Info (EERE)

Juice Technologies LLC Juice Technologies LLC Jump to: navigation, search Name Juice Technologies LLC Place Columbus, Ohio Zip 43212 Sector Vehicles Product Ohio-based provider of products and technologies in electric plug in hybrid vehicles. Coordinates 39.96196°, -83.002984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.96196,"lon":-83.002984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Forbes Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Forbes Energy LLC Forbes Energy LLC Jump to: navigation, search Name Forbes Energy, LLC. Place Newport, Rhode Island Zip 2840 Sector Renewable Energy Product Rhode Island-based firm that has developed a model for producing renewable, sustainable fuel and electrical energy. Coordinates 48.182545°, -117.043989° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.182545,"lon":-117.043989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Davenport Resources LLC | Open Energy Information  

Open Energy Info (EERE)

Davenport Resources LLC Davenport Resources LLC Jump to: navigation, search Name Davenport Resources LLC Place Greenwich, Connecticut Zip CT 06830 Product Davenport Resources is a private equity firm to operate private funds and support companies with progressive technology and energy. It focuses on sustainable electric power projects. Coordinates 38.433183°, -111.922498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.433183,"lon":-111.922498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Lite Trough LLC | Open Energy Information  

Open Energy Info (EERE)

Lite Trough LLC Lite Trough LLC Jump to: navigation, search Name Lite Trough LLC Place Milford, Connecticut Zip 6460 Sector Solar Product Developing a parabolic trough system for Solar Thermal Electricity Generation (STEG). Coordinates 38.026545°, -77.371139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.026545,"lon":-77.371139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Ohio Green Wind, LLC | Open Energy Information  

Open Energy Info (EERE)

Wind, LLC Wind, LLC Jump to: navigation, search Name Ohio Green Wind, LLC Address 5126 S County Road 25A Place Tipp City, Ohio Zip 45371 Sector Efficiency, Geothermal energy, Hydro, Renewable Energy, Solar, Wind energy Product Consulting; Engineering/architectural/design; Manufacturing; Research and development;Retail product sales and distribution Phone number 440-357-7000 Website http://www.nacl.com Coordinates 39.964851°, -84.200008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.964851,"lon":-84.200008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Icon Solar Power, LLC | Open Energy Information  

Open Energy Info (EERE)

Icon Solar Power, LLC Icon Solar Power, LLC Jump to: navigation, search Name Icon Solar Power, LLC Address 862 East Crescentville Rd. Place Cincinnati, Ohio Zip 45246 Sector Geothermal energy, Solar Product String representation "Agriculture;Bus ... g and education" is too long. Phone number 513-396-7777 Website http://www.iconsolarpower.com Coordinates 39.3016177°, -84.4536249° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3016177,"lon":-84.4536249,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Bottomline Energy Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Bottomline Energy Solutions LLC Bottomline Energy Solutions LLC Jump to: navigation, search Name Bottomline Energy Solutions LLC Address 2229 Apsley Blvd Place Toledo, Ohio Zip 43617 Sector Buildings, Efficiency, Geothermal energy, Solar, Wind energy Product Consulting;Energy audits/weatherization; Energy provider: wholesale; Installation;Investment/finances; Retail product sales and distribution;Trainining and education Phone number 866-950-2523 Website http://www.bottomlinees.com Coordinates 41.660806°, -83.710515° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.660806,"lon":-83.710515,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Stoneacre Energy Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

Stoneacre Energy Solutions LLC Stoneacre Energy Solutions LLC Jump to: navigation, search Name Stoneacre Energy Solutions LLC Address 833 S Raab Rd Place Swanton, Ohio Zip 43558 Sector Geothermal energy, Wind energy Product Agriculture; Consulting;Energy audits/weatherization; Installation; Maintenance and repair Phone number 419-467-4000 Website http://www.stoneacreenergysolu Coordinates 41.62326°, -83.812465° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.62326,"lon":-83.812465,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Direct use of the geothermal energy at Los Azufres geothermal field, Mexico  

SciTech Connect (OSTI)

The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico, CFE has designed a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct use of geothermal energy is an attractive feasible and economical project. The object of this paper is to present the CFE experiences in different pilot projects applied to direct uses of geothermal energy.

Sanchez-Velasco, E.; Casimiro-Espinoza, E.

1995-12-31T23:59:59.000Z

312

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

a n d a r d i z e d steam turbine-driven electric generatingLocated Geothermal Steam Turbine Driven Electric Genera- t ia 3-We noncondensing steam turbine at Leyte with assis-

Bresee, J. C.

2011-01-01T23:59:59.000Z

313

New Jersey Solar Power LLC NJ Solar Power | Open Energy Information  

Open Energy Info (EERE)

Solar Power LLC NJ Solar Power Solar Power LLC NJ Solar Power Jump to: navigation, search Name New Jersey Solar Power LLC (NJ Solar Power) Place New Jersey Sector Solar Product A photovoltaic engineering firm which offers and installs a complete line of solar electric products for residential, commercial, and institutional customers. References New Jersey Solar Power LLC (NJ Solar Power)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. New Jersey Solar Power LLC (NJ Solar Power) is a company located in New Jersey . References ↑ "New Jersey Solar Power LLC (NJ Solar Power)" Retrieved from "http://en.openei.org/w/index.php?title=New_Jersey_Solar_Power_LLC_NJ_Solar_Power&oldid=349171

314

Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy  

Broader source: Energy.gov [DOE]

Americas First Geothermally Heated University Campus Adds 3.5 Megawatts of Clean Electricity Generation

315

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

316

Colorado State Capitol Building Geothermal Program Geothermal Project |  

Open Energy Info (EERE)

State Capitol Building Geothermal Program Geothermal Project State Capitol Building Geothermal Program Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Colorado State Capitol Building Geothermal Program Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This building is approximately 100 years old, and much of the building is heated with expensive district steam and lacks sufficient central cooling. The requested funding pertains to Topic Area 1 Technology Demonstration Projects. Funding would be used for Phase I - Feasibility Study and Engineering Design, Phase II - Installation and Commissioning of Equipment, and Phase III - Operation, Data Collection, and Marketing. Geothermal energy provided by an open-loop ground source heat pump system and upgrades to the building HVAC systems will reduce consumption of electricity and utility steam created with natural gas. Additionally, comfort, operations and maintenance, and air quality will be improved as a result. It is anticipated that the open loop GHP system will require a 500-650 gpm water flow rate.

317

Geothermal energy research and development  

Science Journals Connector (OSTI)

Thermal springs have been used for bathing, washing and cooking for thousands of years in many countries. At the beginning of this century, experiments started with piping the hot water to houses for space heating and with using geothermal steam for the production of electricity. Geothermal is a proven energy resource that uses mostly conventional technology. Commercial production on the scale of hundreds of MW has been undertaken for over three decades both for electricity generation and direct utilization. Today, electricity is generated from geothermal energy in 21 countries. The installed capacity is nearly 6300 MW-electric. Four developing countries (El Salvador 18%, Kenya 11%, Nicaragua 18% and Philippines 21%) produce over 10% of their total electricity from geothermal. Electric generation cost is commonly around 4 U.S.cents/kWh. Direct utilization of geothermal water (space heating, horticulture, fish farming, industry and/or bathing) is known in about 40 countries, thereof 14 countries have each an installed capacity of over 100 MW-thermal. The overall installed capacity for direct utilization is about 11,400 MW-thermal. The production cost/kWh for direct utilization is highly variable, but commonly under 2 U.S.cents/kWht. A worldwide survey shows that the total investments in geothermal energy between 1973 and 1992 amounted to approximately 22 billion U.S.$. During the two decades, 30 countries invested each over 20 million U.S.$, 12 countries over 200 million U.S.$, and 5 countries over 1 billion U.S.$. During the first decade, 19731982, public funding amounted to 4.6 billion U.S.$ and private funding to 3 billion U.S.$. During the second decade, 19831992, public funding amounted to 6.6 billion U.S.$ and private funding to 7.7 billion U.S.$. Geothermal development has in the past been much affected by the development of prices of the competing fuels, especially oil and natural gas. Assuming a continuation of the present oil prices, the annual growth rate in geothermal utilization is likely to be some 4% for electricity generation and 10% for direct utilization. This would imply installed capacities of 8900 \\{MWe\\} and 30,000 \\{MWt\\} in the year 2000. The total investment cost of geothermal in the world during the next decade can be expected to be some 1520 billion U.S.$. Properly implemented, geothermal energy is a sustainable resource and benign to the environment. The emission of greenhouse gases is minimal compared to fossil fuels. The removal of hydrogen sulphide from high temperature steam and the reinjection of spent geothermal fluids into the ground make the potential negative environmental effects negligible. The relative economic viability of geothermal energy will improve significantly if and when a pollution tax is endorsed on power production using fossil fuels. Geothermal exploration and exploitation requires skills from many scientific and engineering disciplines. International geothermal training centres are operated in Iceland, Italy, Japan, Mexico, and New Zealand. The International Geothermal Association was founded in 1988 and has over 2000 members in all parts of the world.

Ingvar B. Fridleifsson; Derek H. Freeston

1994-01-01T23:59:59.000Z

318

Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND  

Broader source: Energy.gov (indexed) [DOE]

Exelon Generation Company, LLC Exelon Generation Company, LLC Order No. EA-249 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On August 20, 2001, Exelon Generation Company, LLC (Exelon) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada as a power marketer. Exelon proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export this energy on its own behalf to Canada. The energy to be exported would be delivered to Canada over the international electric transmission facilities owned and operated by the following:

319

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

320

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

322

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

323

Geothermal power development in Hawaii. Volume I. Review and analysis  

SciTech Connect (OSTI)

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

324

NREL: Learning - Student Resources on Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy The following resources can provide you with information on geothermal energy - heat from the earth. Geothermal direct use - Producing heat directly from hot water within the earth. Geothermal electricity production - Generating electricity from the earth's heat. Geothermal heat pumps - Using the shallow ground to heat and cool buildings. Printable Version Learning About Renewable Energy Home Renewable Energy Basics Using Renewable Energy Energy Delivery & Storage Basics Advanced Vehicles & Fuels Basics Student Resources Biomass Geothermal Direct Use Electricity Production Heat Pumps Hydrogen Solar Wind Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback.

325

California Geothermal Power Plant to Help Meet High Lithium Demand  

Broader source: Energy.gov [DOE]

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

326

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europes future energy requirements is much sm...

1977-01-01T23:59:59.000Z

327

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

331

Geothermal initiatives in Central America  

SciTech Connect (OSTI)

The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

1986-01-01T23:59:59.000Z

332

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

333

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

334

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

335

Electrical exploration and geothermal gradient studies near Columbus, New Mexico. Final report, January 1, 1980-March 31, 1981  

SciTech Connect (OSTI)

Two papers are included along with temperature, heat flow, and lithology data for 17 shallow test holes; temperature and lithology data for one deep test hole, and electrical resistivity data. Separate abstracts were prepared for the two papers. (MHR)

Swanberg, C.A.; Morgan, P.; Young, C.T.

1981-09-01T23:59:59.000Z

336

Record geothermal well drilled in hot granite  

Science Journals Connector (OSTI)

Record geothermal well drilled in hot granite ... Researchers there have completed the second of two of the deepest and hottest geothermal wells ever drilled. ... It may become the energy source for a small electrical generating power station serving nearby communities in New Mexico. ...

1981-09-07T23:59:59.000Z

337

Vertical Electrical Sounding Configurations At Mt Princeton Hot...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al.,...

338

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

339

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

340

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Enforcement Letter, CH2M-Washington Group Idaho LLC , - May 20, 2009 |  

Broader source: Energy.gov (indexed) [DOE]

M-Washington Group Idaho LLC , - May 20, M-Washington Group Idaho LLC , - May 20, 2009 Enforcement Letter, CH2M-Washington Group Idaho LLC , - May 20, 2009 May 20, 2009 Enforcement Letter issued to CH2M-Washington Group Idaho, LLC, for Electrical Safety Deficiencies at the Idaho National Laboratory In July 2008, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's, Office of Enforcement was made aware of numerous, longstanding electrical safety deficiencies associated with electrical equipment located on the east side of the Idaho Nuclear Technology and Engineering Center (INTEC). The Office of Enforcement is also aware that shortly after electrical safety issues with this equipment were identified by a CH2M-Washington Group Idaho, LLC (CWI) worker in May 2007, CWI completed an Engineering Design File

342

Climate Change Update: Baseload Geothermal is One of the Lowest...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of electricity, geothermal energy has a broad range of other applications including district heating, industrial processes, and direct space heating. Not only are these...

343

Analysis of Low-Temperature Utilization of Geothermal Resources...  

Open Energy Info (EERE)

water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to...

344

2009 Geothermal, Co-Production, and GSHP Supply Curves  

Broader source: Energy.gov (indexed) [DOE]

curves estimate present and future costs of the geothermal resource - Used in market penetration models to predict future electricity landscape * Supply curve input used in...

345

California: Geothermal Plant to Help Meet High Lithium Demand...  

Energy Savers [EERE]

technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to power 300,000-600,000 electric vehicles per...

346

Geothermal Exploration Policy Mechanisms: Lessons for the United...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publications. KfW (KfW Entwicklungsbank). (2011). "More Environmentally-Friendly Electricity From the Ground. East Africa Taps its Geothermal Potential." Press Release,...

347

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Financing Relatively small size of the Industry + perceived risk project financing challenges Grid Integration Solutions to supply geothermal electricity to the grid...

348

geothermal | OpenEI Community  

Open Energy Info (EERE)

geothermal geothermal Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

349

List of Geothermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Geothermal Incentives Geothermal Incentives Jump to: navigation, search The following contains the list of 1895 Geothermal Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1895) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment

350

Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii  

SciTech Connect (OSTI)

The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

Chapman, G.A.; Buevens, W.R.

1982-06-01T23:59:59.000Z

351

Geothermal energy technology and current status: an overview  

Science Journals Connector (OSTI)

Geothermal energy is the energy contained as heat in the Earths interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earths heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment. Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 \\{MWe\\} (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 1017%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 210 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources. The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 \\{MWt\\} (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 19731992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.

Enrico Barbier

2002-01-01T23:59:59.000Z

352

Outstanding Issues For New Geothermal Resource Assessments | Open Energy  

Open Energy Info (EERE)

Outstanding Issues For New Geothermal Resource Assessments Outstanding Issues For New Geothermal Resource Assessments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Outstanding Issues For New Geothermal Resource Assessments Details Activities (1) Areas (1) Regions (0) Abstract: A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS)

353

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Water Use Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

354

Geothermal Resource Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

355

NREL: Geothermal Technologies - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) assembled a panel of geothermal experts to identify the obstacles to geothermal energy growth and more. May 9, 2011 Department of Energy to Issue Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S. In early June 2011, the U.S. Department of Energy's Geothermal Technologies

356

EA-220-C NRG Power Marketing LLC  

Broader source: Energy.gov (indexed) [DOE]

94 Federal Register 94 Federal Register / Vol. 75, No. 234 / Tuesday, December 7, 2010 / Notices Future Enhancements To The ERIN System For Military And Overseas Voters: * Give the military and overseas voters the ability to mark their ballots online before printing and returning the ballots by mail. * Provide electronic delivery of state and local ballots, if authorized by state law. * Make the federal ballots available to the voters 45 days before the election for subsequent federal elections. [FR Doc. 2010-30569 Filed 12-6-10; 8:45 am] BILLING CODE 6820-KF-C DEPARTMENT OF ENERGY [OE Docket No. EA-220-C] Application To Export Electric Energy; NRG Power Marketing LLC AGENCY: Office of Electricity Delivery and Energy Reliability, DOE. ACTION: Notice of application. SUMMARY: NRG Power Marketing LLC

357

Handbook of Best Practices for Geothermal Drilling  

Broader source: Energy.gov [DOE]

This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

358

Joint Maintenance Status Report of Potomac Electric Power Company...  

Broader source: Energy.gov (indexed) [DOE]

Joint Maintenance Status Report of Potomac Electric Power Company amd PJM Interconnection, LLC Joint Maintenance Status Report of Potomac Electric Power Company amd PJM...

359

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

360

Application to Export Electric Energy OE Docket No. EA-401 Lonestar...  

Broader source: Energy.gov (indexed) [DOE]

LLC Application to Export Electric Energy OE Docket No. EA-401 Lonestar Power Marketing LLC Application from Lonestar to export electric energy to Mexico. EA-401 Lonestar (MX).pdf...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Application to Export Electric Energy OE Docket No. EA-348-B...  

Broader source: Energy.gov (indexed) [DOE]

LLC Application to Export Electric Energy OE Docket No. EA-348-B NextEra Energy Power Marketing, LLC Application from NextEra Energy to export electric energy to Canada. EA-348-B...

362

Application to Export Electric Energy OE Docket No. EA-384 NRG...  

Broader source: Energy.gov (indexed) [DOE]

LLC Application to Export Electric Energy OE Docket No. EA-384 NRG Power Marketing LLC Application from NRG Power Mktg to export electric energy to Mexico. EA-384 NRG Power Mktg...

363

Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration  

Science Journals Connector (OSTI)

Magnetic susceptibility and petrographic studies of drilled rock cuttings from two geothermal wells (Az-26 and Az-49) of the important electricity-generating geothermal system, Los Azufres, Mexico, were carried o...

Kailasa Pandarinath; Rajasekhariah Shankar

2014-07-01T23:59:59.000Z

364

Nautilus Solar Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Solar Energy LLC Solar Energy LLC Jump to: navigation, search Name Nautilus Solar Energy, LLC Place Chatham, New Jersey Zip 7928 Sector Solar Product Nautilus Energy LLC (“NE”) is an energy investment and project development firm that provides finance, constructs, owns and operates photovoltaic (PV) electric generating systems and solar power projects with long-term power agreements (PPAs). Coordinates 36.825445°, -79.398279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.825445,"lon":-79.398279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Zilkha Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Zilkha Biomass Energy LLC Zilkha Biomass Energy LLC Jump to: navigation, search Logo: Zilkha Biomass Energy LLC Name Zilkha Biomass Energy LLC Address 1001 McKinney Place Houston, Texas Zip 77002 Sector Biomass Product Development and construction of patented biomass fueled system for co-generation of heat and electricity Website http://www.zilkha.com/ Coordinates 29.757092°, -95.363961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.757092,"lon":-95.363961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

367

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

368

Investigation of deep permeable strata in the permian basin for future geothermal energy reserves  

SciTech Connect (OSTI)

This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

Erdlac, Richard J., Jr.; Swift, Douglas B.

1999-09-23T23:59:59.000Z

369

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

370

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

371

Alliance Laundry Systems LLC  

Broader source: Energy.gov (indexed) [DOE]

Alliance Laundry Systems LLC Alliance Laundry Systems LLC Shepard Street, P.O. Box 990 Ripon, WI 54971-0990 Tel 920.748.3121 Fax 920.748.4429 www.comlaundry.com Via E-Mail - GC_comments@hq.doe.gov December 7, 2010 Mr. Scott Blake Harris General Counsel U.S. Department of Energy 1000 Independence Ave., S.W. Washington, DC 20585 Subject: Your Request of 11-30-2010 Regarding Clothes Washer Test Procedure Waivers Dear Mr. Harris: Thank you for asking for our comments. Alliance Laundry Systems LLC (ALS) is knowledgeable of the multiple petitions for waiver to the Department's Clothes Washer Test Procedure, regarding the need for an expanded "test load size" table to account for clothes container capacities beyond the existing test procedure Table 5.1 maximum capacity of 3.5 cubic feet. While we do not manufacture clothes washers

372

CE North America, LLC  

Broader source: Energy.gov (indexed) [DOE]

CE North America, LLC CE North America, LLC (freezers) BEFORE THE. U.S. DEPAR'tMENT OJT ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2013-SE-1429 COMPROMISE AGREEMENT The U.S. Department of Energy ("DOE 1 » Office of the General Counsel, Office of Enforcement, initiated this action against CE North America, LLC ("CE" or "Respondent") pursuant to 10 C.F~9.122 by Notice of Proposed Civil Penalty. DOE alleged thatllll freezer basic model - , which Respondent imported and distributed in commerce in the United States as models CE64731 and PS72731, failed to meet the applicable standard for maxinrnm energy use. See 10 C.F.R. § 430.32(a). Respondent, on behalf of itself and any parent, subsidiary, division or other related entity, and DOE, by their authorized representatives, hereby enter into this

373

Water Use in the Development and Operations of Geothermal Power Plants  

Broader source: Energy.gov [DOE]

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

374

Water Use in the Development and Operation of Geothermal Power Plants  

Broader source: Energy.gov [DOE]

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

375

Core Analysis At International Geothermal Area, Indonesia (Laney, 2005) |  

Open Energy Info (EERE)

International Geothermal Area International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of Caithness Energy) at Karaha-Telaga Bodas, Indonesia and with Philippine

376

Core Analysis At International Geothermal Area, Philippines (Laney, 2005) |  

Open Energy Info (EERE)

Core Analysis At International Geothermal Area Core Analysis At International Geothermal Area Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique Core Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of Caithness Energy) at Karaha-Telaga Bodas, Indonesia and with Philippine

377

Cuttings Analysis At International Geothermal Area, Indonesia (Laney, 2005)  

Open Energy Info (EERE)

International Geothermal Area International Geothermal Area Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Improving Exploration Models of Andesite-Hosted Geothermal Systems, Allis, Browne, Bruton, Christensen, Hulen, Lutz, Mindenhall, Nemcok, Norman, Powell and Stimac. The approach we are using is to characterize the petrology, geochemistry and fractures in core and cuttings samples and then integrate these data with measured downhole temperatures and pressures and with the compositions of the reservoir fluids. Our investigations represent cooperative efforts with the Karaha-Bodas Co. LLC (a subsidiary of Caithness Energy) at Karaha-Telaga Bodas, Indonesia and with Philippine

378

NREL: Geothermal Technologies Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Geothermal energy taps the heat from beneath the earth's surface to generate electricity. Existing reservoirs of steam or hot water are brought to the surface to power electrical generators throughout the Western United States. In the future, the intense heat deep below the surface will accessed for electricity generation by the advanced engineering of reservoirs all across the country. In addition to electricity production, lower temperature geothermal resources are used for direct heating applications and the constant temperature that exists at shallow depths can be used as an energy-efficient method of heating and cooling, called ground-source heat

379

Magwind LLC | Open Energy Information  

Open Energy Info (EERE)

Magwind LLC Magwind LLC Jump to: navigation, search Name Magwind LLC Place Texas Sector Wind energy Product Inventor of the Mag-Wind vertical axis wind turbine (VAWT) for building installations. The turbines are manufactured under contract at the facilities of Vector Systems, Inc. References Magwind LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Magwind LLC is a company located in Texas . References ↑ "Magwind LLC" Retrieved from "http://en.openei.org/w/index.php?title=Magwind_LLC&oldid=348589" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

380

Geothermal Brief: Market and Policy Impacts Update  

SciTech Connect (OSTI)

Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

Speer, B.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fundamentals of Geothermics  

Science Journals Connector (OSTI)

The expression geothermics of the Earth is understood to be restricted to the solid Earth and is usually shortened to geothermics. Hence, the field of geothermics starts as soon as the solid Earth has been e...

R. Haenel; L. Rybach; L. Stegena

1988-01-01T23:59:59.000Z

382

NREL: Geothermal Technologies - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 December 31, 2012 NREL Leads Wind Farm Modeling Research Researchers study the atmosphere surrounding large turbines to optimize performance. Archives Current News | 2011 | | 2010 | | 2009 | | 2008 Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

383

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Nero, A.V.

2010-01-01T23:59:59.000Z

384

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Nero, jA.V.

2010-01-01T23:59:59.000Z

385

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- Fuel

Rosen, L.C.

2010-01-01T23:59:59.000Z

386

RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUELHealth and Safety Impacts of Nuclear, Geothermal, and Fossil- FuelHealth and Safety Aspects of Pro- posed Nuclear, Geothermal, and Fossil-Fuel

Yen, W.W.S.

2010-01-01T23:59:59.000Z

387

Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan,  

Open Energy Info (EERE)

Morgan, Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Paul Morgan, Wendell Duffield, John Sass, Tracey Felger (2003) Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_San_Francisco_Volcanic_Field_Area_(Morgan,_Et_Al.,_2003)&oldid=510822" Category: Exploration Activities What links here

388

Wood and fruit drying in Los Azufres geothermal field, Mexico  

SciTech Connect (OSTI)

The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico CFE has built a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct-use of geothermal energy is an attractive feasible and economical possibility. The object of this paper is to present the CFE experiences in wood and fruit drying using geothermal energy.

Casimiro, E. [Residencia Los Azufres, Michoacan (Mexico); Pastrana, E. [Gerencia de Proyectos Geotermoelectricos, Michoacan (Mexico)

1996-12-31T23:59:59.000Z

389

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

390

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

391

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

392

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Broader source: Energy.gov (indexed) [DOE]

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

393

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

394

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

395

HDR geothermal energy  

Science Journals Connector (OSTI)

HDR geothermal energy, petrothermal geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

396

petrothermal geothermal energy  

Science Journals Connector (OSTI)

petrothermal geothermal energy, HDR geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

397

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

398

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

399

Calpine Geothermal Operations Recognized by State of California...  

Energy Savers [EERE]

producer of electricity from geothermal resources in the United States. Unlike wind or solar, this important resource is capable of delivering electricity 24 hours a day, 7 days a...

400

Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. |  

Broader source: Energy.gov (indexed) [DOE]

and Initial Comments of PJM Interconnection, and Initial Comments of PJM Interconnection, L.L.C. Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. On January 5, 2009, ITC Transmission filed with the Department of Energy a request to amend Presidential Permit PP-230-3, which authorizes ITC to own and operate specified electric transmission facilities at the Bunce Creek station that interconnect ITC with Hydro One Networks Inc electric transmission facilities at the Michigan-Ontario border. Motion to Intervene and Initial Comments of PJM Interconnection, L.L.C. More Documents & Publications Application for presidential permit OE Docket No. PP-230-4 International Transmission Company: Response of PJM Interconnection, L.L.C. to Answer of

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fulcrum Biofuels LLc  

Broader source: Energy.gov (indexed) [DOE]

- 1848 - 1848 Environmental Assessment DOE/EA - 1848 FINAL ENVIRONMENTAL ASSESSMENT FOR DEPARTMENT OF ENERGY LOAN GUARANTEE TO FULCRUM SIERRA BIOFUELS, LLC FOR A WASTE-TO-ETHANOL FACILITY IN MCCARRAN, STOREY COUNTY, NEVADA U.S. Department of Energy Loan Guarantee Program Office Washington, D.C. 20585 June 2011 Table of Contents Environmental Assessment DOE/EA - 1848 i

402

Green Star Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Star Energy LLC Star Energy LLC Place Houston, Texas Zip 77002 Product Houston-based producer of sugar cane processed ethanol, with additional electricity generation activities from agricultural waste. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Template:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

GeothermalRegion GeothermalRegion Jump to: navigation, search This is the GeothermalRegion template. To define a new Geothermal Region, please use the Geothermal Region form. Parameters Map - The map of the region. State - The state in which the resource area is located. Area - The estimated size of the area in which the resource area is located, in km². IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate. UndiscoveredHydrothermalPotential - The estimated undiscovered hydroelectric generation potential in megawatts from the USGS resource estimate. PlannedCapacity - The total planned capacity for the region in megawatts. Number of Plants Included in Planned Estimate - The number of plants

404

Deep geothermal reservoirs evolution: from a modeling perspective BRGM, 3 Avenue Claude Guillemin, BP 36009 -45060 Orlans Cedex 2, France  

E-Print Network [OSTI]

Deep geothermal reservoirs evolution: from a modeling perspective S. Lopez1 1 BRGM, 3 Avenue Claude deep geothermal reservoirs evolution and management based on examples ranging from direct use of geothermal heat to geothermal electricity production. We will try to focus on French experiences

Paris-Sud XI, Université de

405

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

406

FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC  

Broader source: Energy.gov (indexed) [DOE]

RHODE ISLAND LFG GENCO, LLC RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 FINAL ENVIRONMENTAL ASSESSMENT FOR THE RHODE ISLAND LFG GENCO, LLC COMBINED CYCLE ELECTRICITY GENERATION PLANT FUELED BY LANDFILL GAS JOHNSTON, RHODE ISLAND U.S. Department of Energy National Energy Technology Laboratory August 2010 DOE/EA-1742 ACRONYMS AND ABBREVIATIONS CFR Code of Federal Regulations CHP combined heat and power dBA A-weighted decibel DOE U.S. Department of Energy (also called the Department) EA environmental assessment EPA U.S. Environmental Protection Agency MW megawatt NAAQS National Ambient Air Quality Standards

407

Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC -  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Notice of Violation, Savannah River Nuclear Solutions, Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05 Preliminary Notice of Violation, Savannah River Nuclear Solutions, LLC - WEA-2010-05 October 7, 2010 Preliminary Notice of Violation issued to Savannah River Nuclear Solutions, LLC related to a Nitric Acid Spill Event and an Electrical Arc Flash Injury Event at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the nitric acid spill event that occurred in F Area on August 18, 2009, and the electrical arc flash injury that occurred in the D Area powerhouse on September 23, 2009, at the Savannah River Site. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has

408

Carib Energy LLC Order | Department of Energy  

Energy Savers [EERE]

Carib Energy LLC Order Carib Energy LLC Order FE Dkt. No. 11-141-LNG - Order 3487 The Final Order Granting Long-term Multi-contract Authorization for Carib Energy LLC to Export...

409

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

410

Updated U.S. Geothermal Supply Curve  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CP-6A2-47458 CP-6A2-47458 February 2010 Updated U.S. Geothermal Supply Curve Chad Augustine and Katherine R. Young National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy Presented at Stanford Geothermal Workshop Stanford, California February 1, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

411

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

412

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

413

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Broader source: Energy.gov (indexed) [DOE]

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

414

Central Indiana Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Central Indiana Ethanol LLC Jump to: navigation, search Name: Central Indiana Ethanol LLC Place: Marion, Indiana Zip: 46952 Product: Ethanol producer developina a 151 mlpa plant in...

415

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Sioux River Ethanol LLC Jump to: navigation, search Name: Sioux River Ethanol LLC Place: Hudson, South Dakota Zip: 57034 Product: Farmer owned ethanol producer, Sioux River Ethanol...

416

Aeronautica Windpower LLC | Open Energy Information  

Open Energy Info (EERE)

Aeronautica Windpower LLC Jump to: navigation, search Name: Aeronautica Windpower LLC Place: Plymouth, Massachusetts Zip: 23600 Sector: Services, Wind energy Product: String...

417

Aerogel Composite LLC | Open Energy Information  

Open Energy Info (EERE)

Aerogel Composite LLC Jump to: navigation, search Name: Aerogel Composite LLC Place: Storrs, Connecticut Zip: 6269 Product: Developer of aerogel based composite materials for a...

418

Millennium Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Millennium Ethanol LLC Jump to: navigation, search Name: Millennium Ethanol, LLC Place: Marion, South Dakota Zip: 57043 Product: Millennium Ethanol is a group of more than 900...

419

FT Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

FT Solutions LLC Jump to: navigation, search Name: FT Solutions LLC Place: South Jordan, Utah Zip: 84095 Product: JV between Headwaters Technology Innovation Group and Rentech to...

420

Western Plains Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Western Plains Energy LLC Jump to: navigation, search Name: Western Plains Energy LLC Place: Oakley, Kansas Zip: 67748 Product: Bioethanol producer using corn as feedstock...

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Bison Renewable Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy LLC Place: Minneapolis, Minnesota Zip: 55401 Product: Developing biogas production facilities. References: Bison Renewable Energy LLC1 This article is a stub....

422

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

423

Sundance Power LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: Golden, Colorado Zip: 80401 Sector: Solar Product: Sundance provides turnkey solar PV installations. References: Sundance Power LLC1 This article is a stub. You can...

424

Smiling Earth Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Smiling Earth Energy LLC Jump to: navigation, search Name: Smiling Earth Energy LLC Place: Bakersfield, California Zip: 93314 Product: California based biodiesel producer and...

425

Prometheus Energy Services LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Services LLC Place: California Sector: Wind energy Product: Wind project developer, working on the Pine Tree project. References: Prometheus Energy Services LLC1 This...

426

Encap Development LLC | Open Energy Information  

Open Energy Info (EERE)

Encap Development LLC Jump to: navigation, search Name: Encap Development LLC Place: Massachusetts Zip: 17200 Sector: Efficiency, Renewable Energy, Services, Solar Product: String...

427

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equities, LLC Place: Newport Beach, California Zip: 92660 Sector: Carbon Product: Investment firm focused on carbon trading References: Equinox Carbon Equities, LLC1 This...

428

Chevron Hydrogen Company LLC | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Company LLC Jump to: navigation, search Name: Chevron Hydrogen Company LLC Place: California Sector: Hydro, Hydrogen Product: California-based, subsidairy of Chevron...

429

Foresight Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Foresight Wind Energy LLC Jump to: navigation, search Name: Foresight Wind Energy LLC Place: San Francisco, California Zip: 94105 Sector: Wind energy Product: San Francisco-based...

430

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name: Lousiana Green Fuels LLC Place: Louisiana Sector: Biomass Product: Developing a cellulosic biomass-to-ethanol plant in...

431

Draft Powerpoint: Toward Energy Efficient Municipalities, LLC...  

Broader source: Energy.gov (indexed) [DOE]

Powerpoint: Toward Energy Efficient Municipalities, LLC comment Draft Powerpoint: Toward Energy Efficient Municipalities, LLC comment Green Grid Gateway @ North Coast Oregon....

432

AREA USA LLC | Open Energy Information  

Open Energy Info (EERE)

AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

433

FRONIUS USA LLC | Open Energy Information  

Open Energy Info (EERE)

FRONIUS USA LLC Jump to: navigation, search Name: FRONIUS USA LLC Place: Brighton, Michigan 48116 USA, Michigan Sector: Solar Product: Focused on welding machines and solar...

434

Digital Power Capital LLC | Open Energy Information  

Open Energy Info (EERE)

Power Capital LLC Jump to: navigation, search Name: Digital Power Capital LLC Place: Greenwich, Connecticut Zip: 6830 Product: A private equity firm focused on new technologies...

435

Altamount Power LLC | Open Energy Information  

Open Energy Info (EERE)

Altamount Power LLC Jump to: navigation, search Name: Altamount Power LLC Place: California Sector: Wind energy Product: JV between FPL Energy and GREP to own and operate wind...

436

Geysers Power Co LLC | Open Energy Information  

Open Energy Info (EERE)

Power Co LLC Jump to: navigation, search Name: Geysers Power Co LLC Place: Middletown, California Product: Geysers Power is working with the US Department of Energy's Lawrence...

437

Scandia Wind Southwest LLC | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Scandia Wind Southwest LLC Place: Bovina, Texas Sector: Wind energy Product: Scandia Wind Southwest, LLC is based in Parmer County, Bovina, Texas....

438

Neutron imaging for geothermal energy systems  

SciTech Connect (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

439

Geothermal Resources Act (Texas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Buying & Making Electricity Program Info State Texas Program Type Siting and Permitting Provider Railroad Commission of Texas The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide a dependable supply of energy in an efficient manner that avoids waste of the energy resources. Secondary considerations will be afforded to the protection of the environment, the protection of correlative rights, and the conservation of

440

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Exploratory Well At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Exploratory Well Activity Date 1975 Usefulness not indicated DOE-funding Unknown Exploration Basis First exploratory well Notes Raft River Geothermal Exploratory Hole No. 1 (RRGE-1) is drilled. References Reynolds Electrical and Engineering Co., Inc., Las Vegas, Nev. (USA) (1 October 1975) Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Kunze, J.F. (1 May 1977) Geothermal R and D project report, October 1, 1976--March 31, 1977 Oriel, S. S.; Williams, P. L.; Covington, H. R.; Keys, W. S.; Shaver, K. C. (1 January 1978) Deep drilling data Raft River geothermal

442

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

443

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

444

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Broader source: Energy.gov (indexed) [DOE]

16: Kalina Geothermal Demonstration Project, Steamboat 16: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada SUMMARY This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately owned 6-megawatt geothermal power plant which includes one geothermal production well, one injection well, and ancillary facilities such as on-site access road(s) and interconnected to electric transmission lines to existing geothermal power plants. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD February 22, 1999 EA-1116: Finding of No Significant Impact Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada

445

MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA,  

Open Energy Info (EERE)

SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: MAGNETOTELLURIC SURVEYING AND MONITORING AT THE COSO GEOTHERMAL AREA, CALIFORNIA, IN SUPPORT OF THE ENHANCED GEOTHERMAL SYSTEMS CONCEPT: SURVEY PARAMETERS AND INITIAL RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in enhanced geothermal systems (EGS) by imaging the geometry, bounds and controlling structures in existing production, and by monitoring changes in the underground resistivity properties in the vicinity of injection due to fracture porosity enhancement. To these ends, we are acquiring a dense grid

446

3D Magnetotelluic characterization of the Coso Geothermal Field | Open  

Open Energy Info (EERE)

Magnetotelluic characterization of the Coso Geothermal Field Magnetotelluic characterization of the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluic characterization of the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in understanding geothermal systems by imaging the geometry, bounds and controlling structures in existing production, and thereby perhaps suggesting new areas for field expansion. To these ends, a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the

447

Oregon: a guide to geothermal energy development  

SciTech Connect (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

448

Washington: a guide to geothermal energy development  

SciTech Connect (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-01-01T23:59:59.000Z

449

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

450

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

451

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

452

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

453

OHm Geothermal | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

454

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

455

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

456

Blendstar LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Place: The Woodlands, Texas Zip: 77380 Product: Houston-based operator of ethanol blending and terminal facilities in Tennessee, Kentucky, Oklahoma, Arkansas, Alabama,...

457

GELcore LLC | Open Energy Information  

Open Energy Info (EERE)

Name: GELcore LLC Place: Valley View, Ohio Zip: 44125-4635 Product: Manufacturer of LED lighting for signage and architecture, transportation and display lighting. GELcore was...

458

Genesys LLC | Open Energy Information  

Open Energy Info (EERE)

search Name: Genesys LLC Place: Palo Alto, California Zip: 94306 Sector: Hydro, Hydrogen Product: Focused on RET (Radiant Energy Transfer) technology for the production of...

459

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

460

Washington Closure Hanford, LLC  

Broader source: Energy.gov (indexed) [DOE]

August 19,2010 August 19,2010 CERTIFIED MAIL RETURN RECEIPT REQUESTED Mr. Neil Brosee President Washington Closure Hanford, LLC 2620 Fermi Avenue Richland, Washington 99354 WEA-201 0-02 Dear Mr. Brosee: This letter refers to the Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances surrounding the employee fall that occurred at the Hanford High Bay Testing Facility (336 Building) on July 1, 2009. The worker sustained serious injury to his back and broke bones in both legs. Based on an evaluation of the evidence in this matter, the U.S. Department of Energy (DOE) has concluded that violations of 10 C.F.R. Part 851, Worker Safety and Health Program, by Washington Closure Hanford, LLC (WCH) occurred. Accordingly, DOE is issuing the enclosed Preliminary Notice of

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use |  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Startup Will Put Carbon Dioxide To Good Use Geothermal Startup Will Put Carbon Dioxide To Good Use Innovative Geothermal Startup Will Put Carbon Dioxide To Good Use March 17, 2011 - 2:09pm Addthis A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. A basic overview of GreenFire's process to convert CO2 into electricity. | Photo courtesy of GreenFire. JoAnn Milliken What does this project do? GreenFire Energy will conduct the first field demonstration of a CO2-based geothermal system. Getting geothermal power with CO2 instead of water would be particularly beneficial in the arid Southwestern U.S., where water is scarce. Geothermal power holds enormous opportunities to provide affordable, clean energy that avoids greenhouse gases like carbon dioxide (CO2). That's

462

Binary Cycle Geothermal Demonstration Power Plant New Developments  

SciTech Connect (OSTI)

San Diego Gas and Electric Company (SDG and E) has been associated with geothermal exploration and development in the Imperial Valley since 1971. SDG and E currently has interests in the four geothermal reservoirs shown. Major SDG and E activities have included drilling and flow testing geothermal exploration wells, feasibility and process flow studies, small-scale field testing of power processes and equipment, and pilot plant scale test facility design, construction and operation. Supporting activities have included geothermal leasing, acquisition of land and water rights, pursual of a major new transmission line to carry Imperial Valley geothermal and other sources of power to San Diego, and support of Magma Electric's 10 MW East Mesa Geothermal Power Plant.

Lacy, Robert G.; Jacobson, William O.

1980-12-01T23:59:59.000Z

463

Geothermal publications list for Geopowering the West States  

SciTech Connect (OSTI)

A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

None

2004-12-01T23:59:59.000Z

464

Ridgewood Renewable Power LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Power LLC Renewable Power LLC Jump to: navigation, search Name Ridgewood Renewable Power LLC Place Ridgewood, New Jersey Zip NJ 07450 Sector Biomass, Hydro, Renewable Energy Product An international owner and operator of renewable electric power and infrastructure projects in the United States, United Kingdom, and Egypt. Projects developed include hydro, biomass, natural gas and landfill methane gas power plants. Coordinates 40.700725°, -73.895329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.700725,"lon":-73.895329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Main aspects of geothermal energy in Mexico  

Science Journals Connector (OSTI)

With an installed geothermal electric capacity of 853 MWe, Mexico is currently the third largest producer of geothermal power worldwide, after the USA and the Philippines. There are four geothermal fields now under exploitation: Cerro Prieto, Los Azufres, Los Humeros and Las Tres V??rgenes. Cerro Prieto is the second largest field in the world, with 720 \\{MWe\\} and 138 production wells in operation; sedimentary (sandstone) rocks host its geothermal fluids. Los Azufres (88 MWe), Los Humeros (35 MWe) and Las Tres V??rgenes (10 MWe) are volcanic fields, with fluids hosted by volcanic (andesites) and intrusive (granodiorite) rocks. Four additional units, 25 \\{MWe\\} each, are under construction in Los Azufres and due to go into operation in April 2003. One small (300 kW) binary-cycle unit is operating in Maguarichi, a small village in an isolated area with no link to the national grid. The geothermal power installed in Mexico represents 2% of the total installed electric capacity, but the electricity generated from geothermal accounts for almost 3% of the national total.

Gerardo Hiriart; Luis C.A. Gutirrez-Negr??n

2003-01-01T23:59:59.000Z

467

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

468

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

469

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

470

Ahuachapan Geothermal Power Plant, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan geothermal power plant has been the subject of several recent reports and papers (1-7). This article is a condensation of the author's earlier writings (5-7), and incorporates new information on the geothermal activities in El Salvador obtained recently through a telephone conversation with Ing. R. Caceres of the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) who has been engaged in the design and engineering of the newest unit at Ahuachapan. El Salvador is the first of the Central American countries to construct and operate a geothermal electric generating station. Exploration began in the mid-1960's at the geothermal field near Ahuachapan in western El Salvador. The first power unit, a separated-steam or so-called ''single-flash'' plant, was started up in June 1975, and was followed a year later by an identical unit. In July 1980, the Comision Ejecutiva Hidroelectrica del Rio Lempa (C.E.L.) will complete the installation of a third unit, a dual-pressure (or ''double-flash'') unit rated at 35 MW. The full Ahuachapan plant will then constitute about 20% of the total installed electric generating capacity of the country. During 1977, the first two units generated nearly one-third of all the electricity produced in El Salvador. C.E.L. is actively pursuing several other promising sites for additional geothermal plants. There is the possibility that eventually geothermal energy will contribute about 450 MW of electric generating capacity. In any event it appears that by 1985 El Salvador should be able to meet its domestic needs for electricity by means of its indigenous geothermal and hydroelectric power plants, thus eliminating any dependence on imported petroleum for power generation.

DiPippo, Ronald

1980-12-01T23:59:59.000Z

471

"1. Hay Road","Gas","Calpine Mid-Atlantic Generation LLC",1130  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "1. Hay Road","Gas","Calpine Mid-Atlantic Generation LLC",1130 "2. Indian River Operations","Coal","Indian River Operations Inc",795 "3. Edge Moor","Gas","Calpine Mid-Atlantic Generation LLC",723 "5. McKee Run","Gas","NAES Corporation",136 "6. NRG Energy Center Dover","Coal","NRG Energy Center Dover LLC",100 "7. Warren F Sam Beasley Generation Station","Gas","Delaware Municipal Electric Corp",48 "8. Christiana","Petroleum","Calpine Mid-Atlantic Generation LLC",45 "9. Van Sant Station","Gas","NAES Corporation",39

472

NextEra Energy Resources, LLC (Genesis Solar) | Department of...  

Energy Savers [EERE]

NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) NextEra Energy Resources, LLC (Genesis Solar) Location: Riverside County, CA...

473

Abengoa Bioenergy Biomass of Kansas LLC | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Abengoa Bioenergy Biomass of Kansas LLC Location: Hugoton, KS Eligibility: 1705 Snapshot In September 2011,...

474

Midwest Renewable Energy Projects LLC | Open Energy Information  

Open Energy Info (EERE)

LLC Jump to: navigation, search Name: Midwest Renewable Energy Projects LLC Place: Florida Zip: FL 33408 Sector: Renewable Energy, Wind energy Product: MRE Projects LLC is a...

475

Application to export electric energy OE Docket No. EA-220-C...  

Broader source: Energy.gov (indexed) [DOE]

20-C NRG Power Marketing LLC: Federal Register Notice Volume 75, No. 234 - Dec. 7, 2010 Application to export electric energy OE Docket No. EA-220-C NRG Power Marketing LLC:...

476

University Park Community Solar LLC | Open Energy Information  

Open Energy Info (EERE)

Park Community Solar LLC Park Community Solar LLC Jump to: navigation, search Name University Park Community Solar LLC Address 4313 Tuckerman St. Place University Park, Maryland Zip 20782 Sector Renewable Energy, Solar Product Solar generated electricity Year founded 2010 Website http://www.universityparksolar Coordinates 38.9674819°, -76.941939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9674819,"lon":-76.941939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

REQUEST BY ROCKWELL SCIENCE CENTER, LLC, (RSC) A SUBCONTRACTOR OF  

Broader source: Energy.gov (indexed) [DOE]

ROCKWELL SCIENCE CENTER, LLC, (RSC) A SUBCONTRACTOR OF ROCKWELL SCIENCE CENTER, LLC, (RSC) A SUBCONTRACTOR OF SILICON POWER CORPORATION (SPCO,), BOTH ENTITIES AS OPERATING DIVISIONS OF ROCKWELL INTERNATIONAL CORPORATION (ROCKWELL),FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS TO INVENTIONS MADE UNDER A COOPERATIVE AGREEMENT FOR RESEARCH, DEVELOPMENT, AND COPRODUCTION OF AN AUTOMOTIVE INTEGRATED POWER MODULE FOR USE IN ADVANCED HYBRID ELECTRIC VEHICLES UNDER DOE COOPERATIVE AGREEMENT DE-FC02-99EE50571; W(A)-00-010, CH1029. Rockwell Science Center, LLC, (RSC) has requested an advance waiver of domestic and foreign patent rights to inventions its employees may conceive or first actually reduce to practice in the performance of DOE Cooperative Agreement No. DE-FC02-99EE50571. RSC and SPCO are core businesses of Rockwell. SPCO initially agreed that all terms and conditions

478

ENVIRONMENTAL IMPACTS OF GEOTHERMAL ENERGY GENERATION AND UTILIZATION Luis D. Berrizbeitia  

E-Print Network [OSTI]

such as solar power, wind power, and geothermal power. Geothermal energy is a source of electricity generation, with a current capacity of 3,093 megawatts (MW). The largest geothermal development in the world is located at the Geysers north of San Francisco, in Sonoma County, California

Polly, David

479

Technoeconomic Analysis of Biofuel Production and Biorefinery Operation Utilizing Geothermal Energy  

Science Journals Connector (OSTI)

Technoeconomic Analysis of Biofuel Production and Biorefinery Operation Utilizing Geothermal Energy ... A technoeconomic study is conducted to assess the feasibility of integrating geothermal energy into a biorefinery for biofuel production. ... Geothermal energy is utilized in the refinery to generate process steam for gasification and steam-methane reforming in addition to providing excess electricity via the organic Rankine cycle. ...

Sudhanya Banerjee; Jordan A. Tiarks; Maciej Lukawski; Song-Charng Kong; Robert C. Brown

2013-02-28T23:59:59.000Z

480

Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West Indies)  

E-Print Network [OSTI]

1 Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West, France 3. BRGM, Department of Geothermal Energy 3, Av. Claude Guillemin - 45060 Orléans Cedex 2, France Abstract The Bouillante geothermal field presently provides about 8% of the annual electricity needs

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "geothermal llc electric" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

GRC Transactions, Vol. 29, 2005 Geothermal, GIS, potential, favorability, Great Basin, map  

E-Print Network [OSTI]

_gis2. htm) of the Great Basin Center for Geothermal Energy (GBC- GE). This map allows for separate to host high-temperature (> 150° C) geothermal systems capable of producing electrical energy. ThreeGRC Transactions, Vol. 29, 2005 223 Keywords Geothermal, GIS, potential, favorability, Great Basin

482

Geothermal: Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

483

Honey Lake Geothermal Project, Lassen County, California. Final technical report  

SciTech Connect (OSTI)

This report discusses the drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel. The project is located within the Wendel-Amedee Known Geothermal Resource Area. (ACR)

Not Available

1984-11-01T23:59:59.000Z

484

Pilgrim's Progress: An Update on Geothermal Potential in Alaska  

Office of Energy Efficiency and Renewable Energy (EERE)

A resource in central Alaska is showing promise for geothermal developmentthe renewable energy that draws on Earths natural heat for electricity and other uses. The myriad benefits of this clean, domestic power source make geothermal exploration an attractive proposition for this state, where off-grid demand means that Alaskans often use expensive, polluting diesel power.

485

Geothermal energy development  

SciTech Connect (OSTI)

Since the 1970's, technological advances in equipment and new market conditions have made drilling for egothermal energy sources in the Imperial Valley of California commercially feasible. Electric power installations are planned to produce up to 3000 MW for export to Los Angeles and San Diego. The Valley, irrigated by the Colorado River waters, is one of the most agriculturally productive in the world, having a year-round growing season. Most Known Geothermal Resource Areas (KGRA) are located beneath these highly cultivated lands. Because of the lack of other large industries in the County besides agribusiness, the population has a lower average standard of living and higher unemployment than other areas of the state. Public opinion is almost universally is favor of geothermal development for economic reasons, as well as to provide an additional needed power source for this hot arid region. Unlike other parts of California, the area has maintained a no-growth policy on population, and it has remained stable and small in relation to land area. The present study by social scientists at the University of California at Riverside is in part an outgrowth of the Imperial County Project of the National Science Foundation and the Department of Energy. It seeks to assess the effects of full-scale development of thermal energy development on the area as a whole -- population, economy, environment, employment, and community and social relations.

Butler, E.W.; Pick, J.B.

1982-01-01T23:59:59.000Z

486

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

487

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

488

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

489

Osmotic Heat Engine for Energy Production from Low Temperature Geothermal Resources  

Broader source: Energy.gov [DOE]

Project objective: to demonstrate the economic viability of an Osmotic Heat Engine for electricity production from extremely low-grade geothermal resources.

490

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential  

Office of Energy Efficiency and Renewable Energy (EERE)

Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

491

Geothermal Tax Credit | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Tax Credit Geothermal Tax Credit Geothermal Tax Credit < Back Eligibility Residential Savings Category Buying & Making Electricity Maximum Rebate Not specified Program Info Start Date 1/1/2009 Expiration Date 12/31/2014 State North Dakota Program Type Personal Tax Credit Rebate Amount 15% (3% per year for five years) North Dakota offers an income tax credit to individuals, estates and trusts for the cost of acquiring and installing a geothermal energy system in a building or on property owned or leased by the taxpayer in North Dakota. For systems installed after December 31, 2008, and before January 1, 2015, the credit is equal to 3% per year for five years of the actual cost of acquisition and installation of the system. Any excess may be used as a credit carryover to each of the 10 succeeding taxable years.

492

FORSITE: a geothermal site development forecasting system  

SciTech Connect (OSTI)

The Geothermal Site Development Forecasting System (FORSITE) is a computer-based system being developed to assist DOE geothermal program managers in monitoring the progress of multiple geothermal electric exploration and construction projects. The system will combine conceptual development schedules with site-specific status data to predict a time-phased sequence of development likely to occur at specific geothermal sites. Forecasting includes estimation of industry costs and federal manpower requirements across sites on a year-by-year basis. The main advantage of the system, which relies on reporting of major, easily detectable industry activities, is its ability to use relatively sparse data to achieve a representation of status and future development.

Entingh, D.J.; Gerstein, R.E.; Kenkeremath, L.D.; Ko, S.M.

1981-10-01T23:59:59.000Z

493

Geothermal energy in Turkey: 2008 update  

Science Journals Connector (OSTI)

Geological studies indicate that the most important geothermal systems of western Turkey are located in the major grabens of the Menderes Metamorphic Massif, while those that are associated with local volcanism are more common in the central and eastern parts of the country. The present (2008) installed geothermal power generation capacity in Turkey is about 32.65MWe, while that of direct use projects is around 795MWt. Eleven major, high-to-medium enthalpy fields in western part of the country have 570MWe of proven, 905MWe of probable and 1389MWe of possible geothermal reserves for power generation. In spite of the complex legal issues related to the development of Turkey's geothermal resources, their use is expected to increase in the future, particularly for electricity generation and for greenhouse heating.

Umran Serpen; Niyazi Aksoy; Tahir ngr; E. Didem Korkmaz

2009-01-01T23:59:59.000Z

494

The SGP-CFE geothermal hydrogen study  

SciTech Connect (OSTI)

Excess baseload geothermal electric power could be used to manufacture hydrogen as an alternate automotive fuel, providing several synergistic economic and environmental health benefits. A study is underway as part of the DOE-CFE Geothermal Agreement to estimate the potential for producing hydrogen at geothermal fields in Mexico with low-cost excess capacity and the concomitant potential for air pollution abatement in the Mexico City metropolitan area. Case studies have been made for excess capacity at three scales: (1) small (10 MWe) at a new developing field as an experimental facility; (2) moderate (100 MWe) at Cerro Prieto as a demonstration project; and (3) large (1000 MWe) using the entire output of Mexico`s geothermal resources for significant air quality improvement.

Fioravanti, M.; Kruger, P. [Stanford Univ., CA (United States); Cadenas, C.; Rangel, M. [Comision Federal de Electricidad, Michoacan (Mexico)

1995-12-31T23:59:59.000Z

495

Data Acquisition-Manipulation At Coso Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the potential electrical power in the area Notes The analysis was concentrated on identifying the major sources of surface and ground water, potential limitations on the usage of this water, and the resulting constraints on potentially developable electrical power in each geothermal resource area. References Sakaguchi, J. L. (19 March 1979) Regional Systems Development for Geothermal Energy Resources Pacific Region (California and Hawaii).

496

Conceptual design of a geothermal site development forecasting system  

SciTech Connect (OSTI)

A site development forecasting system has been designed in response to the need to monitor and forecast the development of specific geothermal resource sites for electrical power generation and direct heat applications. The system is comprised of customized software, a site development status data base, and a set of complex geothermal project development schedules. The system would use site-specific development status information obtained from the Geothermal Progress Monitor and other data derived from economic and market penetration studies to produce reports on the rates of geothermal energy development, federal agency manpower requirements to ensure these developments, and capital expenditures and technical/laborer manpower required to achieve these developments.

Neham, E.A.; Entingh, D.J.

1980-03-01T23:59:59.000Z

497

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

498

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

499

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

500

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and