National Library of Energy BETA

Sample records for geothermal fluid inclusions

  1. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Sasada, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area (Sasada, 1988)...

  2. Fluid Inclusion Analysis At International Geothermal Area Mexico...

    Open Energy Info (EERE)

    David I. Norman, Joseph Moore (2004) Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Additional References Retrieved from "http:...

  3. FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...

    Open Energy Info (EERE)

    FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  4. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...

    Open Energy Info (EERE)

    Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Gas Analysis Of...

  5. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  6. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  7. A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field...

    Open Energy Info (EERE)

    on anhydrite crystals sampled to 2.5 km depth from 28 wells, record thermal and chemical changes in the Tongonan geothermal field. Interpretations of the Th (175-368C...

  8. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions: type 1 fluids in which...

  9. Fluid Inclusion Analysis At Coso Geothermal Area (1996) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilver PeakWister|

  10. Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilver

  11. Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilverInformation

  12. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal...

  13. Fluid Inclusion Stratigraphy Interpretation of New Wells in the...

    Open Energy Info (EERE)

    Fluid Inclusion Stratigraphy Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Fluid...

  14. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  15. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...

    Open Energy Info (EERE)

    Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal System- A Case Study Of The Geysers Geothermal Field, Usa Jump to: navigation, search OpenEI Reference...

  16. Fluid-inclusion evidence for past temperature fluctuations in...

    Open Energy Info (EERE)

    in the Kilauea East Rift Zone geothermal area, Hawaii Abstract Heating and freezing data were obtained for fluid inclusions in hydrothermal quartz, calcite, and...

  17. Fluid Inclusion Stratigraphy: Interpretation of New Wells in...

    Open Energy Info (EERE)

    Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  18. Tracing Geothermal Fluids

    SciTech Connect (OSTI)

    Michael C. Adams Greg Nash

    2004-03-31

    Chemical compounds have been designed under this contract that can be used to trace water that has been injected into vapor-dominated and two-phase geothermal fields. Increased knowledge of the injection flow is provided by the tracers, and this augments the power that can be produced. Details on the stability and use of these tracers are included in this report.

  19. Fluid-inclusion gas composition from an active magmatic-hydrothermal system: a case study of The Geysers, California geothermal field

    E-Print Network [OSTI]

    Moore, Joseph N.; Norman, David I.; Kennedy, B. Mack.

    2001-01-01

    Ed. . , Active geothermal systems and gold–mercury depositsEd. . , Active Geothermal Systems and Gold– Mercury Depositsassoci- ated geothermal systems, alteration, mineralization,

  20. Working Fluids and Their Effect on Geothermal Turbines

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

  1. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  2. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG GRAPHS Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  3. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M. (Richmond, CA)

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  4. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    Geothermal Area (Rao, Et Al., 1996) Exploration Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  5. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    Open Energy Info (EERE)

    Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011....

  6. Geothermal energy production with supercritical fluids

    DOE Patents [OSTI]

    Brown, Donald W.

    2003-12-30

    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  7. Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

  8. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Lorie M. Dilley

    2011-03-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

  9. The formation and distribution of CO sub 2 -enriched fluid inclusions in epithermal environments

    SciTech Connect (OSTI)

    Moore, J.N.; Adams, M.C.; Lemieux, M.M. (Univ. of Utah, Salt Lake City (United States))

    1992-01-01

    Fluid inclusions from two geothermal systems associated with volcanic activity were studied to document the distribution of CO{sub 2} in modern epithermal environments. The fluid inclusion data, combined with mineral distributions and chemical analyses of the production fluids from both systems provide a record of steam and gas flux to depths in excess of 1 to 2 km and of transient variations in the gas contents of the reservoirs. The liquid-rich fluid inclusions can be grouped into two types on the basis of their CO{sub 2} contents. Inclusions with CO{sub 2} contents of less than about 4 wt% typically have calculated gas contents that are higher than the present-day reservoir fluids. However, the calculated pressures and temperatures of these inclusions are consistent with their depth of formation, indicating that they may have formed in response to boiling and mixing processes in the reservoir. Liquid-rich fluid inclusions with CO{sub 2} contents between approximately 4 and 6 wt% are characterized by CO{sub 2} clathrate dissociation temperatures greater than 0.0C. These inclusions occur on the margins of the thermal systems where they define umbrella-shaped caps around the main zones of upwelling. The CO{sub 2} contents of the inclusions require that they formed at pressures several tens of bars above hydrostatic. Elevated pressures and gas contents may have developed through compression and condensation of CO{sub 2}-enriched steam by tectonic stress.

  10. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    this study was to investigate the relationship between known geothermal resources with deep, fault hosted permeable fluid flow pathways and the helium Isotopic composition of the...

  11. Electric Power Generation Using Geothermal Fluid Coproduced from...

    Open Energy Info (EERE)

    Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electric...

  12. Cryptic Faulting and Multi-Scale Geothermal Fluid Connections...

    Open Energy Info (EERE)

    and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Jump to: navigation, search...

  13. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    the potential use of geothermal energy for power generation47. Boldizsar, T. , 1970, "Geothermal energy production fromCoast Geopressure Geothermal Energy Conference, M.H. Dorfman

  14. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    on the Cerro Prieto Geothermal Field, Baja California,monitoring at the Geysers Geothermal Field, California,~~W. and Faust, C. R. , 1979, Geothermal resource simulation:

  15. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    is a vapor dominated geothermal system and is the largestin liquid-dominated geothermal systems, 11 Proceedings,histories relating to geothermal systems from around the

  16. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    the fluid geochemistry in the field is spatially variable and complex, with two distinct deep geothermal fluid types (high vs. low K, Na, Cl, Ca, Li, F concentrations) and two...

  17. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  18. Integrated mineralogical and fluid inclusion study of the Coso...

    Open Energy Info (EERE)

    zones. Comparison of mineral and fluid inclusion based temperatures demonstrates that cooling has occurred along the margins of the thermal system but that the interior of the...

  19. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    Applications o f Geothermal Energy and t h e i r Place i n tcompaction, computers, geothermal energy, pore-waterf o r developing geothermal energy i n the United States (

  20. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    of Geothermal Resources, Pisa, v. 2, p. 99-109. Browne,of Geothermal Resources, Pisa, v. 2, p. 287-294. Sageev,Use of Geothermal Resources, Pisa, 1970, v. 2, p. 564-570.

  1. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    t al. , "Modeling Geothermal Systems," A t t i dei Convegnio f L i q u i d Geothermal Systems," Open-File Report 75-i q u i d Dominated Geothermal Systems," Proceedings o f t h

  2. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    of Enhanced Geothermal Systems (EGS) on the United States inEnhanced Geothermal Systems (EGS) Using CO 2 as WorkingENHANCED GEOTHERMAL SYSTEMS (EGS) WITH CO 2 AS WORKING FLUID

  3. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: Discover a blind, low-moderate temperature resource: Apply a combination of detailed sub-soil gas, hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up exploration drilling target; Create short term jobs and long term employment through resource exploration, development and power plant operation; Extend and adapt the DOE sub-soil 2 meter probe technology to gas sampling.

  4. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    geothermal systems (EGS), heat transmission, thermalenhanced geothermal systems (EGS) with high pressure (commercialization of water-based EGS [2], while fluid losses

  5. Microthermometry of Fluid Inclusions from the VC-1 Core Hole...

    Open Energy Info (EERE)

    Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Microthermometry of Fluid Inclusions from the VC-1 Core Hole in Valles...

  6. Silica recovery and control in Hawaiian geothermal fluids. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  7. Silica recovery and control in Hawaiian geothermal fluids

    SciTech Connect (OSTI)

    Thomas, D.M.

    1992-06-01

    A series of experiments was performed to investigate methods of controlling silica in waste geothermal brines produced at the HGP-A Generator Facility. Laboratory testing has shown that the rate of polymerization of silica in the geothermal fluids is highly pH dependent. At brine pH values in excess of 8.5 the suspension of silica polymers flocculated and rapidly precipitated a gelatinous silica mass. Optimum flocculation and precipitation rates were achieved at pH values in the range of 10.5 to 11.5. The addition of transition metal salts to the geothermal fluids similarly increased the rate of polymerization as well as the degree of precipitation of the silica polymer from suspension. A series of experiments performed on the recovered silica solids demonstrated that methanol extraction of the water in the gels followed by critical point drying yielded surface areas in excess of 300 M{sup 2}/g and that treatment of the dried solids with 2 N HCl removed most of the adsorbed impurities in the recovered product. A series of experiments tested the response of the waste brines to mixing with steam condensate and non-condensable gases.The results demonstrated that the addition of condensate and NCG greatly increased the stability of the silica in the geothermal brines. They also indicated that the process could reduce the potential for plugging of reinjection wells receiving waste geothermal fluids from commercial geothermal facilities in Hawaii. Conceptual designs were proposed to apply the gas re-combination approach to the disposal of geothermal waste fluids having a range of chemical compositions. Finally, these designs were applied to the geothermal fluid compositions found at Cerro Prieto, Ahuachapan, and Salton Sea.

  8. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    model to compute land subsidence, 11 Bull. Intl. Assn.geothermal production and subsidence history of the Wairakei5. Geertsma, J. , 1973, Land subsidence above compacting oil

  9. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

  10. MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION

    E-Print Network [OSTI]

    Lippmann, M.J.

    2011-01-01

    pore-water pressures , subsidence. DISCLAIMER NeiIher ( h ehere," do not MODELING SUBSIDENCE DUE T GEOTHERMAL FLUIDSecond Syhposium on Land Subsidence 1976 a t Anaheim, I n t

  11. Volatiles in hydrothermal fluids- A mass spectrometric study...

    Open Energy Info (EERE)

    Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Fluid Imaging of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Attempting to Image EGS Fracture & Fluid Networks; Employing joint Geophysical Imaging Technologies.

  13. Effects of glacial ice on subsurface temperatures of hydrothermal systems in Yellowstone National Park, Wyoming: Fluid-inclusion evidence

    SciTech Connect (OSTI)

    Bargar, K.E.; Fournier, R.O. (Geological Survey, Menlo Park, CA (USA))

    1988-12-01

    Hydrothermal quartz and fluorite crystals containing liquid-rich fluid inclusions (coexisting vapor-rich fluid inclusions were not observed) were found in drill cores from eight relatively shallow research holes drilled by the US Geological Survey in and near major geyser basins of Yellowstone National Park. Homogenization temperatures (T{sub h}) for mostly secondary fluid inclusions show variations in temperature that have occurred at give depths since precipitation of the host minerals. Within major hydrothermal upflow zones, fluid-inclusion T{sub h} values all were found to be equal to or higher (commonly 20-50 C and up to 155 C higher) than present temperatures at the depths sampled. During periods when thick glacial ice covered the Yellowstone National Park region, pore-fluid pressures in the underlying rock were increased in proportion to the weight of the overlying column of ice. Accordingly, theoretical reference boiling-point curves that reflect the maximum temperature attainable in a hot-water geothermal system at a given depth were elevated, and temperatures within zones of major hydrothermal upflow (drill holes Y-2, Y-3, Y-6, Y-11, Y-13, and upper part of Y-5) increased. The thicknesses of ice required to elevate boiling-point curves sufficiently to account for the observed fluid-inclusion T{sub h} values are within the ranges estimated by glacial geologic studies. At the margins of major hydrothermal upflow zones (drill holes Y-4 and Y-9), fluid-inclusion T{sub h} values at given depths range from 57 C lower to about the same as the current temperature measurements because of a previous decrease in the rate of discharge of warm water and/or an increase in the rate of recharge of cold water into the hydrothermal system.

  14. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Interactions in Enhanced Geothermal Systems (EGS) with CO 2Fluid, Proceedings, World Geothermal Congress 2010, Bali,Remain? Transactions, Geothermal Resources Council, Vol. 17,

  15. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18

    E-Print Network [OSTI]

    Long, Bernard

    following over 25 years of geothermal fluid exploitation. Mantle helium dominates in fluids from the north field has been extensively studied in the past 30 years for its geological and tectonic features (DobsonEvolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18 O, D

  16. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid

    Broader source: Energy.gov [DOE]

    The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

  17. Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18

    E-Print Network [OSTI]

    Evolution of the geothermal fluids at Los Azufres, Mexico, as traced by noble gas isotopes, 18 O, D: Noble gases Strontium isotopes Helium isotopes Geothermal energy Los Azufres Araró Mexico Isotopes of noble gases, CO2, H2O and Sr were measured in 10 geothermal wells and 8 hot springs, fumaroles and mud

  18. CO2-based mixtures as working fluids for geothermal turbines.

    SciTech Connect (OSTI)

    Wright, Steven Alan; Conboy, Thomas M.; Ames, David E.

    2012-01-01

    Sandia National Laboratories is investigating advanced Brayton cycles using supercritical working fluids for application to a variety of heat sources, including geothermal, solar, fossil, and nuclear power. This work is centered on the supercritical CO{sub 2} (S-CO{sub 2}) power conversion cycle, which has the potential for high efficiency in the temperature range of interest for these heat sources and is very compact-a feature likely to reduce capital costs. One promising approach is the use of CO{sub 2}-based supercritical fluid mixtures. The introduction of additives to CO{sub 2} alters the equation of state and the critical point of the resultant mixture. A series of tests was carried out using Sandia's supercritical fluid compression loop that confirmed the ability of different additives to increase or lower the critical point of CO{sub 2}. Testing also demonstrated that, above the modified critical point, these mixtures can be compressed in a turbocompressor as a single-phase homogenous mixture. Comparisons of experimental data to the National Institute of Standards and Technology (NIST) Reference Fluid Thermodynamic and Transport Properties (REFPROP) Standard Reference Database predictions varied depending on the fluid. Although the pressure, density, and temperature (p, {rho}, T) data for all tested fluids matched fairly well to REFPROP in most regions, the critical temperature was often inaccurate. In these cases, outside literature was found to provide further insight and to qualitatively confirm the validity of experimental findings for the present investigation.

  19. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The purpose of this research is to develop a method to identify fracture systems in wells using fluid inclusion gas analysis of drill chips.

  20. Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and...

    Open Energy Info (EERE)

    prospect. - Calibrate the sub-soil chemistry with down hole fluid inclusion stratigraphy analyses to define a follow-up exploration drilling target. - Successful...

  1. Fluid Inclusion Analysis At Chena Geothermal Area (Kolker, 2008) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi: EnergyThermal DataEnergy

  2. Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi: EnergyThermal

  3. Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open Energy

  4. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) | Open Energy

  5. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) | Open

  6. Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) | OpenEnergy

  7. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy Resources JumpGarfieldGarvin County,

  8. A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton JumpProgram | OpenEnergy Information

  9. FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,Erosion FlumeEventFAOFBASSESSMENT PRELIMINARY

  10. Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint

  11. Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation ) Jump to:

  12. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation ) Jump

  13. Integrated mineralogical and fluid inclusion study of the Coso geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on OpeneiAlbanian Centre for

  14. Stress and Fluid-Flow Interaction for the Coso Geothermal Field...

    Open Energy Info (EERE)

    Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  15. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Transmission Fluid in the EGS Integrating the Carbon StorageK. Enhanced Geothermal Systems (EGS) Using CO2 as WorkingNHANCED G EOTHERMAL S YSTEMS (EGS): C OMPARING W ATER AND CO

  16. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    in Enhanced Geothermal Systems (EGS) with CO 2 as WorkingTransmission Fluid in the EGS Integrating the Carbon Storageand F. Rummel. The Deep EGS (Enhanced Geothermal System)

  17. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Demonstrate geothermal mineral extraction; Demonstrate technical and economic feasibility; Produce products for market development; Generate operational data and scale up data so a commercial scale plant can be designed and built.

  18. Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System (California, USA)

    E-Print Network [OSTI]

    Svensen, Henrik

    Fluid origin, gas fluxes and plumbing system in the sediment-hosted Salton Sea Geothermal System Available online 12 June 2011 Keywords: Salton Sea Geothermal System hydrothermal seeps gas and water geochemistry flux measurements mantle The Salton Sea Geothermal System (California) is an easily accessible

  19. Fluid Inclusion Evidence for Rapid Formation of the Vapor-Dominated...

    Open Energy Info (EERE)

    New Mexico, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fluid Inclusion Evidence for Rapid Formation of the Vapor-Dominated Zone at...

  20. MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS

    E-Print Network [OSTI]

    Stanford University

    MEASURE-EENT OF WATER CONTENT I N POROUS MEDIA UNDER GEOTHERMAL FLUID FLOW CONDITIONS for t h e i n - s i t u measurement of water content i n porous media, expressed as a volume f r a c t i o n of t h e pore space; ( 2 ) t o measure water content i n t h e two-phase geothermal f l u i d flow

  1. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    melting point of ice (Tm, 183 inclusions) were measured using a USGS heating and freezing stage accurate to +- 2C on heating runs and +- 0.1C on freezing runs. Bubble...

  2. SPECTROSCOPIC METHODS FOR ANALYZING ORGANIC COMPOUNDS IN FLUID INCLUSIONS DURING PLANETARY EXPLORATION. A. Mazzini 1

    E-Print Network [OSTI]

    Mazzini, Adriano

    to support of life, and could even contain direct biomolecular signatures of life. Accessing the fluid which provide data on organic compounds in fluid inclusions. The techniques used are Ra- man entrapped in chemosynthetic carbonate at a modern cold seep site. Cold seeps have been identified as targets

  3. Recent Developments in Geothermal Drilling Fluids Kelsey, J....

    Office of Scientific and Technical Information (OSTI)

    M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N. 01 COAL, LIGNITE, AND PEAT; 15 GEOTHERMAL ENERGY; BENTONITE; BROWN COAL; DRILLING; DRILLING...

  4. Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation )Geothermal Field

  5. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    SciTech Connect (OSTI)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. . Hawaii Inst. of Geophysics); Gerlach, D.C. ); Chen, B.; Takahashi, P.; Thomas, D.M. Evans and Associates, Redwood City, CA )

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  6. GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY

    E-Print Network [OSTI]

    Bresee, J. C.

    2011-01-01

    B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

  7. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    SciTech Connect (OSTI)

    Brown, Shaun; Kennedy, Burton; DePaolo, Donald; Evans, William

    2008-08-01

    A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~;;14 km long, west-to-east trend along the proposed fluid flow path (Sorey et al., 1991). Samples were analyzed for the isotopes of water, Sr, Ca, and noble gases, the concentrations of major cations and anions and total CO2. Our data confirm earlier models in which the variations in water isotopes along the flow path reflect mixing of a single hydrothermal fluid with local groundwater. Variations in Sr data are poorly constrained and reflect fluid mixing, multiple fluid-pathways or water-rock exchange along the flow path as suggested by Goff et al. (1991). Correlated variations among total CO2, noble gases and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2, noble gases) driving calcite precipitation as the fluid flows west-to-east across the caldera. This is the first evidence that Ca isotopes may trace and provide definitive evidence of calcite precipitation along fluid flow paths in geothermal systems.

  8. Fluid Circulation and Heat Extraction from Engineered Geothermal...

    Open Energy Info (EERE)

    in less-confined reservoirs. Under such conditions, a downhole production-well pump may be employed to increase productivity by recovering more of the injected fluid at...

  9. Characteristics of Basin and Range Geothermal Systems with Fluid...

    Open Energy Info (EERE)

    Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often inaccurate estimates based on shallow samples and by a...

  10. Fluid Inclusions in carpholite bearing metasediments and blueschists from NE Oman: Constraints on P-T evolution

    E-Print Network [OSTI]

    El-Shazly, Aley

    -T conditions of Metamorphism 4. Fluid Inclusion Data 4.1 Petrography of the studied samples 4.2 Fluid Inclusion Petrography 4.2.1 Upper Plate samples: 4.2.2 Lower Plate Samples: 4.3 Microthermometry 4.3.1 Analytical

  11. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofenhanced geothermal systems (EGS), predicting larger energy

  12. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    2006), “The Future of Geothermal Energy Impact of Enhanced2000), “A Hot Dry Rock Geothermal Energy Concept UtilizingEnergy has broadly defined Enhanced (or Engineered) Geothermal

  13. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    Development of Enhanced Geothermal Systems,” paper presentedImpact of Enhanced Geothermal Systems (EGS) on the UnitedK (2006), “Enhanced Geothermal Systems (EGS) Using CO 2 as

  14. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Pruess, K. Enhanced Geothermal Systems (EGS) Using CO 2 asof Enhanced Geothermal Systems? , paper presented at ThirdBehavior of Enhanced Geothermal Systems with CO 2 as Working

  15. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    Development of Enhanced Geothermal Systems,” paper presentedEnergy Impact of Enhanced Geothermal Systems (EGS) on theK (2006), “Enhanced Geothermal Systems (EGS) Using CO 2 as

  16. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    2004b. Pruess, K. Enhanced Geothermal Systems (EGS) Using COwith the Development of Enhanced Geothermal Systems? , paperBehavior of Enhanced Geothermal Systems with CO 2 as Working

  17. Age constraints on fluid inclusions in calcite at Yucca Mountain

    SciTech Connect (OSTI)

    Neymark, Leonid A.; Amelin, Yuri V.; Paces, James B.; Peterman, Zell E.; Whelan, Joseph F.

    2001-04-29

    The {sup 207}Pb/{sup 235}U ages for 14 subsamples of opal or chalcedony layers younger than calcite formed at elevated temperature range between 1.88 {+-} 0.05 and 9.7 {+-} 1.5 Ma with most values older than 6-8 Ma. These data indicate that fluids with elevated temperatures have not been present in the unsaturated zone at Yucca Mountain since about 1.9 Ma and most likely since 6-8 Ma. Discordant U-Pb isotope data for chalcedony subsamples representing the massive silica stage in the formation of the coatings are interpreted using a model of the diffusive loss of U decay products. The model gives an age estimate for the time of chalcedony formation around 10-11 Ma, which overlaps ages of clay minerals formed in tuffs below the water table at Yucca Mountain during the Timber Mountain thermal event.

  18. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    SciTech Connect (OSTI)

    Harrison, Stephen

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol Materials is evaluating other products with greater commercial value. Potassium Silicotitanates, zeolites and other sorbents were evaluated as potential reagents for the extraction of potassium from geothermal brines and production of potassium chloride (potash). It was found that zeolites were effective at removing potassium but the capacity of the zeolites and the form that the potassium is in does not have economic potential. Iron-silica by-product The conversion of iron-silica by-product produced during silica management operations into more valuable materials was studied at the laboratory scale. Results indicate that it is technically feasible to convert the iron-silica by-product into ferric chloride and ferric sulfate solutions which are precursors to a ferric phosphate product. However, additional work to purify the solutions is required to determine the commercial viability of this process. Conclusion Simbol Materials is in the process of designing its first commercial plant based on the technology developed to the pilot scale during this project. The investment in the commercial plant is hundreds of millions of dollars, and construction of the commercial plant will generate hundreds of jobs. Plant construction will be completed in 2016 and the first lithium products will be shipped in 2017. The plant will have a lithium carbonate equivalent production capacity of 15,000 tonnes per year. The gross revenues from the project are expected to be approximately $ 80 to 100 million annually. During this development program Simbol grew from a company of about 10 people to over 60 people today. Simbol is expected to employ more than 100 people once the plant is constructed. Simbol Materials’ business is scalable in the Imperial Valley region because there are eleven geothermal power plants already in operation, which allows Simbol to expand its business from one plant to multiple plants. Additionally, the scope of the resource is vast in terms of potential products such as lithium, manganese and zinc and potentially potassium.

  19. Review and evaluation of literature on testing of chemical additives for scale control in geothermal fluids. Final report

    SciTech Connect (OSTI)

    Crane, C.H.; Kenkeremath, D.C.

    1981-01-01

    A selected group of reported tests of chemical additives in actual geothermal fluids are reviewed and evaluated to summarize the status of chemical scale-control testing and identify information and testing needs. The task distinguishes between scale control in the cooling system of a flash plant and elsewhere in the utilization system due to the essentially different operating environments involved. Additives for non-cooling geothermal fluids are discussed by scale type: silica, carbonate, and sulfide.

  20. Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlint GeothermalSilver PeakWister| Open

  1. Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation )Geothermal

  2. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation Jump to: navigation, search Name TJTMA Global33 -51

  3. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

  4. Chemical behaviour of geothermal silica after precipitation from geothermal fluids with inorganic flocculating agents at the Hawaii Geothermal Project Well-A (HGP-A)

    SciTech Connect (OSTI)

    De Carlo, E.H.

    1987-01-01

    The report summarizes the results of experiments dealing with the problem of removal of waste-silica from spent fluids at the experimental power generating facility in the Puna District of the island of Hawaii. Geothermal discharges from HGP-A represent a mixture of meteoric and seawaters which has reacted at depth with basalts from the Kilauea East Rift Zone under high pressure and temperature. After separation of the steam phase of the geothermal fluid from the liquid phase and a final flashing stage to 100 degrees Celsius and atmospheric pressure, the concentration of the silica increases to approximately 1100 mg/L. This concentration represents five to six times the solubility of amorphous silica in this temperature range. We have evaluated and successfully developed bench scale techniques utilizing adsorptive bubble flotation for the removal of colloidal silica from the spent brine discharge in the temperature range of 60 to 90 degrees C. The methods employed resulted in recovery of up to 90% of the silica present above its amorphous solubility in the experimental temperature range studied.

  5. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field

    SciTech Connect (OSTI)

    Williams, Alan E.; Copp, John F.

    1991-01-01

    Gas concentrations and ratios in 110 analyses of geothermal fluids from 47 wells in the Coso geothermal system illustrate the complexity of this two-phase reservoir in its natural state. Two geographically distinct regions of single-phase (liquid) reservoir are present and possess distinctive gas and liquid compositions. Relationships in soluble and insoluble gases preclude derivation of these waters from a common parent by boiling or condensation alone. These two regions may represent two limbs of fluid migration away from an area of two-phase upwelling. During migration, the upwelling fluids mix with chemically evolved waters of moderately dissimilar composition. CO{sub 2} rich fluids found in the limb in the southeastern portion of the Coso field are chemically distinct from liquids in the northern limb of the field. Steam-rich portions of the reservoir also indicate distinctive gas compositions. Steam sampled from wells in the central and southwestern Coso reservoir is unusually enriched in both H{sub 2}S and H{sub 2}. Such a large enrichment in both a soluble and insoluble gas cannot be produced by boiling of any liquid yet observed in single-phase portions of the field. In accord with an upflow-lateral mixing model for the Coso field, at least three end-member thermal fluids having distinct gas and liquid compositions appear to have interacted (through mixing, boiling and steam migration) to produce the observed natural state of the reservoir.

  6. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    D.W. A Hot Dry Rock Geothermal Energy Concept Utilizingcombine recovery of geothermal energy with simultaneous1. Introduction Geothermal energy extraction is currently

  7. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01

    SECONO GEOPRESSURED GEOTHERMAL ENERGY CONFERENCE. VOLUME 2--15 TITLE- THE LLL GEOTHERMAL ENERGY OEVELOPMENT PROGRAM.J. REFERENCE" THE LLL GEOTHERMAL ENERGY DEVELOPMENT PROGRAM.

  8. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.the 5-km Deep Enhanced Geothermal Reservoir at Soultz-sous-

  9. Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA

    E-Print Network [OSTI]

    Brown, Shaun

    2010-01-01

    rock exchange in geothermal systems and the size and spacingfluid flow paths in geothermal systems. Introduction Theand enhanced geothermal systems. The chemical composition of

  10. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01

    ASSESSMENT OF THE MESA GEOTHERMAL SYSTEM. AUTHOR- COPLEN,OF THE SALTON SEA GEOTHERMAL SYSTEM. AuTHCR- HELGESUN,HOT-DRY-ROCK SYSTEMS; GEOLOGY; GEOTHERMAL WELLS;, HYDROLOGY.

  11. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    of enhanced geothermal systems? , paper presented at ThirdBehavior of Enhanced Geothermal Systems with CO 2 as Workingreservoir. Keywords: enhanced geothermal systems (EGS), heat

  12. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    with the development of enhanced geothermal systems? , paper6, [9] Pruess K. Enhanced geothermal systems (EGS) using COBehavior of Enhanced Geothermal Systems with CO 2 as Working

  13. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    with the Development of Enhanced Geothermal Systems? , paper2004. Pruess, K. Enhanced Geothermal Systems (EGS) Using CO2Behavior of Enhanced Geothermal Systems with CO 2 as Working

  14. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    K. Enhanced Geothermal Systems (EGS) Using CO 2 as Workingand Fracture System of the EGS Soultz Reservoir (France)enhanced geothermal systems (EGS), heat transmission, CO 2

  15. Mixtures of SF6 CO2 as working fluids for geothermal power plants

    SciTech Connect (OSTI)

    Yin, Hebi [ORNL; Sabau, Adrian S [ORNL; Conklin, Jim [ORNL; McFarlane, Joanna [ORNL; Qualls, A L [ORNL

    2013-01-01

    In this paper, supercritical/transcritical thermodynamic cycles using mixtures of SF6 CO2 as working fluids were investigated for geothermal power plants. The system of equations that described the thermodynamic cycle was solved using a Newton-Raphson method. This approach allows a high computational efficiency even when thermophysical properties of the working fluid depend strongly on the temperature and pressure. The thermophysical properties of the mixtures were obtained from National Institute of Standards and Technology (NIST) REFPROP software and constituent cubic equations. The local heat transfer coefficients in the heat exchangers were calculated based on the local properties of the working fluid, geothermal brine, and cooling water. The heat exchanger areas required were calculated. Numerical simulation results presented for different cycle configurations were used to assess the effects of the SF6 fraction in CO2, brine temperature, and recuperator size on the cycle thermal efficiency, and size of heat exchangers for the evaporator and condenser. Optimal thermodynamic cycle efficiencies were calculated to be approximately 13 and 15% mole content of SF6 in a CO2- SF6 mixture for a Brayton cycle and a Rankine cycle, respectively.

  16. Review and problem definition of water/rock reactions associated with injection of spent geothermal fluids from a geothermal plant into aquifers

    SciTech Connect (OSTI)

    Elders, W.A.

    1986-07-01

    Among the technical problems faced by the burgeoning geothermal industry is the disposal of spent fluids from power plants. Except in unusual circumstances the normal practice, especially in the USA, is to pump these spent fluids into injection wells to prevent contamination of surface waters, and possibly in some cases, to reduce pressure drawdown in the producing aquifers. This report is a survey of experience in geothermal injection, emphasizing geochemical problems, and a discussion of approaches to their possible mitigation. The extraction of enthalpy from geothermal fluid in power plants may cause solutions to be strongly supersaturated in various dissolved components such as silica, carbonates, sulfates, and sulfides. Injection of such supersaturated solutions into disposal wells has the potential to cause scaling in the well bores and plugging of the aquifers, leading to loss of injectivity. Various aspects of the geochemistry of geothermal brines and their potential for mineral formation are discussed, drawing upon a literature survey. Experience of brine treatment and handling, and the economics of mineral extraction are also addressed in this report. Finally suggestions are made on future needs for possible experimental, field and theoretical studies to avoid or control mineral scaling.

  17. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Metal Organic Heat Carriers for Enhanced Geothermal Systems...

  18. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01

    Yellowstone National Park, however, was omitted because exploitation of the geothermalGEOTHERMAL FIELD. FENNER ::6 TITLE- BORE-HOLE INVESTIGATIONS IN YELLOWSTONEYELLOWSTONE NATIONAL PARK; CHEMICAL ANALYSIS; EXPERIMENTAL RESULTS. REFERENCE- SELECTED DATA ON WATER WEllS, GEOTHERMAL

  19. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    of Enhanced Geothermal Systems? , paper presented at ThirdPruess, K. Enhanced Geothermal Systems (EGS) Using CO2 asBehavior of Enhanced Geothermal Systems with CO 2 as Working

  20. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200?C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200?C and 40 bar was found to be acceptable after 399 hours of exposure?only 3% of the initial charge degraded into by products. The main degradation products being an isomer and a dimer. 3. In a comparative experiment between R245fa and the new fluid under subcritical conditions, it was found that the new fluid operated at 1 bar lower than R245fa for the same power output, which was also predicted in the Aspen HSYSY model. As a drop-in replacement fluid for R245fa, this new fluid was found to be at least as good as R245fa in terms of performance and stability. Further optimization of the subcritical cycle may lead to a significant improvement in performance for the new fluid. 4. For supercritical conditions, the experiment found a good match between the measured and model predicted state point property data and duties from the energy balance. The largest percent differences occurred with densities and evaporator duty (see Figure 78). It is therefore reasonable to conclude that the state point model was experimentally validated with a realistic ORC system. 5. The team also undertook a preliminary turbo-expander design study for a supercritical ORC cycle with the new working fluid. Variants of radial and axial turbo expander geometries went through preliminary design and rough costing. It was found that at 15MWe or higher power rating, a multi-stage axial turbine is most suitable providing the best performance and cost. However, at lower power ratings in the 5MWe range, the expander technology to be chosen depends on the application of the power block. For EGS power blocks, it is most optimal to use multi-stage axial machines. In conclusion, the predictions of the LCOE model that showed a supercritical cycle based on the new fluid to be most advantageous for geothermal power production at a resource temperature of ~ 200C have been experimentally validated. It was found that the cycle based on the new fluid is lower in LCOE and higher in net power output (for the same boundary conditions). The project, therefore has found a new optimal configuration for low temperature geothermal power production in the form of a su

  1. Porosity, permeability and fluid flow in the YellowstoneGeothermal System, Wyoming

    SciTech Connect (OSTI)

    Dobson, Patrick F.; Kneafsey, Timothy J.; Hulen, Jeffrey; Simmons, Ardyth

    2002-03-29

    Cores from two of 13 U.S. Geological Survey (USGS) research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of the convective geothermal reservoir. Variations in porosity and matrix permeability observed in the Y-5 and Y-8 cores are primarily controlled by lithology. Y-8 intersects three distinct lithologies: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous ash-flow tuff. The sandstone typically has high permeability and porosity, and the tuff has very high porosity and moderate permeability, while the perlitic lava has very low porosity and is essentially impermeable. Hydrothermal self-sealing appears to have generated localized permeability barriers within the reservoir. Changes in pressure and temperature in Y-8 correspond to a zone of silicification in the volcaniclastic sandstone just above the contact with the perlitic rhyolite; this silicification has significantly reduced porosity and permeability. In rocks with inherently low matrix permeability (such as densely welded ash-flow tuff), fluid flow is controlled by the fracture network. The Y-5 core hole penetrates a thick intracaldera section of the0.6 Ma Lava Creek ash-flow tuff. In this core, the degree of welding appears to be responsible for most of the variations in porosity, matrix permeability, and the frequency of fractures and veins. Fractures are most abundant within the more densely welded sections of the tuff. However, the most prominent zones of fracturing and mineralization are associated with hydrothermal breccias within densely welded portions of the tuff. These breccia zones represent transient conduits of high fluid flow that formed by the explosive release of overpressure in the underlying geothermal reservoir and that were subsequently sealed by supersaturated geothermal fluids. In addition to this fracture sealing, hydrothermal alteration at Yellowstone appears generally to reduce matrix permeability and focus flow along fractures, where multiple pulses of fluid flow and self-sealing have occurred.

  2. Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation

    SciTech Connect (OSTI)

    Clark, Thomas M; Erlach, Celeste

    2014-12-30

    Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

  3. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01

    HAwAI I HAWAI I GEOTHERMAL HGP-A HAWAI I GEOTHERMAL 3 RAFTNAME=HAWAI I GEOTHERMAL HGP-A A SAMPLE TYPE=h'ATER RECORDCODE NAME=HAWA[1 GEOTHERMAL "HGP-A 0 SAMPlE TYPE=HATER WELL

  4. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing

    SciTech Connect (OSTI)

    Freifeld, B.; Finsterle, S.

    2010-12-10

    The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

  5. Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi: EnergyThermalInformation

  6. Fluid Inclusion Analysis At Coso Geothermal Area (2005-2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:

  7. Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open Energy Information

  8. Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open EnergyInformation Raft

  9. Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open EnergyInformation

  10. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack, NewAgreement |AEnergyOPC

  11. Numerical studies of fluid-rock interactions in Enhanced Geothermal Systems (EGS) with CO2 as working fluid

    E-Print Network [OSTI]

    Xu, Tianfu; Pruess, Karsten; Apps, John

    2008-01-01

    instead of water as heat transmission fluid. Initial studies2 ) instead of water as heat transmission fluid, and would

  12. Experimental study of rock-fluid interaction using automated multichannel system operated under conditions of CO2-based geothermal systems

    E-Print Network [OSTI]

    Petro, M.

    2014-01-01

    In A Granite-Hosted Geothermal System: Experimental Insightsof the Darajat geothermal system, West Java - Indonesia,”OF CO 2 -BASED GEOTHERMAL SYSTEMS Miroslav Petro 1 , Jim

  13. Thermodynamic properties of a geothermal working fluid; 90% isobutane-10% isopentane: Final report

    SciTech Connect (OSTI)

    Gallagher, J.S.; Linsky, D.; Morrison, G.; Levelt Sengers, J.M.H.

    1987-04-01

    We present tables of thermodynamic properties, and dew and bubble properties, of a mixture of 90 mol % isobutane and 10 mol % isopentane, a working fluid in a binary geothermal power cycle. The tables are generated by a formulation of the Helmholtz free energy, in which the mixture properties are mapped onto the known properties of pure isobutane by means of the principle of generalized corresponding states. The data base for the Helmholtz free energy formulation is new. We report data obtained in three different apparatus: critical-line and isopentane vapor pressure data obtained in a visual cell; vapor-liquid equilibria data obtained in a mercury-operated variable-volume cell; and pressure-volume-temperature data for the 90 mol %-10 mol % mixture obtained in a semi-automated Burnett-isochoric apparatus. The principles of the methods, and estimates of the reliability, are discussed and all experimental data are compared with the surface. The results are tables of specific volume, enthalpy, entropy, specific heat and density and temperature derivatives of the pressure at 10 K temperature increments from 240 to 600 K along isobars from 0.01 to 20 MPa. Separate tables are prepared from the dew and bubble properties of the 90-10 mixture. Estimates of the effects of isomeric impurity of isobutane are given in graphical form.

  14. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    Chemical Modeling at the Soultz-sous-Forêts HDR Reservoir (Enhanced Geothermal Reservoir at Soultz-sous-Forêts, France,Fracture System of the EGS Soultz Reservoir (France) based

  15. Seismic triggering by rectified diffusion in geothermal systems

    E-Print Network [OSTI]

    Sturtevant, Bradford; Kanamori, Hiroo; Brodsky, Emily E.

    1996-01-01

    diffusion in geothermal systems Bradford Sturtevant Graduateof pressure In geothermal systems, fluid flow throughsystems. The modeled geothermal system consists of fractured

  16. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  17. A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES

    E-Print Network [OSTI]

    Cosner, S.R.

    2010-01-01

    19641. SAL TGN SE A KGRA; WELL DRILLING. REFERENCE- CHEMICALWELLS: NATURAL STEAM; WELL DRILLING: DATA; CALIFORNIA. /!.GEOTHERMAL FIELO; WEll DRILLING. RESERVGIR. ENGINEER-lNG;

  18. Stimuli-Responsive/Rheoreversible Hydraulic Fracturing Fluids as a Greener Alternative to Support Geothermal and Fossil Energy Production

    SciTech Connect (OSTI)

    Jung, Hun Bok; Carroll, KC; Kabilan, Senthil; Heldebrant, David J.; Hoyt, David W.; Zhong, Lirong; Varga, Tamas; Stephens, Sean A.; Adams, Lexor; Bonneville, Alain; Kuprat, Andrew P.; Fernandez, Carlos A.

    2015-01-01

    Cost-effective yet safe creation of high-permeability reservoirs within deep bedrock is the primary challenge for the viability of enhanced geothermal systems (EGS) and unconventional oil/gas recovery. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. Widespread concerns about the environmental contamination have resulted in a number of regulations for fracturing fluids advocating for greener fracturing processes. To enable EGS feasibility and lessen environmental impact of reservoir stimulation, an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing (at significantly lower effective stress than standard fracturing fluids) due to in situ volume expansion and gel formation is investigated herein. The chemical mechanism, stability, phase-change behavior, and rheology for a novel polyallylamine (PAA)-CO2 fracturing fluid was characterized at EGS temperatures and pressures. Hydrogel is formed upon reaction with CO2 and this process is reversible (via CO2 depressurization or solubilizing with a mild acid) allowing removal from the formation and recycling, decreasing environmental impact. Rock obtained from the Coso geothermal field was fractured in laboratory experiments under various EGS temperatures and pressures with comparison to standard fracturing fluids, and the fractures were characterized with imaging, permeability measurement, and flow modeling. This novel fracturing fluid and process may vastly reduce water usage and the environmental impact of fracturing practices and effectively make EGS production and unconventional oil/gas exploitation cost-effective and cleaner.

  19. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore »heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  20. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objective: A New Geothermal Well Imaging Tool. 1.To develop a robust and easily deployable DTPS for monitoring in geothermal wells; and 2. Develop the associated analysis methodology for flow imaging; and?when possible by wellbore conditions?to determine in situthermal conductivity and basal heat flux.

  1. Community Geothermal Technology Program: Media steam pasteurization using geothermal fluid at NELHA, Noi`i O Puna laboratory; Final report

    SciTech Connect (OSTI)

    NONE

    1990-10-01

    The project was successful in confirming the suitability of shredded coconut husks in potting mix and the acceptability of untreated geothermal steam to pasteurize the mix. The pots were exposed to the steam; the average media temperature was maintained at 160 F for 30 min. The pH levels, which were slightly elevated in virgin media, rose only slightly (< 0.5) after steaming. Salt levels doubled (still safe). Mg solubility increased but not to toxic levels. Test plantings showed no significant differences after 8 months, indicating that coconut fiber can be pasteurized and used to replace imported peat moss. 6 refs, 4 tabs.

  2. Carbon-13 variations in fluids from the Cerro Prieto geothermal system

    SciTech Connect (OSTI)

    Janik, C.J.; Nehring, N.L.; Huebner, M.A.; Truesdell, A.H.

    1982-08-10

    The carbon isotope compositions of CO/sub 2/ in steam from Cerro Prieto production well have been measured for 1977, 1979, and 1982. Variations in the delta/sup 13/C values are caused by production-related changes in the chemical and physical parameters of the geothermal system. In 1977, most CO/sub 2/ in the reservoir was isotopically light (delta/sup 13/C = -6.4 +/- 0.4). Heavier CO/sub 2/ was produced from wells in the center of the field (M5,M26,M27) due to deposition of isotopically light calcite caused by near-well boiling. In 1979 nearly all well showed relatively heavy CO/sub 2/, probably due to expansion of aquifer boiling and calcite precipitation. In 1982, many wells in the central part of the field were shut in. The amount of drawndown decreased and as temperatures and pressures near the wells increased, the boiling zones collapsed. The CO/sub 2/ in the fluid then exchanged with the precipitated calcite and became isotopically lighter. The sensitivity of carbon isotopes to calcite precipitations caused by aquifer boiling and to reequilibration with this deposited calcite upon decrease of boiling suggests use as an indicator of these aquifer processes. Surficial CO/sub 2/ of thermal origin was collected in 1981. Generally, the carbon-13 contents were close to CO/sub 2/ from production wells except for high-temperature mud pots and fumaroles containing isotopically light CO/sub 2/ derived from near surface alteration of organic matter.

  3. Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid

    E-Print Network [OSTI]

    Pruess, Karsten

    2008-01-01

    systems (EGS), heat transmission, CO 2 storage, numericaleither CO 2 or water as heat transmission fluid. For a modelCO 2 instead of water as heat transmission fluid. Originally

  4. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  5. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    Geochemical modeling of the Soultz-sous-Forêts hot dry rockchemical modeling at the Soultz-sous-Forêts HDR reservoir (enhanced geothermal reservoir at Soultz-sous-Forêts, France,

  6. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    of the Deep Reservoir at Soultz-sous-Forets, France,Enhanced Geothermal Reservoir at Soultz-sous-Forêts, France,Chemical Modeling at the Soultz-sous-Forêts HDR Reservoir (

  7. Coupled measurements of ?^18O and ?D of hydration water and salinity of fluid inclusions in gypsum from the Messinian Yesares Member, Sorbas Basin (SE Spain)

    E-Print Network [OSTI]

    Evans, Nicholas P.; Turchyn, Alexandra V.; Gázquez, Fernando; Bontognali, Tomaso R. R.; Chapman, Hazel J.; Hodell, David A.

    2015-01-01

    . The ?1818O and ?D of gypsum hydration water (CaSO4•2H2O) and salinity of fluid inclusions were measured in the same samples to test if they record the composition of the mother fluid from which gypsum was precipitated. Water isotopes are highly...

  8. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heat transmission fluids

    E-Print Network [OSTI]

    Pruess, Karsten

    2007-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in an2 instead of water as heat transmission fluid (D.W. Brown,

  9. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA...

  10. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  11. Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-Gas Technologies, LLCMichigan:Earth,Drilling Geothermal

  12. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformationFlintInformation )GeothermalEast

  13. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral...

    Open Energy Info (EERE)

    mineral surfaces by heating. The most abundant of these gases, besides H2O, are usually CO2, CH4, CO and N2. We have used a gas chromatograph to analyze these gases in fluid...

  14. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  15. Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas

    Broader source: Energy.gov [DOE]

    Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

  16. On the production behavior of enhanced geothermal systems with CO2 as working fluid

    E-Print Network [OSTI]

    Pruess, K.

    2008-01-01

    either CO 2 or water as heat transmission fluid. For a modelsystems (EGS), heat transmission, thermal breakthrough, CO 2instead of water as heat transmission fluid was proposed by

  17. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    B. Nonelectric Systems GEOTHERMAL HOT WATER RESOURCES A.is addressed. Geothermal systems Geothermal systems can beof components of geothermal systems and subsystems and the

  18. Simulation of water-rock interaction in the yellowstone geothermal system using toughreact

    E-Print Network [OSTI]

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

    2003-01-01

    fluid flow in the Yellowstone geothermal system, Wyoming.USA ABSTRACT The Yellowstone geothermal system provides anPrevious studies of the Yellowstone geothermal system have

  19. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    E-Print Network [OSTI]

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    fluid flow in the Yellowstone geothermal system, Wyoming,ROCK INTERACTION IN THE YELLOWSTONE GEOTHERMAL SYSTEM USINGGeyser Basin of the Yellowstone geothermal system, has been

  20. Silica extraction from geothermal water

    DOE Patents [OSTI]

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  1. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect (OSTI)

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  2. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtdEnergypedia Jump to:EnernocEnglewoodGeothermal

  3. The determination of phase relations in the CH?-H?O-NaCl system at 2 and 5 kbars, 300 to 600° C using synthetic fluid inclusions 

    E-Print Network [OSTI]

    McShane, Christopher Joseph

    1999-01-01

    Fluid inclusions were synthesized, using quartz and fluorite as host minerals, to determine the phase relations of the CH?-H?O-NaCl system at pressures of 2 and 5 kbars and temperatures of 300, 400, 500, and 600°C . Known quantities of CH?, H?O...

  4. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  5. GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA

    E-Print Network [OSTI]

    2009-01-01

    to assess their geothermal desalination program. The studyin the geothermal fluids for desalination and systemdesalination project includes mining the better-quality geothermal

  6. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  7. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  8. Novel Energy Conversion Equipment for Low Temperature Geothermal...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  9. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  10. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  11. Geothermal Power Plants — Minimizing Solid Waste and Recovering Minerals

    Broader source: Energy.gov [DOE]

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  12. Energy Department Announces $3 Million to Lower Cost of Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids Mineral Recovery Creates Revenue Stream for Geothermal Energy Development Low-temp...

  13. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Enhanced...

  14. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    The Future of Geothermal Energy, Massachusetts Institute ofD.W. A Hot Dry Rock Geothermal Energy Concept Utilizingcombine recovery of geothermal energy with simultaneous

  15. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    Brown, D. A Hot Dry Rock Geothermal Energy Concept UtilizingThe resource base for geothermal energy is enormous, butproduction of geothermal energy is currently limited to

  16. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systemstubes used. in geothermal energy plants Feasibility study of

  17. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

  18. Evaluation of C-14 as a natural tracer for injected fluids at the Aidlin sector of The Geysers geothermal system through modeling of mineral-water-gas Reactions

    E-Print Network [OSTI]

    Dobson, Patrick; Sonnenthal, Eric; Lewicki, Jennifer; Kennedy, Mack

    2006-01-01

    breakthrough observed in geothermal systems (e.g. , Shook,Geysers vapor- dominated geothermal system, California, USA,SECTOR OF THE GEYSERS GEOTHERMAL SYSTEM THROUGH MODELING OF

  19. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Interactions in Enhanced Geothermal Systems (EGS) with CO 2of Enhanced Geothermal Systems? , paper presented at Thirdfrom Enhanced Geothermal Systems, Proceedings, Paper

  20. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    of Enhanced Geothermal Systems? , paper presented at ThirdHot Dry Rock Geothermal System, Proceedings, Thirty-Firstfrom Enhanced Geothermal Systems, Proceedings, Paper

  1. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Interactions in Enhanced Geothermal Systems (EGS) with CO 2with the Development of Enhanced Geothermal Systems? , paperProspects from Enhanced Geothermal Systems, Proceedings,

  2. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    with the Development of Enhanced Geothermal Systems? , paperProspects from Enhanced Geothermal Systems, Proceedings,2006 LBNL-60397 Enhanced Geothermal Systems (EGS) Using CO 2

  3. Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids

    SciTech Connect (OSTI)

    Pruess, Karsten

    2007-11-01

    This paper summarizes our research to date into operatingEGS with CO2. Our modeling studies indicate that CO2 would achieve morefavorable heat extraction than aqueous fluids. The peculiarthermophysicalproperties of CO2 give rise to unusual features in the dependence ofenergy recovery on thermodynamic conditions and time. Preliminarygeochemical studies suggest that CO2 may avoid unfavorable rock-fluidinteractions that have been encountered in water-basedsystems. To morefully evaluate the potential of EGS with CO2 will require an integratedresearch programme of model development, and laboratory and fieldstudies.

  4. Calcite Fluid Inclusion, Paragenetic, and Oxygen Isotopic Records of Thermal Event(s) at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    B. Peterman; R. Moscati

    2000-08-10

    Yucca Mountain, Nevada, is under consideration as a potential high-level radioactive waste repository situated above the water table in 12.7 Ma tuffs. A wealth of textural and geochemical evidence from low-temperature deposits of calcite and silica, indicates that their genesis is related to unsaturated zone (UZ) percolation and that the level of the potential repository has never been saturated. Nonetheless, some scientists contend that thermal waters have periodically risen to the surface depositing calcite and opal in the tuffs and at the surface. This hypothesis received some support in 1996 when two-phase fluid inclusions (FIs) with homogenization temperatures (Th) between 35 and 75 C were reported from UZ calcite. Calcite deposition likely followed closely on the cooling of the tuffs and continues into the present. The paragenetic sequence of calcite and silica in the UZ is early stage calcite followed by chalcedony and quartz, then calcite with local opal during middle and late stages. Four types of FIs are found in calcite assemblages: (1) all-liquid (L); (2) all-vapor (V); (3) 2-phase with large and variable V:L ratios; and (4) a few 2-phase with small and consistent V:L ratios. Late calcite contains no FI assemblages indicating elevated depositional temperatures. In early calcite, the Th of type 4 FIs ranges from {approx} 40 to {approx} 85 C. Such temperatures (sub-boiling) and the assemblage of FIs are consistent with deposition in the UZ. Some delta 18O values < 10 permil in early calcite support such temperatures. Type 4 FIs, however, seem to be restricted to the early calcite stage, during which either cooling of the tuffs or regional volcanism were possible heat sources. Nonetheless, at present there is no compelling evidence of upwelling water as a source for the calcite/opal deposits.

  5. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

  6. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    SciTech Connect (OSTI)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao; Winterfeld, Philip H.; Zhang, Keni; Wu, Yu-Shu

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  7. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    SciTech Connect (OSTI)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  8. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  9. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    and Fracture System of the EGS Soultz Reservoir (France)Enhanced Geothermal Systems (EGS) Using CO 2 as Workingenhanced geothermal systems (EGS) concept that would use CO

  10. Advanced Geothermal Turbodrill

    SciTech Connect (OSTI)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  11. Baseline System Costs for 50.0 MW Enhanced Geothermal System...

    Open Energy Info (EERE)

    Baseline System Costs for 50.0 MW Enhanced Geothermal System -- A Function of: Working Fluid, Technology, and Location Geothermal Project Jump to: navigation, search Last modified...

  12. Development of New Biphasic Metal Organic Working Fluids for...

    Open Energy Info (EERE)

    Development of New Biphasic Metal Organic Working Fluids for Subcritical Geothermal Systems Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011....

  13. Geothermal Technologies Office 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on the REE content of geothermal fluids is very limited, * Challenging to analyze due to low concentrations of REE with high concentrations of interfering elements typical of...

  14. GEOSCIENCES; 15 GEOTHERMAL ENERGY; QUARTZ; DISSOLUTION; QUARTZITES...

    Office of Scientific and Technical Information (OSTI)

    fracture surfaces by dissolution. Part II Johnson, B. 58 GEOSCIENCES; 15 GEOTHERMAL ENERGY; QUARTZ; DISSOLUTION; QUARTZITES; ROCK-FLUID INTERACTIONS; AQUEOUS SOLUTIONS;...

  15. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Additional References Retrieved from "http:en.openei.orgwindex.php?titleMagne...

  16. Geothermal Energy Resource Investigations, Chocolate Mountains...

    Open Energy Info (EERE)

    and identify Holocene structures, which are common conduits for upwelling geothermal fluids. Gravity and ground-based magnetics surveys were conducted during the summer of...

  17. Innovative Exploration Techniques for Geothermal Assessment at...

    Open Energy Info (EERE)

    determine the fracture surface area, heat content and heat transfer, flow rates, and chemistry of the geothermal fluids encountered by the exploration wells. - Write final report...

  18. Geothermal Energy Retrofit

    SciTech Connect (OSTI)

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  19. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  20. STIMULATION OF GEOTHERMAL AQUIFERS Paul Kruger and Henry J. Ramey, J r .

    E-Print Network [OSTI]

    Stanford University

    . STIMULATION OF GEOTHERMAL AQUIFERS Paul Kruger and Henry J. Ramey, J r . Co o f Geothermal Formations . . . . . . . . 6 Table 2: Water Quali t y Constituents-Water Distribution Coefficients . . . . . . . . 62 Table 7: Gaseous Constituents i n Geothermal Fluids . . . . . . 64

  1. The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies

    E-Print Network [OSTI]

    Foulger, G. R.

    temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project coverage in near fluid injection experiments of the Coso Enhanced Geothermal Systems (EGS) Project (Rose- 1 - The Coso Geothermal Area: A Laboratory for Advanced MEQ Studies for Geothermal Monitoring

  2. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  3. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  4. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Geothermal System) Project at Soultz-sous-Forets (Alsace,European EGS experiment at Soultz/France (Gérard et al. ,

  5. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  6. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect (OSTI)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  7. HEAT AND MASS TRANSFER IN A FAULT-CONTROLLED GEOTHERMAL RESERVOIR CHARGED AT CONSTANT PRESSURE

    E-Print Network [OSTI]

    Goyal, K.P.

    2013-01-01

    and borehole logging data is known, it is possible to calculate total fluid recharge rate to the geothermal

  8. Geothermal well log interpretation state of the art. Final report

    SciTech Connect (OSTI)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  9. Petrophysical analysis of regional-scale thermal properties for improved simulations of geothermal installations and basin-scale heat and fluid flow

    E-Print Network [OSTI]

    Hartmann, Andreas; Clauser, Christoph

    2008-01-01

    Development of geothermal energy and basin-scale simulations of fluid and heat flow both suffer from uncertain physical rock properties at depth. Therefore, building better prognostic models are required. We analysed hydraulic and thermal properties of the major rock types in the Molasse Basin in Southern Germany. On about 400 samples thermal conductivity, density, porosity, and sonic velocity were measured. Here, we propose a three-step procedure with increasing complexity for analysis of the data set: First, univariate descriptive statistics provides a general understanding of the data structure, possibly still with large uncertainty. Examples show that the remaining uncertainty can be as high as 0.8 W/(m K) or as low as 0.1 W/(m K). This depends on the possibility to subdivide the geologic units into data sets that are also petrophysically similar. Then, based on all measurements, cross-plot and quick-look methods are used to gain more insight into petrophysical relationships and to refine the analysis. Be...

  10. Isotopic Analysis- Fluid At Valles Caldera - Redondo Area (Rao...

    Open Energy Info (EERE)

    Fluid At Valles Caldera - Redondo Area (Rao, Et Al., 1996) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Valles...

  11. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  17. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  20. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  1. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  2. Compound and Elemental Analysis At International Geothermal Area...

    Open Energy Info (EERE)

    fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful in developing management procedures for geothermal fields...

  3. Interior Department to Open 190 Million Acres to Geothermal Power...

    Energy Savers [EERE]

    Systems, which involves creating or expanding a geothermal resource through the high-pressure injection of a fluid, opens another 517,800 MW to potential development. For...

  4. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    of the geothermal fluids and gases were collected at regular intervals during each of the heat-extraction experiments from the production wellhead, the injection wellhead, and at...

  5. Kelkar, S. 15 GEOTHERMAL ENERGY; 99 GENERAL AND MISCELLANEOUS...

    Office of Scientific and Technical Information (OSTI)

    SYSTEMS; FINITE ELEMENT METHOD; HEAT TRANSFER; MASS TRANSFER; MULTIPHASE FLOW; POROUS MATERIALS; COMPUTER CODES; ENERGY SYSTEMS; ENERGY TRANSFER; FLUID FLOW; GEOTHERMAL...

  6. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  7. Energy Department Announces $3 Million to Identify New Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the most favorable intersections of heat, permeability, and fluid. While commonly used in oil and gas exploration, play fairway analysis is not yet widely used in the geothermal...

  8. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    and Multi-Scale Geothermal Fluid Connections in the Dixie Valley-Central Nevada Seismic Belt Area- Implications from Mt Resistivity Surveying Additional References Retrieved from...

  9. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

  10. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  11. Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock

    E-Print Network [OSTI]

    Faybishenko, Boris; Witherspoon, Paul A.

    2004-01-01

    Soultz Boreholes The Soultz project is a geothermal Hot-Dry-geothermal field, 56 wells, including slim holes and production boreholes,of boreholes and cross-sections. The geothermal fluid flow

  12. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Broader source: Energy.gov (indexed) [DOE]

    by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. stanford2013hollett.pdf More Documents & Publications Geothermal...

  13. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Fiscal Year...

  14. Numerical simulation to study the feasibility of using CO2 as a stimulation agent for enhanced geothermal systems

    E-Print Network [OSTI]

    Xu, T.

    2010-01-01

    geothermal system (EGS) for commercial production is "reservoir stimulation," a process that involves injecting fluids under high pressure through boreholes

  15. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    b. The use of binary power cycles or other closed systems c.feasibility. I L- U I power cycle com+pen,ts - exceptcontact heat exchangers to power cycles utilizing geothermal

  16. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    An Analysis of Power Generation Prospects from Enhancedfor Competitive Geothermal Power Generation, Energy & Fuels,1,000 MWe of EGS-CO 2 power generation would amount to the

  17. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  18. Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2

    E-Print Network [OSTI]

    Pruess, K.

    2010-01-01

    Supercritical CO 2 as Heat Transmission Fluid in the EGSof Using Supercritical CO2 as Heat Transmission Fluid in anEGS) with CO 2 as Heat Transmission Fluid - A Scheme for

  19. Geothermal Energy (5 Activities) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    rock to water? How does energy transferred between fluids in a binary geothermal power plant work? How does salinity affect the boiling point of water? How do the emissions...

  20. Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: W. Scott Phillips

    E-Print Network [OSTI]

    Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs: A Review W. Scott or production of fluids can induce microseismic events in hydrocarbon and geothermal reservoirs. By deploying Patterns in Reservoirs Key Words: induced microseismicity, geothermal, oil and gas, fluid flow, location

  1. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  2. Geothermal energy

    SciTech Connect (OSTI)

    Renner, J.L. [Idaho National Engineering Laboratory, Idaho Fall, ID (United States); Reed, M.J. [Dept. of Energy, Washington, DC (United States)

    1993-12-31

    Use of geothermal energy (heat from the earth) has a small impact on the environmental relative to other energy sources; avoiding the problems of acid rain and greenhouse emissions. Geothermal resources have been utilized for centuries. US electrical generation began at The Geysers, California in 1960 and is now about 2300 MW. The direct use of geothermal heat for industrial processes and space conditioning in the US is about 1700 MW of thermal energy. Electrical production occurs in the western US and direct uses are found throughout the US. Typical geothermal power plants produce less than 5% of the CO{sub 2} released by fossil plants. Geothermal plants can now be configured so that no gaseous emissions are released. Sulfurous gases are effectively removed by existing scrubber technology. Potentially hazardous elements produced in geothermal brines are injected back into the producing reservoir. Land use for geothermal wells, pipelines, and power plants is small compared to land use for other extractive energy sources like oil, gas, coal, and nuclear. Per megawatt produced, geothermal uses less than one eighth the land that is used by a typical coal mine and power plant system. Geothermal development sites often co-exist with agricultural land uses like crop production or grazing.

  3. Geothermal initiatives in Central America

    SciTech Connect (OSTI)

    Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

    1986-01-01

    The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

  4. Nevada: basic data for thermal springs and wells as recorded in GEOTHERM. Part A

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-06-01

    All chemical data for geothermal fluids in Nevada available as of December 1981 are maintained on GEOTHERM, a computerized information system. This report presents summaries and sources of records for Nevada. 7 refs. (ACR)

  5. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  6. Workshop on geothermal drilling fluids

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Thirteen papers and abstracts are included. Seven papers were abstracted and six abstracts were listed by title. (MHR)

  7. Using geothermal energy to heat a portion of a formation for an in situ heat treatment process

    DOE Patents [OSTI]

    Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich

    2010-06-08

    Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.

  8. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  9. Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location

    Office of Energy Efficiency and Renewable Energy (EERE)

    Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

  10. Assessing geothermal energy potential in upstate New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S.

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  11. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    of Using Supercritical CO2 as Heat Transmission Fluid in anH.J. , Jr. Wellbore Heat Transmission, J. Petrol. Tech. ,CO 2 instead of water as heat transmission fluid, and would

  12. The IEA's role in advanced geothermal drilling.

    SciTech Connect (OSTI)

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.

  13. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  14. Geothermal Progress Monitor 12

    SciTech Connect (OSTI)

    1990-12-01

    Some of the more interesting articles in this GPM are: DOE supporting research on problems at The Geysers; Long-term flow test of Hot Dry Rock system (at Fenton Hill, NM) to begin in Fiscal Year 1992; Significant milestones reached in prediction of behavior of injected fluids; Geopressured power generation experiment yields good results. A number of industry-oriented events and successes are reported, and in that regard it is noteworthy that this report comes near the end of the most active decade of geothermal power development in the U.S. There is a table of all operating U.S. geothermal power projects. The bibliography of research reports at the end of this GPM is useful. (DJE 2005)

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  16. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  17. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  19. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  20. National Geothermal Data System - DOE Geothermal Data Repository...

    Energy Savers [EERE]

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  1. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  2. track 3: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional...

  3. Geothermal energy geopressure subprogram

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  4. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  5. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Broader source: Energy.gov (indexed) [DOE]

    Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. icelandgeothermalco...

  6. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtpsmuconferencereinhardt2011.pdf More Documents & Publications Low Temperature...

  7. Geothermal Energy Association Recognizes the National Geothermal...

    Broader source: Energy.gov (indexed) [DOE]

    Development and Demonstration Projects for up to 78 Million to Promote Enhanced Geothermal Systems Geothermal energy, traditionally a baseload power source among renewables,...

  8. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    SciTech Connect (OSTI)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  9. Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon

    E-Print Network [OSTI]

    Pruess, Karsten

    2006-01-01

    Boreholes, Proceedings, Paper 1612.pdf, World Geothermalgeothermal energy from these resources by (1) creating permeability through hydraulic stimulation or fracturing, which involves fluid injection through deep boreholes

  10. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    resources for electric power generation. i. Plant size ii.SYSTEMS Electric Power Generation Systems NonelectricFLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

  11. Texas: basic data for thermal springs and wells as recorded in GEOTHERM

    SciTech Connect (OSTI)

    Bliss, J.D.

    1983-07-01

    This compilation identities all locations of potential source of geothermal fluids in Texas available as of December 1981. 7 refs. (ACR)

  12. Measurements of radon concentration in geothermal fluids at Cerro Prieto are evaluated with respect to spatial and temporal variations in reservoir thermodynamic conditions and

    E-Print Network [OSTI]

    Semprini, Lewis

    significantly suggesting an increase in the steam saturation in this part of the reservoir due to exploitation to spatial and temporal variations in reservoir thermodynamic conditions and the rock -- fluid mass ratio be attributed to the higher steam fraction in the reservoir fluid. Regression analysis of radon concentration

  13. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

  14. Sandia Energy - Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy & Drilling Technology Home Stationary Power Energy Conversion Efficiency Geothermal Geothermal Energy & Drilling Technology Geothermal Energy & Drilling...

  15. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  16. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Et Al., 1996) Exploration Activity Details Location Valles Caldera - Sulphur Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1996 - 1996...

  17. Isotopic Composition of Carbon in Fluids from the Long Valley...

    Open Energy Info (EERE)

    Isotopic Composition of Carbon in Fluids from the Long Valley Geothermal System, California, In- Proceedings of the Second Workshop on Hydrologic and Geochemical Monitoring in the...

  18. Geothermal Testing Facilities in an Oil Field

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration. The proposed project is to develop a long term testing facility and test geothermal power units for the evaluation of electrical power generation from low-temperature and co-produced fluids. The facility will provide the ability to conduct both long and short term testing of different power generation configurations to determine reliability, efficiency and to provide economic evaluation data.

  19. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    SciTech Connect (OSTI)

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  20. Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs W. Scott Phillips

    E-Print Network [OSTI]

    Induced Microearthquake Patterns in Hydrocarbon and Geothermal Reservoirs W. Scott Phillips James T microseismic events in hydrocarbon and geothermal reservoirs. By deploying sensors downhole, data sets have Key Words: induced microseismicity, geothermal, oil and gas, fluid flow, location #12;2 Introduction

  1. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  2. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  3. Geothermal research at the Puna Facility. Technical report

    SciTech Connect (OSTI)

    Chen, B.

    1986-04-01

    This report consists of a summary of the experiments performed to date at the Puna Geothermal Research Facility on silica in the geothermal fluid from the HGP-A well. Also presented are some results of investigations in commercial applications of the precipitated silica. (ACR)

  4. Indiana/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation...

  5. National Geothermal Summit

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  6. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  7. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    for noble gas abundances and their helium isotropic compositions. It was found that the geothermal fluids range from 0.70 to 0.76 Ra, and approximately 7.5% of the total helium...

  8. DOE Awards $20 Million to Develop Geothermal Power Technologies...

    Energy Savers [EERE]

    fluid will then be used as the heat source for a heating system, a greenhouse, and a fish farm. This "cascading" use of the geothermal resource is meant to improve the economics...

  9. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    geothermal field. This paper reports results from accumulation-chamber measurements of soil CO2 flux from locations in the dead zone and stable isotope and chemical data on fluids...

  10. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    by fluid injections at the EGS Site of Soultz-sous-Forêts (2012. Recovery factor for EGS. In: Proceedings of the 37thof Enhanced Geothermal Systems (EGS) on the United States in

  11. Mineral Recovery Creates Revenue Stream for Geothermal Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mining projects. The United States imports many critical materials we need to expand our clean energy economy. Some of them may be found in the fluids produced by geothermal power...

  12. United States Department Of The Navy Geothermal Exploration Leading...

    Open Energy Info (EERE)

    through open fractures in the mountain ranges to depths in excess of 7,000 feet. The fluids are then heated deep in the subsurface by the natural geothermal gradient of the...

  13. Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010

    E-Print Network [OSTI]

    Cattin, Rodolphe

    by a factor of ten the electrical power of conventional geothermal power plants (Albertsson et al., 2003). Producing supercritical fluids will require the drilling of wells and sampling of fluids and rocks at depths

  14. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect (OSTI)

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  15. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  16. Geophysical Prospecting 38,621-63 1,199O ALIGNMENT OF NEAR-SURFACE INCLUSIONS

    E-Print Network [OSTI]

    Edinburgh, University of

    GEOMETRIES FOR GEOTHERMAL HOT-DRY-ROCK EXPERIMENTS' STUART CRAMPIN AB S T R A C T CRAMPIN, S. 1990. Alignment of near-surface inclusions and appropriate crack geometries for geothermal hot-dry-rock experiments that the EDA-cracks and hydraulic fractures are typically aligned vertically, striking parallel, or subparallel

  17. Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions 

    E-Print Network [OSTI]

    Ali, Muhammad

    2014-04-22

    for geothermal wells and prediction of injection fluid temperatures. In this thesis, development and usage of three models for transient fluid temperature are presented. Two models predict transient temperature of flowing fluid under separate flow configurations...

  18. Advances In The Past 20 Years- Geochemistry In Geothermal Exploration...

    Open Energy Info (EERE)

    using non-condensible gas species); analysis tools that enable fluid inclusion stratigraphy; ground surface CO2 flux measurement; integration of geochemical reaction models...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    At Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At...

  20. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    National Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  2. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect (OSTI)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

  3. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    SciTech Connect (OSTI)

    Boles, James R.; Garven, Grant

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  4. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  5. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  6. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  7. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  8. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive CompensationEnergy GeothermalDemonstration2008

  9. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  10. A Roadmap for Strategic Development of Geothermal Exploration Technologies

    SciTech Connect (OSTI)

    Phillips, Benjamin R.; Ziagos, John; Thorsteinsson, Hildigunnur; Hass, Eric

    2013-02-13

    Characterizing productive geothermal systems is challenging yet critical to identify and develop an estimated 30 gigawatts electric (GWe) of undiscovered hydrothermal resources in the western U.S. This paper, undertaken by the U.S. Department of Energy’s Geothermal Technologies Office (GTO), summarizes needs and technical pathways that target the key geothermal signatures of temperature, permeability, and fluid content, and develops the time evolution of these pathways, tying in past and current GTO exploration Research and Development (R&D) projects. Beginning on a five-year timescale and projecting out to 2030, the paper assesses technologies that could accelerate the confirmation of 30 GWe. The resulting structure forms the basis for a Geothermal Exploration Technologies Roadmap, a strategic development plan to help guide GTO R&D investments that will lower the risk and cost of geothermal prospect identification. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  11. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    the division of Geothermal Energy. TASK 1 Identify Areas forLaboratory, NSF Geothermal Energy Conference, Pasadena,associated with geothermal energy development. These g o a l

  12. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

  13. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    Liquid Dominated Geothermal Systems," Second Intern. Symp.behavior related to geothermal systems and their potentialsetting of most geothermal systems is such that natural

  14. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  15. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks. In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

  16. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  17. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  18. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  19. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  20. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Sandiford, Mike

    .long@sa.gov.au See author affiliations at end. ABSTRACT Australia is amongst the forefront of Enhanced Geothermal high-permeability systems of fluid-borne crustal heat, commercially-viable geothermal systemsPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

  1. Near-surface groundwater responses to injection of geothermal wastes

    SciTech Connect (OSTI)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  2. Overview of Geothermal Energy Anan Suleiman

    E-Print Network [OSTI]

    Lavaei, Javad

    . Additionally, about 28 gigawatts (GW) of direct geothermal heating capacity is installed for district and space from the earth; it is the thermal energy contained in the rock and fluid in the earth's crust. Solar heating that results from solar radiation only penetrates about 10 meters underground, after which both

  3. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    1 Stanford Geothermal Program Final Report July 1990 - June 1996 Stanford Geothermal Program. THE EFFECTS OF ADSORPTION ON VAPOR-DOMINATED GEOTHERMAL FIELDS.1 1.1 SUMMARY? ..............................................................................................2 1.4 ADSORPTION IN GEOTHERMAL RESERVOIRS ........................................................3

  4. Geothermal Literature Review At Cascades Region (Ingebritsen...

    Open Energy Info (EERE)

    Geothermal Literature Review At Cascades Region (Ingebritsen & Mariner, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal...

  5. Dominica Grants Geothermal Exploration and Development License...

    Energy Savers [EERE]

    Energy Needs Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  6. Wyoming/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera...

  7. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    induced seismicity in geothermal systems. In: Proceedings ofThe deep EGS (Enhanced Geothermal System) project at Soultz-with enhanced geothermal systems. Geothermal Resources

  8. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  9. Fluid Inclusion Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada, 1988) |Analysis

  10. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  11. Convective heat transport in geothermal systems

    SciTech Connect (OSTI)

    Lippmann, M.J.; Bodvarsson, G.S.

    1986-08-01

    Most geothermal systems under exploitation for direct use or electrical power production are of the hydrothermal type, where heat is transferred essentially by convection in the reservoir, conduction being secondary. In geothermal systems, buoyancy effects are generally important, but often the fluid and heat flow patterns are largely controlled by geologic features (e.g., faults, fractures, continuity of layers) and location of recharge and discharge zones. During exploitation, these flow patterns can drastically change in response to pressure and temperature declines, and changes in recharge/discharge patterns. Convective circulation models of several geothermal systems, before and after start of fluid production, are described, with emphasis on different characteristics of the systems and the effects of exploitation on their evolution. Convective heat transport in geothermal fields is discussed, taking into consideration (1) major geologic features; (2) temperature-dependent rock and fluid properties; (3) fracture- versus porous-medium characteristics; (4) single- versus two-phase reservoir systems; and (5) the presence of noncondensible gases.

  12. Shape memory alloy seals for geothermal applications

    SciTech Connect (OSTI)

    Friske, Warren H.; Schwartzbart, Harry

    1982-10-08

    Rockwell International's Energy Systems Group, under contract to Brookhaven National Laboratory, has completed a 2-year program to develop a novel temperature-actuated seal concept for geothermal applications. This seal concept uses the unique properties of a shape memory alloy (Nitinol) to perform the sealing function. The several advantages of the concept are discussed in the paper. Demonstration tests of both face and shaft seals have shown that leaktight seals are feasible. Supporting materials studies have included corrosion tests in geothermal fluids, elevated temperature tensile tests, experimental electroplating and metallographic evaluations of microstructures.

  13. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    -of-the-art electrolyte models, to gain insight into CO2-induced fluid-rock interactions for temperatures in the range 10 GEOTHERMAL SYSTEMS WITH CO2 AS HEAT TRANSFER FLUID John Apps and Karsten Pruess Earth Sciences Division to as an Enhanced Geothermal System with CO2 (EGSCO2). The concept has yet to be tested in the field

  14. Hawaiian direct-heat grants encourage geothermal creativity

    SciTech Connect (OSTI)

    Beck, A.G. )

    1988-12-01

    The Hawaiian Community Geothermal Technology Program is unique. Under its auspices, heat and other by-products of Hawaii's high-temperature HGP-A geothermal well and power plant are not wasted. Instead, they form the backbone of a direct-heat grant program that reaches into the local community and encourages community members to develop creative uses for geothermal energy. A by-product of this approach is a broadened local base of support for geothermal energy development. With the experimental and precommercial work completed, most of the original grantees are looking for ways to continue their projects on a commercial scale by studying the economics of using geothermal heat in a full-scale business and researching potential markets. A geothermal mini-park may be built near the research center. In 1988, a second round of projects was funded under the program. The five new projects are: Geothermal Aquaculture Project - an experiment with low-cost propagation of catfish species in geothermally heated tanks with a biofilter; Media Steam Sterilization and Drying - an application of raw geothermal steam to shredded, locally-available materials such as coconut husks, which would be used as certified nursery growing media; Bottom-Heating System Using Geothermal Power for Propagation - a continuation of Leilani Foliage's project from the first round of grants, focusing on new species of ornamental palms; Silica Bronze - the use of geothermal silica as a refractory material in casting bronze artwork; and Electro-deposition of Minerals in Geothermal Brine - the nature and possible utility of minerals deposited from the hot fluid.

  15. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  16. Summer 2012 National Geothermal Academy: Applications Due February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Course modules include: Introduction to Geothermal Energy Utilization Geothermal Geology and Geochemistry Geothermal Field Trips Geothermal Geophysics Drilling Engineering...

  17. Doug Hollett Gives Keynote Presentation at Stanford Geothermal...

    Energy Savers [EERE]

    Geothermal Energy Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  18. Geothermal | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applying advanced materials to improve well construction technologies Development of harsh environment sensors for reservoir characterization DOE Geothermal Technologies Office...

  19. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  20. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  1. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  2. Next generation geothermal power plants. Draft final report

    SciTech Connect (OSTI)

    Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

    1994-12-01

    The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

  3. Power Plays: Geothermal Energy In Oil and Gas Fields

    Broader source: Energy.gov [DOE]

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  4. IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) | OpenHywindIBEW LocalIDC

  5. The Future of Geothermal Energy

    E-Print Network [OSTI]

    Ito, Garrett

    The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

  6. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  7. Geothermal Progress Monitor. Report No. 18

    SciTech Connect (OSTI)

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  8. Abraham Hot Springs Geothermal Area Northern Basin and Range...

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Medical Hot Springs Geothermal Area Idaho Batholith Medicine Lake Geothermal Area Cascades Melozi Hot Springs Geothermal Area Alaska Geothermal...

  9. InclusiveVT Definitions

    E-Print Network [OSTI]

    Crawford, T. Daniel

    competent students, faculty, and staff. InclusiveVT is Virginia Tech's new approach to revitalize inclusionInclusiveVT Definitions Vision Virginia Tech will have students and employees who thrive and contribute in a diverse and global world. Virginia Tech will become the premiere institution for culturally

  10. FRACTURE STIMULATION IN ENHANCED GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    FRACTURE STIMULATION IN ENHANCED GEOTHERMAL SYSTEMS A REPORT SUBMITTED TO THE DEPARTMENT OF ENERGY (Principal Advisor) #12;#12;v Abstract Enhanced Geothermal Systems (EGS) are geothermal reservoirs formed

  11. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  12. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Area Central Nevada Seismic Zone Pull Apart in Strike Slip Fault Zone Ordovician shale quartzite MW K Blue Mountain Geothermal Area Blue Mountain Geothermal Area Northwest...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Area Exploration Technique Geothermal Literature Review Activity Date Usefulness useful DOE-funding Unknown Exploration Basis examining known geothermal sites in New Mexico Notes...

  14. Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010

    E-Print Network [OSTI]

    Boyer, Edmond

    island of Guadeloupe (France, Lesser Antilles). The large range of scientific (geology, geochemistry) and onshore (gravimetry, electrical resistivity tomography profile and passive seismic), characterization of the geothermal alteration, numeric geological modelling of the developed field, fluid geochemistry and tracer

  15. Department of Mechanical Engineering Fall 2010 Geothermal Pressure Reduction Marcellus Shale Production

    E-Print Network [OSTI]

    Demirel, Melik C.

    include the following: Supercritical fluid fractures rock, Subterranean heat exchanger, PressurizedPENNSTATE Department of Mechanical Engineering Fall 2010 Geothermal Pressure Reduction ­ Marcellus Shale natural gas wells have a wellhead pressure that exceeds the material limits of typical above

  16. Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential...

    Office of Environmental Management (EM)

    21, 2013 - 12:00am Addthis Utilizing a 1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than...

  17. SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Narasimhan, T.N.

    2013-01-01

    concrete and rocks, in Pore Pressure and Suction in Soils,"maintained constant and pore pressure discussed Rock TypeI.. Q.. w· . I. - Pore Pressure Mil' a Normal ~IP Mil' a

  18. Colorado Potential Geothermal Pathways

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Publication Date: 2012 Title: Colorado PRS Cool Fairways Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains the weakened basement rocks. Isostatic gravity was utilized to identify structural basin areas, characterized by gravity low values reflecting weakened basement rocks. Together interpreted regional fault zones and basin outlines define geothermal "exploration fairways", where the potential exists for deep, superheated fluid flow in the absence of Pliocene or younger volcanic units Spatial Domain: Extent: Top: 4544698.569273 m Left: 144918.141004 m Right: 763728.391299 m Bottom: 4094070.397932 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  19. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  20. Controls on Fault-Hosted Fluid Flow: Preliminary Results from...

    Open Energy Info (EERE)

    Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  1. A Model For The Transient Temperature Effects Of Horizontal Fluid...

    Open Energy Info (EERE)

    A Model For The Transient Temperature Effects Of Horizontal Fluid Flow In Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  2. Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines

    SciTech Connect (OSTI)

    Nielson, D.L.; Moore, J.N.; Clemente, W.C.

    1996-12-31

    The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine) deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite rite, epidote, anhydrite, adularia and wairakite. An {sup 39}Ar/{sup 40}Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.

  3. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  4. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  5. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  6. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  7. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  8. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  9. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  10. Geothermal Reservoir Dynamics - TOUGHREACT

    E-Print Network [OSTI]

    2005-01-01

    enhanced geothermal systems (EGS) and hot dry rock (HDR),deformation, to demonstrate new EGS technology through fieldsystems, primarily focusing on EGS and HDR systems and on

  11. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  12. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.

  13. GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint

  14. Characterization of past hydrothermal fluids in the Humboldt...

    Open Energy Info (EERE)

    major, minor and trace elements; petrographic study of fluid inclusions, followed by laser ablation - ICP-MS; and XRD for clay identification. The results of our analyses will...

  15. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  16. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    an International Geothermal Energy Comnuni ty", J .C.environmental aspects of geothermal energy which provide theby GRID for geothermal energy have wider applications. In

  17. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    I 2nd Geopressured Geothermal Energy Conference. UniversityExperiment t o Extract Geothermal Energy From Hot Dry Rock."2nd Geo- pressured Geothermal Energy Conference, Austin,

  18. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

  19. NORTHERN NEVADA GEOTHERMAL EXPLORATION STRATEGY ANALYSIS

    E-Print Network [OSTI]

    Goldstein, N.E.

    2011-01-01

    School of Mines Nevada Geothermal Study: Report No. 4, Feb.J. , 1976, Assessing the geothermal resource base of the1977, Microseisms in geothermal Studies in Grass Valley,

  20. ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Zais, E.J.; Bodvarsson, G.

    2008-01-01

    Petroleum Reservoirs. Geothermal Reservoirs IV. DATA1970, Superheating of Geothermal Steam, Proc. of the U.N.the Development & Utilization of Geothermal Resources, Pisa.

  1. GEOTHERMAL RESERVOIR SIMULATIONS WITH SHAFT79

    E-Print Network [OSTI]

    Pruess, Karsten

    2012-01-01

    that well blocks must geothermal reservoir s·tudies, paperof Califomia. LBL-10066 GEOTHERMAL RESERVOIR SIMULATIONSbe presented at the Fifth Geothermal Reservoir Engineering

  2. Nevada/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Confirmation Silver Peak Geothermal Area Walker-Lane Transition Zone Geothermal Region Smith Creek Geothermal Project Ormat Phase I - Resource Procurement and Identification Smith...

  3. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    characteristics of geothermal boreholes are studied.Maini, Tidu. "Geothermal Energy From a Borehole i n H o t28 (1967): Borehole Temperature Survey Analysis Geothermal

  4. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01

    of the Salton Sea Geothermal System. pp. 129-166. Hubbert,and Lardarello: Geothermal Power Systems New Zealand Journalthe western edge of the geothermal system. Attenuation In

  5. 2015 Peer Review Presentations | Geothermal Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Peer Review Presentations | Geothermal Energy 2015 Peer Review Presentations | Geothermal Energy The Energy Department featured Play Fairway Analysis at the 2015 Geothermal...

  6. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  7. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Geothermal Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature...

  8. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    The deep EGS (Enhanced Geothermal System) project at Soultz-associated with enhanced geothermal systems. Geothermalfor a long-lived enhanced geothermal system (EGS) in the

  9. Diversity and Inclusion Guidance

    Broader source: Energy.gov [DOE]

    All DOE diversity and inclusion policies, practices and programs must comply with Federal Equal Employment Opportunity laws, Merit Systems Principles, the foundation of the Civil Service, and not...

  10. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  11. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

  12. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY Stanford Geothermal Program Interdisciplinary was provided through the Stanford Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 heat sweep model for estimating energy recovery from fractured geothermal reservoirs based on early

  13. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    through September 30, 1982. The Stanford Geothermal Program conducts interdisciplinary research in the geothermal industry. In the first 10 years of the Program about 50 graduates have been trained in geotherSTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL

  14. Compound and Elemental Analysis At Lightning Dock Area (Norman...

    Open Energy Info (EERE)

    David I. Norman, Joseph Moore (2004) Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Additional References Retrieved from "http:...

  15. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  16. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    SciTech Connect (OSTI)

    Gowda, Varun; Hogue, Michael

    2015-07-17

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positive economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.

  17. Low Temperature Geothermal Waste-Heat-to-Power 

    E-Print Network [OSTI]

    Tidwell, Preston J

    2014-09-21

    , to be considered as a Low Temperature Geothermal (LTG) resource, meaning capable of electricity generation. This hot fluid combination of hydrocarbons and water can be run through an Organic Rankine Power Cycle (ORC) for effective Waste-Heat-to-Power generation...

  18. Enthalpy restoration in geothermal energy processing system

    DOE Patents [OSTI]

    Matthews, Hugh B. (Boylston, MA)

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  19. Updating the Classification of Geothermal Resources- Presentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  20. Ionic Liquids for Utilization of Geothermal Energy

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

  1. National Geothermal Resource Assessment and Classification |...

    Office of Environmental Management (EM)

    Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the...

  2. Rural Cooperative Geothermal Development Electric & Agriculture...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

  3. Updating the Classification of Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  4. Navy Geothermal Plan

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  5. Shape memory alloy seals for geothermal applications

    SciTech Connect (OSTI)

    Not Available

    1985-09-15

    A shape memory radial seal was fabricated with a ''U'' cross section. Upon heating the seal recovered its original ''V'' shape and produced a high pressure seal. The sealing pressure which can be developed is approximately 41 MPa (60,000 psi), well in excess of the pressure which can be produced in conventional elastomeric seals. The low modulus martensite can conform readily to the sealing surface, and upon recovery produce a seal capable of high pressure fluid or gas confinement. The corrosion resistance of nickel-titanium in a broad range of aggressive fluids has been well established and, as such, there is little doubt that, had time permitted, a geothermal pump of flange fluid tried would have been successful.

  6. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

  7. GEOTHERMAL RESERVOIR ENGINEERING MANGEMENT PROGRAM PLAN (GREMP PLAN)

    E-Print Network [OSTI]

    Bloomster, C.H.

    2010-01-01

    2 Mission of Division of Geothermal Energy . . . . .Coordination with Other Geothermal Programs . . . . . . 6the Behavior of Geothermal Systems . . . . . . . . . 1 6

  8. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    from enhanced geothermal systems. Transactions Geothermalapproach to enhanced geothermal systems. Transactionsof the enhanced geothermal system demonstration reservoir in

  9. National Geothermal Academy Underway at University of Nevada...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    aspects of geothermal energy development and utilization. Modules include Geothermal Geology and Geochemistry, Geothermal Geophysics, Reservoir Engineering, and more. The...

  10. Exploring the Raft River geothermal area, Idaho, with the dc...

    Open Energy Info (EERE)

    the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY;...

  11. Geothermal Energy Production with Co-produced and Geopressured...

    Energy Savers [EERE]

    Projects Poster Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Resources Low-Temperature & Coproduced Resources Systems...

  12. Microhole arrays for improved heat mining from enhanced geothermal systems

    E-Print Network [OSTI]

    Finsterle, S.

    2014-01-01

    prospects from enhanced geothermal systems. Transactionsapproach to enhanced geothermal systems. Transactionsexperiment of the enhanced geothermal system demonstration

  13. Hot Springs Point Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Point Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Hot Springs Point Geothermal Project Project Location Information...

  14. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    into  sustainable  geothermal  energy:  The  S.E.   Geysers seismicity and geothermal  energy.  Geothermal Resources into  sustainable  geothermal  energy:  The  S.E.   Geysers 

  15. 3D Magnetotelluic characterization of the Coso Geothermal Field

    E-Print Network [OSTI]

    Newman, Gregory A.; Hoversten, G. Michael; Wannamaker, Philip E.; Gasperikova, Erika

    2008-01-01

    of the Coso Geothermal System, Geothermal Resources Councileast flank of the Coso geothermal system, Proceedings 28 thCreation of an enhanced geothermal system through hydraulic

  16. How an Enhanced Geothermal System Works | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems,...

  17. The Geysers Geothermal Field Update1990/2010

    E-Print Network [OSTI]

    Brophy, P.

    2012-01-01

    A  planned  Enhanced  Geothermal  System  demonstration associated  with Enhanced  Geothermal Systems.  Geothermics Section 3).   5. Enhanced Geothermal Systems (EGS)  Brown, 

  18. Application of a New Structural Model & Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid Drilling for Geothermal Exploration: McCoy, Churchill County, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. Relevance of research: Improve exploration technologies for range-hosted geothermal systems:Employ new concept models and apply existing methods in new ways; Breaking geothermal exploration tasks into new steps, segmenting the problem differently; Testing new models for dilatent structures; Utilizing shallow thermal aquifer model to focus exploration; Refining electrical interpretation methods to map shallow conductive featuresIdentifying key faults as fluid conduits; and Employ soil gas surveys to detect volatile elements and gases common to geothermal systems.

  19. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  20. Stochastic evolution inclusions 

    E-Print Network [OSTI]

    Bocharov, Boris

    2010-01-01

    This work is concerned with an evolution inclusion of a form, in a triple of spaces \\V -> H -> V*", where U is a continuous non-decreasing process, M is a locally square-integrable martingale and the operators A ...

  1. Geothermal Case Studies

    SciTech Connect (OSTI)

    Young, Katherine

    2014-09-30

    The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  2. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S.Job VacanciesGeothermal Geothermal EERE

  3. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancial Opportunities FinancialofInformation Geothermal Geothermal

  4. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    E-Print Network [OSTI]

    Rutqvist, J.

    2008-01-01

    Geothermal Field, Monograph on The Geysers GeothermalField, Geothermal Resources Council, Special Report no. 17,Subsidence at The Geysers geothermal field, N. California

  5. The Krafla Geothermal System. A Review of Geothermal Research...

    Open Energy Info (EERE)

    The Krafla Geothermal System. A Review of Geothermal Research and Revision of the Conceptual Model Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: The...

  6. The National Geothermal Collaborative, EERE-Geothermal Program, Final Report

    SciTech Connect (OSTI)

    Jody Erikson

    2006-05-26

    Summary of the work conducted by the National Geothermal Collaborative (a consensus organization) to identify impediments to geothermal development and catalyze events and dialogues among stakeholders to over those impediments.

  7. Geothermal corehole drilling and operations, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.; Rufenacht, H.D.; Laughlin, A.W.; Adams, A.; Planner, H.; Ramos, N.

    1987-01-01

    Two slim exploration coreholes to depths of 650 m and 428 m, respectively, have been completed at the Platanares geothermal site, Honduras, Central America. A third corehole is now being drilled. These boreholes have provided information on the stratigraphy, temperature variation with depth, nature and compositions of fluids, fracturing, permeability, and hydrothermal alterations associated with the geothermal reservoir. Eruptions of hot water occurred during the drilling of both the first and third boreholes. Recovery of >98% core has been obtained even under difficult superheated conditions.

  8. Why geothermal energy? Geothermal utilization in the Philippines

    SciTech Connect (OSTI)

    Gazo, F.M.

    1997-12-31

    This paper discusses the advantages of choosing geothermal energy as a resource option in the Philippine energy program. The government mandates the full-scale development of geothermal energy resources to meet increased power demand brought by rapid industrialization and economic growth, and to reduce fossil fuel importation. It also aims to realize these additional geothermal capacities by tapping private sector investments in the exploration, development, exploitation, construction, operation and management of various geothermal areas in the country.

  9. track 4: enhanced geothermal systems (EGS) | geothermal 2015...

    Broader source: Energy.gov (indexed) [DOE]

    Office portfolio presented fifty three technical project presentations on enhanced geothermal systems technologies (EGS). EGS technologies utilize directional drilling and...

  10. Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

  11. GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN

    E-Print Network [OSTI]

    Lippmann, Marcello J.

    2010-01-01

    of Subsiding Areas and Geothermal Subsidence Potential25 Project l-Subsidence Case Histories . . . . . . . . . .8 . Subsidence Models . . . . . . . . . . . . . . . .

  12. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  13. Evaluation of potential geothermal reservoirs in central and western New York state. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processes geophysical well logs from central and western New York State were analyzed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may be a viable alternative to other more conventional forms of energy that are not indigenous to New York State.

  14. Evaluation of potential geothermal reservoirs in central and western New York State. Volume 3. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-06-01

    Computer processed geophysical well logs from central and western New York State were analysed to evaluate the potential of subsurface formations as a source for low-temperature geothermal water. The analysis indicated that porous sandstone sections at the top of the Ordovician Theresa Formation and at the base of the Cambrian Potsdam Formation have the required depth, porosity, and permeability to act as a source for geothermal fluids over a relatively large area in the central part of the state. The fluid potential plus an advantageous geothermal gradient and the results of the test well drilled in the city of Auburn in Cayuga County suggest that low temperature geothermal energy may ba a viable alternative to other more conventional forms of energy that not indigenous to New York State.

  15. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Robertseere.energy.gov Timothy Reinhardt Geothermal

  16. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  17. Postgraduate Certificate in Geothermal Energy

    E-Print Network [OSTI]

    Auckland, University of

    Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University for development of geothermal fields is large and many countries are seeking to move away from fossil fuel power generation for both economic and environmental reasons. Global revenues for geothermal power were estimated

  18. GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger

    E-Print Network [OSTI]

    Stanford University

    SGP-TR 9 * GEOTHERMAL ENERGY DEVELOPMENT Paul Kruger C i v i l Engineering Department Stanford on an aggressive program t o develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy a l t e r n a t e t o o i l

  19. DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL

    E-Print Network [OSTI]

    Stanford University

    SGP-TR-186 DOWNHOLE ENTHALPY MEASUREMENT IN GEOTHERMAL WELLS WITH FIBER OPTICS Nilufer Atalay June 2008 Financial support was provided through the Stanford Geothermal Program under Idaho National University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

  20. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-42 PROCEEDINGS SPECIAL PANEL ON GEOTHERMAL MODEL INTERCOMPARISON STUDY held in conjunction with The Code Comparison Contracts issued by Department of Energy Division of Geothermal Energy San Francisco Operations Office

  1. Stanford Geothermal Program Tnterdisciplinary Research

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Tnterdisciplinary Research in Engineering and Earth Sciences Stanford University Stanford, California A LABORATORY MODEL OF STWLATED GEOTHERMAL RESERVOIRS by A. Hunsbedt P. Kruger created by artificial stimulation of geothermal reservoirs has been con- structed. The model has been used

  2. STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY

    E-Print Network [OSTI]

    Stanford University

    STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94305 SGP-TR-35 SECOND ANNUAL #12;INTRODUCTION The research e f f o r t of t h e Stanford Geothermal Program is focused on geothermal reservoir engineering. The major o b j e c t i v e of t h e protiram is t o develop techniques f o

  3. Stanford Geothermal Program Stanford University

    E-Print Network [OSTI]

    Stanford University

    s Stanford Geothermal Program Stanford University Stanford, California RADON MEASUEMENTS I N GEOTHERMAL SYSTEMS ? d by * ** Alan K. Stoker and Paul Kruger SGP-TR-4 January 1975 :: raw at Lcs Alams S c i and water, o i l and n a t u r a l gas wells. with radon i n geothermal reservoirs. Its presence i n

  4. Stanford Geothermal Program Final Report

    E-Print Network [OSTI]

    Stanford University

    Stanford Geothermal Program Final Report July 1996 - June 1999 Funded by the U.S. Department of Energy under grant number DE-FG07-95ID13370 Stanford Geothermal Program Department of Petroleum ....................................................................................................................6 2. THE ROLE OF CAPILLARY FORCES IN THE NATURAL STATE OF FRACTURED GEOTHERMAL RESERVOIRS

  5. EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility...

    Office of Environmental Management (EM)

    76: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR EA-1676: U.S. Geothermal's Neal Hot Springs Geothermal Facility in Vale, OR December 1, 2009 EA-1676: Final...

  6. Geothermal Technology Development Program. Annual progress report, October 1983-September 1984

    SciTech Connect (OSTI)

    Kelsey, J.R. (ed.)

    1985-08-01

    This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

  7. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  8. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    SciTech Connect (OSTI)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  9. Pressure Profiles in Two-Phase Geothermal Wells: Comparison of Field Data and Model Calculations

    SciTech Connect (OSTI)

    Ambastha, A.K.; Gudmundsson, J.S.

    1986-01-21

    Increased confidence in the predictive power of two-phase correlations is a vital part of wellbore deliverability and deposition studies for geothermal wells. Previously, the Orkiszewski (1967) set of correlations has been recommended by many investigators to analyze geothermal wellbore performance. In this study, we use measured flowing pressure profile data from ten geothermal wells around the world, covering a wide range of flowrate, fluid enthalpy, wellhead pressure and well depth. We compare measured and calculated pressure profiles using the Orkiszewski (1967) correlations.

  10. Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

  11. STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979

    E-Print Network [OSTI]

    Howard, J. H.

    2012-01-01

    DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

  12. State Geothermal Resource Assessment and Data Collection Efforts

    Office of Energy Efficiency and Renewable Energy (EERE)

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  13. Geothermal energy program summary

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  14. Geothermal Plant Capacity Factors

    SciTech Connect (OSTI)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  15. GEOTHERMAL HEAT PUMPS Jack DiEnna

    E-Print Network [OSTI]

    GEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps IS GEOTHERMAL HEAT PUMP TECHNOLOGY ??? Answer: It is a 60 year old technology! #12;FACT GHP's were first written

  16. 2008 Geothermal Technologies Market Report

    SciTech Connect (OSTI)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  17. IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...

    Open Energy Info (EERE)

    IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  18. Electric Power Generation from Co-Produced Fluids from Oil and...

    Open Energy Info (EERE)

    Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power...

  19. Geothermal Energy; (USA)

    SciTech Connect (OSTI)

    Raridon, M.H.; Hicks, S.C. (eds.)

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  20. Hydrology of the Greater Tongonan geothermal system, Philippines, as deduced from geochemical and isotopic data

    SciTech Connect (OSTI)

    Alvis-Isidro, R.R.; Solana, R.R.; D`amore, F.; Nuti, S.; Gonfiantini, R.

    1993-10-01

    Fluids in the Greater Tongonan geothermal system exhibit a large positive {sup 18}O shift from the Leyte meteoric water line. However, there is also a significant shift in {sup 2}H. The {delta}{sup 2}H-{delta}{sup 18}O plot shows that the geothermal fluids may be derived by the mixing of meteoric water with local magmatic water. The most enriched water in the Greater Tongonan system, in terms of {delta}{sup 18}O, {delta}{sup 2}H and Cl, is comprised of approximately 40% magmatic water. Baseline isotope results support a hydrogeochemical model in which there is increasing meteoric water dilution to the southeast, from Mahiao to Sambaloran and towards Malitbog. The Cl-{delta}{sup 18}O plot confirms that the geothermal fluid in Mahanagdong, further southeast, is distinct from that of the Mahiao-Sambaloran-Malitbog system.

  1. MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES

    E-Print Network [OSTI]

    Pope, W.L.

    2011-01-01

    and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

  2. Induced seismicity associated with enhanced geothermal system

    E-Print Network [OSTI]

    Majer, Ernest L.

    2006-01-01

    Hill hot dry rock geothermal energy site, New Mexico. Int J.No. 1. In: Geopressured-Geothermal Energy, 105, Proc. 5thCoast Geopressured-Geothermal Energy Conf. (Bebout, D.G. ,

  3. SEISMOLOGICAL INVESTIGATIONS AT THE GEYSERS GEOTHERMAL FIELD

    E-Print Network [OSTI]

    Majer, E. L.

    2011-01-01

    P. Muffler, 1972. The Geysers Geothermal Area, California.B. C. Hearn, 1977. ~n Geothermal Prospecting Geology, TheC. , 1968. of the Salton Sea Geothermal System. pp. 129-166.

  4. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    Schwartz, Oct: 1977. "Geothermal Aspects o f Hydrogen Sul 4.S.R. Schwartz, "Review o f Geothermal Subsidence", LBL-3220,k i l e d to over 200 geothermal specialists i n 1977. Over

  5. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    i o n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1, 1970:n o f Geothermal Resources. Pisa, Sept. 22-Oct. 1 1970: 516-o f Geothermal Resources, Pisa, Sept. 22-Oct. 1 1970: .1440-

  6. ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Sudo!, G.A

    2012-01-01

    Phenomena i n Geothermal Systems. I' U.N. Symposium on theModeling o f Geothermal Systems." 2nd U.N. Symposium on theassociations of geothermal systems and postulates on a

  7. Geothermal Regulatory Roadmap | OpenEI Community

    Open Energy Info (EERE)

    geothermal Type Term Title Author Replies Last Post sort icon Blog entry geothermal Geothermal Regulatory Roadmap featured on NREL Now Graham7781 5 Aug 2013 - 14:18 Blog entry...

  8. Potential of geothermal energy in China

    E-Print Network [OSTI]

    Sung, Peter On

    2010-01-01

    This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

  9. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Broader source: Energy.gov [DOE]

    This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

  10. Geothermal Technologies Office Hosts Collegiate Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

  11. Selling Geothermal Systems The "Average" Contractor

    E-Print Network [OSTI]

    Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

  12. THERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Seminario del Grupo de Hidrologìa Subterrànea - UPC, Barcelona #12;INTRODUCTION Enhanced geothermal systems Geothermal gradient ~ 33 °C/Km Hydraulic stimulation enhances fracture permeability (energyTHERMO-HYDRO-MECHANICAL SIMULATION OF GEOTHERMAL RESERVOIR STIMULATIONRESERVOIR STIMULATION Silvia

  13. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    SciTech Connect (OSTI)

    Zehner, Richard

    2012-02-01

    Title: Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado Tags: Colorado, lineaments, air-photo, geothermal Summary: These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Description: Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable “plumbing system” that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Projection Information: UTM Zone 13 NAD 27 projection Credits: These lineament shapefile was created by Geothermal Development Associates, as part of a geothermal geologic reconnaissance performed by Flint Geothermal, LLC, of Denver Colorado. Funding was provided in part by DOE Grant DE-EEE0002828. Use Limitation These shapefiles was constructed as an aid to geothermal exploration in preparation for a site visit for field checking. We make no claims as to the existence of the lineaments, their location, orientation, and/or nature.

  14. National Geothermal Data System (NGDS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

  15. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  16. Geothermal Heat Pump Basics

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country experience seasonal temperature extremes—from scorching heat in the summer to sub-zero cold in the winter—the ground a few feet below the earth's surface remains at a relatively constant temperature.

  17. Reinjection into geothermal reservoirs

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  18. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  19. PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011

    E-Print Network [OSTI]

    Stanford University

    -rock interactions, and changes in reservoir porosity. The properties of CO2-rich fluids are particularly relevant-CONFINED SUPERCRITICAL CO2 BY VIBRATING TUBE DENSIMETRY Miroslaw S. Gruszkiewicz1 , David J. Wesolowski1 and David R. INTRODUCTION Enhanced Geothermal Systems (EGS) using CO2 as the heat mining fluid Development of two

  20. Funding Mechanisms for Federal Geothermal Permitting (Presentation)

    SciTech Connect (OSTI)

    Witherbee, K.

    2014-03-01

    This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

  1. 2014 Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    The Annual Meeting attracts geothermal industry stakeholders worldwide and provides opportunity to participate in presentations on geothermal research, exploration, development, and utilization.

  2. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Reconnaissance From Quantitative Analysis Of Thermal Infrared Imagery Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Geothermal...

  3. The Energy Department's Geothermal Technologies Office Releases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

  4. Geothermal Exploration Best Practices Webinar Presentation Now...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy DOE Projects Receive Honors for Best Geothermal Presentations Workshop to Examine Outlook for State and Federal Policies to Promote Geothermal Energy in the West...

  5. NATIONAL GEOTHERMAL INFORMATION RESOURCE ANNUAL REPORT, 1977

    E-Print Network [OSTI]

    Phillips, Sidney L.

    2012-01-01

    Review o f Geothermal Subsidence", LBL-3220, Sept. 1975. 5.bles emissions; (3) subsidence; and (4) boron. Generally,Review of Geothermal Subsidence", LBL-3220, September 1975.

  6. Geothermal Technologies Program Annual Peer Review Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Peer Review presentation by Doug Hollett, Program Manager, Geothermal Technologies Program gtp2012peerreviewdhollett.pdf More Documents & Publications Stanford Geothermal...

  7. Geothermal Technologies Office 2015 Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | US DOE Geothermal Office eere.energy.gov Geothermal Technologies Office 2015 Peer Review Sustainability of Shear-Induced Permeability for EGS Reservoirs - A Laboratory...

  8. Digital Mapping Of Structurally Controlled Geothermal Features...

    Open Energy Info (EERE)

    (PCs) were used to map surface geothermal features at the Bradys Hot Springs and Salt Wells geothermal systems, Churchill County, Nevada, in less time and with greater...

  9. Integrated Geoscience Investigation and Geothermal Exploration...

    Open Energy Info (EERE)

    Al., 2006) Isotopic Analysis At Chena Geothermal Area (Holdmann, Et Al., 2006) Micro-Earthquake At Chena Geothermal Area (Holdmann, Et Al., 2006) Pressure Temperature Log At Chena...

  10. Strategic Planning, Analysis, and Geothermal Informatics Subprogram...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview Strategic Planning, Analysis, and Geothermal Informatics Subprogram Overview This is an overview of...

  11. Geothermal Direct Use Technology and the Marketplace

    Broader source: Energy.gov [DOE]

    Geothermal energy applications are emerging across a much wider spectrum of cascaded uses, from lower temperature geothermal energy production to direct heating and cooling, to agricultural uses.

  12. Innovative Exploration Techniques for Geothermal Assessment at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Innovative Exploration...

  13. Modeling of Geothermal Reservoirs: Fundamental Processes, Computer...

    Open Energy Info (EERE)

    Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir...

  14. Google Archives by Fiscal Year — Geothermal

    Broader source: Energy.gov [DOE]

    From the EERE Web Statistics Archive: Geothermal Technologies Office, retired Google Analytics profiles for the Geothermal Technologies Blog for FY12-FY13.

  15. North Carolina/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon North CarolinaGeothermal < North Carolina Jump to: navigation, search GEOTHERMAL...

  16. Sustainable Energy Resources for Consumers (SERC) -Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps Sustainable Energy Resources for Consumers (SERC) - GeothermalGround-Source Heat Pumps...

  17. Cuttings Analysis At International Geothermal Area, Indonesia...

    Open Energy Info (EERE)

    Cuttings Analysis At International Geothermal Area, Indonesia (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At...

  18. The Geothermal Technologies Office Congratulates this Year's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to bring new geothermal power online. Surprise Valley Electrification Corporation, in Paisley, Oregon, (in the image left) seeks to develop geothermal electric power from an...

  19. Daemen Alternative Energy/Geothermal Technologies Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

  20. GETEM -Geothermal Electricity Technology Evaluation Model | Department...

    Broader source: Energy.gov (indexed) [DOE]

    guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of...