Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal: Sponsored by OSTI -- Hydrothermal energy: a source...  

Office of Scientific and Technical Information (OSTI)

Hydrothermal energy: a source of energy for alcohol production Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

2

Property:PotentialGeothermalHydrothermalGeneration | Open Energy  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalGeneration PotentialGeothermalHydrothermalGeneration Jump to: navigation, search Property Name PotentialGeothermalHydrothermalGeneration Property Type Quantity Description The estimated potential energy generation from Geothermal Hydrothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialGeothermalHydrothermalGeneration"

3

Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange  

Open Energy Info (EERE)

Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrothermal Exploration Best Practices and Geothermal Knowledge Exchange on Openei Abstract Though exploring for hydrothermal resources is not new, advances in exploration technologies and the pursuit of less visible resources have created a need to outline exploration best practices. This multi-year study outlines 21 geothermal exploration regions in the Western United States. These regions were developed based on the U.S. Geological Survey (USGS) physiographic regions, then adjusted to fit geothermal parameters such as differences in geologic regime, structure, heat source, surface effects

4

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM,  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Details Activities (3) Areas (1) Regions (0) Abstract: The Raft River geothermal system is located in southern Idaho, near the Utah-Idaho state boarder in the Raft River Valley. The field, which is owned and operated by U.S. Geothermal, has been selected as an EGS demonstration site by the U. S. Department of Energy. This paper summarizes ongoing geologic and petrologic investigations being conducted in support of this project. The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase

5

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

6

Hydrothermal Exploration Best Practices and Geothermal Knowledge...  

Open Energy Info (EERE)

adjusted to fit geothermal parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other...

7

Development of a Hydrothermal Spallation Drilling System for EGS Geothermal  

Open Energy Info (EERE)

Hydrothermal Spallation Drilling System for EGS Geothermal Hydrothermal Spallation Drilling System for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of a Hydrothermal Spallation Drilling System for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Drilling Systems Project Description Potter Drilling has recently demonstrated hydrothermal spallation drilling in the laboratory. Hydrothermal spallation drilling creates boreholes using a focused jet of superheated water, separating individual grains ("spalls") from the rock surface without contact between the rock and the drill head. This process virtually eliminates the need for tripping. Previous tests of flame-jet spallation achieved ROP of 50 ft/hr and higher in hard rock with minimal wear on the drilling assembly, but operating this technology in an air-filled borehole created challenges related to cuttings transport and borehole stability. The Potter Drilling system uses a water based jet technology in a fluid-filled borehole and as a result has the potential to achieve similarly high ROP that is uncompromised by stability or cuttings transport issues.

8

hydropower | OpenEI  

Open Energy Info (EERE)

hydropower hydropower Dataset Summary Description No description given. Source National Renewable Energy Laboratory Date Released July 03rd, 2012 (2 years ago) Date Updated July 03rd, 2012 (2 years ago) Keywords biopower csp geothermal hydropower hydrothermal Renewable Energy Technical Potential rooftop United States utility-scale wind Data text/csv icon United States Renewable Energy Technical Potential (csv, 7.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

9

Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained by temperature monitoring  

E-Print Network [OSTI]

Dynamics of hydrothermal seeps from the Salton Sea geothermal system (California, USA) constrained-, and petroleum-bearing seeps are part of the Salton Sea geothermal system (SSGS) in southern California. Carbon likely reflect a combination of hydrothermal flux variations from the SSGS and the local temporal changes

Svensen, Henrik

10

Geothermal hydrothermal direct heat use: US market size and market penetration estimates  

SciTech Connect (OSTI)

This study estimates the future regional and national market penetration path of hydrothermal geothermal direct heat applications in the United States. A Technology Substitution Model (MARPEN) is developed and used to estimate the energy market shares captured by low-temperature (50 to 150/sup 0/C) hydrothermal geothermal energy systems over the period 1985 to 2020. The sensitivity of hydrothermal direct heat market shares to various government hydrothermal commercialization policies is examined. Several substantive recommendations to help accelerate commercialization of geothermal direct heat utilization in the United States are indicated and possible additional analyses are discussed.

El Sawy, A.H.; Entingh, D.J.

1980-09-01T23:59:59.000Z

11

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

12

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

13

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

14

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

15

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

16

Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

17

Supply of geothermal power from hydrothermal sources: A study of the cost of power in 20 and 40 years  

SciTech Connect (OSTI)

This study develops estimates for the amount of hydrothermal geothermal power that could be on line in 20 and 40 years. This study was intended to represent a snapshot'' in 20 and 40 years of the hydrothermal energy available for electric power production should a market exist for this power. This does not represent the total or maximum amount of hydrothermal power, but is instead an attempt to estimate the rate at which power could be on line constrained by the exploration, development and support infrastructure available to the geothermal industry, but not constrained by the potential market for power.

Petty, S. (Petty (Susan) Consulting, Solano Beach, CA (United States)); Livesay, B.J. (Livesay Consultants, Inc., Encinitas, CA (United States)); Long, W.P. (Carlin Gold Co., Inc., Grass Valley, CA (United States)); Geyer, J. (Geyer (John) and Associates, Vancouver, WA (United States))

1992-11-01T23:59:59.000Z

18

hydrothermal | OpenEI  

Open Energy Info (EERE)

hydrothermal hydrothermal Dataset Summary Description No description given. Source National Renewable Energy Laboratory Date Released July 03rd, 2012 (2 years ago) Date Updated July 03rd, 2012 (2 years ago) Keywords biopower csp geothermal hydropower hydrothermal Renewable Energy Technical Potential rooftop United States utility-scale wind Data text/csv icon United States Renewable Energy Technical Potential (csv, 7.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

19

Controls on the geomorphic expression and evolution of gryphons, pools, and caldera features at hydrothermal seeps in the Salton Sea Geothermal Field,  

E-Print Network [OSTI]

at hydrothermal seeps in the Salton Sea Geothermal Field, southern California Nathan Onderdonk a, , Adriano In the Salton Sea Geothermal Field in southern California, expulsion of gas, sediment and water creates unique.1. Regional setting The Salton Sea Geothermal Field (SSGF) is an area of high heat flow located

Svensen, Henrik

20

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal System Hydrothermal System (Redirected from Hydrothermal Systems) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Hydropower Projects  

Broader source: Energy.gov [DOE]

This report covers the Wind and Water Power Technologies Office's hydropower project funding from fiscal years 2008 to 2014.

22

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

23

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from "http:...

24

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Hydrothermal) (Redirected from Hydrothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in one-third to one-half of the cost of a geothermal project. Copyright ©

25

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and distribution. The agency is seeking projects relating to biomass, geothermal, solar, and wind energy, as well as projects involving hydropower, alternative fuel...

26

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network [OSTI]

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

27

Other Hydrothermal Deposits | Open Energy Information  

Open Energy Info (EERE)

hydrothermal deposits dot the landscape at the Hverir Geothermal Area, Iceland. Photo by Darren Atkins User-specified field for unlisted hydrothermally deposited rock and...

28

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in one-third to one-half of the cost of a geothermal project. Copyright ©

29

Types of Hydropower Plants  

Broader source: Energy.gov [DOE]

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

30

Flexible hydropower: boosting energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flexible hydropower: boosting energy Flexible hydropower: boosting energy New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab....

31

Magnetic susceptibility of volcanic rocks in geothermal areas: application potential in geothermal exploration studies for identification of rocks and zones of hydrothermal alteration  

Science Journals Connector (OSTI)

Magnetic susceptibility and petrographic studies of drilled rock cuttings from two geothermal wells (Az-26 and Az-49) of the important electricity-generating geothermal system, Los Azufres, Mexico, were carried o...

Kailasa Pandarinath; Rajasekhariah Shankar…

2014-07-01T23:59:59.000Z

32

Geothermal Technologies Program Annual Peer Review Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal * In existing hydrothermal fields * Margins of existing hydrothermal fields * "Green Field" development 3 Energy Efficiency & Renewable Energy eere.energy.gov Industry...

33

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

34

Hydropower Potential Screening Study  

E-Print Network [OSTI]

Hydropower Potential Screening Study Gillian Charles GRAC 5/28/14 #12;Latest Hydropower Potential Study Creating a Buzz 2014 DOE study on undeveloped stream reaches 84.7 GW undeveloped hydropower in undeveloped stream reaches hydropower in the PNW #12;Studies at both National

35

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

36

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

37

Energy 101: Hydropower  

ScienceCinema (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-24T23:59:59.000Z

38

National Hydropower Map  

Broader source: Energy.gov [DOE]

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

39

Energy 101: Hydropower  

SciTech Connect (OSTI)

Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

None

2013-04-01T23:59:59.000Z

40

Other Hydrothermal Alteration Products | Open Energy Information  

Open Energy Info (EERE)

alterations compose the landscape at Kerlingarfjoll Geothermal area, Iceland. Photo by Darren Atkins User-specified field for unlisted hydrothermal alteration products....

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2015 Forum on Hydropower  

Broader source: Energy.gov [DOE]

Discover how Canadian hydropower is learning lessons and building the future. Get updated on greenfield, rehabilitation, refurbishment and expansion projects going on across the country. Learn how...

42

National Hydropower Association conference proceedings  

SciTech Connect (OSTI)

These proceedings collect papers on hydroelectricity. Topics include legal developments in hydropower regulation, an overview of the small hydro industry, and financing hydropower projects.

Not Available

1985-01-01T23:59:59.000Z

43

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

44

E-Print Network 3.0 - advanced geothermal primary Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science, Alethea Steingisser Summary: energy and hydropower. The primary use of geothermal resources is for space heating; 87% of Iceland's 280... remaining after...

45

Conventional Hydropower Technologies (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

Not Available

2011-07-01T23:59:59.000Z

46

Hydropower Research & Development | Department of Energy  

Energy Savers [EERE]

Development Hydropower Research & Development Hydropower Research & Development The Water Power Program's hydropower research and development (R&D) efforts focus on advancing...

47

Benefits of Hydropower  

K-12 Energy Lesson Plans and Activities Web site (EERE)

There are many advantages to hydropower than conventional methods of generating electricity, from being a renewable, sustainable resource, to being a reliable back-up source of energy when there are disruptions to electricity.

48

Category:Relict Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Relict Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Relict Geothermal Features Geothermalpower.jpg Looking for the Relict Geothermal Features page? For detailed information on Relict Geothermal Features, click here. Pages in category "Relict Geothermal Features" The following 13 pages are in this category, out of 13 total. A Alunite Argillic-Advanced Argillic Alteration C Carbonate Deposition H Hydrothermal Alteration Hydrothermal Deposition H cont. Hydrothermally Altered Rock Hydrothermally Deposited Rock L Leach Capping

49

Hydropower Memorandum of Understanding  

Broader source: Energy.gov [DOE]

On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long

50

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

51

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

52

Geothermal Brief: Market and Policy Impacts Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal...

53

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

54

Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems  

Broader source: Energy.gov [DOE]

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

55

Hydrothermal Exploration at Pilgrim Hot Springs, Alaska | Department...  

Energy Savers [EERE]

Springs, Alaska Hydrothermal Exploration at Pilgrim Hot Springs, Alaska Lower Temperature Geothermal Resources are Yielding Power Thanks to Energy Department Investments Lower...

56

Hydrothermal Alteration | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Alteration Hydrothermal Alteration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Alteration Dictionary.png Hydrothermal Alteration: No definition has been provided for this term. Add a Definition Opalized rock is often valued for its spectacular colors and it may indicate past hydrothermal activity (reference: https://uwaterloo.ca/earth-sciences-museum/what-earth/what-earth-minerals/what-earth-precious-opal) The heat and minerals of hydrothermal waters may result in the chemical alteration of rocks that it comes in contact with. The minerals that result from this alteration may be evidence of past hydrothermal activity. Opalization - alteration to opal. Argillization- alteration to clay minerals such as smectite, illite, and kaolinite which often form caprocks.

57

Hydrothermal Deposition | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Deposition Hydrothermal Deposition Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Deposition Dictionary.png Hydrothermal Deposition: No definition has been provided for this term. Add a Definition Quartz veins indicate ancient fluid flow, possibly the result of a hydrothermal system (reference: http://www.nvcc.edu/home/cbentley/dc_rocks/) Tufa mounds indicate the location of extinct hot springs. In this photo they show the ancient extent of the surface manifestations at Mono Lake, CA (reference: http://news.medill.northwestern.edu/climatechange/page.aspx?id=170704)(photo by Scott Stine) Hydrothermal water carries minerals as it travels through the crust. These minerals are often deposited as pressure decreases as the fluid approaches

58

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

59

NREL: Learning - Pumped Hydropower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pumped Hydropower Pumped Hydropower Pumped hydro facilities use off-peak electricity to pump water from a lower reservoir into one at a higher elevation. When the water stored in the upper reservoir is released, it is passed through hydraulic turbines to generate electricity. The off-peak electrical energy used to pump the water up hill can be stored indefinitely as gravitational energy in the upper reservoir. Thus, two reservoirs in combination can be used to store electrical energy for a long period of time, and in large quantities. Utilities generally prefer to operate large coal and nuclear power stations at full power all the time (referred to as "baseload generation"), so in the middle of the night, these plants often produce more power than is needed. Pumped hydro energy storage can be used to smooth out the demand

60

How Hydropower Works | Department of Energy  

Energy Savers [EERE]

How Hydropower Works How Hydropower Works Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Hydropower is using water to power machinery...

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hydrothermal industrialization: direct heat development. Final report  

SciTech Connect (OSTI)

A description of hydrothermal resources suitable for direct applications, their associated temperatures, geographic distribution and developable capacity are given. An overview of the hydrothermal direct-heat development infrastructure is presented. Development activity is highlighted by examining known and planned geothermal direct-use applications. Underlying assumptions and results for three studies conducted to determine direct-use market penetration of geothermal energy are discussed.

Not Available

1982-05-01T23:59:59.000Z

62

National Hydropower Association Annual Conference  

Broader source: Energy.gov [DOE]

Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

63

Correlation of hydrothermal sericite composition with permeability and  

Open Energy Info (EERE)

Correlation of hydrothermal sericite composition with permeability and Correlation of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Correlation of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Petrographic and geochemical analyses of cuttings from six wells in the Coso Hot Springs geothermal field show a systematic variation in the occurrence, texture, and composition of sericite that can be correlated with high permeability production zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic

64

Structural Settings Of Hydrothermal Outflow- Fracture Permeability  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal outflow occurs most commonly at the terminations of individual faults and where multiple faults interact. These areas of fault propagation and interaction are sites of elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As

65

History of Hydropower | Department of Energy  

Energy Savers [EERE]

History of Hydropower History of Hydropower Humans have been harnessing water to perform work for thousands of years. The Greeks used water wheels for grinding wheat into flour...

66

NREL: Climate Neutral Research Campuses - Hydropower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

organizations that are not electric utilities. The following resources explain the fundamentals of hydropower and ocean energy technologies: Hydropower Basics: The DOE Wind...

67

Template:GeothermalProject | Open Energy Information  

Open Energy Info (EERE)

This is the 'GeothermalProject' template. To define a new Geothermal This is the 'GeothermalProject' template. To define a new Geothermal Development Project, please use the Geothermal Development Project Form. Parameters Place - The city and state in which the development project is located. County - The county in which the development project is located GeothermalArea - The geothermal area in which the development project is located. Coordinates - The coordinates (lat, lon) of the resource area. Developer - Project developer ProjectType - The type of project. Typically one of the following: Conventional Hydrothermal (Unproduced) Resource, Conventional Hydrothermal (Produced) Resource, Conventional Hydrothermal Expansion, Coproduction, Geopressured Geopressured System, EGS GEADevelopmentPhase - The phase of plant construction, as defined by

68

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

69

Geothermal EGS Demonstration Photo Library  

Broader source: Energy.gov [DOE]

EGS Demonstrations make up the most advanced research and science investments in the geothermal sector. Five active demonstration sites nationwide are proving the spectrum of EGS potential, in and near existing hydrothermal operations, with infrastructure, and in the longer-term greenfield settings, where no previous geothermal development is operating.

70

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

71

Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales  

Science Journals Connector (OSTI)

...precipitation (26). Energy Pathways. Nations must...needs for electrical energy while minimizing GHG...social and environmental costs. In the near- to medium-term...wind, nuclear, and geothermal plants. Hydropower...advances for solar and wind energy improve their competitiveness...

Claudia M. Stickler; Michael T. Coe; Marcos H. Costa; Daniel C. Nepstad; David G. McGrath; Livia C. P. Dias; Hermann O. Rodrigues; Britaldo S. Soares-Filho

2013-01-01T23:59:59.000Z

72

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value...  

Broader source: Energy.gov (indexed) [DOE]

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S. Pumped Storage Hydropower...

73

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal  

Open Energy Info (EERE)

Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal alteration and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago. Deep drill holes provide a complete transect across the thermal system and samples of the modern-day steam. The hydrothermal system was liquid-dominated prior to formation of the modern vapor-dominated regime at 0.25 to 0.28 Ma. Maximum

74

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

75

Relict Geothermal Features | Open Energy Information  

Open Energy Info (EERE)

Relict Geothermal Features Relict Geothermal Features Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Relict Geothermal Features Dictionary.png Relict Geothermal Features: No definition has been provided for this term. Add a Definition Relict geothermal surface feature, include the mineral formations left behind by hot springs, fumaroles, and geysers as well as the alteration of minerals by geothermal waters (e.g. opalization of sediments). Such alteration and deposits are indicators of past hydrothermal activity. Though surface activity has ceased in many areas, relict geothermal features may indicate the presence of a still active geothermal system below the surface. Retrieved from "http://en.openei.org/w/index.php?title=Relict_Geothermal_Features&oldid=600720"

76

Geothermal Energy Program overview  

SciTech Connect (OSTI)

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

77

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

78

Hydrothermal Processing  

SciTech Connect (OSTI)

This chapter is a contribution to a book on Thermochemical Conversion of Biomass being edited by Prof. Robert Brown of Iowa State University. It describes both hydrothermal liquefaction and hydrothermal gasification of biomass to fuels.

Elliott, Douglas C.

2011-03-11T23:59:59.000Z

79

Hydropower Basics | Department of Energy  

Energy Savers [EERE]

Basics Hydropower Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Most people associate water power with the Hoover Dam -- a huge...

80

Hydropower Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydropower Technology Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydropower Technology Basics Hydropower Technology Basics Hydropower Technology Basics August 14, 2013 - 3:03pm Addthis Text Version Photo of the reservoir in front of a hydropower dam. Hydropower, or hydroelectric power, is the most common and least expensive source of renewable electricity in the United States today. According to the Energy Information Administration, more than 6% of the country's electricity was produced from hydropower resources in 2008, and about 70% of all renewable electricity generated in the United States came from hydropower resources. Hydropower technologies have a long history of use because of their many benefits, including high availability and lack of emissions. Hydropower technologies use flowing water to create energy that can be captured and turned into electricity. Both large and small-scale power

82

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

83

Template:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

GeothermalRegion GeothermalRegion Jump to: navigation, search This is the GeothermalRegion template. To define a new Geothermal Region, please use the Geothermal Region form. Parameters Map - The map of the region. State - The state in which the resource area is located. Area - The estimated size of the area in which the resource area is located, in km². IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate. UndiscoveredHydrothermalPotential - The estimated undiscovered hydroelectric generation potential in megawatts from the USGS resource estimate. PlannedCapacity - The total planned capacity for the region in megawatts. Number of Plants Included in Planned Estimate - The number of plants

84

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

85

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER  

E-Print Network [OSTI]

CLIMATE CHANGE EFFECTS ON THE HIGHELEVATION HYDROPOWER SYSTEM Energy Commission's California Climate Change Center JULY 2012 CEC5002012020 Prepared for: California consideration of climate change effects on highelevation hydropower supply and demand in California. Artificial

86

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

87

Chapter 12 - Geothermal Energy  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses where the earth's thermal energy is sufficiently concentrated for economic use, the various types of geothermal systems, the production and utilization of the resource, and the environmental benefits and costs of geothermal production. Earth scientists quantify the energy and temperature in the earth in terms of heat flow and temperature gradient. The heat of the earth is derived from two components: the heat generated by the formation of the earth, and heat generated by radioactive decay of elements in the upper parts of the earth. The word “geothermal” comes from the combination of the Greek words gêo, meaning earth, and thérm, meaning heat. Geothermal resources are concentrations of the earth's heat, or geothermal energy, that can be extracted and used economically now or in the reasonable future. The earth contains an immense amount of heat but the heat generally is too diffuse or deep for economic use. Hence, the search for geothermal resources focuses on those areas of the earth's crust where geological processes have raised temperatures near enough to the surface that the heat contained can be utilized. Currently, only concentrations of heat associated with water in permeable rocks can be exploited economically. These systems are known as hydrothermal geothermal systems. All commercial geothermal production is currently restricted to geothermal systems that are sufficiently hot for the use and that contain a reservoir with sufficient available water and productivity for economic development. Geothermal energy is one of the cleaner forms of energy now available in commercial quantities. Use of geothermal energy avoids the problems of acid rain and greatly reduces greenhouse gas emissions and other forms of air pollution.

Joel L. Renner

2008-01-01T23:59:59.000Z

88

Harnessing Hydropower: The Earth's Natural Resource  

SciTech Connect (OSTI)

This document is a layman's overview of hydroelectric power. It includes information on: History of Hydropower; Nature’s Water Cycle; Hydropower Plants; Turbines and Generators; Transmission Systems; power dispatching centers; and Substations. It goes on to discuss The Power Grid, Hydropower in the 21st Century; Energy and the Environment; and how hydropower is useful for Meeting Peak Demands. It briefly addresses how Western Area Power Administration is Responding to Environmental Concerns.

none,

2011-04-01T23:59:59.000Z

89

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

90

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid  

Open Energy Info (EERE)

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Details Activities (4) Areas (4) Regions (0) Abstract: A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. Analyses are in progress on inclusions from the Salton Sea, Valles Caldera, Geysers, and Coso geothermal systems. Author(s): Mckibben, M. A.

91

Geothermal: Sponsored by OSTI -- The Role of Low-Angle Extensional...  

Office of Scientific and Technical Information (OSTI)

Role of Low-Angle Extensional Tectonics, Flat Fracture Domains, and Gravity Slides in Hydrothermal and EGS Resources of the Western United States Geothermal Technologies Legacy...

92

Development Of Genetic Occurrence Models For Geothermal Prospecting | Open  

Open Energy Info (EERE)

Development Of Genetic Occurrence Models For Geothermal Prospecting Development Of Genetic Occurrence Models For Geothermal Prospecting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Development Of Genetic Occurrence Models For Geothermal Prospecting Details Activities (1) Areas (1) Regions (0) Abstract: Exploration strategies based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust, and foster the conditions for shallow hydrothermal circulation or enhanced geothermal systems (EGS) exploration, are required to search efficiently for 'blind' geothermal resources. We propose a genetically based screening protocol to assess potentially prospective geothermal resources, beginning at the plate boundary scale and progressively focusing in on the scale of a producing

93

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

94

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

95

Federal Memorandum of Understanding for Hydropower/Resources | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower/Resources Memorandum of Understanding for Hydropower/Resources < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources MOU Related Resources Hydropower Resources Assessment at Existing Reclamation Facilities An Assessment of Energy Potential at Non-Powered Dams in the United States Assessment of Potential Capacity Increases at Existing Hydropower Plants Site Inventory and Hydropower Energy Assessment of Reclamation Owned Conduits Potential Hydroelectric Development at Existing Federal Facilities Advanced Conventional Hydropower Planning and Operation Analysis Tools The Integrated Basin-Scale Opportunity Assessment Initiative, FY

96

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

97

Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES  

E-Print Network [OSTI]

Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

Lund, Jay R.

98

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin  

E-Print Network [OSTI]

ORIGINAL ARTICLE Hydropower development in the lower Mekong basin: alternative approaches to deal hydropower generation and potentially irreversible negative impacts on the ecosystems that provide hydropower generation and potentially irreversible negative impacts on the ecosystems that provide

Vermont, University of

99

Sensor Fish Re-design to Support Advance Hydropower Development...  

Broader source: Energy.gov (indexed) [DOE]

Sensor Fish Re-design to Support Advance Hydropower Development Sensor Fish Re-design to Support Advance Hydropower Development Sensor Fish Re-design to Support Advance Hydropower...

100

Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open  

Open Energy Info (EERE)

Geothermal Region (1990) Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) Exploration Activity Details Location Valles Caldera Geothermal Region Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal power development in Hawaii. Volume I. Review and analysis  

SciTech Connect (OSTI)

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

102

Hydropower Resource Assessment and Characterization | Department...  

Energy Savers [EERE]

Assessment and Characterization Hydropower Resource Assessment and Characterization The Water Power Program has released reports and maps that assess the total technically...

103

Hydropower Market Acceleration and Deployment | Department of...  

Office of Environmental Management (EM)

Impacts and Mitigation Hydropower can have adverse environmental impacts on fish populations and migrations, on water quality in reservoirs and downstream from dams,...

104

Hydropower and Ocean Energy Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector.

105

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

106

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

107

Federal Memorandum of Understanding for Hydropower/Federal Inland  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Federal Memorandum of Understanding for Hydropower/Federal Inland Hydropower Working Group < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Federal Inland Hydropower Working Group The Federal Inland Hydropower Working Group is made up of 15 federal entities involved in the regulation, management, or development of hydropower resources (including hydrokinetics) in rivers and streams of the

108

Federal Energy Management Program: Hydropower and Ocean Energy Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydropower and Hydropower and Ocean Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Hydropower and Ocean Energy Resources and Technologies on AddThis.com... Energy-Efficient Products

109

Quantifying the Value of Hydropower in the Electric Grid: Final...  

Energy Savers [EERE]

research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid....

110

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

111

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

112

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

113

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published...

114

Considering Climate Change in Hydropower Relicensing  

E-Print Network [OSTI]

Considering Climate Change in Hydropower Relicensing ENVIRONMENTAL AREA RESEARCH PIER Environmental climate change when relicensing hydropower units, stating that there is a lack of scientific information this project, researchers are conducting an environmental study on climate change for the Yuba River

115

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

116

U.S. Hydropower Resource Assessment - California  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

117

US hydropower resource assessment for Utah  

SciTech Connect (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01T23:59:59.000Z

118

US hydropower resource assessment for Colorado  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

Francfort, J.E.

1994-05-01T23:59:59.000Z

119

Economic Impact Analysis for EGS Geothermal Project | Open Energy  

Open Energy Info (EERE)

Impact Analysis for EGS Geothermal Project Impact Analysis for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Economic Impact Analysis for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This proposed study will involve studying the impacts associated with jobs, energy and environment (as a result of investments in geothermal industry and specific EGS technologies) through the creation of a Geothermal Economic Calculator tool (GEC). The study will cover Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. The GEC created will be capable of helping end users (public and the industry) perform region specific economic impact analyses using a web platform that will be hosted by EGI for different geothermal technologies under EGS that will be used for electric power production.

120

Hydropower: Setting a Course for Our Energy Future  

SciTech Connect (OSTI)

Hydropower is an annual publication that provides an overview of the Department of Energy's Hydropower Program. The mission of the program is to conduct research and development that will increase the technical, societal, and environmental benefits of hydropower and provide cost-competitive technologies that enable the development of new and incremental hydropower capacity.

Not Available

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydropower'10 6th International Hydropower Conference, 13 February 2010, Troms, NORWAY Understanding Future Climate Impacts on Scotland's  

E-Print Network [OSTI]

Hydropower'10 ­ 6th International Hydropower Conference, 13 February 2010, Tromsø, NORWAY Understanding Future Climate Impacts on Scotland's Hydropower Resource Niall Duncan*, Gareth. P. Harrison and A energy by 2020. As hydropower currently makes up over 10% (1383 MW) of Scotland's installed generation

Harrison, Gareth

122

Surficial Extent And Conceptual Model Of Hydrothermal System At Mount  

Open Energy Info (EERE)

Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Surficial Extent And Conceptual Model Of Hydrothermal System At Mount Rainier, Washington Details Activities (4) Areas (2) Regions (0) Abstract: A once massive hydrothermal system was disgorged from the summit of Mount Rainier in a highly destructive manner about 5000 years ago. Today, hydrothermal processes are depositing clayey alteration products that have the potential to reset the stage for similar events in the future. Areas of active hydrothermal alteration occur in three representative settings: 1. (1) An extensive area (greater than 12,000 m2) of heated ground and slightly acidic boiling-point fumaroles at 76-82°C at

123

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) | Open Energy  

Open Energy Info (EERE)

SWIR at Steamboat Springs Geothermal Area (Kruse 2012) SWIR at Steamboat Springs Geothermal Area (Kruse 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: SWIR At Steamboat Springs Geothermal Area (Kruse 2012) Exploration Activity Details Location Steamboat Springs Geothermal Area Exploration Technique SWIR Activity Date Spectral Imaging Sensor MASTER, ASTER, AVIRIS Usefulness useful DOE-funding none Notes Analysis of the SWIR MASTER/ASTER data allow mapping of characteristic minerals associated with hot springs/mineral deposits, including carbonate, kaolinite, alunite, buddingtonite, muscovite, and hydrothermal silica. Mineral identification and the general distribution of specific minerals were verified utilizing ground spectral measurements and mineral maps produced from AVIRIS hyperspectral data.

124

Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

0) 0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1990) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first seven months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems

125

Geothermal materials development  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

126

Idaho National Laboratory - Hydropower Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research and Development Engineering Research and Development 1997 Alden Research Laboratory, Inc. and Northern Research and Engineering Corporation, 1997, Development of a More Fish-Tolerant Turbine Runner, Advanced Hydropower Turbine Project, ARL Report No. 13-97/M63F, DOE/ID-10571. Alden Research Laboratory, Inc. and Northern Research and Engineering Corporation conducted a research program to develop a turbine runner which will minimize fish injury and mortality at hydroelectric projects. An existing pump impeller provided the starting point for developing the fish-tolerant turbine runner. The Hidrostal pump is a single-bladed combined screw/centrifugal pump which has been proven to transport fish with minimal injury. The focus of this research project was to develop a new runner geometry which is effective in downstream fish passage and

127

Chemical and isotopic characteristics of the coso east flank hydrothermal  

Open Energy Info (EERE)

isotopic characteristics of the coso east flank hydrothermal isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Chemical and isotopic characteristics of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Details Activities (1) Areas (1) Regions (0) Abstract: Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

128

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy—geo (earth) + thermal (heat)—is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

129

Brainpower for Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Brainpower for Hydropower Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today the Energy Department announced 2012 selections for the Hydro Fellowship Program. This fellowship program provides participants with financial assistance and the opportunity to pursue a variety of hydropower research topics. Today, the Energy Department, in cooperation with the Hydro Research

130

Brainpower for Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Brainpower for Hydropower Brainpower for Hydropower Brainpower for Hydropower May 10, 2012 - 4:27pm Addthis Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Mark Cecchini-Beaver at the University of Idaho is one of ten new participants in the Hydro Fellowship Program. | Photo courtesy of the Hydro Research Foundation. Jonathan Bartlett Wind Powering America National Coordinator What are the key facts? Today the Energy Department announced 2012 selections for the Hydro Fellowship Program. This fellowship program provides participants with financial assistance and the opportunity to pursue a variety of hydropower research topics. Today, the Energy Department, in cooperation with the Hydro Research

131

Types of Hydropower Turbines | Department of Energy  

Energy Savers [EERE]

type of hydropower turbine selected for a project is based on the height of standing water-referred to as "head"-and the flow, or volume of water, at the site. Other deciding...

132

Microsoft Word - Hydropower Council Agenda 2007.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Hydropower Council Vicksburg, Mississippi June 12, 2007 Tuesday, June 12 1:00 p.m. Welcome Vicksburg District 1:05 p.m. Introductions All 1:15 p.m. Presentation of the...

133

Hydropower Resource Assessment of Brazilian Streams  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

Douglas G. Hall

2011-09-01T23:59:59.000Z

134

Colorado's hydrothermal resource base: an assessment  

SciTech Connect (OSTI)

As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

Pearl, R.H.

1981-01-01T23:59:59.000Z

135

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

136

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... « The Geysers ». Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

137

Neutron imaging for geothermal energy systems  

SciTech Connect (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

138

Alternative Geothermal Power Production Scenarios  

SciTech Connect (OSTI)

The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

Sullivan, John

2014-03-14T23:59:59.000Z

139

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network [OSTI]

geothermal, biomass, and hydropower). Finally, Olson etthe contributions of hydropower, biomass, and geothermal dothe contribution of hydropower, biomass, and geothermal

Mills, Andrew D

2011-01-01T23:59:59.000Z

140

Geothermal pipeline  

SciTech Connect (OSTI)

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Federal Geothermal Research Program Update, FY 2000  

SciTech Connect (OSTI)

The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

Renner, Joel Lawrence

2001-08-01T23:59:59.000Z

142

Relations Of Ammonium Minerals At Several Hydrothermal Systems In The  

Open Energy Info (EERE)

Relations Of Ammonium Minerals At Several Hydrothermal Systems In The Relations Of Ammonium Minerals At Several Hydrothermal Systems In The Western Us Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Relations Of Ammonium Minerals At Several Hydrothermal Systems In The Western Us Details Activities (5) Areas (1) Regions (0) Abstract: Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing

143

Property:IdentifiedHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

IdentifiedHydrothermalPotential IdentifiedHydrothermalPotential Jump to: navigation, search Property Name IdentifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

144

Property:UndiscoveredHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

UndiscoveredHydrothermalPotential UndiscoveredHydrothermalPotential Jump to: navigation, search Property Name UndiscoveredHydrothermalPotential Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

145

Hydropower and Ocean Energy Resources and Technologies | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies Hydropower and Ocean Energy Resources and Technologies October 7, 2013 - 9:29am Addthis Photo of water flowing from several openings in a hydropower dam. Hydropower produces 10% of the nation's energy, including power from the Ice Harbor Dam in Burbank, Washington. This page provides a brief overview of hydropower and ocean energy resources and technologies supplemented by specific information to apply these technologies within the Federal sector. Overview Hydropower has been used for centuries to power machinery, but the application most commonly associated with hydropower is electricity production through dams. Ocean energy refers to various forms of renewable energy harnessed from the ocean. There are two primary types of ocean energy: mechanical and thermal.

146

1 INTRODUCTION High-head storage hydropower plants operate  

E-Print Network [OSTI]

1 INTRODUCTION High-head storage hydropower plants operate their turbines during periods of high Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland ABSTRACT: High-head storage hydropower plants

Floreano, Dario

147

Energy Department Making Hydropower More Eco-Friendly  

Office of Energy Efficiency and Renewable Energy (EERE)

Hydropower has long provided a flexible, low-cost, and renewable source of power for the United States—since the 1800s, in fact. Even today, in fact, hydropower accounted for roughly half of the...

148

NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Data Geothermal Data This dataset is a qualitative assessment of geothermal potential for the U.S. using Enhanced Geothermal Systems (EGS) and based on the levelized cost of electricity with CLASS 1 being most favorable and CLASS 5 being least favorable. This dataset does not include shallow EGS resources located near hydrothermal sites or the U.S. Geological Survey assessment of undiscovered hydrothermal resources. The source data for deep EGS includes temperature at depth from 3 to 10 kilometer (km) were provided by the Southern Methodist University Geothermal Laboratory (Blackwell & Richards, 2009) and the analyses for regions with temperatures ≥150°C were performed by NREL (2009). CLASS 999 regions have temperatures less than 150°C at a 10-km depth and were not assessed for deep EGS potential.

149

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

150

Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv | Open  

Open Energy Info (EERE)

Sensing For Geothermal Exploration Over Buffalo Valley, Nv Sensing For Geothermal Exploration Over Buffalo Valley, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Remote Sensing For Geothermal Exploration Over Buffalo Valley, Nv Details Activities (1) Areas (1) Regions (0) Abstract: Remote sensing is a useful tool for identifying the surface expression of geothermal systems based on characteristic mineral assemblages that result from hydrothermal alteration (Kratt et al., 2004; Vaughan et al., 2005). Buffalo Valley in Pershing and Lander Counties, Nevada, is an area of high potential for geothermal energy production (Shevenell et al., 2004). Geothermal heat is expressed by several hot springs with surface temperatures of up to 79°C (Olmsted et al., 1975). The hot springs and a chain of Quaternary cinder cones appear to be

151

The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy  

Open Energy Info (EERE)

Geyser Bight Geothermal Area, Umnak Island, Alaska Geyser Bight Geothermal Area, Umnak Island, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Geyser Bight Geothermal Area, Umnak Island, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO2 rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165° and 200°C,

152

Geothermal Power and Interconnection: The Economics of Getting to Market  

SciTech Connect (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

153

forreading. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES IN THE  

E-Print Network [OSTI]

O nly forreading. D o notD ow nload. RECONCILING HYDROPOWER AND ENVIRONMENTAL WATER USES Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China conflicting uses, hydropower and environmental, using the Leishui River basin and Dongjiang reservoir

Pasternack, Gregory B.

154

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

155

Huaneng Lancang River Hydropower | Open Energy Information  

Open Energy Info (EERE)

Lancang River Hydropower Lancang River Hydropower Jump to: navigation, search Name Huaneng Lancang River Hydropower Place Kunming, Yunnan Province, China Zip 650214 Sector Hydro, Solar Product Developer of hydro and solar power projects. Coordinates 25.051001°, 102.702011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.051001,"lon":102.702011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

Commonwealth Hydropower Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Hydropower Program Commonwealth Hydropower Program Commonwealth Hydropower Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Water Buying & Making Electricity Home Weatherization Maximum Rebate Design and Construction: $600,000 Feasibility study: $40,000 Program Info Funding Source Massachusetts Renewable Energy Trust Start Date 09/2009 State Massachusetts Program Type State Grant Program Rebate Amount Design and Construction: 50% of costs or $1.00 per incremental kWh per year Feasibility study: 80% of costs Provider Massachusetts Clean Energy Center Note: This program reopened March 15, 2013. There is $1,200,000 available for Round 5; applications will be accepted on a rolling basis until funding

157

Boosting America's Hydropower Output | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Boosting America's Hydropower Output Boosting America's Hydropower Output Boosting America's Hydropower Output October 9, 2012 - 2:10pm Addthis The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. City of Boulder employees celebrate the completion of the Boulder Canyon Hydroelectric Modernization project. | Photo courtesy of the city of Boulder, Colorado. The Boulder Canyon Hydroelectric Facility's new, highly-efficient turbine. | Photo courtesy of the city of Boulder, Colorado.

158

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

159

Stanford Geothermal Workshop- Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

160

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ENVIRONMENTAL ASSESSMENT FOR HYDROPOWER PILOT PROJECT LICENSE  

Broader source: Energy.gov (indexed) [DOE]

FOR HYDROPOWER PILOT PROJECT LICENSE Admiralty Inlet Pilot Tidal Project-FERC Project No. 12690-005 (DOE/EA-1949) Washington Federal Energy Regulatory Commission Office of Energy Projects Division of Hydropower Licensing 888 First Street, NE Washington, DC 20426 U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 1617 Cole Boulevard Golden, Colorado 80401 January 15, 2013 20130115-3035 FERC PDF (Unofficial) 01/15/2013 i TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ iv LIST OF TABLES............................................................................................................... v EXECUTIVE SUMMARY ................................................................................................

162

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas  

Open Energy Info (EERE)

Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Strategies For Detecting Hidden Geothermal Systems By Near-Surface Gas Monitoring Details Activities (6) Areas (1) Regions (0) Abstract: Hidden geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates the potential for CO2 detection and monitoring in the

163

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

164

A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal  

Open Energy Info (EERE)

Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal System Details Activities (3) Areas (1) Regions (0) Abstract: Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that similar to 7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow of mantle-derived helium up along the

165

Geothermal News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

166

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

167

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Community’s supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

168

$26.6 Million for Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

$26.6 Million for Hydropower $26.6 Million for Hydropower $26.6 Million for Hydropower April 5, 2011 - 4:52pm Addthis Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ice Harbor Dam | Photo courtesy of the US Army Corps of Engineers Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Today, the Department of Energy and the Department of Interior announced $26.6 million of available funding for companies and entrepreneurs looking to advance hydropower. "By improving hydropower technology, we can maximize America's biggest source of renewable energy in an environmentally responsible way," said Secretary Chu. Specifically, funding is available for projects in the following four areas: Sustainable small hydropower Environmental mitigation technologies for conventional hydropower

169

&#8220;Sustainable development of hydropower in third countries: The  

Broader source: Energy.gov (indexed) [DOE]

Sustainable development of hydropower in third countries: Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight agains “Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight agains “Sustainable development of hydropower in third countries: The development of hydropower on a sustainable basis has been an array of humanitarian and economic development, especially for local people as well as an important tool in the fight against glo

170

Federal Memorandum of Understanding for Hydropower | Open Energy  

Open Energy Info (EERE)

Memorandum of Understanding for Hydropower Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Federal Memorandum of Understanding for Hydropower On March 24, 2010, the Department of the Army through the U.S. Army Corps of Engineers, the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to "help meet the nation's needs for reliable, affordable, and environmentally sustainable hydropower by building a long-term working relationship, prioritizing similar goals, and aligning ongoing and future renewable energy development efforts." Additionally, the MOU aims to

171

Antu County 303 Hydropower Station Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Antu County 303 Hydropower Station Co Ltd Antu County 303 Hydropower Station Co Ltd Jump to: navigation, search Name Antu County 303 Hydropower Station Co., Ltd. Place Jilin Province, China Zip 133613 Sector Hydro Product China-based small hydro CDM project developer. References Antu County 303 Hydropower Station Co., Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Antu County 303 Hydropower Station Co., Ltd. is a company located in Jilin Province, China . References ↑ "Antu County 303 Hydropower Station Co., Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Antu_County_303_Hydropower_Station_Co_Ltd&oldid=342210" Categories: Clean Energy Organizations Companies Organizations

172

Virtual Hydropower Prospector | Open Energy Information  

Open Energy Info (EERE)

Virtual Hydropower Prospector Virtual Hydropower Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Virtual Hydropower Prospector Agency/Company /Organization: Idaho National Laboratory Sector: Energy Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Website Website: hydropower.inl.gov/prospector/index.shtml Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

173

Integrated dense array and transect MT surveying at dixie valley geothermal  

Open Energy Info (EERE)

dense array and transect MT surveying at dixie valley geothermal dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal alteration and deep fluid sources Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Conference proceedings, 32th workshop on geothermal reservoir Engineering, Stanford University; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated dense array and transect MT surveying at dixie valley geothermal area, Nevada- structural controls, hydrothermal

174

Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment  

SciTech Connect (OSTI)

The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

Entingh, Dan; McLarty, Lynn

2000-11-30T23:59:59.000Z

175

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

176

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.  

Broader source: Energy.gov [DOE]

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

177

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

178

Geothermal: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

179

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

180

Geothermal Brief: Market and Policy Impacts Update  

SciTech Connect (OSTI)

Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

Speer, B.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

182

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

183

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information  

Open Energy Info (EERE)

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Details Activities (1) Areas (1) Regions (0) Abstract: Large velocity contrasts are regularly encountered in geothermal fields due to poorly consolidated and hydro-thermally altered rocks. The appropriate processing of seismic data is therefore crucial to delineate the geological structure. To assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso Geothermal Field. We have shown that the two-dimensional migration of synthetic seismic data from a typical reservoir model resolves the geological structure very well

184

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

185

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the location of the heat source Notes Fluids have been sampled from 9 wells and 2 fumaroles from the East Flank of the Coso hydrothermal system with a view to identifying, if possible, the location and characteristics of the heat source inflows into this portion of the geothermal field. Preliminary results show that there has been extensive vapor loss in the system, most probably in response to

186

Fluid Inclusion Analysis At Geysers Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active

187

Petrography Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Petrography Analysis At Raft River Geothermal Area (2011) Petrography Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Petrography Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Petrography Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes X-ray diffraction and thin section analyses are being conducted on samples from 5 deep wells, RRG- 1, 2, 3, 7 and 9, to determine the characteristics of the rock types and hydrothermal alteration within the geothermal system. Thin section analyses of samples from RRG-9 document the presence of strong alteration and brecciation at the contact between the Tertiary and basement

188

Selected data for low-temperature (less than 90{sup 0}C) geothermal systems in the United States: reference data for US Geological Survey Circular 892  

SciTech Connect (OSTI)

Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

Reed, M.J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

1983-12-15T23:59:59.000Z

189

Geothermal Progress Monitor: system status and operational experience  

SciTech Connect (OSTI)

The Geothermal Progress Monitor (GPM) is an information system designed and implemented by the MITRE Corporation on behalf of the Division of Geothermal and Hydropower Technology (DGHT, formerly Division of Geothermal Energy) of the US Department of Energy (DOE). Its purpose is to keep track of and to report significant events and trends in the US geothermal industry and the federal geothermal program. The information sources of the GPM system are paper and computerized files maintained by a number of organizations throughout the United States. Trade and technical publications are also used to supplement the information-gathering network. Periodic reports from the GPM system consist mainly of manual and computerized analyses of the collected data. In addition, significant events and activities are usually highlighted. The GPM serves a dual function for DGHT and other members of the Interagency Geothermal Coordinating Council (IGCC). It supports effective management of the federal geothermal program and it provides information for executive, legislative, statutory, and public needs. This paper is a report on the current status of the GPM system and a summary of MITRE's operational experience during calendar year 1981 and the first quarter of 1982. It includes a description of the required output and the mechanism by which the information is gathered, integrated, and published as a Geothermal Progress Monitor Report.

Gerstein, R.E.; Kenkeremath, L.D.; Murphy, M.B.; Entingh, D.J.

1982-03-01T23:59:59.000Z

190

Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate And  

Open Energy Info (EERE)

Hydrothermal Alteration Of Carboniferous Carbonate And Hydrothermal Alteration Of Carboniferous Carbonate And Siliclastic Rocks In The Valles Caldera With Outcrops From The Socorro Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Comparison Of Hydrothermal Alteration Of Carboniferous Carbonate And Siliclastic Rocks In The Valles Caldera With Outcrops From The Socorro Caldera, New Mexico Details Activities (3) Areas (2) Regions (0) Abstract: Continental Scientific Drilling Program (CSDP) drill hole VC-2B (total depth 1761.7 m (5780 ft); maximum temperature 295°C) was continuously cored through the Sulphur Springs hydrothermal system in the western ring-fracture zone of the 1.14 Ma Valles caldera. Among other units, the hole penetrated 760.2 m (2494.1 ft) of Paleozoic carbonate and

191

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone  

Open Energy Info (EERE)

Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen And Carbon Isotope Ratios Of Hydrothermal Minerals From Yellowstone Drill Cores Details Activities (3) Areas (1) Regions (0) Abstract: Oxygen and carbon isotope ratios were measured for hydrothermal minerals (silica, clay and calcite) from fractures and vugs in altered rhyolite, located between 28 and 129 m below surface (in situ temperatures ranging from 81 to 199°C) in Yellowstone drill holes. The purpose of this study was to investigate the mechanism of formation of these minerals. The Δ18O values of the thirty-two analyzed silica samples (quartz, chalcedony, α-cristobalite, and β-cristobalite) range from -7.5 to +2.8‰. About one

192

Geothermal Exploration At Akutan, Alaska- Favorable Indications For A  

Open Energy Info (EERE)

Exploration At Akutan, Alaska- Favorable Indications For A Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Exploration At Akutan, Alaska- Favorable Indications For A High-Enthalpy Hydrothermal Resource Near A Remote Market Details Activities (6) Areas (1) Regions (0) Abstract: In summer 2009, the City of Akutan completed an exploration program to characterize the geothermal resource and assess the feasibility of geothermal development on Akutan Island. Akutan Island, Alaska is home to North America's largest seafood processing plant. The City of Akutan and the fishing industry have a combined peak demand of ~7-8 MWe which is currently supplied by diesel fuel. The exploration program included

193

Geothermics,Vol. 16, No. 2, pp. 181-195, 1987. Printed in Great Britain.  

E-Print Network [OSTI]

GEOTHERMAL AREA, CHINA ZHU MEIXIANG and TONG WEI Departmentof Geology, Peking University hydrothermal alteration and metallization of uranium in sinter of the Hot Sea were described in detail. From systems may be of potential geothermal interest. GEOLOGIC SETTING Since the late Paleozoic the Tengchong

Ahmad, Sajjad

194

Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

90) 90) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) Exploration Activity Details Location Salton Sea Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. References Mckibben, M. A. (25 April 1990) Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems

195

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

196

Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos County Completes Abiquiu Hydropower Project, Bringing Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico Los Alamos County Completes Abiquiu Hydropower Project, Bringing New Clean Energy Resources to New Mexico April 21, 2011 - 12:00am Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu issued the following statement on the completion and startup today of the Abiquiu Hydropower Project in New Mexico - the first hydropower project funded by the American Recovery and Reinvestment Act to be completed nationwide. "Today marks a major milestone in securing America's clean energy future as we celebrate the completion of the Department of Energy's first major Recovery Act-funded water power project. By increasing renewable energy output at existing hydropower facilities, we can create clean energy jobs,

197

Large-Scale Hydropower Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

198

Large-Scale Hydropower Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Large-Scale Hydropower Basics Large-Scale Hydropower Basics Large-Scale Hydropower Basics August 14, 2013 - 3:11pm Addthis Large-scale hydropower plants are generally developed to produce electricity for government or electric utility projects. These plants are more than 30 megawatts (MW) in size, and there is more than 80,000 MW of installed generation capacity in the United States today. Most large-scale hydropower projects use a dam and a reservoir to retain water from a river. When the stored water is released, it passes through and rotates turbines, which spin generators to produce electricity. Water stored in a reservoir can be accessed quickly for use during times when the demand for electricity is high. Dammed hydropower projects can also be built as power storage facilities.

199

Estimated impacts of climate warming on California’s high-elevation hydropower  

E-Print Network [OSTI]

on high elevation hydropower generation in California’sCalifornia’s high-elevation hydropower Kaveh Madani · Jay R.Abstract California’s hydropower system is composed of high

Madani, Kaveh; Lund, Jay R.

2010-01-01T23:59:59.000Z

200

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

202

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europe’s future energy requirements is much sm...

1977-01-01T23:59:59.000Z

203

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

204

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

205

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

206

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

207

Microsoft Word - FINAL 2013 Hydropower Meeting Agenda 060713  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Board Oklahoma Comprehensive Water Plan Update Others SOUTHWESTERN FEDERAL HYDROPOWER MEETING The Earl Cabell Federal Building 1100 Commerce Street Red River Room Floor...

208

2014 Water Power Program Peer Review Compiled Presentations: Hydropower Technologies  

Broader source: Energy.gov [DOE]

This document contains the compiled hydropower technologies presentations from the U.S. Department of Energy 2014 Water Power Program Peer Review, held February 25-27, 2014.

209

Conventional Hydropower Technologies, Wind And Water Power Program...  

Office of Environmental Management (EM)

Power for a Clean Energy Future (Fact Sheet), Wind and Water Power Program (WWPP) Hydropower Projects Environmental Impacts of Increased Hydroelectric Development at Existing Dams...

210

New Stream-Reach Hydropower Development Fact Sheet | Department...  

Broader source: Energy.gov (indexed) [DOE]

for new hydropower development in U.S. stream-reaches that do not currently have hydroelectric facilities or other forms of infrastructure. New Stream-Reach Development...

211

Anfu Guanshan Hydropower Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Co.,Ltd Place: Jiangxi Province, China Zip: 343009 Sector: Hydro Product: China-based small hydro project developer. References: Anfu Guanshan Hydropower Development Co.,Ltd1...

212

Laboratory Demonstration of a New American Low-Head Hydropower...  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Demonstration of a New American Low-Head Hydropower Turbine 68bhydrogreensmallhydroch11.ppt More Documents & Publications Real World Demonstration of a New...

213

Reconnaissance of the hydrothermal resources of Utah  

SciTech Connect (OSTI)

Geologic factors in the Basin and Range province in Utah are more favorable for the occurrence of geothermal resources than in other areas on the Colorado Plateaus or in the Middle Rocky Mountains. These geologic factors are principally crustal extension and crustal thinning during the last 17 million years. Basalts as young as 10,000 years have been mapped in the area. High-silica volcanic and intrusive rocks of Quaternary age can be used to locate hydrothermal convection systems. Drilling for hot, high-silica, buried rock bodies is most promising in the areas of recent volcanic activity. Southwestern Utah has more geothermal potential than other parts of the Basin and Range province in Utah. The Roosevelt Hot Springs area, the Cove Fort-Sulphurdale area, and the area to the north as far as 60 kilometers from them probably have the best potential for geothermal development for generation of electricity. Other areas with estimated reservoir temperatures greater than 150/sup 0/C are Thermo, Monroe, Red Hill (in the Monroe-Joseph Known Geothermal Resource Area), Joseph Hot Springs, and the Newcastle area. The rates of heat and water discharge are high at Crater, Meadow, and Hatton Hot Springs, but estimated reservoir temperatures there are less than 150/sup 0/C. Additional exploration is needed to define the potential in three additional areas in the Escalante Desert. 28 figs., 18 tabs.

Rush, F.E.

1983-01-01T23:59:59.000Z

214

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

215

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

216

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

217

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, 94720, USA ABSTRACT Interactions between hydrothermal fluids and rock alter mineralogy, leading permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core

Stanford University

218

E-Print Network 3.0 - assessment hydropower evaluation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

functional displays for hydropower systems: Model-based guidance of scenario design... Work Domain Analysis and Ecological Interface Design for Hydropower System Monitoring and...

219

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

220

Potential impact of R and D on hydrothermal energy cost  

SciTech Connect (OSTI)

The potentital impact of the DOE/Geothermal Technology Development programs on the cost of geothermal power has been estimated using the computer program IMGEO.300. Results indicate a potential 30 to 40% cost reduction for hydrothermal systems with a 40 to 50% cost reduction potential for binary systems. The purpose of this document is to demonstrate the use of IMGEO. The initial results are tentative because the R and D goals have not been finalized and the code has not been completely validated.

Traeger, R.K.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrothermal industrialization electric-power systems development. Final report  

SciTech Connect (OSTI)

The nature of hydrothermal resources, their associated temperatures, geographic locations, and developable capacity are described. The parties involved in development, required activities and phases of development, regulatory and permitting requirements, environmental considerations, and time required to complete development activities ae examined in detail. These activities are put in proper perspective by detailing development costs. A profile of the geothermal industry is presented by detailing the participants and their operating characteristics. The current development status of geothermal energy in the US is detailed. The work on market penetration is summarized briefly. Detailed development information is presented for 56 high temperature sites. (MHR)

Not Available

1982-03-01T23:59:59.000Z

222

Spatial data analysis for exploration of regional scale geothermal resources  

Science Journals Connector (OSTI)

Abstract Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

Majid Kiavarz Moghaddam; Younes Noorollahi; Farhad Samadzadegan; Mohammad Ali Sharifi; Ryuichi Itoi

2013-01-01T23:59:59.000Z

223

Editorial: Time for green certification for all hydropower?  

SciTech Connect (OSTI)

While accrediting a large hydropower facility is intrinsically more complex and potentially controversial, it is time to review the progress made in understanding the environmental impacts of large hydropower and the development of environmentally friendly hydropower systems. Over the last two decades, many in-field, laboratory, and modeling technologies have been developed or improved to better understand the mechanisms of fish injury and mortality and to identify turbine design and operation alternatives to reduce such impacts. In 2010, representatives of DOE and the US Department of Interior, and USACE signed a memorandum of understanding to work more closely to develop sustainable hydropower. One of their major objectives is to increase hydropower generation using low-impact and environmentally sustainable approaches. Given the recent scientific and technological advances that have decreased the environmental impact of hydropower and the need to aggressively facilitate development of low impact hydropower, we think it is indeed time to initiate a science-based green certification program that includes rigorous criteria for environmental protection but does not exclude hydropower based on size only.

Deng, Zhiqun; Carlson, Thomas J.

2012-04-10T23:59:59.000Z

224

Geothermal resources of southern Idaho  

SciTech Connect (OSTI)

The geothermal resource of southern Idaho as assessed by the U.S. Geological Survey in 1978 is large. Most of the known hydrothermal systems in southern Idaho have calculated reservoir temperatures of less than 150 C. Water from many of these systems is valuable for direct heat applications. A majority of the known and inferred geothermal resources of southern Idaho underlie the Snake River Plain. However, major uncertainties exist concerning the geology and temperatures beneath the plain. The largest hydrothermal system in Idaho is in the Bruneau-Grang View area of the western Snake River Plain with a calculated reservoir temperature of 107 C and an energy of 4.5 x 10 to the 20th power joules. No evidence of higher temperature water associated with this system was found. Although the geology of the eastern Snake River Plain suggests that a large thermal anomaly may underlie this area of the plain, direct evidence of high temperatures was not found. Large volumes of water at temperatures between 90 and 150 C probably exist along the margins of the Snake River Plain and in local areas north and south of the plain.

Mabey, D.R.

1983-01-01T23:59:59.000Z

225

Audio-Magnetotellurics At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1977) Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Audio-Magnetotellurics Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis To investigate electrical properties of rocks associated with thermal phenomena of the Devil's Kitchen-Coso Hot Springs area Notes Audio-magnetotelluric geophysical surveys determined that the secondary low in the geothermal area, best defined by the 7.5-Hz AMT map and dc soundings, is caused by a shallow conductive zone (5--30 ohm m) interpreted to be hydrothermally altered Sierra Nevada basement rocks containing saline water of a hot water geothermal system. This zone of lowest apparent resistivities over the basement rocks lies within a closed contour of a

226

Raft River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Raft River Geothermal Area Raft River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Raft River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 DOE Involvement 4 Timeline 5 Regulatory and Environmental Issues 6 Future Plans 7 Raft River Unit II (26 MW) and Raft River Unit III (32 MW) 8 Enhanced Geothermal System Demonstration 9 Exploration History 10 Well Field Description 11 Technical Problems and Solutions 12 Geology of the Area 12.1 Regional Setting 12.2 Structure 12.3 Stratigraphy 12.3.1 Raft River Formation 12.3.2 Salt Lake Formation 12.3.3 Precambrian Rocks 13 Hydrothermal System 14 Heat Source 15 Geofluid Geochemistry 16 NEPA-Related Analyses (1) 17 Exploration Activities (77) 18 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.10166667,"lon":-113.38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

NREL Releases Report on Policy Options to Advance Geothermal Exploration  

Broader source: Energy.gov [DOE]

A new DOE report, published by the National Renewable Energy Laboratory, highlights findings from a review of five policy mechanisms that have been successfully applied to hydrothermal exploration activities around the globe – loan guarantees, drilling failure insurance, lending support, grants, and government-led exploration – and their applicability to the U.S. geothermal market.

228

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

229

16 Projects To Advance Hydropower Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

230

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerGeneration PotentialHydropowerGeneration Jump to: navigation, search Property Name PotentialHydropowerGeneration Property Type Quantity Description The estimated potential energy generation from Hydropower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialHydropowerGeneration" Showing 25 pages using this property. (previous 25) (next 25)

231

Property:PotentialHydropowerSites | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerSites PotentialHydropowerSites Jump to: navigation, search Property Name PotentialHydropowerSites Property Type Number Description The number of potential hydropower sites in a place. Pages using the property "PotentialHydropowerSites" Showing 25 pages using this property. (previous 25) (next 25) A Alabama + 2,435 + Alaska + 3,053 + Arizona + 1,958 + Arkansas + 3,268 + C California + 9,692 + Colorado + 5,060 + Connecticut + 659 + D Delaware + 25 + F Florida + 493 + G Georgia + 2,100 + H Hawaii + 437 + I Idaho + 6,706 + Illinois + 1,330 + Indiana + 1,142 + Iowa + 2,398 + K Kansas + 3,201 + Kentucky + 1,394 + L Louisiana + 934 + M Maine + 1,373 + Maryland + 491 + Massachusetts + 560 + Michigan + 1,942 + Minnesota + 1,391 + Mississippi + 1,536 + Missouri + 5,089 +

232

The Next Generation of Hydropower Engineers and Scientists | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists The Next Generation of Hydropower Engineers and Scientists August 11, 2011 - 12:31pm Addthis Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Hydro Research Foundation Fellows. | Image courtesy of the Hydro Research Foundation Fellowship Program. Mike Reed Water Power Program Manager, Water Power Program As the nation continues to rely on hydropower to help meet its energy needs, a new generation of engineers and scientists is finding ways to make hydropower technologies more efficient, environmentally friendly and cost effective. The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE), in cooperation with the Hydro Research

233

Event:Hydropower Africa 2012 | Open Energy Information  

Open Energy Info (EERE)

2012 2012 Jump to: navigation, search Calendar.png Hydropower Africa 2012: on 2012/09/04 "Hydropower Africa 2012 is the largest hydropower event of its kind in Africa boasting over 450 visitors from across the globe. It looks at planned projects and tender prospects for hydropower development in Africa and innovative funding solutions for projects - big and small. Refurbishment and modernisation updates of major hydropower facilities as well as operation and maintenance best practices from across the continent will be presented and discussed. Infrastructure development and African-appropriate engineering solutions to provide power to villages, rural areas and urban communities and achieving operational objectives while addressing environment and social challenges will be examined through

234

U.S. hydropower resource assessment for Ohio  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

Conner, A.M.; Francfort, J.E.

1997-12-01T23:59:59.000Z

235

U.S. hydropower resource assessment for North Carolina  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of North Carolina.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

236

U.S. hydropower resource assessment for Idaho  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

Conner, A.M.; Francfort, J.E.

1998-08-01T23:59:59.000Z

237

U.S. hydropower resource assessment for Nevada  

SciTech Connect (OSTI)

The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Nevada.

Conner, A.M.; Francfort, J.E.

1997-10-01T23:59:59.000Z

238

16 Projects To Advance Hydropower Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Projects To Advance Hydropower Technology Projects To Advance Hydropower Technology 16 Projects To Advance Hydropower Technology September 6, 2011 - 11:24am Addthis U.S. Department Energy Secretary Steven Chu and U.S. Department of the Interior Secretary Ken Salazar announced nearly $17 million in funding over the next three years for research and development projects to advance hydropower technology. The list of 16 projects in 11 different states can be found here. Applicant Location Award Amount; Funding is from DOE unless otherwise noted Description Sustainable Small Hydro (Topic Areas 1.1. and 1.2) Earth by Design Bend, OR $1,500,000 This project will develop and test a new low-head modular hydropower technology in a canal in Oregon's North Unit Irrigation District to produce cost-competitive electricity.

239

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

240

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

6.15 - Pumped Storage Hydropower Developments  

Science Journals Connector (OSTI)

Abstract This chapter details how pumped storage hydroelectric projects differ from conventional hydroelectric projects. The concept of electrical energy storage has become a controversial issue in recent years. Many questions are raised in the electricity sector: Why is energy storage needed? What are the alternatives? One of the answers is pumped storage hydropower plants, using mainly pump–turbines. In this chapter, details of some remarkable examples of pumped storage power plants are given: Okinawa Seawater in Japan, Goldisthal in Germany, Tianhuangping in China, and Coo-Trois Ponts in Belgium.

T. Hino; A. Lejeune

2012-01-01T23:59:59.000Z

242

Patterns in Global Hydrothermal  

E-Print Network [OSTI]

Patterns in Global Hydrothermal Activity noaa ocean exploration Presenter: Edward T. Baker #12) High-T vents High = hydrothermal discharge Low = active or inactive discharge sites B. Davy, GNS NZ #12 Lc(km) #12;Future Directions Quantify processes: ·Employ or develop new technologies (AUVs, solid

243

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

SciTech Connect (OSTI)

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

Not Available

1989-02-01T23:59:59.000Z

244

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions; and over 5 weeks in August--September, the peak GHG emission period, during 2012. (Pacific Northwest

245

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

246

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades  

Broader source: Energy.gov [DOE]

Hydropower Advancement Project (HAP): Audits and Feasibility Studies for Capacity and Efficiency Upgrades

247

Low Head/Low Power Hydropower Resource Assessment of the Pacific Northwest Hydrologic Region  

E-Print Network [OSTI]

three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro

Power Hydropower; Douglas G. Hall; Gregory R. Carroll; Shane J. Cherry; Y D. Lee; Garold L. Sommers

2002-01-01T23:59:59.000Z

248

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University plants, a pipe system is used to gather fluids from production wells and transport them to a power plant, or to steam separators. In the case of hydrothermal systems, where the geothermal fluid is a mixture of steam

Stanford University

249

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

Locating an active fault zone in Coso geothermal field by analyzing seismic Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Details Activities (1) Areas (1) Regions (0) Abstract: Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing

250

Heat flow determinations and implied thermal regime of the Coso geothermal  

Open Energy Info (EERE)

determinations and implied thermal regime of the Coso geothermal determinations and implied thermal regime of the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Heat flow determinations and implied thermal regime of the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal energy at the Coso Geothermal Area, California, include fumarolic activity, active hot springs, and associated hydrothermally altered rocks. Abundant Pleistocene volcanic rocks, including a cluster of thirty-seven rhyolite domes, occupy a north-trending structural and topographic ridge near the center of an oval-shaped zone of late Cenozoic ring faulting. In an investigation of the thermal regime of the geothermal

251

Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal  

Open Energy Info (EERE)

Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Near-Surface Co2 Monitoring And Analysis To Detect Hidden Geothermal Systems Details Activities (5) Areas (1) Regions (0) Abstract: Hidden geothermal systems are systems devoid of obvious surface hydrothermal manifestations. Emissions of moderate-to-low solubility gases may be one of the primary near-surface signals from these systems. We investigate the potential for CO2 detection and monitoring below and above ground in the near-surface environment as an approach to exploration targeting hidden geothermal systems. We focus on CO2 because it is the dominant noncondensible gas species in most geothermal systems and has

252

Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands,  

Open Energy Info (EERE)

Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Italy) Revealed By Geophysical And Geochemical Approaches- Implications For General Fluid Flow Models On Volcanoes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Adventive Hydrothermal Circulation On Stromboli Volcano (Aeolian Islands, Italy) Revealed By Geophysical And Geochemical Approaches- Implications For General Fluid Flow Models On Volcanoes Details Activities (0) Areas (0) Regions (0) Abstract: On March 15th 2007 a paroxysmal explosion occurred at the Stromboli volcano. This event generated a large amount of products, mostly lithic blocks, some of which impacted the ground as far as down to 200 m a.s.l., about 1.5 km far away from the active vents. Two days after the

253

Hydrothermal Heat Discharge In The Cascade Range, Northwestern United  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Heat Discharge In The Cascade Range, Northwestern United States Details Activities (3) Areas (1) Regions (0) Abstract: Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge

254

Spatial And Temporal Geochemical Trends In The Hydrothermal System Of  

Open Energy Info (EERE)

Spatial And Temporal Geochemical Trends In The Hydrothermal System Of Spatial And Temporal Geochemical Trends In The Hydrothermal System Of Yellowstone National Park- Inferences From River Solute Fluxes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Spatial And Temporal Geochemical Trends In The Hydrothermal System Of Yellowstone National Park- Inferences From River Solute Fluxes Details Activities (2) Areas (1) Regions (0) Abstract: We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale

255

Fundamentals of Geothermics  

Science Journals Connector (OSTI)

The expression ‘geothermics of the Earth’ is understood to be restricted to the solid Earth and is usually shortened to geothermics. Hence, the field of geothermics starts as soon as the solid Earth has been e...

R. Haenel; L. Rybach; L. Stegena

1988-01-01T23:59:59.000Z

256

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

257

An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City  

Open Energy Info (EERE)

Isotope Study Of Hydrothermal Alteration In The Lake City Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Details Activities (2) Areas (1) Regions (0) Abstract: A 23-m.y.-old, fossil meteoric-hydrothermal system in the Lake City caldera (11 _ 14 km) has been mapped out by measuring Δ 18O values of 300 rock and mineral samples. Δ 18O varies systematically throughout the caldera, reaching values as low as -2. Great topographic relief, regional tilting, and variable degrees of erosion within the caldera all combine to give us a very complete section through the hydrothermal system, from the

258

Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long  

Open Energy Info (EERE)

Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Inferences On The Hydrothermal System Beneath The Resurgent Dome In Long Valley Caldera, East-Central California, Usa, From Recent Pumping Tests And Geochemical Sampling Details Activities (6) Areas (1) Regions (0) Abstract: Quaternary volcanic unrest has provided heat for episodic hydrothermal circulation in the Long Valley caldera, including the present-day hydrothermal system, which has been active over the past 40 kyr. The most recent period of crustal unrest in this region of east-central California began around 1980 and has included periods of

259

K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: K-Ar Dates Of Hydrothermal Clays From Core Hole Vc-2B, Valles Caldera, New Mexico And Their Relation To Alteration In A Large Hydrothermal System Details Activities (2) Areas (1) Regions (0) Abstract: Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large,

260

Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa | Open  

Open Energy Info (EERE)

Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evolution Of Hydrothermal Waters At Mount St Helens, Washington, Usa Details Activities (4) Areas (1) Regions (0) Abstract: Hydrothermal water samples at Mount St. Helens collected between 1985 and 1989 and in 1994 are used to identify water types and describe their evolution through time. Two types of low temperature hydrothermal systems are associated with the 1980 eruptions and were initiated soon after emplacement of shallow magma and pyroclastic flows. The Loowit hot spring system is located in the breach zone and is associated with the magma conduit and nearby avalanche deposits, whereas the Pumice Plain (PP)

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

262

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

263

Federal Memorandum of Understanding for Hydropower/Participating Agencies |  

Open Energy Info (EERE)

Participating Agencies Participating Agencies < Federal Memorandum of Understanding for Hydropower Jump to: navigation, search Federal Memorandum of Understanding for Hydropower Hydroelectric-collage2.jpg Home Federal Inland Hydropower Working Group Participating Agencies Resources Bonneville Power Administration: caption:Bonneville Power Administration Bonneville Power Administration Factsheet Bonneville Power Administration Publications Conservation Resource Energy Data - The Red Book Bureau of Indian Affairs: caption:Bureau of Indian Affairs Bureau of Indian Affairs Factsheet Tribal Energy and Environmental Clearinghouse (TEEIC) Office of Indian Energy and Economic Development (IEED) Division of Irrigation, Power and Safety of Dams Bureau of Reclamation: caption:Bureau of Reclamation Factsheet

264

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

265

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

266

HDR geothermal energy  

Science Journals Connector (OSTI)

HDR geothermal energy, petrothermal geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

267

petrothermal geothermal energy  

Science Journals Connector (OSTI)

petrothermal geothermal energy, HDR geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

268

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

269

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

270

Geothermal direct heat applications program summary  

SciTech Connect (OSTI)

In 1978, the Department of Energy Division of Geothermal and Hydropower Technologies initiated a program to accelerate the direct use of geothermal energy, in which 23 projects were selected. The projects, all in the western part of the US, cover the use of geothermal energy for space conditioning (heating and cooling) and agriculture (aquaculture and greenhouses). Initially, two projects were slated for industrial processing; however, because of lack of geothermal resources, these projects were terminated. Of the 23 projects, seven were successfully completed, ten are scheduled for completion by the end of 1983, and six were terminated for lack of resources. Each of the projects is being documented from its inception through planning, drilling, and resource confirmation, design, construction, and one year of monitoring. The information is being collected, evaluated, and will be reported. Several reports will be produced, including detailed topical reports on economics, institutional and regulatory problems, engineering, and a summary final report. To monitor progress and provide a forum for exchange of information while the program is progressing, semiannual or annual review meetings have been held with all project directors and lead engineers for the past four years. This is the sixth meeting in that series. Several of the projects which have been terminated are not included this year. Overall, the program has been very successful. Valuable information has been gathered. problems have been encountered and resolved concerning technical, regulatory, and institutional constraints. Most projects have been proven to be economical with acceptable pay-back periods. Although some technical problems have emerged, they were resolved with existing off-the-shelf technologies and equipment. The risks involved in drilling for the resource, the regulatory constraints, the high cost of finance, and large front-end cost remain the key obstacles to the broad development of geothermal direct use applications.

None

1982-08-01T23:59:59.000Z

271

Coso Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area Coso Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Coso Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 DOE Involvement 2.2 Time Line 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Structure 9.3 Stratigraphy 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (1) 14 Exploration Activities (132) 15 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.04701,"lon":-117.76854,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Geothermal direct heat applications program summary  

SciTech Connect (OSTI)

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

273

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

274

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

275

Solar Energy and Small Hydropower Tax Credit (Personal) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy and Small Hydropower Tax Credit (Personal) Solar Energy and Small Hydropower Tax Credit (Personal) Solar Energy and Small Hydropower Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate In any given tax year, $3,500, or 50% of taxpayer's tax liability for that taxable year, whichever is less Program Info Start Date 1/1/2006 State South Carolina Program Type Personal Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Department of Revenue In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system

276

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

277

A Boost for Hydropower (and the Economy) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) A Boost for Hydropower (and the Economy) September 20, 2010 - 5:29pm Addthis The 91-year old Cheoah Dam in Robbinsville, North Carolina. The 91-year old Cheoah Dam in Robbinsville, North Carolina. Jacques Beaudry-Losique Director, Wind & Water Program There are approximately 2,400 hydropower dams in the U.S., many of which have not undergone a significant upgrade in decades. These older dams present a great opportunity to expand clean energy across the country, allowing us to rapidly increase generation capacity through the installation of new high-efficiency equipment. I recently got a firsthand look at one such effort when I helped kick off a project to modernize the 91-year old Cheoah Dam in Robbinsville, North

278

Solar Energy and Small Hydropower Tax Credit (Corporate) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Energy and Small Hydropower Tax Credit (Corporate) Solar Energy and Small Hydropower Tax Credit (Corporate) Solar Energy and Small Hydropower Tax Credit (Corporate) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Solar Lighting Windows, Doors, & Skylights Buying & Making Electricity Water Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate In any given tax year, $3,500, or 50% of taxpayer's tax liability for that taxable year, whichever is less Program Info Start Date 1/1/2006 State South Carolina Program Type Corporate Tax Credit Rebate Amount 25% of eligible costs Provider South Carolina Department of Revenue In South Carolina, taxpayers may claim a credit of 25% of the costs of purchasing and installing a solar energy system or small hydropower system

279

New Hydropower Turbines to Save Snake River Steelhead | Department of  

Broader source: Energy.gov (indexed) [DOE]

Hydropower Turbines to Save Snake River Steelhead Hydropower Turbines to Save Snake River Steelhead New Hydropower Turbines to Save Snake River Steelhead May 24, 2010 - 1:23pm Addthis Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro Voith Hydro installed machines at the Bonneville Dam on the Columbia River, located about 40 miles east of Portland, Ore., that are meant to save more fish. The next-generation machines at Ice Harbor will be even more advanced. | Photo Courtesy of Voith Hydro Joshua DeLung Hydropower harnesses water power to create reliable, clean and plentiful renewable energy, but dams can have an unintended impact on wildlife --

280

Climate change impacts on financial risk in hydropower projects   

E-Print Network [OSTI]

the financial viability of existing and potential hydro schemes. Previous work developed a methodology for quantifying the potential impact of climate change on the economics of hydropower schemes. Here, the analysis is extended to examine the potential...

Harrison, Gareth P; Whittington, Bert; Wallace, Robin

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Energy Analysis - Hydropower Results - Life Cycle Assessment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the systematic review and analysis. The majority of life cycle greenhouse gas (GHG) emission estimates for hydropower cluster between about 4 and 14 g CO2eqkWh. The...

282

Small Businesses Key in Hydropower Tech Advancement | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Businesses Key in Hydropower Tech Advancement Businesses Key in Hydropower Tech Advancement Small Businesses Key in Hydropower Tech Advancement September 6, 2011 - 2:59pm Addthis Earlier today, the Department of Energy and the Department of Interior announced nearly $17 million in funding over the next three years to advance hydropower technology. The funding announced today will go to sixteen innovative projects around the country, including sustainable small hydro projects, like the ones from Hydro Green Energy, a small business that handles hydroelectric power generation and power and communication line construction. The company, which has eight employees currently, has been awarded funding for two projects. Near Space Systems, a Colorado Springs-based company, is a service-disabled veteran-owned business with a manufacturing focus that's

283

A New Vision for United States Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Vision has not only breadth, but depth in its approach to the future of this vital renewable energy industry. To aid in this process, Hydropower Vision Task Forces are being...

284

Identification of chemoautotrophic microorganisms from a diffuse flow hydrothermal vent at EPR 9° north using ¹³C DNA stable isotope probing and catalyzed activated reporter deposition-fluorescence in situ hybridization  

E-Print Network [OSTI]

At deep-sea hydrothermal vents chemolithoautotrophic microbes mediate the transfer of geothermal chemical energy to higher trophic levels. To better understand these underlying processes and the organisms catalyzing them, ...

Richberg, Kevin Patrick

2010-01-01T23:59:59.000Z

285

Downstream Fish Passage through Hydropower One of the most widespread environmental constraints to the development of hydropower in the U.S.  

E-Print Network [OSTI]

Downstream Fish Passage through Hydropower Turbines Background One of the most widespread environmental constraints to the development of hydropower in the U.S. is the provision of adequate fish passage at projects. Mortality of downstream migrating fish, particularly as a result of passing through hydropower

286

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

287

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

288

Memorandum of Understanding for Hydropower Two Year Progress Report  

Broader source: Energy.gov [DOE]

On March 24, 2010, the Department of the Army (DOA) through the U.S. Army Corps of Engineers (USACE or Corps), the Department of Energy, and the Department of the Interior signed the Memorandum of Understanding (MOU) for Hydropower. The purpose of the MOU is to “help meet the nation’s needs for reliable, affordable, and environmentally sustainable hydropower by building a long

289

A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Details Activities (3) Areas (1) Regions (0) Abstract: The 87Sr/86Sr values of thermal waters and hydrothermal calcites of the Long Valley caldera geothermal system are more radiogenic than those of young intracaldera volcanic rocks. Five thermal waters display 87Sr/86Sr

290

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot  

Open Energy Info (EERE)

Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Trace-Element Distribution In An Active Hydrothermal System, Roosevelt Hot Springs Thermal Area, Utah Details Activities (3) Areas (1) Regions (0) Abstract: Chemical interaction of thermal fluids with reservoir rock in the Roosevelt Hot Springs thermal area, Utah, has resulted in the development of characteristic trace-element dispersion patterns. Multielement analyses of surface rock samples, soil samples and drill cuttings from deep exploration wells provide a three-dimensional perspective of chemical redistribution within this structurally-controlled hot-water geothermal system. Five distinctive elemental suites of chemical enrichment are

291

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal  

Open Energy Info (EERE)

Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Preliminary Results from Two Spectral-Geobotanical Surveys over Geothermal Areas- Cove Fort-Sulphurdale, Utah and Dixie Valley, Nevada Abstract Geobotanical anomalies have been associated with mineralization and hydrocarbon microseepage. As both of these phenomena have been associated with hydrothermal convection systems in the Great Basin it is likely that geobotanical anomalies are present over geothermal areas. This paper present preliminary results for the ongoing Cove Fort Sulphurdale, Utah and Dixie Valley, Utah, studies. Data acquisition for these areas has included

292

Ground Magnetics At Coso Geothermal Area (1984) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Ground Magnetics At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Ground Magnetics Activity Date 1984 Usefulness useful DOE-funding Unknown Notes The magnetic intensity contours match general geologic patterns in varying rock types. Hydrothermally altered rocks along intersecting fault zones show up as strong magnetic lows that form a triangular-shaped area. This area is centered in an area of highest heat flow and is a site of

293

Newberry Volcano EGS Demonstration Geothermal Project | Open Energy  

Open Energy Info (EERE)

Volcano EGS Demonstration Geothermal Project Volcano EGS Demonstration Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Newberry Volcano EGS Demonstration Project Type / Topic 1 Recovery Act: Enhanced Geothermal System Demonstrations Project Type / Topic 2 EGS Demonstration Project Description The project will demonstrate EGS power generation from the Newberry Known Geothermal Resource Area ("Newberry"). Four deep, high temperature, very low permeability, production-size wells have been completed at Newberry, including two currently owned by Davenport. The Newberry project site exemplifies unparalleled EGS potential in the United States, with a large, high-temperature, conductive thermal anomaly yielding wells with permeability orders of magnitude less than conventional hydrothermal wells.

294

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

295

Update On Geothermal Exploration At Fort Bidwell, Surprise Valley  

Open Energy Info (EERE)

Geothermal Exploration At Fort Bidwell, Surprise Valley Geothermal Exploration At Fort Bidwell, Surprise Valley California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Update On Geothermal Exploration At Fort Bidwell, Surprise Valley California Details Activities (1) Areas (1) Regions (0) Abstract: A fourth exploration well within Fort Bidwell Indian Community (FBIC) lands has been successfully drilled to a total depth of 4,670 feet. Mud return temperatures and cuttings analysis are consistent with the hydrothermal model on which the well location was based. Wireline surveys have encountered an obstruction just below the casing shoe, and further evaluation of this well and resource awaits clean-out and testing activities. Author(s): Joe LaFleur, Anna Carter, Karen Moore, Ben Barker, Paul

296

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

297

Guidebook to Geothermal Power Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

298

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

associated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

299

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

300

OHm Geothermal | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

Administration, Division of Geothermal Energy. Two teams ofassociated with geothermal energy development. These g o a lthe division of Geothermal Energy. TASK 1 Identify Areas for

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

302

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

303

Geothermal | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

304

Geothermal Power Generation  

SciTech Connect (OSTI)

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

305

Conventional Hydropower Technologies (Fact Sheet), Wind And Water Power Program (WWPP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Power Water Power Program supports the development of technologies that harness the nation's renewable hydropower resources to generate environmentally sustainable and cost-effective electricity. Most conventional hydropower plants use a diver- sion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. The program's conventional hydropower activities focus on increasing generating capacity and efficiency at existing hydroelectric facilities, adding hydroelectric generating capacity to exist- ing non-powered dams, adding new low impact hydropower, increasing advanced pumped-storage hydropower capacity, and reducing potential environmental impacts of conven- tional hydropower production. The program's research and

306

A U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand  

Open Energy Info (EERE)

U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: We report here the first U-Th disequilibrium age for a hydrothermal mineral from an active geothermal system in New Zealand. Vein calcite recovered from a depth of 389 m in Well Thm-1 at the Tauhara geothermal field has an age of 99±44 ka BP. This age was determined using a leachate-leachate isochron technique on four silicate containing sub-samples of calcite from a single vein. Although the error on this isochron age is considerable, it is significantly younger than the earlier

307

Heat Flow And Geothermal Potential In The South-Central United States |  

Open Energy Info (EERE)

And Geothermal Potential In The South-Central United States And Geothermal Potential In The South-Central United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow And Geothermal Potential In The South-Central United States Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal exploration is typically limited to high-grade hydrothermal reservoirs that are usually found in the western United States, yet large areas with subsurface temperatures above 150 deg. C at economic drilling depths can be found east of the Rocky Mountains. The object of this paper is to present new heat flow data and to evaluate the geothermal potential of Texas and adjacent areas. The new data show that, west of the Ouachita Thrust Belt, the heat flow values are lower than east of the fault zone. Basement heat flow values for the Palo Duro and Fort

308

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

309

Heat flow in the Coso geothermal area, Inyo County, California | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat flow in the Coso geothermal area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat flow in the Coso geothermal area, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal resources at the Coso geothermal area, Inyo County, California, include fumarolic activity and associated hydrothermally altered rocks. Pleistocene volcanic rocks associated with the geothermal activity include 38 rhyolite domes occupying a north trending structural and topographic

310

Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot  

Open Energy Info (EERE)

Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Evaluation of Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Coso Hot Springs: KGRA, China Lake, CA Details Activities (1) Areas (1) Regions (0) Abstract: The well, Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled at the China Lake Naval Weapons Center. Drilling was started on 2 September 1977, and the well completed on 1 December 1977 to 4845 ft. The well is an exploratory hole to determine geological and hydrothermal characteristics of the Coso Hot Springs KGRA (Known Geothermal Resource Area). During drilling, numerous geophysical and temperature surveys were performed to evaluate the geological characteristics of CGEH-1. LBL

311

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Subsurface geology of the Raft River geothermal area, Idaho | Open Energy  

Open Energy Info (EERE)

geology of the Raft River geothermal area, Idaho geology of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Subsurface geology of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. Hydrothermal alteration products in the form of clays and zeolites, and deposition of secondary calcite and silica increase with depth. The abundance of near-vertical open fractures also increases with depth, allowing greater movement of hydrothermal fluids near the base of the Cenozoic basin fill.

313

Geothermal well-field and power-plant investment-decision analysis  

SciTech Connect (OSTI)

Investment decisions pertaining to hydrothermal well fields and electric power plants are analyzed. Geothermal investment decision models were developed which, when coupled to a site-specific stochastic cash flow model, estimate the conditional probability of a positive decision to invest in the development of geothermal resource areas. Quantitative decision models have been developed for each major category of investor currently involved in the hydrothermal projects. These categories include: large, diversified energy resource corporations; independently operating resource firms; investor-owned electric utilities; municipal electric utilities; state-run resource agencies; and private third-party power plant investors. The geothermal cash flow, the investment decision analysis, and an example of model application for assessing the likely development of geothermal resource areas are described. The sensitivity of this investment behavior to federal incentives and research goals is also analyzed and discussed.

Cassel, T.A.V.; Amundsen, C.B.; Edelstein, R.H.; Blair, P.D.

1981-05-31T23:59:59.000Z

314

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Geothermal Area Brady Hot Springs Geothermal Area Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region MW K Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone Geothermal Region Pull Apart in Strike Slip Fault Zone Mesozoic Granitic MW K Dixie Valley Geothermal Area Dixie Valley Geothermal Area Central Nevada Seismic Zone Geothermal Region Stepover or Relay Ramp in Normal Fault Zones major range front fault Jurassic Basalt MW K Geysers Geothermal Area Geysers Geothermal Area Holocene Magmatic Geothermal Region Pull Apart in Strike Slip Fault Zone intrusion margin and associated fractures MW K Long Valley Caldera Geothermal Area Long Valley Caldera Geothermal Area Walker Lane Transition Zone Geothermal Region Displacement Transfer Zone Caldera Margin Quaternary Rhyolite MW K

315

Geothermal resource assessment of the New England states  

SciTech Connect (OSTI)

With the exception of Sand Springs in Williamstown, Massachusetts, there are no identifiable hydrothermal geothermal resources in the New England region. The radioactive plutons of the White Mountains of New Hampshire do not, apparently, contain sufficient stored heat to make them a feasible target for an induced hydrothermal system such as exists at Fenton Hill near Los Alamos, New Mexico. The only potential source of low grade heat is the large volume of ground water contained within the unconsolidated sediments related to the Pleistocene glaciation of the region. During the course of the survey an unusual and unexplained thermal anomaly was discovered in St. Johnsbury, Vermont, which is described.

Brophy, G.P.

1982-01-01T23:59:59.000Z

316

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

317

An Archaean sub-seafloor geothermal system, ‘calc-alkali' trends, and massive sulphide genesis  

Science Journals Connector (OSTI)

... only weakly hydrated during halmyrolysis and burial metamorphism, but, in some areas, sub-seafloor geothermal activity contemporaneous with volcanism produced more intense rock-water interaction with higher water-to-rock ... alkaline' traits reflect a hydrothermal overprint caused by rock-water interaction during sub-sea floor geothermal activity as a modified seawater brine intensely spili-tized, silicified and leached metals from ...

P. J. MacGeehan; W. H. MacLean

1980-08-21T23:59:59.000Z

318

Finding Large Aperture Fractures in Geothermal Resource Areas Using a  

Open Energy Info (EERE)

Finding Large Aperture Fractures in Geothermal Resource Areas Using a Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Because fractures and faults with sub-commercial permeability can propagate hot fluid and hydrothermal alteration throughout a geothermal reservoir, potential field geophysical methods including resistivity, gravity, heatflow and magnetics cannot distinguish between low-permeability fractures and LAF's (Large Aperature Fractures). USG will develop and test the combination of three-component,long-offset seismic surveying, permanent scatter synthetic aperture radar interferometry (PSInSAR) and structural kinematic analysis as an integrated method for locating and 3-D mapping of LAF's in shallow to intermediate depth (600-4000 feet) geothermal systems. This project is designed to test the methodology on known occurrences of LAF's and then apply the technology to expand an existing production field and find a new production field in a separate but related resource area. A full diameter production well will be drilled into each of the two lease blocks covered by the geophysical exploration program.

319

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

320

Geothermal Steam Power Plant | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Dry Steam) (Redirected from Dry Steam) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home General List of Dry Steam Plants List of Flash Steam Plants Steam Power Plants Dry Steam Power Plants Simple Dry Steam Powerplant process description - DOE EERE 2012 Dry steam plants use hydrothermal fluids that are primarily steam. The steam travels directly to a turbine, which drives a generator that produces electricity. The steam eliminates the need to burn fossil fuels to run the turbine (also eliminating the need to transport and store fuels). These plants emit only excess steam and very minor amounts of gases.[1] Dry steam power plants systems were the first type of geothermal power generation plants built (they were first used at Lardarello in Italy in 1904). Steam technology is still effective today at currently in use at The

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal Exploration Case Studies on OpenEI (Presentation)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, K.; Bennett, M.; Atkins, D.

2014-03-01T23:59:59.000Z

322

Real World Demonstration of a New American Low-Head Hydropower...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American Low-Head Hydropower Unit Real World Demonstration of a New American...

323

DOE: Quantifying the Value of Hydropower in the Electric Grid  

SciTech Connect (OSTI)

The report summarizes research to Quantify the Value of Hydropower in the Electric Grid. This 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. Methods are described for valuation and planning of pumped storage and conventional hydropower. The project team conducted plant case studies, electric system modeling, market analysis, cost data gathering, and evaluations of operating strategies and constraints. Five other reports detailing these research results are available a project website, www.epri.com/hydrogrid. With increasing deployment of wind and solar renewable generation, many owners, operators, and developers of hydropower have recognized the opportunity to provide more flexibility and ancillary services to the electric grid. To quantify value of services, this study focused on the Western Electric Coordinating Council region. A security-constrained, unit commitment and economic dispatch model was used to quantify the role of hydropower for several future energy scenarios up to 2020. This hourly production simulation considered transmission requirements to deliver energy, including future expansion plans. Both energy and ancillary service values were considered. Addressing specifically the quantification of pumped storage value, no single value stream dominated predicted plant contributions in various energy futures. Modeling confirmed that service value depends greatly on location and on competition with other available grid support resources. In this summary, ten different value streams related to hydropower are described. These fell into three categories; operational improvements, new technologies, and electricity market opportunities. Of these ten, the study was able to quantify a monetary value in six by applying both present day and future scenarios for operating the electric grid. This study confirmed that hydropower resources across the United States contribute significantly to operation of the grid in terms of energy, capacity, and ancillary services. Many potential improvements to existing hydropower plants were found to be cost-effective. Pumped storage is the most likely form of large new hydro asset expansions in the U.S. however, justifying investments in new pumped storage plants remains very challenging with current electricity market economics. Even over a wide range of possible energy futures, up to 2020, no energy future was found to bring quantifiable revenues sufficient to cover estimated costs of plant construction. Value streams not quantified in this study may provide a different cost-benefit balance and an economic tipping point for hydro. Future studies are essential in the quest to quantify the full potential value. Additional research should consider the value of services provided by advanced storage hydropower and pumped storage at smaller time steps for integration of variable renewable resources, and should include all possible value streams such as capacity value and portfolio benefits i.e.; reducing cycling on traditional generation.

None

2012-12-31T23:59:59.000Z

324

Hydrothermal Circulation At Mount St Helens Determined By Self-Potential  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Hydrothermal Circulation At Mount St Helens Determined By Self-Potential Measurements Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hydrothermal Circulation At Mount St Helens Determined By Self-Potential Measurements Details Activities (1) Areas (1) Regions (0) Abstract: The distribution of hydrothermal circulation within active volcanoes is of importance in identifying regions of hydrothermal alteration which may in turn control explosivity, slope stability and sector collapse. Self-potential measurements, indicative of fluid circulation, were made within the crater of Mount St. Helens in 2000 and

325

Seismic Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial  

Open Energy Info (EERE)

Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Magma Chamber At The Southern East Pacific Rise Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Evidence For A Hydrothermal Layer Above The Solid Roof Of The Axial Magma Chamber At The Southern East Pacific Rise Details Activities (1) Areas (1) Regions (0) Abstract: A full-waveform inversion of two-ship, wide-aperture, seismic reflection data from a ridge-crest seismic line at the southern East Pacific Rise indicates that the axial magma chamber here is about 50 m thick, is embedded within a solid roof, and has a solid floor. The 50-60-m-thick roof is overlain by a 150-200-m-thick low-velocity zone that may correspond to a fracture zone that hosts the hydrothermal circulation,

326

Geothermal: Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

327

National Geothermal Resource Assessment and Classification |...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation...

328

Kemaliye Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

Kemaliye Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kemaliye Geothermal Power Plant Project Location Information...

329

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

330

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

331

Quantifying the Value of Hydropower in the Electric Grid: Final Report  

Broader source: Energy.gov [DOE]

This report summarizes a 3-year DOE study focused on defining value of hydropower assets in a changing electric grid. The study looked at existing large hydropower operations in the U.S., models for different electricity futures, markets, costs of existing and new technologies as well as trends related to hydropower investments in other parts of the world.

332

Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W. Whittington,  

E-Print Network [OSTI]

1 Analysing Climate Change Risk in Hydropower Development By Gareth P. Harrison and Bert W ABSTRACT The continuing and increased use of hydropower is a key part of the strategy to limit the extent a methodology for quantifying the potential impact of climate change on the financial performance of hydropower

Harrison, Gareth

333

How Run-of-River Operation Affects Hydropower Generation Henriette I. Jager Mark S. Bevelhimer  

E-Print Network [OSTI]

How Run-of-River Operation Affects Hydropower Generation and Value Henriette I. Jager Ã? Mark S) are mandated to protect aquatic biota, (2) decrease hydropower generation per unit flow, and (3) decrease energy revenue. We tested these three assump- tions by reviewing hydropower projects with license

Jager, Henriette I.

334

Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and Climate Warming  

E-Print Network [OSTI]

i Modeling Multi-Reservoir Hydropower Systems in the Sierra Nevada with Environmental Requirements and the Sierra Nevada, their majestic backyard. #12;iii Abstract Hydropower systems and other river regulation that ecosystems have historically depended on. These effects are compounded at regional scales. As hydropower

Lund, Jay R.

335

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994  

E-Print Network [OSTI]

SUMMARY OF HYDROPOWER COSTS APPENDIX B FISH AND WILDLIFE PROGRAM B-1 December 15, 1994 Appendix B SUMMARY OF HYDROPOWER COSTS AND IMPACTS OF THE MAINSTEM PASSAGE ACTIONS This document summarizes regional hydropower costs and impacts of the mainstem passage actions in the Northwest Power Planning Council's 1994

336

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON  

E-Print Network [OSTI]

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

Julien, Pierre Y.

337

Climate Change Effects on High-Elevation Hydropower System in KAVEH MADANI LARIJANI  

E-Print Network [OSTI]

i Climate Change Effects on High-Elevation Hydropower System in California By KAVEH MADANI LARIJANI ___________________________________________ Committee in Charge 2009 #12;ii Abstract The high-elevation hydropower system in California, composed of more than 150 hydropower plants and regulated by the Federal Energy Regulatory Commission (FERC

Lund, Jay R.

338

Upper Middle Mainstem Columbia River Subbasin Water Quality Parameters Affected by Hydropower Production  

E-Print Network [OSTI]

by Hydropower Production Total Dissolved Gas Total dissolved gas (TDG) supersaturation often occurs during periods of high runoff and spill at hydropower projects and can be harmful to fish. Supersaturation occurs of hydropower projects on Columbia River water temperature has been to delay the time when thermal maximums

339

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y  

E-Print Network [OSTI]

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal

Jager, Henriette I.

340

Life and hydrothermal vents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life and hydrothermal vents Life and hydrothermal vents Name: williamh Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Are there biological communities near hydrothermal vents in the ocean? Is there any life inside the hydrothermal vent? Replies: If the presence of microorganisms in hot springs and geysers are any indication, I am certain there is life inside hydrothermal vents. These heat loving organisms are termed "thermophiles" and thrive where other life dies. They are able to survive in extreme heat due to the unique way their proteins are synthesized. The May 1993 Discover has a special article on thermophiles. wizkid Life at high temperature became very interesting to molecular biologists recently. The enormously useful technique known as PCR, (polymerase chain reaction), by which very small amounts of rare DNA can be amplified to large concentrations (Jurassic Park!), depends on having a DNA polymerase (the enzyme that synthesizes complementary DNA strands during replication of chromosomes), that can work at high temperatures, or at least can survive repeated high temperature cycles. PCR depends on synthesis of DNA followed by forced separation of the daughter strands at high temperature, followed by new synthesis, to amplify DNA exponentially. At any rate, normal bacterial polymerase will not work because the high temperature cycles kill it. Enter the now infamous, patented Taq polymerase, isolated from Thermus aquaticus, a hot spring bacterium, which works after heating to up to 94 C! So knowledge of life at high temperature allowed molecular biologists to get PCR to work, with all its benefits in cloning very rare genes and amplifying small amounts of DNA for forensic work etc.

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Literature Review At International Geothermal Area...  

Open Energy Info (EERE)

Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples...

342

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

343

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

344

Solar, Wind, Hydropower: Home Renewable Energy Installations | Department  

Broader source: Energy.gov (indexed) [DOE]

Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations Solar, Wind, Hydropower: Home Renewable Energy Installations April 17, 2013 - 1:44pm Addthis This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. This Lakewood, Colorado home was built in 1956. Brent and Mo Nelson upgraded the home with multiple solar technologies including; daylighting, passive solar and active solar. They also have an 80 gallon solar hot water heater. | Photo by Dennis Schroeder, National Renewable Energy Laboratory. Homeowner Andrea Mitchel, with installer Joe Guasti, proudly shows off small wind turbine installed in Oak Hills, CA. | Photo by Karin Sinclair, National Renewable Energy Laboratory.

345

EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation  

Broader source: Energy.gov (indexed) [DOE]

933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation 933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA EA-1933: Yakama Nation Drop 4 Hydropower Project, Yakama Nation Reservation, WA SUMMARY DOE is a cooperating agency with the Department of the Interior's Bureau of Indian Affairs as a lead agency for the preparation of an EA to evaluate the potential environmental impacts of a proposal by the Confederated Tribes and Bands of the Yakama Nation Department of Natural Resources to install an inline turbine on the Wapato Irrigation Project (WIP) Main Canal to generate approximately one megawatt of supplemental hydroelectric power. The Main Canal is a non-fish bearing irrigation canal within the WIP water conveyance system. The project site is located two miles southwest of Harrah, Washington.

346

Aleo Manali Hydropower Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Manali Hydropower Pvt Ltd Manali Hydropower Pvt Ltd Jump to: navigation, search Name Aleo Manali Hydropower Pvt Ltd Place Kullu, Himachal Pradesh, India Zip 203001 Sector Hydro Product Himachal-based small hydro project developer. Coordinates 23.42796°, 84.91112° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.42796,"lon":84.91112,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

348

Imperial Valley Geothermal Area | Department of Energy  

Energy Savers [EERE]

Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource...

349

Nevada Geothermal Area | Department of Energy  

Energy Savers [EERE]

Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately...

350

The Geysers Geothermal Area | Department of Energy  

Energy Savers [EERE]

The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field....

351

Italy Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

352

North Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Power Plants in North Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Dakota No areas listed....

353

Geothermal Energy Association Annual Industry Briefing: 2015...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal Geothermal Energy Association Annual Industry Briefing: 2015 State of Geothermal February 24, 2015...

354

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Operational Geothermal Power Plants in Wisconsin No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wisconsin No areas listed....

355

Pauzhetskaya Geothermal Power Plant | Open Energy Information  

Open Energy Info (EERE)

group":"","inlineLabel":"","visitedicon":"" Display map Geothermal Resource Area Rye Patch Geothermal Area Geothermal Region Northwest Basin and Range Geothermal Region Plant...

356

Mapping Hydrothermal Upwelling and Outflow Zones: Preliminary Results from  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Mapping Hydrothermal Upwelling and Outflow Zones: Preliminary Results from Two-Meter Temperature Data and Geologic Analysis at Lee Allen Springs and Salt Wells Basin Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Mapping Hydrothermal Upwelling and Outflow Zones: Preliminary Results from Two-Meter Temperature Data and Geologic Analysis at Lee Allen Springs and Salt Wells Basin Abstract Two-meter temperature surveys have been conducted at Salt Wells Basin and Lee-Allen Springs geothermal areas with the objective of distinguishing and

357

Geothermal Heat Pumps  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

358

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT OCTOBER 1 ­ DECEMBER 31, 1996 #12;1 1 AN EXPERIMENTAL that in the vertical case. 1.2 INTRODUCTION The process of boiling in porous media is of significance in geothermal

Stanford University

359

STANFORD GEOTHERMAL QUARTERLY REPORT  

E-Print Network [OSTI]

1 STANFORD GEOTHERMAL PROGRAM QUARTERLY REPORT JANUARY 1 - MARCH 31, 1997 #12;2 1 AN EXPERIMENTAL in geothermal systems as well as in many other applications such as porous heat pipes, drying and nuclear waste

Stanford University

360

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Applications of Geothermal Energy  

Science Journals Connector (OSTI)

The distinction between near surface and deep geothermal systems follows from the different depth levels of the geothermal reservoirs and different techniques of utilization (Fig ... smooth. Distinguishing the tw...

Ingrid Stober; Kurt Bucher

2013-01-01T23:59:59.000Z

362

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

363

Geothermal Energy on Mars  

Science Journals Connector (OSTI)

This contribution will concentrate on the implications of data from new studies of Mars during the past decade or so in terms of martian geothermal resources, and the potential differences in exploiting geothermal

Paul Morgan

2009-01-01T23:59:59.000Z

364

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

365

Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research  

SciTech Connect (OSTI)

This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

2000-09-29T23:59:59.000Z

366

Geothermal Exploration Policy Mechanisms: Lessons for the United States from International Applications  

SciTech Connect (OSTI)

This report focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal (geothermal) resources in the United States: (1) drilling failure insurance, (2) loan guarantees, (3) subsidized loans, (4) capital subsidies, and (5) government-led exploration. It describes each policy type and its application in other countries and regions. It offers policymakers a guide for drafting future geothermal support mechanisms for the exploration-drilling phase of geothermal development.

Speer, B.; Economy, R.; Lowder, T.; Schwabe, P.; Regenthal, S.

2014-05-01T23:59:59.000Z

367

Geothermal Government Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

368

Other Geothermal Energy Publications  

Broader source: Energy.gov [DOE]

Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

369

Geothermal energy development  

SciTech Connect (OSTI)

This book studies the impact of geothermal energy development in Imperial County, California. An integrated assessment model for public policy is presented. Geothermal energy resources in Imperial County are identified. Population and employment studies project the impact of geothermal on demography and population movement in the county. A public opinion, and a leadership opinion survey indicate support for well-regulated geothermal development. Actual development events are updated. Finally, research conclusions and policy recommendations are presented.

Butler, E.W.; Pick, J.B.

1983-01-01T23:59:59.000Z

370

Geothermal Industry Partnership Opportunities  

Broader source: Energy.gov [DOE]

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

371

South Dakota geothermal handbook  

SciTech Connect (OSTI)

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

Not Available

1980-06-01T23:59:59.000Z

372

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

373

Geothermal Photo Gallery  

Broader source: Energy.gov [DOE]

The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

374

Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects.

375

Geothermal status report  

SciTech Connect (OSTI)

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

376

Geothermal energy in Nevada  

SciTech Connect (OSTI)

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

Not Available

1980-01-01T23:59:59.000Z

377

Ecological and Geochemical Aspects of Terrestrial Hydrothermal Systems  

E-Print Network [OSTI]

exploitation of nearby geothermal energy resources. Dixieexploitation of nearby geothermal energy resources. In Napachange (USFWS, 2009), geothermal energy development (BLM,

Forrest, Matthew James

378

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

379

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...  

Open Energy Info (EERE)

the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. Authors...

380

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment  

Open Energy Info (EERE)

National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is in-vesting in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup-ply cutting edge geoinformatics. NGDS geothermal data acquisition, delivery, and methodology are dis-cussed. In particular, this paper addresses the various types of data required to effectively assess

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

382

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

383

An Updated Conceptual Model Of The Travale Geothermal Field Based On Recent  

Open Energy Info (EERE)

Travale Geothermal Field Based On Recent Travale Geothermal Field Based On Recent Geophysical And Drilling Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Travale Geothermal Field Based On Recent Geophysical And Drilling Data Details Activities (0) Areas (0) Regions (0) Abstract: an updated picture of the Travale field is given, based on geophysical and drilling data acquired since 1978. In deriving the model, extensive use is made of the geophysical data produced in the course of the EEC test site programme (1980-1983), particularly from seismic and time domain EM methods which allowed for penetrating thick and conductive cover formations and to match deep tectonic and hydrothermal alteration trends thought to indirectly characterize the geothermal reservoir. It is

384

An isotopic study of the Coso, California, geothermal area | Open Energy  

Open Energy Info (EERE)

study of the Coso, California, geothermal area study of the Coso, California, geothermal area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: An isotopic study of the Coso, California, geothermal area Details Activities (1) Areas (1) Regions (0) Abstract: Thirty-nine water samples were collected from the Coso geothermal system and vicinity and were analyzed for major chemical constituents and deltaD and delta^18/O. Non-thermal ground waters from the Coso Range were found to be isotopically heavier than non-thermal ground waters from the Sierra Nevada to the west. The deltaD value for the deep thermal water at Coso is similar to that of the Sierra water, suggesting that the major recharge for the hydrothermal system comes from the Sierra Nevada rather than from local precipitation on the Coso Range. The delta^18/O values of

385

Gamma Log At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Gamma Log At Raft River Geothermal Area (1979) Gamma Log At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gamma Log At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Gamma Log Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Borehole gamma spectrometry can be used to identify anomalous concentration of uranium, thorium, and potassium which are probably due to transportation by hydrothermal solutions. Computer crossplotting was used as an aid to the identification of such rock types as quartzite, quartz monzonite, and

386

Geothermal br Resource br Area Geothermal br Resource br Area Geothermal  

Open Energy Info (EERE)

Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Tectonic br Setting Host br Rock br Age Host br Rock br Lithology Mean br Capacity Mean br Reservoir br Temp Amedee Geothermal Area Amedee Geothermal Area Walker Lane Transition Zone Geothermal Region Extensional Tectonics Mesozoic granite granodiorite MW K Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Central Nevada Seismic Zone Geothermal Region Extensional Tectonics MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics triassic metasedimentary MW K Brady Hot Springs Geothermal Area Brady Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Extensional Tectonics MW Coso Geothermal Area Coso Geothermal Area Walker Lane Transition Zone

387

Core Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Core Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes Core was obtained from RRG-3C. The sample is a brecciated and altered siltstone from the base of the Tertiary sequence and is similar to rocks at the base of the Tertiary deposits in RRG-9. The results of thermal and quasi-static mechanical property measurements that were conducted on the core sample are presented. References Jones, C.; Moore, J.; Teplow, W.; Craig, S. (1 January 2011) GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Raft_River_Geothermal_Area_(2011)&oldid=473834

388

Aeromagnetic Survey At Coso Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

77) 77) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1977 Usefulness useful regional reconnaissance DOE-funding Unknown Notes A detailed low-altitude aeromagnetic survey of 576 line-mi (927 line-km) was completed over a portion of the Coso Hot Springs KGRA. This survey defined a pronounced magnetic low that could help delineate the geothermal system that has an areal extent of approximately 10 sq mi (26 sq km) partially due to magnetite destruction by hydrothermal solutions associated with the geothermal system. The anomoly coincides with two other geophysical anomalies: 1) a bedrock electrical resistivity low and 2) an area of relatively high near-surface temperatures. References Fox, R. C. (1 May 1978) Low-altitude aeromagnetic survey of a

389

Geothermal resource requirements for an energy self-sufficient spaceport  

SciTech Connect (OSTI)

Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

Kruger, P.; Fioravanti, M. [Stanford Univ., CA (United States). Civil Engineering Dept.; Duchane, D.; Vaughan, A. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1997-01-01T23:59:59.000Z

390

Effects of Climate Change on Federal Hydropower (Report to Congress)  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from these federal facilities

391

Modeling California's high-elevation hydropower systems in energy units  

E-Print Network [OSTI]

it a valuable renewable energy source. In the mid-1990s, hydropower was about 19% of world's total electricity Development Project, 2007] and almost 75% of the nation's electricity from all renew- able sources [Energy and Oregon, with approximately 27% in Washington (Energy Information Administration, Energy kid's page, 6

Pasternack, Gregory B.

392

Overview of Geothermal Energy Development  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

393

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

394

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers [EERE]

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

395

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Coast geopressured-geothermal wells: Two studies, Pleasantinduced by geopressured-geothermal well development. In:

Majer, Ernest L.

2006-01-01T23:59:59.000Z

396

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

measurements in geothermal wells," Proceedings, Secondin Larderello Region geothermal wells for reconstruction of

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

397

Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report  

SciTech Connect (OSTI)

Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

Not Available

1983-05-01T23:59:59.000Z

398

Exploration for geothermal resources in the Capital District of New York. Volume 1. Final report  

SciTech Connect (OSTI)

Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

Not Available

1981-11-01T23:59:59.000Z

399

Exploration for geothermal resources in the Capital District of New York. Final report  

SciTech Connect (OSTI)

Water chemistry, gas analyses, and geophysical methods including gravity and magnetic surveys, microseismic monitoring, and temperature gradient measurements were used in the Capital District area to evaluate the potential for a hydrothermal geothermal system. Water and gas chemistries provided indirect indicators, and temperature gradients provided direct indications of a geothermal system. Gravity results were supportive of gradient and chemistry data, but seismic and magnetic work have thus far provided little information on the potential system. Gradients throughout the area ranged from an average background value of about 10/sup 0/C/km to a high of roughly 44/sup 0/C/km. The highest gradient values, the most unusual water chemistries and largest carbon dioxide exhalations occur along the Saratoga and McGregor faults between Saratoga Springs and Schenectady, and indicate a good potential for a usable hydrothermal geothermal system at depth.

Sneeringer, M.R.; Dunn, J.R.

1981-11-01T23:59:59.000Z

400

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

402

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

403

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

404

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

405

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

406

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

407

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

408

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

409

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

410

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

411

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

412

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

413

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

414

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

415

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

416

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

417

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

418

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

419

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

420

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

422

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

423

Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California Details Activities (3) Areas (1) Regions (0) Abstract: Whole-rock oxygen isotope compositions of cores and cuttings from Long Valley exploration wells show that the Bishop Tuff has been an important reservoir for both fossil and active geothermal systems within the caldera. The deep Clay Pit-1 and Mammoth-1 wells on the resurgent dome

424

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

425

Reference book on geothermal direct use  

SciTech Connect (OSTI)

This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

1994-08-01T23:59:59.000Z

426

Geothermal Technologies Office: Publications  

Energy Savers [EERE]

focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal...

427

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

428

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal News Geothermal News RSS July 29, 2008 Tapping the Earth's geothermal energy During this oil crisis, we've been searching for alternatives like wind, solar and even...

429

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

430

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM  

Open Energy Info (EERE)

BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIR DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: Thermal stimulation can be utilized to precondition a well to optimize fracturing and production during Enhanced Geothermal System (EGS) reservoir development. A finite element model was developed for the fully coupled processes consisting of: thermoporoelastic deformation, hydraulic conduction, thermal osmosis, heat conduction, pressure thermal effect, and the interconvertibility of mechanical and thermal energy. The model has

431

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System (NGDS) Geothermal Data: Community Requirements and Information Engineering Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

432

Geothermal: Sponsored by OSTI -- Sustaining the National Geothermal...  

Office of Scientific and Technical Information (OSTI)

Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada,...

433

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

434

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

435

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

literature and how it affects access to land and mineral rights for geothermal energy production References B. C. Farhar (2002) Geothermal Access to Federal and Tribal Lands: A...

436

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

437

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

438

Geothermal: Sponsored by OSTI -- Two-Stage, Integrated, Geothermal...  

Office of Scientific and Technical Information (OSTI)

Two-Stage, Integrated, Geothermal-CO2 Storage Reservoirs: An Approach for Sustainable Energy Production, CO2-Sequestration Security, and Reduced Environmental Risk Geothermal...

439

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains  with  geothermal  power.  Geothermal Resources gains  with  geothermal  power.  Geothermal Resources of Tables:  Table 1:  Geothermal Power Plants Operating at 

Brophy, P.

2012-01-01T23:59:59.000Z

440

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Geothermal Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

442

Sandia National Laboratories: Geothermal Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Sandia and Atlas-Copco Secoroc Advance to Phase 2 in Their Geothermal Energy Project On July 31, 2013, in Energy, Geothermal, News, News & Events, Partnership, Renewable...

443

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

444

Geothermal FAQs | Department of Energy  

Office of Environmental Management (EM)

Back to Top 5. What is the visual impact of geothermal technologies? Answer: District heating systems and geothermal heat pumps are easily integrated into communities with almost...

445

Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other definitions:Wikipedia Reegle Geothermalpower.jpg Looking for the Geothermal...

446

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids...

447

Enhanced Geothermal Systems Subprogram Overview  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Systems Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable Energy eere.energy.gov Technology...

448

Geothermal Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

449

Geothermal Drilling Organization  

SciTech Connect (OSTI)

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

450

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

451

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

452

Engineered Geothermal Systems.  

E-Print Network [OSTI]

?? Different concepts for Enhanced Geothermal Systems (EGS) are presented and evaluated according to their potential for medium to large scale power production in Norwegian… (more)

Drange, Lars Anders

2011-01-01T23:59:59.000Z

453

National Geothermal Student Competition  

Broader source: Energy.gov [DOE]

The Energy Department's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

454

Energy 101: Geothermal Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface, through geothermal heat pumps.

455

Geothermal Case Study Challenge  

Broader source: Energy.gov [DOE]

The Energy Department's Geothermal Technologies Office hosts an annual student competition in exploration research to engage students pursuing STEM careers and, ultimately, to aid in the next...

456

South Dakota geothermal resources  

SciTech Connect (OSTI)

South Dakota is normally not thought of as a geothermal state. However, geothermal direct use is probably one of the best kept secrets outside the state. At present there are two geothermal district heating systems in place and operating successfully, a resort community using the water in a large swimming pool, a hospital being supplied with part of its heat, numerous geothermal heat pumps, and many individual uses by ranchers, especially in the winter months for heating residences, barns and other outbuildings, and for stock watering.

Lund, J.W.

1997-12-01T23:59:59.000Z

457

Geothermal: Related Links  

Office of Scientific and Technical Information (OSTI)

E-print Network Sign up for weekly E-print Alerts on a topic of interest Bonneville Power Administration California Energy Commission California Energy Commission (Geothermal...

458

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

459

Stanford Geothermal Workshop  

Energy Savers [EERE]

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

460

Geothermal Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pressure, temperature, and directional measurement and telemetry. The rechargeable energy storage unit for geothermal applications can handle extreme, high-temperature downhole...

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

462

Geothermal Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Geothermal Success Stories en Iowa: West Union Green Transformation Project http:energy.goveeresuccess-storiesarticlesiowa-west-union-green-transformation-project

463

Tap Geothermal Heat  

Science Journals Connector (OSTI)

Central to the proposal is the detonation of an underground thermonuclear device to create a large subterranean cavity of crushed rock in an area of geothermal activity. ...

1969-12-15T23:59:59.000Z

464

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New  

Open Energy Info (EERE)

Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Abstract The Valles caldera in New Mexico hosts a high-temperature geothermal system, which is manifested in a number of hot springs discharging in and around the caldera. In order to determine the fluid pathways and the origin of chloride in this system, we measured 36Cl/Cl ratios in waters from high-temperature drill holes and from surface springs in this region. The waters fall into two general categories: recent meteoric water samples with low Cl- concentrations (< 10 mg/L) and relatively high 36Cl/Cl ratios

465

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

466

Hydropower Potential in the Western U.S. | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydropower Potential in the Western U.S. Hydropower Potential in the Western U.S. Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov » Communities » Energy » Data Hydropower Potential in the Western U.S. Dataset Summary Description The dataset includes design elements, installed capacity, production capability, associated costs and cost -to-benefit ratios for nearly 200 water storing and conveying structures currently maintained by the Bureau of Reclamation. These data were used to support the internal study and report for assessing hydropower capability at 70 of Reclamation's existing facilities where hydropower has not been developed. The dataset can further be leveraged to support applications designed to provide a better understanding of our hydropower production potential and resource utilization.

467

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

about Hydropower about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

468

Top 10 Things You Didn't Know about Hydropower | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower Top 10 Things You Didn't Know about Hydropower April 19, 2013 - 3:49pm Addthis Learn how hydropower captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses. | Video by the Energy Department. Mike Reed Water Power Program Manager, Water Power Program LEARN MORE Stay up to date on hydropower, marine and hydrokinetic energy technologies by visiting energy.gov/water. This article is part of the Energy.gov series highlighting the "Top Things You Didn't Know About..." Be sure to check back for more entries soon. 10. Hydropower is one of the oldest power sources on the planet, generating power when flowing water spins a wheel or turbine. It was used by farmers as far back as ancient Greece for mechanical tasks like grinding grain.

469

Hydrothermal Resources Fact Sheet | Department of Energy  

Office of Environmental Management (EM)

Exploration Technologies Technology Needs Assessment Federal Interagency Geothermal Activities 2011 The Dixie Valley Geothermal Plant in Nevada produces 60 MW of...

470

Review of Pump as Turbine (PAT) for Micro-Hydropower  

E-Print Network [OSTI]

Abstract — Micro-hydropower projects are the excellent alternative for electricity generation in remote areas. These projects can be installed on small streams, rivers, and channels without any recognizable effect on environment. The only problem in micro-hydro projects is the high cost of turbine, for which Pump as Turbine (PAT) is a successful solution. An objective of the present study is to review the selection criteria of PAT for various hydropower sites having different potential. Since no general model has been developed which can be used to calculate the conversion factors for PAT, so this paper focuses on the research that have been carried out in this field. The limitations of the various available models and other selection criteria have also been discussed in this paper.

Tarang Agarwal

471

Hydrothermal Systems Rock Deformation and Geodynamics  

E-Print Network [OSTI]

Update Seminar Process Modelling of Hydrothermal Systems using SHEMAT / Processing SHEMAT 20 - 22 August to develop a process understanding of reactive transport in hydrothermal systems and to make responsible.rwth-academy.com/geophysics.html With contributions from #12;Process Modelling of Hydrothermal Systems using SHEMAT / Processing SHEMAT Hydrothermal

472

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

473

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

474

Heat extraction in fractured hydrothermal reservoirs: Final report  

SciTech Connect (OSTI)

The main objective of the Heat Extraction Project has been the development of means to estimate the thermal behavior of geothermal fluids from fractured hydrothermal resources based on production of mixed reservoir fluids from heat sweep by reinjected brine and resource fluid cooled by drawdown and infiltrating waters. Several reports and publications, listed in the concluding section of this report, resulted from the application of the SGP heat sweep model to achieve this objective. The Heat Extraction Project made major advances in the development of the 1-D Heat Sweep Model and its application in geothermal fields in several countries. Heat sweep joint studies are underway for reinjection evaluation at the Los Azufres, Los Humeros, and La Primavera fields in Mexico, for the 500 t/h reinjection test for the redevelopment program at Wairakei, New Zealand, for two hot water supply recirculation systems to be developed in the USSR, and for the phase 2 test at the Hot Dry Rock project at Fenton Hill, New Mexico. Advances were also made in the cooperative studies with CFE at Los Azufres on the evaluation of the effects of early operation of small wellhead generators on the reservoirs of potentially large geothermal fields. 9 refs., 5 figs.

Kruger, P.

1988-06-30T23:59:59.000Z

475

Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet)  

Broader source: Energy.gov [DOE]

The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

476

Characteristics of the design of the hydropower equipment of the purnari-II hydroelectric station  

Science Journals Connector (OSTI)

1. The experience of design works on the hydropower equipment of a hydrostation as large of a large number of su...

V. A. Linyuchev

1998-03-01T23:59:59.000Z

477

Energy Department Announces $4.4 Million to Support Next-Generation Advanced Hydropower Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced $4.4 million to support the application of advanced materials and manufacturing techniques to the development of next-generation hydropower technologies.

478

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

479

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

480

Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop  

Broader source: Energy.gov [DOE]

General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses.

Note: This page contains sample records for the topic "geothermal hydropower hydrothermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal: Sponsored by OSTI -- DEVELOPING THE NATIONAL GEOTHERMAL...  

Office of Scientific and Technical Information (OSTI)

DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT...

482

Geothermal Energy (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Geothermal energy is one of the components of the National Energy Policy: “Reliable, Affordable, and Environmentally Sound Energy for America’s Future.” This lesson includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity.

483

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

484

Geothermal: Distributed Search Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

485

geothermal_test.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

486

geothermal2.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

487

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

488

Geothermal R and D Project report for period April 1, 1976 to June 30, 1976  

Open Energy Info (EERE)

report for period April 1, 1976 to June 30, 1976 report for period April 1, 1976 to June 30, 1976 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal R and D Project report for period April 1, 1976 to June 30, 1976 Details Activities (1) Areas (1) Regions (0) Abstract: Progress during April to July 1976 in research on geothermal energy is reported. The experiments are performed in the Raft River Valley, Idaho, a hydrothermal resource site with water temperatures below 150/sup 0/C. During this period, a third well, RRGE-3 was drilled and well production was tested, testing of a direct contact heat exchanger continued, design and cost estimating continued on a 40 MW (th) organic-binary heat exchange facility, agricultural studies of irrigation with geothermal water progressed, and down-hole data was obtained from

489

Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Fenton Hill Hdr Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References U. Fehn, R. T. D. Teng, Usha Rao, Fraser E. Goff (1996) Sources Of Chloride In Hydrothermal Fluids From The Valles Caldera, New Mexico- A 36Cl Study Retrieved from

490

Geothermal Literature Review At U.S. West Region (Laney, 2005) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Literature Review At U.S. West Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At U.S. West Region (Laney, 2005) Exploration Activity Details Location U.S. West Region Exploration Technique Geothermal Literature Review Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Characterization and Conceptual Modeling of Magmatically-Heated and Deep-Circulation, High-Temperature Hydrothermal Systems in the Basin and Range and Cordilleran United States, Moore, Nash, Nemcok, Lutz, Norton,

491

An Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field,  

Open Energy Info (EERE)

Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field, Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Stable-isotope analyses were carried out on hydrothermal minerals sampled from the deep metamorphic units at Larderello, Italy. The D18O values obtained for the most retentive minerals, quartz and tourmaline, are from + 12.0‰ to + 14.7‰ and 9.9‰, respectively, and indicate deposition from an 18O-rich fluid. Calculated D18O values for these fluids range from + 5.3‰ to + 13.4‰. These values, combined with available fluid inclusion and petrographic data, are consistent with the proposed

492

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

493

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

494

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on earlySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary

Stanford University

495

Are there significant hydrothermal resources in the US part of the Cascade Range?  

SciTech Connect (OSTI)

The Cascade Range is a geothermal dichotomy. On the one hand, it is an active volcanic arc above a subducting plate and is demonstrably an area of high heat flow. On the other hand, the distribution of hydrothermal manifestations compared to other volcanic arcs is sparse, and the hydrothermal outflow calculated from stream chemistry is low. Several large estimates of undiscovered geothermal resources in the U.S. part of the Cascade Range prepared in the 1970s and early 1980s were based fundamentally on two models of the upper crust. One model assumed that large, partly molten, intrusive bodies exist in the upper 10 km beneath major volcanic centers and serve as the thermal engines driving overlying hydrothermal systems. The other model interpreted the coincident heat-flow and gravity gradients west of the Cascade crest in central Oregon to indicate a partly molten heat source at 10 {+-} 2 km depth extending {approx}30 km west from the axis of the range. Investigations of the past ten years have called both models into question. Large long-lived high-temperature hydrothermal systems at depths <3 km in the U.S. part of the Cascade Range appear to be restricted to silicic domefields at the Lassen volcanic center, Medicine Lake volcano, Newberry volcano, and possibly the Three Sisters. Federal land-use restrictions further reduce this list to Medicine Lake and Newberry. Dominantly andesitic stratocones appear to support only small transitory hydrothermal systems related to small intrusive bodies along the volcanic conduits. The only young caldera, at Crater Lake, supports only low- to intermediate-temperature hydrothermal systems. Most of the Cascade Range comprises basaltic andesites and has little likelihood for high-level silicic intrusions and virtually no potential for resultant large high-temperature hydrothermal systems. Undiscovered hydrothermal resources of the Cascade Range of the United States are substantially lower than previous estimates. The range does have potential for intermediate-temperature hot dry rock and localized low- to intermediate-temperature hydrothermal systems.

Muffler, L.J. Patrick; Guffanti, Marianne

1995-01-26T23:59:59.000Z

496

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

497

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

498

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

499

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

500

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water