Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Literature Review At General Us Region (Blackwell...  

Open Energy Info (EERE)

Usefulness useful regional reconnaissance DOE-funding Unknown References D. D. Blackwell, K. W. Wisian, M.C . Richards, J. L. Steele (2000) Geothermal Resource-Reservoir...

2

Reflection Survey At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

3

Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

4

Aerial Photography At Dixie Valley Geothermal Area (Blackwell...  

Open Energy Info (EERE)

David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

5

Modeling-Computer Simulations At Dixie Valley Geothermal Area (Blackwell,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:EnergyInformation Lewicki(Blackwell,Et Al.,

6

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal, Yakima,Geothermal Sandia Wins DOE

7

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvideAidsCanal, Yakima,Geothermal Sandia Wins

8

Geothermal programs at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

Kasameyer, P.W.; Younker, L.W.

1987-07-10T23:59:59.000Z

9

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

10

Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Stillwater Area (Wisian & Blackwell, 2004) Exploration Activity...

11

Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

12

The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies  

E-Print Network [OSTI]

- 1 - The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring-Dinger Geothermal Program Office, U. S. Navy, China Lake, CA 93555-6001 Keith.Richards-Dinge@navy.mil Keywords of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14

Foulger, G. R.

13

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

14

Data Acquisition-Manipulation At General Us Region (Blackwell...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At General Us Region (Blackwell & Richards, 2004) Exploration...

15

Data Acquisition-Manipulation At General Us Region (Blackwell...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At General Us Region (Blackwell, Et Al., 2000) Exploration...

16

Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

17

Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...  

Open Energy Info (EERE)

McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling At Dixie Valley Geothermal Area (McKenna &...

18

Review of H2S Abatement in Geothermal Plants and Laboratory Scale Design of  

E-Print Network [OSTI]

Review of H2S Abatement in Geothermal Plants and Laboratory Scale Design of Tray Plate Distillation Engineering ­ ISE December 2013 #12;ii Review of H2S Abatement Methods in Geothermal Plants and Laboratory for decreasing these emissions through abatement systems or even potentially using these gases to generate value

Karlsson, Brynjar

19

Modeling-Computer Simulations At Nw Basin & Range Region (Blackwell...  

Open Energy Info (EERE)

systems References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

20

The 2004 Geothermal Map Of North America Explanation Of Resources...  

Open Energy Info (EERE)

in 1992 by the Geological Society of America (GSA). The American Association of Petroleum Geologist (AAPG) is publishing the 2004 Geothermal Map of North America (Blackwell...

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced seismic imaging for geothermal development John N. Louie*, Nevada Seismological Laboratory, University of Nevada, Reno; Satish K. Pullammanappallil  

E-Print Network [OSTI]

Advanced seismic imaging for geothermal development John N. Louie*, Nevada Seismological Laboratory In the geothermal fields of the Great Basin physiographic province of western North America, drilling success to be the only effective geophysical means of accurately targeting geothermal drilling. At target depths of 1

22

Geothermal Well and Heat Flow Data for the United States (Southern Methodist University (SMU) Geothermal Laboratory)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Southern Methodist University makes two databases and several detailed maps available. The Regional Heat Flow Database for the United States contains information on primarily regional or background wells that determine the heat flow for the United States; temperature gradients and conductivity are used to generate heat flow measurements. Information on geology of the location, porosity, thermal conductivity, water table depth, etc. are also included when known. There are usually three data files for each state or region. The first files were generated in 1989 for the data base creating the Decade of North America Geology (DNAG) Geothermal Map. The second set is from 1996 when the data base was officially updated for the Department of Energy. The third set is from 1999 when the Western U.S. High Temperature Geothermal data base was completed. As new data is received, the files continue to be updated. The second major resource is the Western Geothermal Areas Database, a database of over 5000 wells in primarily high temperature geothermal areas from the Rockies to the Pacific Ocean. The majority of the data are from company documents, well logs, and publications with drilling dates ranging from 1960 to 2000. Many of the wells were not previously accessible to the public. Users will need to register, but will then have free, open access to the databases. The contents of each database can be viewed and downloaded as Excel spreadsheets. See also the heat flow maps at http://www.smu.edu/geothermal/heatflow/heatflow.htm

Blackwell, D.D. and others

23

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

24

Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems  

SciTech Connect (OSTI)

Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

Stephen L. Karner, Ph.D

2006-06-01T23:59:59.000Z

25

Geothermal Resource Analysis And Structure Of Basin And Range...  

Open Energy Info (EERE)

US alone. Authors D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published Geothermal Technologies Legacy Collection, 2003 DOI Not...

26

Aerial Photography At Dixie Valley Geothermal Area (Wesnousky...  

Open Energy Info (EERE)

Field And Other Geothermal Fields Of The Basin And Range David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

27

Numerical Modeling of Transient Basin and Range Extensional Geothermal...  

Open Energy Info (EERE)

and finally,the predicted surface heat flow. Authors J. R. McKenna and D. D. Blackwell Conference PROCEEDINGS, TOUGH Symposium 2003 Lawrence Berkeley National Laboratory;...

28

National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration  

SciTech Connect (OSTI)

Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, a

Patten, Kim [Arizona Geological Survey

2013-05-01T23:59:59.000Z

29

Helium isotope study of geothermal features in Chile with field and laboratory data  

SciTech Connect (OSTI)

Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

Dobson, Patrick

2013-02-11T23:59:59.000Z

30

Helium isotope study of geothermal features in Chile with field and laboratory data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

Dobson, Patrick

31

Geothermal Data via the Virginia Tech and DMME Portal to the National Geothermal Data System for the Eastern and Southeastern United States from the Regional Geophysics Laboratory of Virginia Polytechnic Institute and State University  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The former title for this record was "Geothermal Data for the Eastern and Southeastern U.S. from the Regional Geophysics Laboratory of Virginia Tech." The content originally referenced is still available. It includes geothermal maps of seven southeastern states with accompanying data tables. The seven states are: New Jersey, Maryland, Delaware, Virginia, North Carolina, South Caroline, and Georgia. Data types include geothermal data, seismic data, and magnetic and gravity data. Typical geothermal data may include tables of temperature versus depth data, plots of temperature/gradient versus depth, tables of thermal conductivity data, and tables of gamma log data. Other resources available from the RGL provide information about hot springs in the southeastern U.S., temperatures for Atlantic Coastal Plain sediments, and deep fracture permeability in crystalline rocks in the eastern and southeastern U.S. Recently, this website and its collection of geothermal data has been renamed and reorganized as a portal into the National Geothermal Data System, a move that makes far more data both available and integrated.

32

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

33

Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems  

SciTech Connect (OSTI)

The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosen to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.

Reimus, Paul W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

34

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

35

NREL Releases Report on Policy Options to Advance Geothermal...  

Energy Savers [EERE]

Geothermal Exploration Policy Mechanisms, was recently released by the National Renewable Energy Laboratory | photo courtesy of Geothermal Resources Council. A new DOE report,...

36

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

37

Stanford Geothermal Program Tnterdisciplinary Research  

E-Print Network [OSTI]

Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

Stanford University

38

Geothermal Research and Development Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

39

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

40

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 Exploring the Relationship between Geothermal Resources and  

E-Print Network [OSTI]

Laboratory University of Nevada, Reno Keywords: geothermal, energy resources, Great Basin, GPS, geodesy in future models. Introduction Geothermal energy resources have long been associated with the presenceHammond et al., Geothermal Resources Council Transactions, Vol. 31, 2007 - 1 - Exploring

Tingley, Joseph V.

42

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

43

Geothermal Life Cycle Calculator  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

44

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

45

Geothermal Energy Association Recognizes the National Geothermal...  

Energy Savers [EERE]

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

46

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

SciTech Connect (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

47

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

48

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFrontGTOGeorge Wang

49

Residential Geothermal Heat Pump Retrofit Webinar  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory Senior Engineer Erin Anderson about geothermal heat pump (GHP) technology options, applications, and installation costs for residences.

50

First Commercial Success for Enhanced Geothermal Systems (EGS...  

Office of Environmental Management (EM)

work among project partners Ormat, GeothermEx, Lawrence Berkeley National Laboratory (LBNL), U.S. Geological Survey, and Sandia National Laboratories (SNL), among others. "There...

51

National Geothermal Data System (NGDS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

52

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

SciTech Connect (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

53

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

1996-02-01T23:59:59.000Z

54

Geothermal Energy Summary  

SciTech Connect (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

55

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

56

Aerial Photography At Dixie Valley Geothermal Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource Evaluation AndwebsiteLtd, 2003) |2003)

57

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

SciTech Connect (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

58

Geopressured geothermal bibliography (Geopressure Thesaurus)  

SciTech Connect (OSTI)

This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

Hill, T.R.; Sepehrnoori, K.

1981-08-01T23:59:59.000Z

59

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

60

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chemical Impact of Elevated CO2on Geothermal Energy Production  

Broader source: Energy.gov [DOE]

This is a two phase project to assess the geochemical impact of CO2on geothermal energy production by: analyzing the geochemistry of existing geothermal fields with elevated natural CO2; measuring realistic rock-water rates for geothermal systems using laboratory and field-based experiments to simulate production scale impacts.

62

FY97 Geothermal R&D Program Plan  

SciTech Connect (OSTI)

This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

None

1996-09-01T23:59:59.000Z

63

GEOTHERMAL GRADIENT DATA FOR UTAH Robert E. Blackett  

E-Print Network [OSTI]

GEOTHERMAL GRADIENT DATA FOR UTAH by Robert E. Blackett February 2004 UTAH GEOLOGICAL SURVEY ­ 1:750,000 scale map, showing geology; thermal wells, springs, and geothermal areas; and locations available sources including the Southern Methodist University Geothermal Laboratory, U.S. Geological Survey

Laughlin, Robert B.

64

Federal Geothermal Research Program Update Fiscal Year 1999  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

Not Available

2004-02-01T23:59:59.000Z

65

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

66

Monitoring SERC Technologies —Geothermal/Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

67

DOE Office of Indian Energy Foundational Course on Geothermal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Foundational Courses Renewable Energy Technologies GEOTHERMAL Presented by the National Renewable Energy Laboratory Course Outline What we will cover... About the DOE Office of...

68

Assessment of New Approaches in Geothermal Exploration Decision...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of New Approaches in Geothermal Exploration Decision Making Preprint Sertac Akar and Katherine R. Young National Renewable Energy Laboratory Presented at the Fourtieth...

69

Geothermal Heat Pumps: Market Status, Barriers to Adoption, and...  

Open Energy Info (EERE)

Barriers to Adoption, and Actions to Overcome Barriers AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Renewable Energy, Geothermal...

70

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

71

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

72

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

73

Geothermal br Resource br Area Geothermal br Resource br Area...  

Open Energy Info (EERE)

Basalt K Eburru Geothermal Area Eburru Geothermal Area East African Rift System Kenya Rift Basalt Fukushima Geothermal Area Fukushima Geothermal Area Northeast Honshu Arc...

74

Geothermal Energy Resources (Louisiana)  

Broader source: Energy.gov [DOE]

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

75

Geothermal Data Systems  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

76

Geothermal: Sponsored by OSTI -- State geothermal commercialization...  

Office of Scientific and Technical Information (OSTI)

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

77

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

78

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

79

RESEARCH LETTER 2002 Blackwell Science Ltd. http://www.blackwell-science.com/geb  

E-Print Network [OSTI]

sensing the quantity and spatial organization of forest biomass. In this study, we compare & Biogeography (2002) 11, 393­399 Blackwell Science, Ltd Lidar remote sensing of above-ground biomass in three to high biomass forests is difficult for conventional optical and radar sensors. Lidar (light detection

Lefsky, Michael

80

2001 Blackwell Science Ltd. http://www.blackwell-science.com/geb 337 ECOLOGICAL SOUNDING  

E-Print Network [OSTI]

Ecology & Biogeography (2001) 10, 337­343 Blackwell Science, Ltd Research frontiers in null model analysis-mail: ngotelli@zoo.uvm.edu ABSTRACT Null models are pattern-generating models that deliberately exclude are (or should be) figuring prominently. DEFINING THE NULL MODEL A null model is `a pattern-generating

Gotelli, Nicholas J.

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

82

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

83

Geothermal: About  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal

84

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

Energy Geothermal Wayang Windu Ltd., 2. Geothermal Laboratory ITB, Bandung. mulyadiPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University-DOMINATED TWO-PHASE ZONE OF THE WAYANG WINDU GEOTHERMAL FIELD, JAVA, INDONESIA Mulyadi1 and Ali Ashat2 1. Star

Stanford University

85

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

86

Ground Gravity Survey At Dixie Valley Geothermal Field Area ...  

Open Energy Info (EERE)

be described in Blackwell et al. (2010)." References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

87

Geothermal probabilistic cost study  

SciTech Connect (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

88

Sandia National Laboratories: Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFrontGTOGeorge WangEnergy

89

Sandia National Laboratories: Geothermal Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFrontGTOGeorgeResearch Sandia

90

Director, Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

91

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

92

Geothermal: Sponsored by OSTI -- A study of geothermal drilling...  

Office of Scientific and Technical Information (OSTI)

A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

93

Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

94

Geothermal: Sponsored by OSTI -- Development of a geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan Geothermal Technologies Legacy Collection HelpFAQ | Site...

95

Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...  

Office of Scientific and Technical Information (OSTI)

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

96

Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...  

Office of Scientific and Technical Information (OSTI)

Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

97

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

98

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details Location Lightning Dock Geothermal Area...

99

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

100

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

102

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

103

Federal Geothermal Research Program Update Fiscal Year 2002  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2003-09-01T23:59:59.000Z

104

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

SciTech Connect (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

105

Geothermal News  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal News en

106

Geothermal Tomorrow 2008  

SciTech Connect (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

107

Alaska geothermal bibliography  

SciTech Connect (OSTI)

The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

1987-05-01T23:59:59.000Z

108

Geothermal Technologies Newsletter  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

109

Federal Geothermal Research Program Update, FY 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

110

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratories

111

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest fire

112

Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering |LabVideoLaboratoriesForest

113

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

114

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

Stanford University

115

Neutron imaging for geothermal energy systems  

SciTech Connect (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

116

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

117

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

118

NREL: Geothermal Technologies Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisition SystemGeothermal

119

Development of a geothermal acoustic borehole televiewer  

SciTech Connect (OSTI)

Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

Heard, F.E.; Bauman, T.J.

1983-08-01T23:59:59.000Z

120

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Guidebook to Geothermal Finance  

SciTech Connect (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

122

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

in Geysers geothermal cooling towers.   Geothermal in  Geysers  Geothermal  Cooling  Towers.   Aminzadeh, processes  –  Geothermal  resources  near  cooling 

Brophy, P.

2012-01-01T23:59:59.000Z

123

www.newphytologist.org 1 Blackwell Publishing, Ltd.  

E-Print Network [OSTI]

www.newphytologist.org 1 Research Blackwell Publishing, Ltd. Mutations in CAX1 produce phenotypes calcium-proton antiporter CAX1. · cax1 mutants have most of the phenotypes associated with tolerance-of-function cax1 mutations could produce all these phenotypes characteristic of plants adapted to serpentine soils

Bradshaw, Toby

124

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

125

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

126

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

127

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

128

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

129

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

130

Geothermal Technologies Newsletter Archives  

Broader source: Energy.gov [DOE]

Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

131

Other Geothermal Energy Publications  

Broader source: Energy.gov [DOE]

Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

132

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

133

South Dakota geothermal handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

134

Geothermal Government Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

135

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

136

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

137

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

Majer, Ernest L.

2006-01-01T23:59:59.000Z

138

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

139

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

140

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

142

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains  with  geothermal  power.  Geothermal Resources gains  with  geothermal  power.  Geothermal Resources of Tables:  Table 1:  Geothermal Power Plants Operating at 

Brophy, P.

2012-01-01T23:59:59.000Z

143

Abraham Hot Springs Geothermal Area Northern Basin and Range...  

Open Energy Info (EERE)

Range Geothermal Region Big Windy Hot Springs Geothermal Area Alaska Geothermal Region Bingham Caribou Geothermal Area Yellowstone Caldera Geothermal Region Birdsville...

144

ASEAN AND CHINA: EXPORT RIVALS OR PARTNERS? 1255 Blackwell Publishing Ltd 2004  

E-Print Network [OSTI]

ASEAN AND CHINA: EXPORT RIVALS OR PARTNERS? 1255 © Blackwell Publishing Ltd 2004 © Blackwell 1255 ASEAN and China: Export Rivals or Partners in Regional Growth? David Roland Holst1 and John Weiss2 countries.1 Governments of the ASEAN group in particular have been extremely concerned at the prospect

Kammen, Daniel M.

145

Federal Geothermal Research Program Update Fiscal Year 1998  

SciTech Connect (OSTI)

This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

Keller, J.G.

1999-05-01T23:59:59.000Z

146

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

147

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

148

Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...  

Office of Scientific and Technical Information (OSTI)

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

149

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

150

NREL: Learning - Geothermal Energy Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy Sponsors andGeothermal

151

Future Technologies to Enhance Geothermal Energy Recovery  

SciTech Connect (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

152

Stanford Geothermal Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

153

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

154

Geothermal Technologies Office: Projects  

Broader source: Energy.gov (indexed) [DOE]

Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

155

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian… (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

156

Geothermal Outreach Publications  

Broader source: Energy.gov [DOE]

Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

157

Potential of geothermal energy in China .  

E-Print Network [OSTI]

??This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in… (more)

Sung, Peter On

2010-01-01T23:59:59.000Z

158

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

of Practical Cycles for Geothermal Power Plants." GeneralDesign and Optimize Geothermal Power Cycles." Presented atof Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

159

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

160

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Technical Databook for Geothermal Energy Utilization  

E-Print Network [OSTI]

A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

Phillips, S.L.

1981-01-01T23:59:59.000Z

162

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theData Compilation Geothermal Energy Aspects o f Hydrogen

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

163

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

164

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

165

Enhanced Geothermal Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

166

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

the potential use of geothermal energy for power generationCoast Geopressure Geothermal Energy Conference, M.H. Dorfmanand Otte, C. , 1976, Geothermal energy-resources production,

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

167

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on Geothermal Resource Assessment and Reservoir EngineeriWorkshop on Geothermal Resources Assessment and ReserooirWorkshop on Geothermal Resources Assessment an ervoi r Engi

Sudo!, G.A

2012-01-01T23:59:59.000Z

168

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

169

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

170

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

171

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

172

NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS  

E-Print Network [OSTI]

School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

Goldstein, N.E.

2011-01-01T23:59:59.000Z

173

GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79  

E-Print Network [OSTI]

that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

Pruess, Karsten

2012-01-01T23:59:59.000Z

174

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.for Recovery of Energy from Geothermal Hot Brine Deposits."

Pope, W.L.

2011-01-01T23:59:59.000Z

175

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

176

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

177

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

178

Geothermal energy: a brief assessment  

SciTech Connect (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

179

Geothermal Exploration Case Studies on OpenEI (Presentation)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, K.; Bennett, M.; Atkins, D.

2014-03-01T23:59:59.000Z

180

Federal Geothermal Research Program Update Fiscal Year 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, J.L.

2001-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal Financing Workbook  

SciTech Connect (OSTI)

This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

Battocletti, E.C.

1998-02-01T23:59:59.000Z

182

Geothermal energy program summary  

SciTech Connect (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

183

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

184

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

185

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 911, 2009  

E-Print Network [OSTI]

, Stanford, California, February 9­11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National Laboratory P.O. Box 1663, MS-D443 Los Alamos, New Mexico 87545 USA e-mail: dwb@lanl.gov ABSTRACT The concept of Hot Dry Rock (HDR) geothermal energy originated

Stanford University

186

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Scien- Producing Geothermal Wells. (LA 6 5 5 3 x ) t i f i cSteam-Water Flow i n Geothermal Wells. Journal o f Petroleumo f a Hawaii Geothermal Well-- HGP-A. It Geothermal

Sudo!, G.A

2012-01-01T23:59:59.000Z

187

Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) tasked the National Renewable Energy Laboratory (NREL) with conducting the annual geothermal supply curve update. This report documents the approach taken to identify geothermal resources, determine the electrical producing potential of these resources, and estimate the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs from these geothermal resources at present and future timeframes under various GTP funding levels. Finally, this report discusses the resulting supply curve representation and how improvements can be made to future supply curve updates.

Augustine, C.

2011-10-01T23:59:59.000Z

188

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

189

Updating the Classification of Geothermal Resources- Presentation  

Broader source: Energy.gov [DOE]

USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

190

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

191

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

192

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

193

Updating the Classification of Geothermal Resources  

Broader source: Energy.gov [DOE]

USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

194

Cuttings Analysis At International Geothermal Area, Philippines...  

Open Energy Info (EERE)

Cuttings Analysis At International Geothermal Area, Philippines (Laney, 2005) Exploration Activity Details Location International Geothermal Area Philippines Exploration Technique...

195

Rural Cooperative Geothermal Development Electric & Agriculture...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects lowsilveriaruralelectriccoop.pdf More Documents & Publications Southwest Alaska Regional Geothermal...

196

Readily Available Data Help to Overcome Geothermal Deployment...  

Broader source: Energy.gov (indexed) [DOE]

Articles Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development The National Geothermal Data System deploys free,...

197

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

198

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

Bloomster, C.H.

2010-01-01T23:59:59.000Z

199

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

Brophy, P.

2012-01-01T23:59:59.000Z

200

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources(Blackwell, Et

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources JumpEnergy2013)

202

Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma.GroomInformation| Open

203

Reflection Survey At Dixie Valley Geothermal Area (Blackwell, Et Al., 2003)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aRECRaton,RFPs| Open Energy Information

204

Geothermal Literature Review At General Us Region (Blackwell, Et Al., 2000)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et Al., 1996)Al., 2012)

205

Geothermal Literature Review At U.S. West Region (Blackwell, Et Al., 2010)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957) |(Ward, Et Al.,Et|

206

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:Net Jump to: navigation, searchEnergyEnergyOpenAl.,

207

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

Brophy, P.

2012-01-01T23:59:59.000Z

208

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

induced seismicity and geothermal  energy.  Geothermal into  sustainable  geothermal  energy:  The  S.E.   Geysers into  sustainable  geothermal  energy:  The  S.E.   Geysers 

Brophy, P.

2012-01-01T23:59:59.000Z

209

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

Rutqvist, J.

2008-01-01T23:59:59.000Z

210

Geothermal: Sponsored by OSTI -- Use of a Geothermal-Solar Hybrid...  

Office of Scientific and Technical Information (OSTI)

Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

211

Geothermal Resources Act (Texas)  

Broader source: Energy.gov [DOE]

The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide...

212

Residential Geothermal Systems Credit  

Broader source: Energy.gov [DOE]

A resident individual taxpayer of Montana who installs a geothermal heating or cooling system in their principal dwelling can claim a tax credit based on the installation costs of the system, not...

213

Geothermal Orientation Handbook  

SciTech Connect (OSTI)

This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

None

1984-07-01T23:59:59.000Z

214

Geothermal Energy: Current abstracts  

SciTech Connect (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

215

Geothermal: Sponsored by OSTI -- User manual for geothermal energy...  

Office of Scientific and Technical Information (OSTI)

User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

216

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal  

Broader source: Energy.gov [DOE]

The Geothermal Energy Association (GEA) is holding a State of the Geothermal Industry Briefing on Tuesday, February 24th at the Hyatt Regency Capitol Hill in Washington, DC. This program will...

217

The Krafla Geothermal System. A Review of Geothermal Research...  

Open Energy Info (EERE)

System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The Krafla Geothermal...

218

Blackwell Publishing, Ltd.Oxford, UKAPELAsian-Pacific Economic Literature0818-9935 2005 Asia Pacific School of Economics and Government, The Australian National University and Blackwell Publishing Asia Pty LtdNovember 2005192ORIGINAL ARTICLEROLAND-HOLST a  

E-Print Network [OSTI]

18 Blackwell Publishing, Ltd.Oxford, UKAPELAsian-Pacific Economic Literature0818-9935© 2005 Asia Pacific School of Economics and Government, The Australian National University and Blackwell Publishing and ITS NEIGHBOURSASIAN-PACIFIC ECONOMIC LITERATURE People's Republic of China and its Neighbours

Kammen, Daniel M.

219

Geothermal: Sponsored by OSTI -- Development of a Geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada...

220

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal Heat Pump Grant Program  

Broader source: Energy.gov [DOE]

The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

222

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

223

Geothermal Resources and Transmission Planning  

Broader source: Energy.gov [DOE]

This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

224

South Dakota Geothermal Energy Handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

Not Available

1980-06-01T23:59:59.000Z

225

Sandia National Laboratories: Geothermal Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFrontGTOGeorgeResearch

226

Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska  

E-Print Network [OSTI]

January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

Scheel, David

227

Stanford Geothermal Program Final Report  

E-Print Network [OSTI]

of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of PetroleumStanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

Stanford University

228

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office No. DE-AT03-80SF11459 Department of Energy Division of Geothermal Energy #12;#12;1 , .... TABLE n t e r e s t t o the geothermal energy community. The topic f o r panel analysis f o r the Sixth

Stanford University

229

GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger  

E-Print Network [OSTI]

SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

Stanford University

230

Postgraduate Certificate in Geothermal Energy  

E-Print Network [OSTI]

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

231

Stanford Geothermal Program Stanford University  

E-Print Network [OSTI]

s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

Stanford University

232

DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL  

E-Print Network [OSTI]

SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

233

HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

Schroeder, R.C.

2009-01-01T23:59:59.000Z

234

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

Stanford University

235

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandria BiomassRuralAlligator Geothermal

236

State Geothermal Resource Assessment and Data Collection Efforts  

Broader source: Energy.gov [DOE]

HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

237

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

Howard, J. H.

2012-01-01T23:59:59.000Z

238

Silica recovery and control in Hawaiian geothermal fluids  

SciTech Connect (OSTI)

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

239

Silica recovery and control in Hawaiian geothermal fluids. Final report  

SciTech Connect (OSTI)

A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

Thomas, D.M.

1992-06-01T23:59:59.000Z

240

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

GEOTHERMAL HEAT PUMPS Jack DiEnna  

E-Print Network [OSTI]

by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

242

2008 Geothermal Technologies Market Report  

SciTech Connect (OSTI)

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Cross, J.; Freeman, J.

2009-07-01T23:59:59.000Z

243

Geothermal direct heat program: roundup technical conference proceedings. Volume II. Bibliography of publications. State-coupled geothermal resource assessment program  

SciTech Connect (OSTI)

Lists of publications are presented for the Geothermal Resource Assessment Program for the Utah Earth Science Laboratory and the following states: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Kansas, Montana, Nebraska, Nevada, New Mexico, New York, North Dakota, Oregon, Texas, Utah, and Washington.

Ruscetta, C.A. (ed.)

1982-07-01T23:59:59.000Z

244

Geothermal steam quality testing  

SciTech Connect (OSTI)

Geothermal steam quality and purity have a significant effect on the operational efficiency and life of geothermal steam turbines and accessory equipment. Poor steam processing can result in scaled nozzles/blades, erosion, corrosion, reduced utilization efficiency, and early fatigue failures accelerated by stress corrosion cracking (SCC). Upsets formed by undetected slugs of liquid entering the turbine can cause catastrophic failure. The accurate monitoring and determination of geothermal steam quality/purity is intrinsically complex which often results in substantial errors. This paper will review steam quality and purity relationships, address some of the errors, complexities, calibration and focus on: thermodynamic techniques for evaluating and monitoring steam quality by use of the modified throttling calorimeters.

Jung, D.B. [Two-Phase Engineering & Research, Inc., Santa Rosa, CA (United States)

1995-12-31T23:59:59.000Z

245

Enhanced Geothermal Systems Technologies  

Broader source: Energy.gov [DOE]

Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

246

Geothermal materials development activities  

SciTech Connect (OSTI)

This ongoing R&D program is a part of the Core Research Category of the Department of Energy/Geothermal Division initiative to accelerate the utilization of geothermal resources. High risk materials problems that if successfully solved will result in significant reductions in well drilling, fluid transport and energy conversion costs, are emphasized. The project has already developed several advanced materials systems that are being used by the geothermal industry and by Northeastern Electric, Gas and Steam Utilities. Specific topics currently being addressed include lightweight C0{sub 2}-resistant well cements, thermally conductive scale and corrosion resistant liner systems, chemical systems for lost circulation control, elastomer-metal bonding systems, and corrosion mitigation at the Geysers. Efforts to enhance the transfer of the technologies developed in these activities to other sectors of the economy are also underway.

Kukacka, L.E.

1993-06-01T23:59:59.000Z

247

Geothermal hydrogen sulfide removal  

SciTech Connect (OSTI)

UOP Sulfox technology successfully removed 500 ppM hydrogen sulfide from simulated mixed phase geothermal waters. The Sulfox process involves air oxidation of hydrogen sulfide using a fixed catalyst bed. The catalyst activity remained stable throughout the life of the program. The product stream composition was selected by controlling pH; low pH favored elemental sulfur, while high pH favored water soluble sulfate and thiosulfate. Operation with liquid water present assured full catalytic activity. Dissolved salts reduced catalyst activity somewhat. Application of Sulfox technology to geothermal waters resulted in a straightforward process. There were no requirements for auxiliary processes such as a chemical plant. Application of the process to various types of geothermal waters is discussed and plans for a field test pilot plant and a schedule for commercialization are outlined.

Urban, P.

1981-04-01T23:59:59.000Z

248

Geothermal well stimulation  

SciTech Connect (OSTI)

All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.

Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.

1980-01-01T23:59:59.000Z

249

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat

250

Geothermal: Advanced Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced Search

251

Geothermal: Basic Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvanced

252

Geothermal: Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps GeothermalAdvancedHome

253

Modeling-Computer Simulations At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

vein structure associated with ore deposits. References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

254

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV;...

255

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

256

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Broader source: Energy.gov [DOE]

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

257

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

258

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

F i r s t Geopressured Geothermal Energy Conference. Austin,I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."

Sudo!, G.A

2012-01-01T23:59:59.000Z

259

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network [OSTI]

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

Pope, W.L.

2011-01-01T23:59:59.000Z

260

Potential of geothermal energy in China  

E-Print Network [OSTI]

This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

Sung, Peter On

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network [OSTI]

compaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (Applications o f Geothermal Energy and t h e i r Place i n t

Lippmann, M.J.

2011-01-01T23:59:59.000Z

262

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

Majer, Ernest L.

2006-01-01T23:59:59.000Z

263

Geothermal Technologies Office Hosts Collegiate Competition  

Broader source: Energy.gov [DOE]

To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

264

SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD  

E-Print Network [OSTI]

P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

Majer, E. L.

2011-01-01T23:59:59.000Z

265

Selling Geothermal Systems The "Average" Contractor  

E-Print Network [OSTI]

Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

266

NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977  

E-Print Network [OSTI]

Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

Phillips, Sidney L.

2012-01-01T23:59:59.000Z

267

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network [OSTI]

Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

Lippmann, M.J.

2011-01-01T23:59:59.000Z

268

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

269

For 35 years, the National Renewable Energy Laboratory, the U.S. Department of Energy's premier  

E-Print Network [OSTI]

of geothermal plants The Geysers, the world's largest geothermal plant, now generates 17 percent more energyFor 35 years, the National Renewable Energy Laboratory, the U.S. Department of Energy's premier national laboratory for renewable energy and energy efficiency research and development, has delivered

270

Simulation of geothermal subsidence  

SciTech Connect (OSTI)

The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

1980-03-01T23:59:59.000Z

271

Geothermal industry assessment  

SciTech Connect (OSTI)

An assessment of the geothermal industry is presented, focusing on industry structure, corporate activities and strategies, and detailed analysis of the technological, economic, financial, and institutional issues important to government policy formulation. The study is based principally on confidential interviews with executives of 75 companies active in the field. (MHR)

Not Available

1980-07-01T23:59:59.000Z

272

Reinjection into geothermal reservoirs  

SciTech Connect (OSTI)

Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

Bodvarsson, G.S.; Stefansson, V.

1987-08-01T23:59:59.000Z

273

Energy 101: Geothermal Energy  

ScienceCinema (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-06-23T23:59:59.000Z

274

Energy 101: Geothermal Energy  

SciTech Connect (OSTI)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

None

2014-05-27T23:59:59.000Z

275

Innovative Exploration Techniques for Geothermal Assessment at...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

276

Performance of Deep Geothermal Energy Systems .  

E-Print Network [OSTI]

??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation… (more)

Manikonda, Nikhil

2012-01-01T23:59:59.000Z

277

Uncertainty analysis of geothermal energy economics.  

E-Print Network [OSTI]

?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

Sener, Adil Caner

2009-01-01T23:59:59.000Z

278

Comprehensive Evaluation of the Geothermal Resource Potential...  

Broader source: Energy.gov (indexed) [DOE]

data for the National Geothermal Database * Validate state-of-the-art reservoir simulation techniques to reduce model uncertainty and project risk 4 | US DOE Geothermal...

279

Sustainable Energy Resources for Consumers (SERC) -Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

280

Funding Mechanisms for Federal Geothermal Permitting (Presentation)  

SciTech Connect (OSTI)

This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

Witherbee, K.

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

282

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD February 1 9 8 5 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

283

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

Stanford University

284

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Financial support was provided through the Stanford Geothermal Program under Department of Energy Contract

Stanford University

285

Misinterpretation of Electrical Resistivity Data in Geothermal...  

Open Energy Info (EERE)

Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone. In: Geological and Nuclear Sciences. World Geothermal Congress 2005; 20050424; Antalya, Turkey. New Zealand:...

286

Geothermal: Sponsored by OSTI -- Technologies for Extracting...  

Office of Scientific and Technical Information (OSTI)

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

287

International Partnership for Geothermal Technology Launches...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

288

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers [EERE]

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

289

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

290

ORISE: DOE EERE National Geothermal Student Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Science Education U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition 2013 National Geothermal Student...

291

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

292

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Oregon Johnson Controls, Inc. Recovery Act: Geothermal Technologies Program Klamath Falls, OR...

293

Virginia Geothermal Resources Conservation Act (Virginia)  

Broader source: Energy.gov [DOE]

It is the policy of the Commonwealth of Virginia to foster the development, production, and utilization of geothermal resources, prevent waste of geothermal resources, protect correlative rights to...

294

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal...

295

Accelerating Investments in the Geothermal Sector, Indonesia...  

Open Energy Info (EERE)

in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

296

Residential Tax Credits Boost Maryland Geothermal Business |...  

Broader source: Energy.gov (indexed) [DOE]

Residential Tax Credits Boost Maryland Geothermal Business Residential Tax Credits Boost Maryland Geothermal Business June 18, 2010 - 12:09pm Addthis Paul Lester Communications...

297

Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...  

Office of Scientific and Technical Information (OSTI)

ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

298

Stanford Geothermal Workshop | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and managers...

299

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

300

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal Energy at Oslo Airport Gardermoen.  

E-Print Network [OSTI]

?? Rock Energy is a Norwegian company with a patented solution for drilling deep geothermal wells, for exploitation of deep geothermal energy from Hot Dry… (more)

Huuse, Karine Valle

2012-01-01T23:59:59.000Z

302

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

303

Analysis of Geothermal Reservoir Stimulation using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity Analysis of Geothermal Reservoir Stimulation using...

304

Geothermal Literature Review At Roosevelt Hot Springs Geothermal...  

Open Energy Info (EERE)

Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

305

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Evidence for Large-Scale Laramide Tectonic Inversion and a Mid-Tertiary Caldera Ring Fracture Zone at the Lightning Dock Geothermal System, New Mexico Additional References...

306

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...  

Open Energy Info (EERE)

osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has been applied to Raft River geothermal well RRG-9,...

307

Geothermal: Sponsored by OSTI -- Geothermal Energy: Current abstracts  

Office of Scientific and Technical Information (OSTI)

Energy: Current abstracts Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

308

Chemical logging of geothermal wells  

DOE Patents [OSTI]

The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

309

Advanced biochemical processes for geothermal brines: Current developments  

SciTech Connect (OSTI)

A research program at Brookhaven National Laboratory (BNL) which deals with the development and application of processes for the treatment of geothermal brines and sludges has led to the identification and design of cost-efficient and environmentally friendly treatment methodology. Initially the primary goal of the processing was to convert geothermal wastes into disposable materials whose chemical composition would satisfy environmental regulations. An expansion of the r and D effort identified a combination of biochemical and chemical processes which became the basis for the development of a technology for the treatment of geothermal brines and sludges. The new technology satisfies environmental regulatory requirements and concurrently converts the geothermal brines and sludges into commercially promising products. Because the chemical composition of geothermal wastes depends on the type of the resource, the emerging technology has to be flexible so that it can be readily modified to suit the needs of a particular type of resource. Recent conceptional designs for the processing of hypersaline and low salinity brines and sludges will be discussed.

Premuzic, E.T.; Lin, M.S.; Bohenek, M. [Brookhaven National Lab., Upton, NY (United States). Energy Science and Technology Div.; Bajsarowicz, V. [CET Environmental Services, Inc., Richmond, CA (United States); McCloud, M. [C.E. Holt/California Energy, Pasadena, CA (United States)

1997-07-07T23:59:59.000Z

310

Recommendations of the workshop on advanced geothermal drilling systems  

SciTech Connect (OSTI)

At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

Glowka, D.A.

1997-12-01T23:59:59.000Z

311

Direct application of geothermal energy  

SciTech Connect (OSTI)

An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

Reistad, G.M.

1980-01-01T23:59:59.000Z

312

JOBNAME: No Job Name PAGE: 1 SESS: 21 OUTPUT: Mon Oct 25 11:53:41 2010 SUM: 7B76E294 /v2451/blackwell/journals/nure_v68_is2/nure_344  

E-Print Network [OSTI]

/blackwell/journals/nure_v68_is2/nure_344 Nutritional modifiers of aging brain function: use of uridine

Wurtman, Richard

313

NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS  

SciTech Connect (OSTI)

To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

2013-01-01T23:59:59.000Z

314

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

315

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

316

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

SciTech Connect (OSTI)

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

317

Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation  

SciTech Connect (OSTI)

When power production at The Geysers geothermal power complex began to falter, the National Renewable Energy Laboratory (NREL) stepped in, developing advanced condensing technology that dramatically boosted production efficiency - and making a major contribution to the effective use of geothermal power. NREL developed advanced direct-contact condenser (ADCC) technology to condense spent steam more effectively, improving power production efficiency in Unit 11 by 5%.

Not Available

2010-12-01T23:59:59.000Z

318

National Geothermal Academy Underway at University of Nevada...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Academy is an eight-week intensive summer course in all aspects of geothermal energy development and utilization. Modules include Geothermal Geology and...

319

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

and Otte, C. (eds. ), Geothermal Energy: Stanford Universityfor the Development of Geothermal Energy Resources , JetPotential Use of Geothermal Energy f o r Power Generation

Til, C. J. Van

2012-01-01T23:59:59.000Z

320

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the...

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

322

Ground Gravity Survey At Neal Hot Springs Geothermal Area (U...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2007) Exploration...

323

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

Applications & Operations, Geothermal Energy Division of theP. , and Otte, C. , Geothermal energy: Stanford, California,Applications & Operations, Geothermal Energy Division of the

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

324

Energy Department Announces National Geothermal Data System to...  

Office of Environmental Management (EM)

Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development Energy Department Announces National Geothermal Data System to Accelerate...

325

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

Churchman, C.W.

2011-01-01T23:59:59.000Z

326

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .of Energy, Division of Geothermal Energy effort is theMission of Division of Geothermal Energy The mission of the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

327

Chemical Energy Carriers (CEC) for the Utilization of Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy DOE Geothermal Peer Review 2010 -...

328

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

329

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

the characteristics of a geothermal reservoir: Items 2, 6,new data important to geothermal reservoir engineering prac-forecast performance of the geothermal reservoir and bore

Howard, J. H.

2012-01-01T23:59:59.000Z

330

3D Magnetotelluic characterization of the Coso Geothermal Field  

E-Print Network [OSTI]

130, 475-496. the Coso Geothermal Field, Proc.28 th Workshop on Geothermal Reservoir Engineering, Stanfords ratio and porosity at Coso geothermal area, California: J.

Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

2008-01-01T23:59:59.000Z

331

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .of the Division of Geothermal Energy and these directoratesof Energy, Division of Geothermal Energy effort is the

Bloomster, C.H.

2010-01-01T23:59:59.000Z

332

EVOLUTION & DEVELOPMENT 3:2, 95103 (2001) BLACKWELL SCIENCE, INC. 95  

E-Print Network [OSTI]

EVOLUTION & DEVELOPMENT 3:2, 95­103 (2001) © BLACKWELL SCIENCE, INC. 95 Phenotypic and dynamical of Cell Biology and Anatomy, Basic Science Building, New York Medical College, Valhalla, NY 10595, USA in a syncytium occupying the whole em- bryo. Such mechanisms cannot act in short germ-band in- sects where

Newman, Stuart A.

333

Geothermal Progress Monitor 12  

SciTech Connect (OSTI)

Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

None

1990-12-01T23:59:59.000Z

334

Geothermal Regulatory Roadmap  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal

335

Geothermal: Promotional Video  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps

336

Livingston Campus Geothermal Project The Project  

E-Print Network [OSTI]

Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

Delgado, Mauricio

337

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

338

2013 National Geothermal Student Competition Background  

E-Print Network [OSTI]

1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

Carrington, Emily

339

Geothermal resource evaluation of the Yuma area  

SciTech Connect (OSTI)

This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

Poluianov, E.W.; Mancini, F.P.

1985-11-29T23:59:59.000Z

340

Earthquake and Geothermal Energy  

E-Print Network [OSTI]

The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

Kapoor, Surya Prakash

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

342

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

343

Energy 101: Geothermal Heat Pumps  

SciTech Connect (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2011-01-01T23:59:59.000Z

344

Silica extraction from geothermal water  

DOE Patents [OSTI]

A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

Bourcier, William L; Bruton, Carol J

2014-09-23T23:59:59.000Z

345

New River Geothermal Research Program  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

346

Energy 101: Geothermal Heat Pumps  

ScienceCinema (OSTI)

An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

None

2013-05-29T23:59:59.000Z

347

State Regulatory Oversight of Geothermal  

E-Print Network [OSTI]

State Regulatory Oversight of Geothermal Heat Pump Installations: 2012 Kevin McCray Executive of this project was to update previous research accomplished by the Geothermal Heat Pump Consortium (GHPC of ground-source heat pump (GSHP) systems. The work was to provide insight into existing and anticipated

348

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.l i c a t i o n s of Geothermal Energy Substudy ParticipantsA N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 I

Bresee, J. C.

2011-01-01T23:59:59.000Z

349

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

D. E. Appendix Small Geothermal Power Plants . . . . . . .Assessment, (4) Small Geothermal Power Plants and (5) Hoti - b u t i o n of geothermal power (1400 W e ) . (XBL 785-

Bresee, J. C.

2011-01-01T23:59:59.000Z

350

Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook  

Broader source: Energy.gov [DOE]

Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

351

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.A N INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY J U N E 1978 Il i c a t i o n s of Geothermal Energy Substudy Participants

Bresee, J. C.

2011-01-01T23:59:59.000Z

352

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

Howard, J.H.

2011-01-01T23:59:59.000Z

353

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

Howard, J.H.

2011-01-01T23:59:59.000Z

354

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network [OSTI]

of Geothermal Energy . . . . . . . . . INTRODUCTION. m C.d approach to solar and geothermal energy, r e s o u r c e sl f u e l boilers, and geothermal energy. The model was d e

Bresee, J. C.

2011-01-01T23:59:59.000Z

355

Characterization of geothermal solid wastes  

SciTech Connect (OSTI)

The compositions of 5 major types of geothermal wastes have been determined, and samples have been subjected to EPA recommended extraction tests to determine if they contain toxic metals that would classify the wastes as hazardous. Of the samples tested, the extracts of geothermal brines clearly contain levels of As, Ba and Pb exceeding the maximum allowed concentrations that characterize wastes as toxic. Only one other waste type, geothermal scale, exhibited EP toxicity. Pb was found in the extract of geothermal scale at a level of 7 mg/l, only 2 mg/l over the maximum limit. All of the other types of geothermal waste samples showed levels of toxic metals in the extracts well below the regulated limits.

Morris, W.F.; Stephens, F.B.

1981-07-01T23:59:59.000Z

356

Geothermal resource data base: Arizona  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

357

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

SciTech Connect (OSTI)

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

358

Water Sampling At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valles Caldera - Sulphur Springs Geothermal Area (Trainer, 1974)...

359

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Phillips, 2004)...

360

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area (Ito & Tanaka, 1995)...

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Valles Caldera - Redondo Geothermal Area (Phillips, 2004) Exploration Activity...

362

Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Geothermal Area (Wilt & Haar, 1986)...

363

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

Geothermics. () . Related Geothermal Exploration Activities Activities (3) Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey...

364

Working Fluids and Their Effect on Geothermal Turbines  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

365

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

366

Conceptual Model At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Redondo Geothermal Area (Gardner, 2010) Exploration Activity...

367

Conceptual Model At Valles Caldera - Sulphur Springs Geothermal...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Valles Caldera - Sulphur Springs Geothermal Area (Gardner, 2010) Exploration...

368

Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985) Exploration Activity Details...

369

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

ment methods for geothermal well system param- eters,on calcite-fouled geothermal wells (Michaels, 1979). An

Howard, J. H.

2012-01-01T23:59:59.000Z

370

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

371

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

geology of three geothermal wells, Klamath Falls, Oregon,evaluation of five geothermal wells: in Proceedings Second

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

372

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

373

Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Blue Mountain Geothermal Area (Faulds & Melosh, 2008) Exploration Activity Details Location...

374

Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Boreholes At Blue Mountain Geothermal Area (Parr & Percival, 1991) Exploration Activity Details Location...

375

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014  

SciTech Connect (OSTI)

The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory] (ORCID:0000000228898620); Richards, Maria C. [SMU Geothermal Laboratory

2014-06-24T23:59:59.000Z

376

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

Geothermal EnergyThe future of geothermal energy: Impact of enhanceddown-hole monitoring of geothermal energy systems. ASME 2011

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

377

A COMPARISON OF ESTIMATED AND BACKGROUND SUBSIDENCE RATES IN TEXAS-LOUISIANA GEOPRESSURED GEOTHERMAL AREAS  

E-Print Network [OSTI]

Potential geopressured geothermal-related subsidence ratesto Potential Geopressured Geothermal-RelatedSubsidence Ratesmm). Potential geopressured geothermal-related rubaidence

Lee, L.M.

2010-01-01T23:59:59.000Z

378

Geothermal heating for Caliente, Nevada  

SciTech Connect (OSTI)

Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

Wallis, F.; Schaper, J.

1981-02-01T23:59:59.000Z

379

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

380

Materials for geothermal production  

SciTech Connect (OSTI)

Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY 1991, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO{sub 2}-resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued and considerable success was achieved.

Kukacka, L.E.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal Technologies Office: Publications  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)OctoberGeothermal Technologies

382

Geothermal | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuelDepartmentGeothermal Heat

383

RMOTC - Testing - Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 20115, 2001DataGeothermal Testing Notice: As

384

Geothermal Energy (5 Activities)  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phone 202-586-9904Geothermal EGSGeothermal

385

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic Reports Geothermal Resource

386

Geothermal: Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic ReportsContact Us Geothermal

387

Geothermal Data Repository  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's Geothermal Data

388

Geothermal Data Repository  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's Geothermal

389

Geothermal Data Repository  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's GeothermalNot Logged

390

Geothermal Data Repository  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)UnveilsGeorgeGeoscienceGeothermalPage

391

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

E-Print Network [OSTI]

of Kamchatka. Nauka, Moscow, Russia, 149 pp. (in Russian).geothermal field, Kamchatka, Russia. Geothermics 33, 421–geothermal field, Kamchatka, Russia. Geothermal Resources

Kiryukhin, A.V.

2008-01-01T23:59:59.000Z

392

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network [OSTI]

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

393

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

EXCHANGERS; GEOTHERMAL ENERGY: GEOTHERMAL SPACE HEATING;Well INFORMATION OWNER-- GEOTHERMAL ENERGY AND tUNERAL CORP.ION OhNEf. -- GEOTHERMAL ENERGY AND MINERAL CORP. DRILLING

Cosner, S.R.

2010-01-01T23:59:59.000Z

394

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

of Geothermal Energy", Geothermal Energy, UNESCO, Paris,U. S . Department of Energy, Geothermal Energy DOE/ET/28442-Western United States, Geothermal Energy Magazine vo. 6, no.

Haven, Kendal F.

2012-01-01T23:59:59.000Z

395

Geothermal development plan: northern Arizona  

SciTech Connect (OSTI)

Much of the northern counties (Apache, Coconino, Gila, Mohave, Navajo and Yavapai) is located in the Colorado Plateau province, a region of low geothermal potential. Two areas that do show some potential are the Flagstaff - San Francisco Peaks area and the Springerville area. Flagstaff is rapidly becoming the manufacturing center of Arizona and will have many opportunities to use geothermal energy to satisfy part of its increasing need for energy. Using a computer simulation model, projections of geothermal energy on line as a function of time are made for both private and city-owned utility development of a resource.

White, D.H.; Goldstone, L.A.

1981-01-01T23:59:59.000Z

396

Geothermal: Sponsored by OSTI -- Geothermal Heat Pumps in K-12...  

Office of Scientific and Technical Information (OSTI)

Heat Pumps in K-12 Schools -- A Case Study of the Lincoln, Nebraska, Schools Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

397

Puna Geothermal Venture's Plan for a 25 MW Commercial Geothermal...  

Open Energy Info (EERE)

Venture's Plan for a 25 MW Commercial Geothermal Power Plant on Hawaii's Big Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Puna...

398

Geothermal: Sponsored by OSTI -- Geothermal Energy Multi-Year...  

Office of Scientific and Technical Information (OSTI)

Multi-Year Program Plan FY 1993-1997, January 1992, draft Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

399

Geothermal: Sponsored by OSTI -- Geothermal Energy R&D Program...  

Office of Scientific and Technical Information (OSTI)

R&D Program - Annual Progress Report for Fiscal Year 1990 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

400

US geothermal database and Oregon cascade thermal studies: (Final report)  

SciTech Connect (OSTI)

This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

Blackwell, D.D.; Steele, J.L.; Carter, L.

1988-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Geothermal Drilling and Completion Technology Development Program Annual Progress Report  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

Varnado, S. G.

1981-03-01T23:59:59.000Z

402

Exploration geothermal gradient drilling, Platanares, Honduras, Central America  

SciTech Connect (OSTI)

This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

1988-01-01T23:59:59.000Z

403

Geothermal Data from the National Geothermal Data System (NGDS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Geothermal Data System (NGDS) is a distributed data system providing access to information resources related to geothermal energy from a network of data providers. Data are contributed by academic researchers, private industry, and state and federal agencies. Built on a scalable and open platform through the U.S. Geoscience Information Network (USGIN), NGDS respects data provenance while promoting shared resources.Since NGDS is built using a set of open protocols and standards, relying on the Open Geospatial Consortium (OGC) and International Organization for Standardization (ISO), members of the community may access the data in a variety of proprietary and open-source applications and software. In addition, developers can add functionality to the system by creating new applications based on the open protocols and standards of the NGDS. The NGDS, supported by the U.S. Department of Energy’s Geothermal Technology Program, is intended to provide access to all types of geothermal data to enable geothermal analysis and widespread public use in an effort to reduce the risk of geothermal energy development [copied from http://www.geothermaldata.org/page/about]. See the long list of data contributors at http://geothermaldata.org/page/data-types-and-contributors#data-contributors.

404

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

105.2 EGS Demonstrations 51.4 Innovative Exploration Technologies, 98.1 Ground Source Heat Pumps, 61.9 Geothermal Data, Development, Collection and Maintenance, 33.7 Low...

405

Geothermal Permeability Enhancement - Final Report  

SciTech Connect (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

406

Geothermal energy for American Samoa  

SciTech Connect (OSTI)

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

Not Available

1980-03-01T23:59:59.000Z

407

Geothermal energy technology program summary  

SciTech Connect (OSTI)

The progress to date of the geothermal energy program of the US Department of Energy is briefly summarized, including federal/industry cooperation, program focus, and a budget summary. (ACR)

Not Available

1985-05-01T23:59:59.000Z

408

Decision analysis for geothermal energy  

E-Print Network [OSTI]

One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

Yost, Keith A

2012-01-01T23:59:59.000Z

409

Geothermal Program Review IV: proceedings  

SciTech Connect (OSTI)

The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

Not Available

1985-01-01T23:59:59.000Z

410

GRC Transactions, Vol. 34, 2010 Geothermal, Engineered Geothermal Systems, EGS, induced  

E-Print Network [OSTI]

of IIS, the importance of IIS to the growth of the geothermal energy industry, and suggest possible paths-effect. Injection Induced Seismicity and Geothermal Energy Trenton Cladouhos1 , Susan Petty1 , Gillian Foulger2GRC Transactions, Vol. 34, 2010 1213 Keywords Geothermal, Engineered Geothermal Systems, EGS

Foulger, G. R.

411

Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligenceGainSpanRate-MakingGeothermal power)Geothermal

412

Geothermal Money Book [Geothermal Outreach and Project Financing  

SciTech Connect (OSTI)

Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2004-02-01T23:59:59.000Z

413

Geothermal Development Job Types and Impacts  

Broader source: Energy.gov [DOE]

Development of geothermal power plants and direct-use applications creates a variety of jobs. And the resulting job creation and economic activity within the geothermal industry positively impacts...

414

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD the Stanford Geothermal Program under Department of Energy Contract No. DE-AT-03-80SF11459

Stanford University

415

Geothermal Workforce Education Development and Retention  

Broader source: Energy.gov [DOE]

Formation of a National Geothermal Institute to develop the human resources that will be needed to transform and grow the U.S. energy infrastructure to achieve the utilization of Americas vast geothermal resource base.

416

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

417

2014 Geothermal Resources Council Annual Meeting | Department...  

Broader source: Energy.gov (indexed) [DOE]

2014 Geothermal Resources Council Annual Meeting 2014 Geothermal Resources Council Annual Meeting September 28, 2014 12:00PM PDT to October 1, 2014 9:00PM PDT Oregon Convention...

418

Imperial County geothermal development annual meeting: summary  

SciTech Connect (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

419

Geothermal Heat Pumps | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

420

Parcperdue Geopressure -- Geothermal Project: Appendix E  

SciTech Connect (OSTI)

The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

Sweezy, L.R.

1981-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal innovative technologies catalog  

SciTech Connect (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

422

Geothermal development in Australia  

SciTech Connect (OSTI)

In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

Burns, K.L. [Los Alamos National Lab., NM (United States); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia); Buckingham, N.W. [Glenelg Shire Council, Portland, VIC (Australia); Harrington, H.J. [Australian National Univ., Canberra, ACT (Australia)]|[Sydney Univ., NSW (Australia)

1995-03-01T23:59:59.000Z

423

Integrated Chemical Geothermometry System for Geothermal Exploration...  

Broader source: Energy.gov (indexed) [DOE]

geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracersspycherintegratedchemical.pdf More Documents & Publications Integrated...

424

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

into estimates of seismic hazard relationships between induced seismicity, changes in fracture density, fluid injectionwithdrawal, background stress, and geothermal production....

425

Cuttings Analysis At International Geothermal Area, Indonesia...  

Open Energy Info (EERE)

Indonesia (Laney, 2005) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Cuttings Analysis Activity Date Usefulness not indicated...

426

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

427

A LABORATORY INVESTIGATION OF STEAM ADSORPTION  

E-Print Network [OSTI]

A LABORATORY INVESTIGATION OF STEAM ADSORPTION IN GEOTHERMAL RESERVOIR ROCKS OF STANFORD UNIVERSITY, if any, liquid. Yet to satisfy material bal- ance constraints, another phase besides steam must be present. If steam adsorption occurring in significant amounts is not accounted for, the reserves

Stanford University

428

Geothermal Energy Development annual report 1979  

SciTech Connect (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

429

Geothermal energy for Hawaii: a prospectus  

SciTech Connect (OSTI)

An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

Yen, W.W.S.; Iacofano, D.S.

1981-01-01T23:59:59.000Z

430

Stanford Geothermal Program ml Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program ml Interdisciplinary Research in Engineering and Earth Sciences Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department Geothermal Program, for which am very thankful. iI #12;I am primarily indebted to my wife Martha. Her loving

Stanford University

431

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department and by the Geothermal & Hydrology Technologies Division of the U.S. Dept. of Energy, project No.: DE-AT03-80SF11459. -iv

Stanford University

432

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL  

E-Print Network [OSTI]

THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energy

Politècnica de Catalunya, Universitat

433

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD the Stanford Geothermal Program, Department of Energy contract DE-AT03-80SFl1459 for their financial report Geothermal Program, Department of Energy contract DE-AT03-80SF11459 for their financial report. Also we would

Stanford University

434

Geothermal progress monitor. Progress report No. 7  

SciTech Connect (OSTI)

A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

Not Available

1983-04-01T23:59:59.000Z

435

Geothermal Energy in Iceland Spring 2009  

E-Print Network [OSTI]

Geothermal Energy in Iceland Kaeo Ahu CEE 491 Spring 2009 Final Presentation #12;HISTORY Iceland has five major geothermal power plants (GPP) Two produce electric and thermal energy Three produce Creating the availability of geothermal resources #12;HISTORY & BACKGROUND Iceland's first settlers used

Prevedouros, Panos D.

436

. Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

. Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR- 80 DEPLETION MODELING OF LIQUID DOMINATED GEOTHERMAL RESERVOIRS BY Gudmund 01sen June 1984 Financial support was provided through the Stanford Geothermal Program under

Stanford University

437

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Departnent Geothermal Energy Extraction Scheme .............................................. 2 3.1 Experimental SetupStanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

438

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORTI UNIVERSITY Stanford, California SGP-TR-85 ANALYSIS OF THE STANFORD GEOTHERMAL RESERVOIR MODEL EXPERIMENTS

Stanford University

439

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the DepartmentStanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford, California SGP-TR-81 TRACER TEST ANALYSIS OF THE KLAMATH FALLS GEOTHERMAL RESOURCE

Stanford University

440

Book Review Geothermal Biology and Geochemis-  

E-Print Network [OSTI]

Book Review Geothermal Biology and Geochemis- try in Yellowstone National Park. (eds WP Inskeep of life. The legacy of chemical and biologi- cal research in geothermal regimes, while short in duration geothermal areas, including Yellowstone, are largely confined to the specialty literature of geochemical

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Session: Geothermal Research Volcanology Oral presentation  

E-Print Network [OSTI]

Session: Geothermal Research ­ Volcanology Oral presentation Contribution of multi-methods geophysics to improve the regional knowledge of Bouillante geothermal Province (Guadeloupe) Lydie Gailler1.gailler@brgm.fr The need to understand the geological context of the Bouillante geothermal Province (Basse- Terre

Boyer, Edmond

442

STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM FIRST ANNUAL REPORT t o U.S. DEPARTMENT OF ENERGY LAWRENCE BERKELEY PRESENTATIONS & PUBLICATIONS APPENDIX A: STANDARD GEOTHERMAL PROGRAM WEEKLY SEMINAR ii 1 4 23 35 49 58 60 63 65 Geothermal Program has maintained momentum built up under the previous National Science Foundation support

Stanford University

443

Favourability Map of British Columbia Geothermal Resources  

E-Print Network [OSTI]

Favourability Map of British Columbia Geothermal Resources by Sarah Kimball A THESIS SUBMITTED carbon economy stipulates that power supply must be from renewable and low emission sources. Geothermal energy offers significant benefits to British Columbia which hosts Canadas best geothermal resources

Pedersen, Tom

444

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

445

State Regulatory Oversight of Geothermal Heat Pump  

E-Print Network [OSTI]

State Regulatory Oversight of Geothermal Heat Pump Installa:ons: 2012 & 2009 Kevin McCray, Execu:ve Director #12;2009 #12;Sponsors ·The Geothermal Hea requested geothermal hea:ng and cooling regulatory data. · An email containing

446

Geothermal System Overview ASHRAE Headquarters Building  

E-Print Network [OSTI]

Geothermal System Overview ASHRAE Headquarters Building Dennis Meyer Director of Commercial Sales center #12;Geothermal Loop · Vertical closed-loop ­ 12 bores at 400 feet deep with 1.25" HDPE ­ Boreholes enhanced grout · Standard 2-pipe building loop with VFD pump #12;#12;#12;#12;ClimateMaster Geothermal

Oak Ridge National Laboratory

447

Geothermal Resource Analysis and Structure of Basin and Range...  

Open Energy Info (EERE)

Authors David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith and Jason McKenna Published U.S. Department of Energy, 2003 DOI Not Provided Check for...

448

Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...  

Open Energy Info (EERE)

project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

449

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

SciTech Connect (OSTI)

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

2013-05-15T23:59:59.000Z

450

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

451

Outcomes of the 2013 GTO Workshop on Geothermal Code Comparison  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) is supporting the Department of Energy (DOE) Geothermal Technologies Office (GTO) in organizing and executing a model comparison activity. This project is directed at testing, diagnosing differences, and demonstrating modeling capabilities of a worldwide collection of numerical simulators for evaluating geothermal technologies. A key element of the projct was the planning and implementation of a one-day project kickoff workshop, held February 14, 2013 in Palo Alto, CA. The primary goals of the workshop were to 1) introduce the project and its objectives to potential participating team members, and 2) develop an initial set of test problem descriptions for use in the execution stage. This report summarizes the outcomes of the workshop.

Scheibe, Timothy D.; White, Mark D.; White, Signe K.

2013-03-01T23:59:59.000Z

452

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

E-Print Network [OSTI]

vertical black lines: geothermal wells. Fig. 4. Downholeproduced by Pauzhetsky geothermal wells. The arrows indicate

Kiryukhin, A.V.

2008-01-01T23:59:59.000Z

453

Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii  

SciTech Connect (OSTI)

Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

1993-10-01T23:59:59.000Z

454

"Assistance to States on Geothermal Energy"  

SciTech Connect (OSTI)

This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

Linda Sikkema; Jennifer DeCesaro

2006-07-10T23:59:59.000Z

455

Geothermal progress monitor report No. 6  

SciTech Connect (OSTI)

Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

Not Available

1982-06-01T23:59:59.000Z

456

Geothermal Progress Monitor: Report No. 14  

SciTech Connect (OSTI)

This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

Not Available

1992-12-01T23:59:59.000Z

457

Geothermal Project Data and Personnel Resumes  

SciTech Connect (OSTI)

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

458

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

459

Turbodrilling in the geothermal environment  

SciTech Connect (OSTI)

Geothermal drilling, historically, has presented what seemed to be insurmountable barriers to the efficient and extended use of downhole drilling motors, especially those containing elastomeric bearing or motor components. In addition to being damaging to rubber, the typical temperatures of 350-700/degree/ F create other operating problems as well. Recent innovations, specifically in the Turbodrill design, have opened unrealized potentials and allowed, for the first time, extended downhole drilling of geothermal wells. A presentation is made of the case histories of recent Turbodrill performances in all areas where used. Furthermore, data is presented showing the performance of insert, diamond, and Stratapax bits as they relate to the Turbodrill, together with forecasts as to the potential that turbodrills have to offer in accelerating and controlling the drilling of geothermal and hot petroleum wells. 1 ref.

Herbert, P.

1981-01-01T23:59:59.000Z

460

Alternative Geothermal Power Production Scenarios  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan  

SciTech Connect (OSTI)

Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

Not Available

1994-12-31T23:59:59.000Z

462

Hot Dry Rock; Geothermal Energy  

SciTech Connect (OSTI)

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

None

1990-01-01T23:59:59.000Z

463

Colorado Potential Geothermal Pathways  

SciTech Connect (OSTI)

Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

Zehner, Richard E.

2012-02-01T23:59:59.000Z

464

Geothermal Jobs | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergyPrivacyGeothermalGeothermal Jobs

465

Geothermal Maps | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy FreeportEnergyPrivacyGeothermalGeothermal

466

Geothermal Technologies Program Fact Sheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play FairwayGeothermalClean Domestic

467

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstrationOverviewGeothermal

468

Geothermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat Pumps

469

DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)  

SciTech Connect (OSTI)

This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

Anderson, E. R.

2010-12-14T23:59:59.000Z

470

Energy 101: Geothermal Heat Pumps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves...

471

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2012-01-01T23:59:59.000Z

472

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2010-01-01T23:59:59.000Z

473

MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION  

E-Print Network [OSTI]

h e Nordic Symposium on Geothermal Energy, (May 29-31) 1978.P. , and C. O t t e , Geothermal energy, Stanford Universityresources, i n Geothermal Energy, P. Kruger and C. O t t e (

Bodvarsson, G.S.

2010-01-01T23:59:59.000Z

474

GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)  

E-Print Network [OSTI]

2 Mission of Division of Geothermal Energy . . . . .Nations Symposium on Geothermal Energy, Vol. 1 , p. 487-494.Nations Symposium on Geothermal Energy, Vol. 1 p . l i i i -

Bloomster, C.H.

2010-01-01T23:59:59.000Z

475

Geothermal system saving money at fire station | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

476

Three-Dimensional Seismic Imaging of the Ryepatch Geothermal Reservoir  

E-Print Network [OSTI]

at Well 46-28, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,Seismic Survey, Rye Patch Geothermal Field, Pershing County,

Feighner, Mark A.

2010-01-01T23:59:59.000Z

477

MICROSEISMS IN GEOTHERMAL EXPLORATION: STUDIES IN GRASS VALLEY, NEVADA  

E-Print Network [OSTI]

period seismic noise (T>30 sec) . . . 2.5 Geothermal ground226. Clacy, G.R.T. ? 1968, Geothermal ground noise amplitudestudies at the Cos0 geothermal area, China Lake, California:

Liaw, A.L.C.

2011-01-01T23:59:59.000Z

478

NUMERICAL SIMULATION OF RESERVOIR COMPACTION IN LIQUID DOMINATED GEOTHERMAL SYSTEMS  

E-Print Network [OSTI]

13. modeling of liquid geothermal systems: Ph.D. thesis,of water dominated geothermal fields with large temper~of land subsidence in geothermal areas: Proc. 2nd Int. Symp.

Lippmann, M.J.

2010-01-01T23:59:59.000Z

479

GUIDELINES MANUAL FOR SURFACE MONITORING OF GEOTHERMAL AREAS  

E-Print Network [OSTI]

1976, "Blowout o f a Geothermal Well", California Geology,in Rocks from Two Geothermal Areas'' , -- P1 anetary ScienceMonitoring Ground Movement in Geothermal Areas", Hydraul ic

Til, C. J. Van

2012-01-01T23:59:59.000Z

480

MATHEMATICAL MODELING OF THE BEHAVIOR OF GEOTHERMAL SYSTEMS UNDER EXPLOITATION  

E-Print Network [OSTI]

U. S. Department of Energy, Geothermal direct h e a t a p pU S Department of Energy, Geothermal Energy Division, 87,homes are heated by geothermal energy, and there are plans t

Bodvarsson, G.S.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal laboratory blackwell" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Inversion of synthetic aperture radar interferograms for sources of production-related subsidence at the Dixie Valley geothermal field  

E-Print Network [OSTI]

site and the Okuaizu geothermal field, Japan", Geothermics,at the Cerro Prieto geothermal field, Baja California,and seismicity in the Coso geothermal area, Inyo County,

Foxall, B.; Vasco, D.W.

2008-01-01T23:59:59.000Z

482

99 Blackwell Publishing Ltd, Geology Today,Vol. 24, No. 3, MayJune 2008 Clay as sealing material in  

E-Print Network [OSTI]

99© Blackwell Publishing Ltd, Geology Today,Vol. 24, No. 3, May­June 2008 FEATURE Feature Clay of the initial uranium or plutonium fuel and the products of their decay. The radioactivity of this mixture for at least a hundred thousand years, when its radioactivity will reach that of natural uranium. The most

Kammer, Thomas

483

Geothermal studies at the University of Utah Research Institute  

SciTech Connect (OSTI)

The University of Utah Research Institute (WRI) is a self-supporting corporation organized in December 1972 under the Utah Non-Profit Corporation Association Act. Under its charter, the Institute is separate in its operations and receives no direct financial support from either the University of Utah or the State of Utah. The charter includes provisions for WRI to conduct both public and proprietary scientific work for governmental agencies, academic institutions, private industry, and individuals. WRI is composed of five divisions, shown in Figure 1: the Earth Science Laboratory (ESL), the Environmental Studies Laboratory (EVSL), the Center for Remote Sensing and Cartography (CRSC), the Engineering Technology Laboratory (ETL) and the Atmospheric Physics Laboratory (APL). The Earth Science Laboratory has a staff of geologists, geochemists and geophysicists who have a broad range of experience in geothermal research and field projects as well as in mineral and petroleum exploration. The Environmental Studies Laboratory offers a variety of technical services and research capabilities in the areas of air quality and visibility, acid precipitation, surface and groundwater contamination, and environmentally caused stress in vegetation. The Center for Remote Sensing and Cartography offers applied research and services with a full range of remote sensing and mapping capability, including satellite and airborne imagery processing and interpretation. The Engineering Technology Laboratory is currently studying the interaction of the human body with electromagnetic radiation. The Atmospheric Physics Laboratory is developing hygroscopic droplet growth theory and orographic seeding models for dispersal of fog.

None

1988-07-01T23:59:59.000Z

484

National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering  

SciTech Connect (OSTI)

To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

2013-10-01T23:59:59.000Z

485

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

486

Geothermal NEPA Database on OpenEI (Poster)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database as a platform for government agencies and industry to access and maintain information related to geothermal NEPA documents. The data were collected to inform analyses of NEPA timelines, and the collected data were made publically available via this tool in case others might find the data useful. NREL staff and contractors collected documents from agency websites, during visits to the two busiest Bureau of Land Management (BLM) field offices for geothermal development, and through email and phone call requests from other BLM field offices. They then entered the information into the database, hosted by Open Energy Information (http://en.openei.org/wiki/RAPID/NEPA). The long-term success of the project will depend on the willingness of federal agencies, industry, and others to populate the database with NEPA and related documents, and to use the data for their own analyses. As the information and capabilities of the database expand, developers and agencies can save time on new NEPA reports by accessing a single location to research related activities, their potential impacts, and previously proposed and imposed mitigation measures. NREL used a wiki platform to allow industry and agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users.

Young, K. R.; Levine, A.

2014-09-01T23:59:59.000Z

487

Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations  

SciTech Connect (OSTI)

There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.

Mike Bruno; Russell L. Detwiler; Kang Lao; Vahid Serajian; Jean Elkhoury; Julia Diessl; Nicky White

2012-09-30T23:59:59.000Z

488

Introduction to the Proceedings of the Sixth Geothermal Reservoir Engineering Workshop, Stanford Geothermal Program  

SciTech Connect (OSTI)

The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on thenumerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed i n these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented . Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey ( U.S.G.S.) , Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would l i k e t o thank Jean Cook and Joanne Hartford (Petroleum Engineering Department, Stanford University) without whom there may never have been a Sixth Workshop. Henry J. Ramey, Jr. Paul Kruger Ian G. Donaldson Stanford University December 31, 1980

Ramey, Henry J. Jr.; Kruger, Paul; Donaldson, Ian G.

1980-12-18T23:59:59.000Z

489

Data Acquisition-Manipulation At General Us Region (Blackwell & Richards,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to: navigation, searchIllinois: Energy Resources(Blackwell, Et Al.,

490

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1986 Second Annual Report Department of Energy Contract Number through the evaluation of fluid reserves, and the forecastingl of field behavior with time. Injection al series of Proceedings that are a prominent literature source on geothermal energy. The Program

Stanford University

491

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

Stanford University

492

Turbodrilling in the Geothermal Environment  

SciTech Connect (OSTI)

Geothermal drilling, historically, has presented what seemed to be insurmountable barriers to the efficient and extended use of downhole drilling motors, especially those containing elastomeric bearing or motor components. In addition to being damaging to rubber, the typical temperatures of 177 to 371 C (350 to 700 F) create other operating problems as well. Recent innovations, specifically in turbodrill design, have opened heretofore unrealized potentials and allowed, for the first time, extended downhole drilling of geothermal wells. A considerable amount of experience has been obtained both in The Geysers and Imperial County areas of California primarily in directional drilling applications using insert, diamond, and polycrystallines diamond compact bits. Other hot-hole applications are currently being drilled successfully or planned in other states, both onshore and offshore. The turbodrill is devoid of any elastomers or other temperature-sensitive materials, hence, its capabilities are closely matched to the requirements of the industry. The bearing assembly can withstand the rigors found in the drilling of typical geothermal formations and provide the performance necessary to stay in the hole, thus providing increased penetration rates and, hence, more economical drilling. This paper presents case histories of recent turbodrill performances in all areas where used. Furthermore, data will be presented showing the performance of insert, diamond, and polycrystalline diamond bits as they relate to the turbodrill, together with forecasts as to the potential that turbodrills have to offer in accelerating and controlling the drilling of geothermal wells.

Herbert, P.

1981-01-01T23:59:59.000Z

493

Turbodrilling in the geothermal environment  

SciTech Connect (OSTI)

Geothermal drilling, historically, has presented what seemed to be insurmountable barriers to the efficient and extended use of downhole drilling motors, especially those containing elastomeric bearing or motor components. In addition to being damaging to rubber, the typical temperatures of 177/sup 0/ to 371/sup 0/C (350/sup 0/ to 700/sup 0/F) create other operating problems as well. Recent innovations, specifically in turbodrill design, have opened heretofore unrealized potentials and allowed, for the first time, extended downhole drilling of geothermal wells. A considerable amount of experience has been obtained both in The Geysers and Imperial County areas of California primarily in directional drilling applications using insert, diamond, and polycrystallines diamond compact bits. Other hot-hole applications are currently being drilled successfully or planned in other states, both on- and off-shore. The turbodrill is devoid of any elastomers or other temperature-sensitive materials, hence, its capabilities are closely matched to the requirements of the industry. The bearing assembly can withstand the rigors found in the drilling of typical geothermal formations and provide the performance necessary to stay in the hole, thus providing increased penetration rates and, hence, more economical drilling. This paper will present case histories of recent turbodrill performances in all areas where used. Furthermore, data will be presented showing the performance of insert, diamond, and polycrystalline diamond bits as they relate to the turbodrill, together with forecasts as to the potential that turbodrills have to offer in accelerating and controlling the drilling of geothermal wells.

Herbert, P.

1981-01-01T23:59:59.000Z

494

GEOTHERMAL Events | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

January 2015 < prev next > Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Stanford Geothermal Workshop...

495

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL  

E-Print Network [OSTI]

FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY of stimulation is induced shear on preexisting fractures, which increases their transmissibility by orders of magnitude. The processes that create fractured rock are discussed from the perspective of geology and rock

Stanford University

496

Process for cementing geothermal wells  

DOE Patents [OSTI]

A pumpable slurry of coal-filled furfuryl alcohol, furfural, and/or a low molecular weight mono- or copolymer thereof containing, preferably, a catalytic amount of a soluble acid catalyst is used to cement a casing in a geothermal well.

Eilers, Louis H. (Inola, OK)

1985-01-01T23:59:59.000Z

497

California PRC Section 21065.5, Definitions for Geothermal Exploratory...  

Open Energy Info (EERE)

21065.5, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "'Geothermal exploratory project' means a project as...

498

Characterizing Fractures in the Geysers Geothermal Field by Micro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic...

499

Geothermal Technologies Program Peer Review Program June 6 -...  

Broader source: Energy.gov (indexed) [DOE]

highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplenary...

500

A fundamental study on hybrid geothermal energy systems.  

E-Print Network [OSTI]

??Research Doctorate - Doctor of Philosophy (PhD) This thesis focuses on a fundamental study of hybrid geothermal energy systems, in which geothermal energy is hybridised… (more)

Zhou, Cheng

2014-01-01T23:59:59.000Z