Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Active Faulting in the Coso Geothermal Field, Eastern California | Open  

Open Energy Info (EERE)

Faulting in the Coso Geothermal Field, Eastern California Faulting in the Coso Geothermal Field, Eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Active Faulting in the Coso Geothermal Field, Eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults sole into or terminate against the brittle-ductile transition zone (BDT) at a depth of about 4 to 5 km. The BDT is arched upward over a volume of crust

2

NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA | Open  

Open Energy Info (EERE)

NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: NEW SEISMIC IMAGING OF THE COSO GEOTHERMAL FIELD, EASTERN CALIFORNIA Details Activities (1) Areas (1) Regions (0) Abstract: New multifold seismic reflection data from the central Coso Range, eastern California, image brittle faults and other structures in Mesozoic crystalline rocks that host a producing geothermal field. The reflection data were processed in two steps that incorporate new seismic imaging methods: (1) Pwave first arrivals in the seismic data were inverted for subsurface acoustic velocities using a non-linear simulated annealing approach; and (2) 2-D Velocity tomograms obtained from the inversions were

3

Geothermal Exploration in Eastern California Using Aster Thermal Infrared  

Open Energy Info (EERE)

in Eastern California Using Aster Thermal Infrared in Eastern California Using Aster Thermal Infrared Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Exploration in Eastern California Using Aster Thermal Infrared Data Abstract Remote sensing is a cost-effective tool that can be used to cover large areas for the purpose of geothermal exploration. A particular application is the use of satellite thermal infrared (TIR) imagery from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard an orbiting satellite. It can be used to search remotely for elevated surface temperatures, which may be associated with geothermal resources. The study region is in the central part of eastern California, with emphasis on the Coso geothermal field. Nighttime scenes are most

4

Detection of Surface Temperature Anomalies in the Coso Geothermal Field  

Open Energy Info (EERE)

Detection of Surface Temperature Anomalies in the Coso Geothermal Field Detection of Surface Temperature Anomalies in the Coso Geothermal Field Using Thermal Infrared Remote Sensing Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Detection of Surface Temperature Anomalies in the Coso Geothermal Field Using Thermal Infrared Remote Sensing Details Activities (1) Areas (1) Regions (0) Abstract: We use thermal infrared (TIR) data from the spaceborne ASTER instrument to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. We carried out field measurements concurrently with the collection of ASTER images. The field

5

Field Mapping At Raft River Geothermal Area (1990) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1990) Field Mapping At Raft River Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Raft River Geothermal Area (1990) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1990 Usefulness not indicated DOE-funding Unknown Notes Together, field and 40Ar/39Ar results suggest that Late Cretaceous extension occurred in the Sevier belt hinterland at the same time as shortening in the eastern foreland and at depth in the hinterland. Sufficient topography must have been present to drive upper-crustal extension in the eastern hinterland. References Wells, M.L.; Allmendinger, R.W.; Dallmeyer, R.D. (1 October 1990) Late Cretaceous extension in the hinterland of the Sevier thrust belt,

6

Eastern Geothermal Resources: Should We Pursue Them?  

Science Journals Connector (OSTI)

...for each application. Geothermal resources, where techni-In...there are no known geothermal re-sources that can...heat-ing, agriculture, district heating, and in-dustrial...Of all the forms of geothermal energy, this moderate...

J. E. Tillman

1980-11-07T23:59:59.000Z

7

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS  

Open Energy Info (EERE)

GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGIC FRAMEWORK OF THE EAST FLANK, COSO GEOTHERMAL FIELD: IMPLICATIONS FOR EGS DEVELOPMENT Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field is a large, high temperature system located in eastern California on the western edge of the Basin and Range province. The East Flank of this field is currently under study as a DOE-funded Enhanced Geothermal Systems (EGS) project. This paper summarizes petrologic and geologic investigations on two East Flank wells, 34A-9 and 34-9RD2 conducted as part of a continuing effort to better understand how the rocks will behave during hydraulic and thermal stimulation. Well 34A-9

8

Geothermal significance of magnetotelluric sounding in the eastern Snake  

Open Energy Info (EERE)

significance of magnetotelluric sounding in the eastern Snake significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal significance of magnetotelluric sounding in the eastern Snake River Plain-Yellowstone Region Details Activities (1) Areas (1) Regions (0) Abstract: Magnetotelluric soundings along a profile extending from the Raft River geothermal area in southern Idaho in Yellowstone National Park in Wyoming reveal a highly anamalous crustal structure involving a conductive zone at depths that range from 18 km in the central part of the eastern Snake River Plain to 7 km beneath the Raft River thermal area and as little as 5 km in Yellowstone. Resistivities in this conductive zone are less than

9

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

10

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

11

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

12

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

13

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Aeromagnetic Survey At Dixie Valley Geothermal Field Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 2002 a high-resolution aeromagnetic survey was conducted over a 940 km2 area extending from Dixie Meadows northeastward to the Sou Hills, and from the eastern front of the Stillwater Range to the western edge of the Clan Alpine Range (Grauch, 2002). The resulting aeromagnetic map is described and discussed by Smith et al. (2002). Many of the shallow faults revealed by the aeromagnetic data (Figure 3) coincide with faults mapped based on surface expression on aerial photographs (Smith et al., 2001). However, in

14

Eastern Geothermal Resources: Should We Pursue Them?  

Science Journals Connector (OSTI)

...New Jersey, Connecticut, Massachu-setts...be for space heating of residences...ofwater well and oil field technology...combustion for space heating. Well-head...electrical-resistance space heating, and, in some...above current oil and natural gas prices (1978 prices...

J. E. Tillman

1980-11-07T23:59:59.000Z

15

Characterizing Fractures in the Geysers Geothermal Field by Micro...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic...

16

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....  

Open Energy Info (EERE)

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Field Mapping Activity...

17

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

E-Print Network [OSTI]

of Kamchatka. Nauka, Moscow, Russia, 149 pp. (in Russian).geothermal field, Kamchatka, Russia. Geothermics 33, 421geothermal field, Kamchatka, Russia. Geothermal Resources

Kiryukhin, A.V.

2008-01-01T23:59:59.000Z

18

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived  

Open Energy Info (EERE)

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Details Activities (1) Areas (1) Regions (0) Abstract: The efficiency of geothermal energy production at the Coso Geothermal Field in eastern California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range and adjacent areas are

19

EA for Well Field Development at Patua Geothermal Area -  

Open Energy Info (EERE)

for Well Field Development at Patua Geothermal Area - for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: EA for Well Field Development at Patua Geothermal Area - DOI-BLM-NV-C010-2011-00016-EA EA at Patua Geothermal Area for Geothermal/Exploration, Geothermal/Well Field, Patua Geothermal Project Phase II General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant Gradient Resources Geothermal Area Patua Geothermal Area Project Location Fernley, Nevada Project Phase Geothermal/Exploration, Geothermal/Well Field Techniques Drilling Techniques, Thermal Gradient Holes Time Frame (days) NEPA Process Time 327 Participating Agencies Lead Agency BLM Funding Agency none provided

20

Field Mapping At Chena Geothermal Area (Waring, Et Al., 1917...  

Open Energy Info (EERE)

Waring, Et Al., 1917) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Chena Geothermal Area (Waring, Et Al., 1917) Exploration...

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Temporal Velocity Variations beneath the Coso Geothermal Field...  

Open Energy Info (EERE)

beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL...

22

Structural interpretation of the Coso geothermal field. Summary report,  

Open Energy Info (EERE)

the Coso geothermal field. Summary report, the Coso geothermal field. Summary report, October 1986-August 1987 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Structural interpretation of the Coso geothermal field. Summary report, October 1986-August 1987 Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Geothermal Field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in Southern California, is an excellent example of a structurally controlled geothermal resource. Author(s): Austin, C.F.; Moore, J.L. Published: Publisher Unknown, 9/1/1987 Document Number: Unavailable DOI: Unavailable Source: View Original Report Geothermal Literature Review At Coso Geothermal Area (1987) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Structural_interpretation_of_the_Coso_geothermal_field._Summary_report,_October_1986-August_1987&oldid=473519"

23

Microseismicity, stress, and fracture in the Coso geothermal field,  

Open Energy Info (EERE)

Microseismicity, stress, and fracture in the Coso geothermal field, Microseismicity, stress, and fracture in the Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microseismicity, stress, and fracture in the Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: Microseismicity, stress, and fracture in the Coso geothermal field are investigated using seismicity, focal mechanisms and stress analysis. Comparison of hypocenters of microearthquakes with locations of development wells indicates that microseismic activity has increased since the commencement of fluid injection and circulation. Microearthquakes in the geothermal field are proposed as indicators of shear fracturing associated with fluid injection and circulation along major pre-existing

24

Petrography of late cenozoic sediments, Raft River geothermal field, Idaho  

Open Energy Info (EERE)

of late cenozoic sediments, Raft River geothermal field, Idaho of late cenozoic sediments, Raft River geothermal field, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Petrography of late cenozoic sediments, Raft River geothermal field, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; RAFT RIVER VALLEY; GEOTHERMAL FIELDS; PETROGRAPHY; BIOTITE; CALCITE; CLAYS; LIMESTONE; PYRITE; SANDSTONES; SEDIMENTS; SHALES; VOLCANIC ROCKS; ZEOLITES; ALKALINE EARTH METAL COMPOUNDS; CALCIUM CARBONATES; CALCIUM COMPOUNDS; CARBON COMPOUNDS; CARBONATE ROCKS; CARBONATES; CHALCOGENIDES; IDAHO; IGNEOUS ROCKS; INORGANIC ION EXCHANGERS; ION EXCHANGE MATERIALS; IRON COMPOUNDS; IRON SULFIDES; MICA; MINERALS; NORTH AMERICA; ORES; OXYGEN COMPOUNDS; PACIFIC NORTHWEST REGION; PYRITES; ROCKS; SEDIMENTARY ROCKS; SULFIDES; SULFUR COMPOUNDS;

25

Klamath Falls geothermal field, Oregon  

SciTech Connect (OSTI)

Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

Lienau, P.J.; Culver, G.; Lund, J.W.

1989-09-01T23:59:59.000Z

26

Field Mapping At Coso Geothermal Area (2001-2003) | Open Energy Information  

Open Energy Info (EERE)

-2003) -2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (2001-2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2001 - 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine structural control on permeability and fluid production Notes New multifold seismic reflection data from the Coso geothermal field in the central Coso Range, eastern California, image brittle faults and other structures in a zone of localized crustal extension between two major strike-slip faults. Production in the Coso field primarily occurs in the hanging walls of the listric faults. References Unruh, J. (1 January 2001) NEW SEISMIC IMAGING OF THE COSO

27

Origin of first cells at terrestrial, anoxic geothermal fields  

Science Journals Connector (OSTI)

...terrestrial geothermal fields are conducive...solar light as an energy source and a...terrestrial geothermal fields are conducive...solar light as an energy source and selective...M.), EU COST CM0902 Action (A.Y...diverse kinds of energy, including...terrestrial, anoxic geothermal fields. | All...

Armen Y. Mulkidjanian; Andrew Yu. Bychkov; Daria V. Dibrova; Michael Y. Galperin; Eugene V. Koonin

2012-01-01T23:59:59.000Z

28

RAPID/Geothermal/Well Field/New Mexico | Open Energy Information  

Open Energy Info (EERE)

Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission Geothermal Solar Resources Contribute Contact Us Geothermal Well Field in New Mexico Geothermal ...

29

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

30

RAPID/Geothermal/Well Field/California | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit Agency: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Drilling & Well Field Permit Before drilling can commense,...

31

Field Mapping At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (2006) Field Mapping At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults

32

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

33

Structural interpretation of Coso Geothermal field, Inyo County, California  

Open Energy Info (EERE)

Coso Geothermal field, Inyo County, California Coso Geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural interpretation of Coso Geothermal field, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: The Coso Geothermal field, located east of the Sierra Nevada at the northern edge of the high Mojave Desert in southern California, is an excellent example of a structurally controlled geothermal resource. The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. Wells drilled along this feature have encountered production from distinct fractures in crystalline basement rocks. The identified producing fractures occur in zones which

34

Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan,  

Open Energy Info (EERE)

Morgan, Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Paul Morgan, Wendell Duffield, John Sass, Tracey Felger (2003) Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_San_Francisco_Volcanic_Field_Area_(Morgan,_Et_Al.,_2003)&oldid=510822" Category: Exploration Activities What links here

35

Direct use of the geothermal energy at Los Azufres geothermal field, Mexico  

SciTech Connect (OSTI)

The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico, CFE has designed a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct use of geothermal energy is an attractive feasible and economical project. The object of this paper is to present the CFE experiences in different pilot projects applied to direct uses of geothermal energy.

Sanchez-Velasco, E.; Casimiro-Espinoza, E.

1995-12-31T23:59:59.000Z

36

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

37

Pre-Investigation Geological Appraisal Of Geothermal Fields | Open Energy  

Open Energy Info (EERE)

Pre-Investigation Geological Appraisal Of Geothermal Fields Pre-Investigation Geological Appraisal Of Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pre-Investigation Geological Appraisal Of Geothermal Fields Details Activities (2) Areas (1) Regions (0) Abstract: In recent years there has been interest in the possibility of generating electricity from geothermal steam in many countries. The initial stage is the preliminary evaluation of geothermal resources and, apart from economic considerations, the problem is essentially geological. This paper deals with the factors involved in the selection of areas that warrant expenditure on investigation and development. Preferred requirements in geothermal fields for power generation are temperatures above 200°C and permeable aquifers or zones within 2000 m from the surface. The existence

38

San Francisco Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Francisco Volcanic Field Geothermal Area San Francisco Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Francisco Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Arizona Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

39

3D Magnetotelluic characterization of the Coso Geothermal Field | Open  

Open Energy Info (EERE)

Magnetotelluic characterization of the Coso Geothermal Field Magnetotelluic characterization of the Coso Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Magnetotelluic characterization of the Coso Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: Electrical resistivity may contribute to progress in understanding geothermal systems by imaging the geometry, bounds and controlling structures in existing production, and thereby perhaps suggesting new areas for field expansion. To these ends, a dense grid of magnetotelluric (MT) stations plus a single line of contiguous bipole array profiling has been acquired over the east flank of the Coso geothermal system. Acquiring good quality MT data in producing geothermal systems is a challenge due to production related electromagnetic (EM) noise and, in the

40

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al.,  

Open Energy Info (EERE)

2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Steven Wesnousky, S. John Caskey, John W. Bell (2003) Recency Of Faulting And Neotechtonic Framework In The Dixie Valley Geothermal Field And Other Geothermal Fields Of The Basin And Range Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Wesnousky,_Et_Al.,_2003)&oldid=510736" Categories: Exploration Activities DOE Funded Activities What links here

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

An Integrated Model For The Geothermal Field Of Milos From Geophysical  

Open Energy Info (EERE)

Milos From Geophysical Milos From Geophysical Experiments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Model For The Geothermal Field Of Milos From Geophysical Experiments Details Activities (0) Areas (0) Regions (0) Abstract: The results of geophysical experiments carried out by eight teams on the island of Milos as part of an integrated project under the European Commission's geothermal R & D programme are considered. The combination of these data with earlier studies on the geology and geophysics of Milos allow the compilation of a possible model of the geothermal reservoir and its surroundings in the central eastern part of the island. The reservoir is fed by convection of hot fluids from a depth of several kilometres, but the geophysical data provide no strong support for the earlier hypothesis

42

Geothermal Energy Development in the Eastern United States, Sensitivity analysis-cost of geothermal energy  

SciTech Connect (OSTI)

The Geothermal Resources Interactive Temporal Simulation (GRITS) model is a computer code designed to estimate the costs of geothermal energy systems. The interactive program allows the user to vary resource, demand, and financial parameters to observe their effects on delivered costs of direct-use geothermal energy. Due to the large number and interdependent nature of the variables that influence these costs, the variables can be handled practically only through computer modeling. This report documents a sensitivity analysis of the cost of direct-use geothermal energy where each major element is varied to measure the responsiveness of cost to changes in that element. It is hoped that this analysis will assist those persons interested in geothermal energy to understand the most significant cost element as well as those individuals interested in using the GRITS program in the future.

Kane, S.M.; Kroll, P.; Nilo, B.

1982-12-01T23:59:59.000Z

43

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS | Open Energy Information  

Open Energy Info (EERE)

SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: SEISMIC ATTRIBUTES IN GEOTHERMAL FIELDS Details Activities (1) Areas (1) Regions (0) Abstract: Large velocity contrasts are regularly encountered in geothermal fields due to poorly consolidated and hydro-thermally altered rocks. The appropriate processing of seismic data is therefore crucial to delineate the geological structure. To assess the benefits of surface seismic surveys in such settings, we applied different migration procedures to image a synthetic reservoir model and seismic data from the Coso Geothermal Field. We have shown that the two-dimensional migration of synthetic seismic data from a typical reservoir model resolves the geological structure very well

44

Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field,  

Open Energy Info (EERE)

Velocity And Attenuation Structure Of The Geysers Geothermal Field, Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic Velocity And Attenuation Structure Of The Geysers Geothermal Field, California Details Activities (1) Areas (1) Regions (0) Abstract: The Geysers geothermal field is located in northern California and is one of the world's largest producers of electricity from geothermal energy. A key resource management issue at this field is the distribution of fluid in the matrix of the reservoir rock. In this paper, we interpret seismic compressional-wave velocity and quality quotient (Q) data at The Geysers in terms of the geologic structure and fluid saturation in the reservoir. Our data consist of waveforms from approximately 300

45

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area (Redirected from San Juan Volcanic Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

46

An investigation of the Dixie Valley geothermal field, Nevada, using  

Open Energy Info (EERE)

investigation of the Dixie Valley geothermal field, Nevada, using investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering; Stanford University; 2007 Published Publisher Not Provided, 2007 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests Citation Marshall J. Reed. 2007. An investigation of the Dixie Valley geothermal field, Nevada, using temporal moment analysis of tracer tests. In:

47

Structural Analysis of the Desert Peak-Brady Geothermal Fields,  

Open Energy Info (EERE)

Structural Analysis of the Desert Peak-Brady Geothermal Fields, Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for Understanding Linkages Between Northeast-Trending Structures and Geothermal Reservoirs in the Humboldt Structural Zone Abstract Detailed geologic mapping, delineation of Tertiary strata, analysis of faults and folds, and a new gravity survey have elucidated the structural controls on the Desert Peak and Brady geothermal fields in the Hot Springs Mountains of northwestern Nevada. The fields lie within the Humboldt

48

Wood and fruit drying in Los Azufres geothermal field, Mexico  

SciTech Connect (OSTI)

The main object of Comision Federal de Electricidad (CFE`s) Geothermal Field at Los Azufres, is to generate geothermal electricity; however with the new politics in Mexico CFE has built a pilot project in order to profit from the geothermal residual energy and to attract national or foreign investors and convince them that direct-use of geothermal energy is an attractive feasible and economical possibility. The object of this paper is to present the CFE experiences in wood and fruit drying using geothermal energy.

Casimiro, E. [Residencia Los Azufres, Michoacan (Mexico); Pastrana, E. [Gerencia de Proyectos Geotermoelectricos, Michoacan (Mexico)

1996-12-31T23:59:59.000Z

49

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

50

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Isotopic Analysis At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness not indicated DOE-funding Unknown Notes Gas and Isotopes Geochemistry, Kennedy, van Soest and Shevenell. During FY04, we concentrated on two primary projects. The first was a detailed study of helium isotope systematics throughout Dixie Valley and the inter-relationship between the Dixie Valley geothermal reservoir and local hydrology. The second is the construction of a helium isotope "map" of the

51

Temporal Velocity Variations beneath the Coso Geothermal Field Observed  

Open Energy Info (EERE)

Velocity Variations beneath the Coso Geothermal Field Observed Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Temporal Velocity Variations beneath the Coso Geothermal Field Observed using Seismic Double Difference Tomography of Compressional and Shear Wave Arrival Times Details Activities (1) Areas (1) Regions (0) Abstract: Microseismic imaging can be an important tool for characterizing geothermal reservoirs. Since microseismic sources occur more or less continuously both due to the operations of a geothermal field and the naturally occurring background seismicity, passive seismic monitoring is well suited to quantify the temporal variations in the vicinity of a

52

Brawley- Resurrection Of A Previously Developed Geothermal Field | Open  

Open Energy Info (EERE)

Brawley- Resurrection Of A Previously Developed Geothermal Field Brawley- Resurrection Of A Previously Developed Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Brawley- Resurrection Of A Previously Developed Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: The Brawley Geothermal Field was originally developed by Unocal. In addition to drilling geothermal wells, this development included building and operating a 10 MWe power plant. Corrosion and scaling issues resulted in Unocal abandoning the project in the 1980's. Ormat Nevada investigated the potential of the shallow sands in 2006. It was concluded that these matrixpermeable sands contained moderately saline water, high porosity, and could support a binary-type power plant. In 2007, Ormat Nevada drilled and tested five wells. These test results confirmed the

53

Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Et Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes Geologic mapping from air photos in some places clearly located the structures in the valley and hence is very site specific. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388817

54

Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) |  

Open Energy Info (EERE)

Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. Hyperspectral data was also used to successfully map soil-mineral anomalies that are structurally related in Dixie Valley, Nevada. In the area of the power plant, 20 m spatial resolution AVIRIS data were used. For Dixie Meadows, Nevada, 3 m spatial resolution HyVista HyMap hyperspectral data

55

Field Mapping At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1978) Field Mapping At Coso Geothermal Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Geology and alteration mapping analyzed exposed rocks in geothermal region. Neither geologic mapping nor deep drilling have revealed potential deep primary aquifers. Surface alteration at Coso is of three main types: (1) clay-opal-alunite alteration, (2) weak argillic alteration, and (3) stockwork calcite veins and veinlets, which are locally associated with calcareous sinter. References Hulen, J. B. (1 May 1978) Geology and alteration of the Coso

56

Field Mapping At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1980) Field Mapping At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the areal extent of the magma reservoir Notes The distribution of quaternary rhyolite dome of the Coso Range was analyzed. Thirty-eight separate domes and flows of phenocryst-poor, high-silica rhyolite of similar major element chemical composition were erupted over the past 1 m.y. from vents arranged in a crudely S-shaped array atop a granitic horst in the Coso Range, California. The immediate source of heat for the surficial geothermal phenomena is probably a silicic

57

Field Mapping At Coso Geothermal Area (2010) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (2010) Field Mapping At Coso Geothermal Area (2010) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 2010 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine if there is geothermal potential in the South Ranges Notes It has been believed that the South Ranges at China Lake may host geothermal resources for several decades. Recent Garlock Fault mapping, associated thermochronology work and a well documented but geologically unresolved steaming well to the west suggests that the South Ranges should be investigated for geothermal potential. In 2009, GPO awarded a contract to the University of Kansas to follow through on detailed mapping, trenching, dating and thermochronoloy in the Lava Mountains and the

58

Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal Field  

Open Energy Info (EERE)

Audiomagnetotellurics (Aamt) In The Geothermal Field Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Details Activities (0) Areas (0) Regions (0) Abstract: In October 1981 the AAMT method was tested in the geothermal field of Travale. This method is based on the MT method, but uses artificial EM fields excited by a transmitter some kilometres from the receiving station. The transmitter consists of a switch mode amplifier for the lower frequency band (< 300 Hz) and six stacked linear amplifiers for the high frequency band. Maximum output is about 5 kW. For measurement of the very small EM field at the receiver the correlation technique is used

59

Geothermal Energy and the Eastern US: Fifth technical information interchange meeting, Minutes  

SciTech Connect (OSTI)

The technical interchange meeting documented here is the fifth meeting where people interested in geothermal energy in the Eastern US have met to interchange technical information. These meetings are intended to assist all in the difficult task of balancing time and effort in doing their assigned jobs and keeping track of what others are doing in similar or related tasks. All of the aforementioned meetings have served their intended purpose and further regional and national meetings are sure to follow.

None

1980-12-01T23:59:59.000Z

60

Pilot fruit drier for Los Azufres geothermal field, Michoacan, Mexico  

SciTech Connect (OSTI)

Comision Federal de Electricidad (CFE) has a Division in charge of the exploration of a geothermal reservoir located in Los Azufres, State of Michoacan. At present, CFE is only using the steam of the wells and rejecting the hot water that comes off associated with the steam. Based on a trip to the Los Azufres geothermal field in December of 1992, a design for a pilot geothermal fruit drier was undertaken for CFE. The details of the geothermal field and the local fruit production are detailed.

Lund, J.W.

1993-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A Preliminary Structural Model for the Blue Mountain Geothermal Field,  

Open Energy Info (EERE)

Structural Model for the Blue Mountain Geothermal Field, Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada Abstract The Blue Mountain geothermal field is a blind geothermalprospect (i.e., no surface hot springs) along the west flank of BlueMountain in southern Humboldt County, Nevada. Developmentwells in the system have high flow rates and temperatures above190°C at depths of ~600 to 1,070 m. Blue Mountain is a small~8-km-long east-tilted fault block situated between the EugeneMountains and Slumbering Hills. The geothermal field occupiesthe intersection between a regional NNE- to ENE-striking,west-dipping

62

Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California  

Broader source: Energy.gov [DOE]

Geothermal Technologies Program 2010 Peer Review Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field California by Mark Walters of Calpine and Patrick Dobson of Lawrence Berkeley National Laboratory for Engineered Geothermal Systems Demonstration Projects Track. Objective to create an Enhanced Geothermal System (EGS) by directly and systematically injecting low volumes of cold? water into NW Geysers high temperature zone (HTZ), similar to inadvertently? created EGS in the oldest Geysers production area to the southeast of the EGS demonstration area. Other objectives are to investigate how cold-water injection mechanically and chemically affects fractured high temperature rock systems; demonstrate the technology to monitor and validate stimulation and sustainability of such an EGS; and develop an EGS research field laboratory that can be used for testing EGS stimulation and monitoring technologies including new high temperature tools developed by others.

63

Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry  

SciTech Connect (OSTI)

The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

2014-02-01T23:59:59.000Z

64

Modeling-Computer Simulations At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Using a simple one-dimensional steady-state fluid flow model, the helium content and isotopic composition imply vertical fluid flow rates from the mantle of _7 mm/yr. This is a strict lower limit to the fluid flow rate: the one-dimensional model does not consider diffusive re-distribution of helium or mixing with water containing only a crustal helium component and

65

An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Audiomagnetotelluric Survey Over The Chaves Geothermal Field (Ne Portugal) Details Activities (0) Areas (0) Regions (0) Abstract: In an attempt to define the resistivity model of the Chaves geothermal field in NE Portugal, a detailed survey with scalar audiomagnetotelluric measurements was performed. The soundings were made in the frequency range from 2300 to 4.1 Hz. Electrical resistivity models were derived from the application of 1-D inversion, 2-D trial and error modeling and 2-D inversion procedures. The resistivities inside the geothermal field are low, reaching not more than 30 Ωm and increasing up to 60-150 Ωm

66

A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field,  

Open Energy Info (EERE)

Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field, Philippines Details Activities (0) Areas (0) Regions (0) Abstract: At least 660 fluid-inclusion homogenization temperature (Th) and 44 freezing temperature (Tm) measurements, mainly on anhydrite crystals sampled to 2.5 km depth from 28 wells, record thermal and chemical changes in the Tongonan geothermal field. Interpretations of the Th (175-368°C range). Tm (-0.3 to -12.7°C range) and crushing stage observations indicate that early trapped fluids contained up to (approximate)2 mol% CO2 (now measured at <0.4 mol%). reservoir temperatures have decreased by

67

Regional hydrology of the Dixie Valley geothermal field, Nevada-  

Open Energy Info (EERE)

hydrology of the Dixie Valley geothermal field, Nevada- hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Authors Gregory Nimz, Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal Trans Geotherm Resour Counc, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Regional hydrology of the Dixie Valley geothermal field, Nevada- Preliminary interpretations of chemical and isotopic data Citation Gregory Nimz,Cathy Janik,Fraser Goff,Charles Dunlap,Mark Huebner,Dale

68

Compound and Elemental Analysis At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Compound and Elemental Analysis At Dixie Valley Compound and Elemental Analysis At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

69

Field Mapping At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Raft River Geothermal Area (1977) Field Mapping At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1977 Usefulness useful DOE-funding Unknown Exploration Basis To estimate the permeability and storage parameters of the geothermal reservoir, and the possible existence of barrier boundaries. Notes Production and interference tests were conducted on the geothermal wells RRGE 1 and RRGE 2 during September--November, 1975. In all, three tests were conducted, two of them being short-duration production tests and one, a long duration interference test. The data collected during the tests also indicated that the reservoir pressure varies systematically in response to the changes in the Earth's gravitational field caused by the passage of the

70

Characterizing Structural Controls of Geothermal Fields in the Northwestern  

Open Energy Info (EERE)

Characterizing Structural Controls of Geothermal Fields in the Northwestern Characterizing Structural Controls of Geothermal Fields in the Northwestern Great Basin- A Progress Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterizing Structural Controls of Geothermal Fields in the Northwestern Great Basin- A Progress Report Abstract Considering a lack of recent volcanism, the abundant geothermal activity in the northwestern Great Basin is somewhat anomalous. The prolific activity may result from enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension in the Great Basin. Although faults control most geothermal activity in the Great Basin, few detailed investigations have been conducted on the specific structural controls of individual fields.

71

Brawley Resurrection of a Previously Developed Geothermal Field | Open  

Open Energy Info (EERE)

Brawley Resurrection of a Previously Developed Geothermal Field Brawley Resurrection of a Previously Developed Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Brawley Resurrection of a Previously Developed Geothermal Field Abstract The Brawley Geothermal Field was originally developed byUnocal. In addition to drilling geothermal wells, this developmentincluded building and operating a 10 MWe power plant.Corrosion and scaling issues resulted in Unocal abandoning theproject in the 1980's. Ormat Nevada investigated the potentialof the shallow sands in 2006. It was concluded that these matrixpermeablesands contained moderately saline water, high porosity,and could support a binary-type power plant. In 2007, OrmatNevada drilled and tested five wells. These test results confirmedthe earlier conclusions and

72

Field Mapping At Coso Geothermal Area (1999) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1999) Field Mapping At Coso Geothermal Area (1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis Develop an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata Notes A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the development of the Basin and Range province in this area. Detailed mapping and depositional analysis distinguishes separate northern and southern depocenters, each with its own accommodation and depositional history.

73

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

SciTech Connect (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

74

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

gains with geothermal power. GeothermalResourcesgains with geothermal power. GeothermalResourcesofTables: Table1:GeothermalPowerPlantsOperatingat

Brophy, P.

2012-01-01T23:59:59.000Z

75

Aeromagnetic Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes The high resolution aeromagnetic technique was very successful along the east side of the valley, but less along the geothermally important west side. Detailed correlation will be investigated when the high resolution data are available. The magnetic results will also vary from area to area depending on the local rock types more than in the other techniques. Nonetheless important information on the style of the faulting is contained in the data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of

76

A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) | Open  

Open Energy Info (EERE)

Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Magnetotelluric Survey Of The Nissyros Geothermal Field (Greece) Details Activities (0) Areas (0) Regions (0) Abstract: A preliminary magnetotelluric study consisting of twenty measurements, in the frequency range 128-0.016 Hz, was undertaken on the active volcanic island of Nissyros. Two boreholes identify the existence of high enthalpy manifestations. The results correlate well with the borehole logs and delineate, in a 1-D approximation, the existence and symmetry of a possible geothermal reservoir. Some of the main faulting features were detected as well as an inferred highly conductive zone at the centre of the

77

A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field  

Open Energy Info (EERE)

Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Broadband Tensorial Magnetotelluric Study In The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: As a contribution to the EEC study of the potential contribution of electric and electromagnetic techniques to geothermal exploration, magnetotelluric studies have been undertaken with a sounding bandwidth ranging from 2 to 7 decades of period at more than 30 sites within the chosen test area of Travale. This area must be one of the most unfavourable for the application of electrical techniques on account both of the thickness (up to 2 km) of conducting (< 1 ohm / m in some locations) cover

78

Geothermal energy resource investigations in the Eastern Copper River Basin, Alaska  

SciTech Connect (OSTI)

This report consists of a review of the geological, geochemical and geophysical data available for the Eastern Copper River basin with emphasis on the mud volcanoes, and the results of geophysical and geochemical studies carried out in the summers of 1982 and 1984. The purpose was to determine if there are geothermal energy resources in the Copper River Basin. The Eastern Copper River basin is situated on the flanks of a major volcano, Mt. Drum, which was active as late as 200,000 years ago and which is thought to have retained significant amounts of residual heat at high levels. Mt. Wrangell, farther to the east, has been volcanically active up to the present time. The 1982 geophysical and geochemical surveys located three principal areas of possible geothermal interest, one near Tazlina and two near the Klawasi mud volcanoes. The intensive survey work of 1984 was concentrated on those areas. We have integrated the results of soil helium, soil mercury, gravity, aeromagnetic, electrical, self-potential, and controlled-source audio magnetotelluric (CSAMT) surveys to evaluate the geothermal potential of the areas studied. 36 figs.

Wescott, E.M.; Turner, D.L.

1985-06-01T23:59:59.000Z

79

Assessing the Rye Patch geothermal field, a classic Basin-and...  

Open Energy Info (EERE)

Rye Patch geothermal field, a classic Basin-and-Range Resource: Geothermal Resources Council Transactions Jump to: navigation, search OpenEI Reference LibraryAdd to library...

80

Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field  

SciTech Connect (OSTI)

A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant.

Steven Enedy

2001-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) | Open  

Open Energy Info (EERE)

2005) 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

82

Characterizing Fractures in the Geysers Geothermal Field by Micro...  

Broader source: Energy.gov (indexed) [DOE]

Program eere.energy.gov Using microseismicity to map the fractal structure of the fracture network Injection-induced seismicity at the Geysers geothermal field is the result of...

83

Field Mapping At Raft River Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Raft River Geothermal Area (1980) Raft River Geothermal Area (1980) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1980 Usefulness not indicated DOE-funding Unknown Exploration Basis Delineate the subsurface geology Notes The Raft River Valley occupies an upper Cenozoic structural basin filled with nearly 1600 m of fluvial silt, sand, and gravel. Rapid facies and thickness changes, steep initial dips (30 0C), and alteration make correlation of basin-fill depositional units very difficult. The Raft River geothermal system is a hot water convective system relying on deep circulation of meteoric water in a region of high geothermal gradients and open fractures near the base of the Tertiary basin fill. References Covington, H. R. (1 September 1980) Subsurface geology of the

84

Symposium in the field of geothermal energy  

SciTech Connect (OSTI)

Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

Ramirez, Miguel; Mock, John E.

1989-04-01T23:59:59.000Z

85

Possible Magmatic Input to the Dixie Valley Geothermal Field, and  

Open Energy Info (EERE)

Possible Magmatic Input to the Dixie Valley Geothermal Field, and Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Possible Magmatic Input to the Dixie Valley Geothermal Field, and Implications for District-Scale Resource Exploration, Inferred from Magnetotelluric (MT) Resistivity Surveying Abstract Magnetotelluric (MT) profiling in northwestern Nevadais used to test hypotheses on the main sources of heat andhydrothermal fluid for the Dixie Valley-Central NevadaSeismic Belt area. The transect reveals families of resistivitystructures commonly dominated by steeply-dipping features,some of which may be of key geothermal significance. Mostnotably, 2-D inversion

86

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

inducedseismicityandgeothermal energy. Geothermalinto sustainable geothermal energy: The S.E. Geysersinto sustainable geothermal energy: The S.E. Geysers

Brophy, P.

2012-01-01T23:59:59.000Z

87

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

into sustainable geothermal energy: The S.E. Geysersseismicityandgeothermal energy. GeothermalResourcesinto sustainable geothermal energy: The S.E. Geysers

Brophy, P.

2012-01-01T23:59:59.000Z

88

Geochemical modeling of the Raft River geothermal field | Open Energy  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Geochemical modeling of the Raft River geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geochemical modeling of the Raft River geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: The results to date of chemical modeling of the Raft River KGRA are presented. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well

89

Field Mapping At Raft River Geothermal Area (1993) | Open Energy  

Open Energy Info (EERE)

Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity: Field Mapping At Raft River Geothermal Area (1993) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the importance of Early to Middle Miocene period in the northern Basin and Range region. Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

90

A model for the shallow thermal regime at Dixie Valley geothermal field |  

Open Energy Info (EERE)

A model for the shallow thermal regime at Dixie Valley geothermal field A model for the shallow thermal regime at Dixie Valley geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A model for the shallow thermal regime at Dixie Valley geothermal field Authors R. G. Allis, Stuart D. Johnson, Gregory D. Nash and Dick Benoit Published Journal TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL, 1999 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A model for the shallow thermal regime at Dixie Valley geothermal field Citation R. G. Allis,Stuart D. Johnson,Gregory D. Nash,Dick Benoit. 1999. A model for the shallow thermal regime at Dixie Valley geothermal field. TRANSACTIONS-GEOTHERMAL RESOURCES COUNCIL. 23:493-498. Retrieved from "http://en.openei.org/w/index.php?title=A_model_for_the_shallow_thermal_regime_at_Dixie_Valley_geothermal_field&oldid=682587"

91

Geothermal Energy Development in the Eastern United States. A Program for Capital Recovery Assessment for the HP-97 and Other Desk Calculators  

SciTech Connect (OSTI)

The Johns Hopkins University Applied Physics Laboratory and the Center for Metropolitan Planning and Research support the Division of Geothermal Energy, U.S. Department of Energy, in the development of geothermal energy in the Eastern United States. In this role, many tools have been developed to assist in the analysis of the economics of the application of geothermal energy. This report documents one computer program that has proved useful.

Yu, Kwang; Briesen, Roy Von

1980-08-07T23:59:59.000Z

92

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND  

Open Energy Info (EERE)

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO- NEW DATA AND HYDROGEOLOGICAL IMPLICATIONS Details Activities (1) Areas (1) Regions (0) Abstract: Following a period of exploration and development in the mid-late 1970's, there was little activity at the Raft River geothermal field for the next ~20 years. US Geothermal Inc. acquired the project in 2002, and began commercial power generation in January 2008. From mid-2004 to present, US Geothermal Inc. has collected geochemical data from geothermal and monitoring wells in the field, as well as other shallow wells in the

93

Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) |  

Open Energy Info (EERE)

Et Al., 2001) Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown References Richard P. Smith, Kenneth W. Wisianz, David D. BlackweIl (2001) Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Dixie_Valley_Geothermal_Field_Area_(Smith,_Et_Al.,_2001)&oldid=510735" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

94

MAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS-PARBATI VALLEYS IN  

E-Print Network [OSTI]

Although, many countries are utiliszing the geothermal energy for power generation, India is yet to joinMAGNETOTELLURIC INVESTIGATIONS IN THE GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS.NGRI-2008-EXP-637 MAGNETOTELLURIC INVESTIGATIONS IN GEOTHERMAL FIELDS OF SATLUJ-SPITI, BEAS- PARBATI VALLEYS

Harinarayana, T.

95

Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West Indies)  

E-Print Network [OSTI]

1 Hydrogeological model of a high energy geothermal field (Bouillante area, Guadeloupe, French West, France 3. BRGM, Department of Geothermal Energy 3, Av. Claude Guillemin - 45060 Orléans Cedex 2, France Abstract The Bouillante geothermal field presently provides about 8% of the annual electricity needs

Paris-Sud XI, Université de

96

Volume strain within the Geysers geothermal field  

SciTech Connect (OSTI)

During the 1970s and 1980s. The Geysers geothermal region was rapidly developed as a site of geothermal power production. The likelihood that this could cause significant strain within the reservoir, with corresponding surface displacements, led to a series of deformation monitoring surveys. In 1973, 1975, 1977, and 1980, The Geysers region was surveyed using first-order, class I, spirit leveling. In 1994, 1995, and 1996, many of the leveling control monuments were resurveyed using high-precision Global Positioning System receivers. The two survey methods are reconciled using the GEOID96 geoid model. The displacements are inverted to determine volume strain within the reservoir. For the period 1980-1994, peak volume strains in excess of 5x10{sup -4} are imaged. There is an excellent correlation between the observed changes in reservoir steam pressures and the imaged volume strain. If reservoir pressure changes are inducing volume strain, then the reservoir quasi-static bulk modulus K must be <4.6x10{sup 9} Pa. However, seismic velocities indicate a much stiffer reservoir with K=3.4x10{sup 10} Pa. This apparent discrepancy is shown to be consistent with predicted frequency dependence in K for fractured and water-saturated rock. Inversion of surface deformation data therefore appears to be a powerful method for imaging pressure change within the body of the reservoir. Correlation between induced seismicity at The Geysers and volume strain is observed. However, earthquake distribution does not appear to have a simple relationship with volume strain rate. (c) 1999 American Geophysical Union.

Mossop, Antony [Department of Geophysics, Stanford University, Stanford, California (United States)] [Department of Geophysics, Stanford University, Stanford, California (United States); Segall, Paul [Department of Geophysics, Stanford University, Stanford, California (United States)] [Department of Geophysics, Stanford University, Stanford, California (United States)

1999-12-10T23:59:59.000Z

97

Subsidence and uplift at Heber Geothermal field, California  

SciTech Connect (OSTI)

Heber Geothermal field is in the Imperial Valley near the City of Heber, California, about 3 1/2 miles north of the Mexican border. The field is at the southern end of a network of irrigated agricultural fields extending across the valley floor. The Heber geothermal system is circular, producing water of moderate temperature (360{degrees}F) and low-salinity (13,000-14,000 ppm TDS). In cross section, the geothermal system resembles a lopsided mushroom. The system has three major permeability units: capping clays form 500 to 1800 feet; a high-matrix-permeability, deltaic-sandstone outflow reservoir from 1,800 to 5,500 feet; and feeder faults and fractures in indurated sediments below 5,500 feet. The deltaic sandstones were deposited by the ancestral Colorado River. As both power plants continue operating in Heber field, the need persists to monitor subsidence and uplift. The field`s subsidence bowl is not expected to expand significantly, but some small changes are expected due to pressure changes caused by production for the SIGC binary power plant. The three SIGC injection wells, located between the production areas for the two power plants, will be managed for adequate reservoir pressure support.

Boardman, T.S.

1996-01-01T23:59:59.000Z

98

Concept Testing and Development at the Raft River Geothermal Field, Idaho  

Broader source: Energy.gov [DOE]

Geothermal Technologies Program 2010 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho, for the Engineered Geothermal Systems Demonstration Projects and Low Temperature Exploration and Demonstrations Project Track. Objective to Develop and demonstrate the techniques required to form and sustain EGS reservoirs including combined thermal and hydraulic stimulation and numerical modeling and Improve the performance and output of the Raft River geothermal field by increasing production or injectivity.

99

Total field aeromagnetic map of the Raft River known Geothermal Resource  

Open Energy Info (EERE)

field aeromagnetic map of the Raft River known Geothermal Resource field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Total field aeromagnetic map of the Raft River known Geothermal Resource Area, Idaho by the US Geological Survey Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; MAGNETIC SURVEYS; MAPS; RAFT RIVER VALLEY; AERIAL SURVEYING; GEOTHERMAL RESOURCES; IDAHO; KGRA; FEDERAL REGION X; GEOPHYSICAL SURVEYS; NORTH AMERICA; RESOURCES; SURVEYS; USA Author(s): Geological Survey, Denver, CO (USA) Published: DOE Information Bridge, 1/1/1981 Document Number: Unavailable DOI: 10.2172/5456508 Source: View Original Report Aeromagnetic Survey At Raft River Geothermal Area (1981) Raft River Geothermal Area

100

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to  

Open Energy Info (EERE)

CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus. Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This "geothermal central plant" concept will provide ground source loop energy as a utility to be shared by the academic and residential buildings on the soon-to-be-constructed campus.

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

3D Magnetotelluric characterization of the COSO GeothermalField  

SciTech Connect (OSTI)

Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Newman, Gregory A.; Hoversten, Michael; Gasperikova, Erika; Wannamaker, Philip E.

2005-01-01T23:59:59.000Z

102

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

Locating an active fault zone in Coso geothermal field by analyzing seismic Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Details Activities (1) Areas (1) Regions (0) Abstract: Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing

103

Field Mapping At Coso Geothermal Area (1968-1971) | Open Energy Information  

Open Energy Info (EERE)

Field Mapping At Coso Geothermal Area (1968-1971) Field Mapping At Coso Geothermal Area (1968-1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1968-1971) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1968 - 1971 Usefulness useful DOE-funding Unknown Exploration Basis Fumarolic and hot springs activity Notes Snowmelt patterns has the greatest utility in locating areas of presently active thermal fluid leakage References Koenig, J.B.; Gawarecki, S.J.; Austin, C.F. (1 February 1972) Remote sensing survey of the Coso geothermal area, Inyo county, California. Technical publication 1968--1971 Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Coso_Geothermal_Area_(1968-1971)&oldid=473716"

104

Hydrogeologic model of the Ahuachapan geothermal field, El Salvador  

SciTech Connect (OSTI)

A hydrogeological model of the Ahuachapan geothermal field has been developed. It considers the lithology and structural features of the area and discerns their impact on the movement of cold and hot fluids in the system. Three aquifers were identified, their zones of mixing and flow patterns were obtained on the basis of temperature and geochemical data from wells and surface manifestations. 12 refs., 9 figs.

Laky, C.; Lippmann, M.J.; Bodvarsson, G.S. (Lawrence Berkeley Lab., CA (USA)); Retana, M.; Cuellar, G. (Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) (El Salvador))

1989-01-01T23:59:59.000Z

105

Well interference tests at the Cerro Prieto Geothermal Field  

SciTech Connect (OSTI)

Two well interference tests were carried out by the LBL at the Cerro Prieto geothermal field located in Baja California, Mexico, during 1978. The first test incorporated five wells located about 1 km south of the power plant. Standard analyses of the well interference test data yielded permeability estimates that are much higher than the values obtained from two-rate tests performed by the CFE during the development of production wells. 4 refs.

Schroeder, R.C.; Goranson, C.B.; Benson, S.M.; Lippmann, M.J.

1980-01-01T23:59:59.000Z

106

RAPID/Geothermal/Well Field/Colorado | Open Energy Information  

Open Energy Info (EERE)

the Use of Wells, "Geothermal Well" means a well that is constructed for the purpose of exploration, use of a geothermal resource, or reinjection of a geothermal fluid. A permit...

107

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2012-01-01T23:59:59.000Z

108

SUMMARY OF RESERVOIR ENGINEERING DATA: WAIRAKEI GEOTHERMAL FIELD, NEW ZEALAND  

E-Print Network [OSTI]

mental Effects of Geothermal Power Production Phase IIA,"its development as a geothermal power system, Wairakei andI. (Compiler), Geothermal Steam for Power i n N e w Zealand,

Pritchett, J.W.

2010-01-01T23:59:59.000Z

109

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

96 Geothermal Blog en Geothermal Blog http:energy.goveeregeothermal-blog Geothermal Blog

110

Three-dimensional anatomy of a geothermal field, Coso, Southeast-Central  

Open Energy Info (EERE)

anatomy of a geothermal field, Coso, Southeast-Central anatomy of a geothermal field, Coso, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Three-dimensional anatomy of a geothermal field, Coso, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews geophysical and seismological imaging in the Coso geothermal field, located in southeast-central California. The Coso geothermal production area covers approximately 6X10 km 2 . Although regional seismicity is addressed, as it sheds light on the magma, or heat, sources in the field, the primary focus of this paper is on the main production area. Three-dimensional inversions for P- and S- wave velocity variations, distribution of attenuation, and anisotropy are presented side-by-side so that anomalies can be compared spatially in a direct

111

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the

112

A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand |  

Open Energy Info (EERE)

Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Soil Gas Survey Over Rotorua Geothermal Field, Rotorua, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: Soil gases have been used as an exploration tool for minerals, oil and gas, and geothermal energy, through the detection of anomalous gas levels. This paper describes a soil gas survey conducted over a large part of the Rotorua geothermal field to supplement the sparse gas data from drillhole samples and to determine gas distribution patterns over the field. Data collected from a reference hole were used to observe the effect changing meteorological conditions had on soil gas levels. The results were

113

Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) | Open  

Open Energy Info (EERE)

Water Sampling At Dixie Valley Geothermal Field Area Water Sampling At Dixie Valley Geothermal Field Area (Wood, 2002) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: 1) the North Island of New Zealand (three sets of samples from three different years) and the South Island of New Zealand (1 set of samples); 2) the Cascades of Oregon; 3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; 4) the Dixie Valley and Beowawe fields in Nevada; 5) Palinpiiion, the Philippines; 6) the Salton Sea and Heber geothermal fields of southern California; and 7) the

114

E-Print Network 3.0 - ahuachapan geothermal field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California, February 1-3, 2010 Summary: like to 12;Figure 1: Locations of major geothermal fields, district heating and greenhouse... for the existence of possible deep...

115

Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California  

E-Print Network [OSTI]

geothermal field, Imperial Valley, California. GSA Bulletin,2011). Worldwide Projects: Imperial Valley (United States).2012 Brawley earthquake, Imperial Valley. Bulletin of the

Lajoie, Lia Joyce

2012-01-01T23:59:59.000Z

116

Concept Testing and Development at the Raft River Geothermal Field, Idaho  

Broader source: Energy.gov [DOE]

Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado.

117

Development of the Las Tres Virgenes geothermal field, Mexico  

SciTech Connect (OSTI)

Ecological and reservoir characteristics of the Las Tres Virgenes geothermal field are presented. Pressure and temperature logs show a liquid dominated reservoir at 245{degrees}C and 61 bars. The granodeoritic with moderate fracturing rock hosts the geothermal reservoir. Production characteristics of well LV-3 were recently evaluated, produced fluids have geothermal genesis and the electrical output is 1.5 MW. At present, LV-1 is on drilling step. According with electrical needs and behaviour of the production characteristics of the zone, CFE has projected the installation in the near future one 2 MW unit. The characteristics of this turbine are specified, also the ecological criterion. A 115 KV line is needed in order to integrate this project to the existing grid. In 1995, four new deviated wells will be drilled in order to prove-up 4 MW power capacity and to explore new areas. Two of these wells will be located on the same site as of LV-3. The third well will be drilled on the same site of LV-1. Finally, the fourth injection well will be located 2 km from well LV-3.

Torres-Rodriguez, M.A.; Sanchez-Velasco, R.A.

1995-12-31T23:59:59.000Z

118

Field testing advanced geothermal turbodrill (AGT). Phase 1 final report  

SciTech Connect (OSTI)

Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

Maurer, W.C.; Cohen, J.H.

1999-06-01T23:59:59.000Z

119

A Survey Of Seismic Activity Near Wairakei Geothermal Field, New Zealand |  

Open Energy Info (EERE)

Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Survey Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: A five-week survey showed that seismic activity within 20 km of Wairakei Geothermal Field took place mainly at shallow depths (< 2 km), in or close to the Taupo Fault Belt, and occurred in swarms. Twenty-eight earthquakes, with magnitudes (M) between -1.3 and +2.8, were located; 43 other earthquakes, with M < 0.2, were recorded but could not be located. The distribution of located earthquakes did not correlate with known areas of surface geothermal activity. No located earthquake occurred beneath the

120

A U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand  

Open Energy Info (EERE)

U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: We report here the first U-Th disequilibrium age for a hydrothermal mineral from an active geothermal system in New Zealand. Vein calcite recovered from a depth of 389 m in Well Thm-1 at the Tauhara geothermal field has an age of 99±44 ka BP. This age was determined using a leachate-leachate isochron technique on four silicate containing sub-samples of calcite from a single vein. Although the error on this isochron age is considerable, it is significantly younger than the earlier

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Dixie Valley Geothermal Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2003) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The gravity data are not as site specific as the seismic, but put the major parts of the structure in their proper location and places vital constraints on the possible interpretations of the seismic data. References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Dixie_Valley_Geothermal_Field_Area_(Blackwell,_Et_Al.,_2003)&oldid=388459

122

P wave anisotropy, stress, and crack distribution at Coso geothermal field,  

Open Energy Info (EERE)

wave anisotropy, stress, and crack distribution at Coso geothermal field, wave anisotropy, stress, and crack distribution at Coso geothermal field, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: P wave anisotropy, stress, and crack distribution at Coso geothermal field, California Details Activities (1) Areas (1) Regions (0) Abstract: A new inversion method for P wave anisotropy (Wu and Lees, 1999a) has been applied to high-precision, microseismic traveltime data collected at Coso geothermal region, California. Direction-dependent P wave velocity and thus its perturbation, are represented by a symmetric positive definite matrix A instead of a scalar. The resulting anisotropy distribution is used to estimate variations in crack density, stress distribution and permeability within the producing geothermal field. A circular dome-like

123

A Summary of Modeling Studies of the Krafla Geothermal Field, Iceland |  

Open Energy Info (EERE)

A Summary of Modeling Studies of the Krafla Geothermal Field, Iceland A Summary of Modeling Studies of the Krafla Geothermal Field, Iceland Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Summary of Modeling Studies of the Krafla Geothermal Field, Iceland Abstract A comprehensive modeling study of the Krafla geothermal field in Iceland has been carried out. The study consists of four tasks: the analysis of well test data, modeling of the natural state of the field, the determination of the generating capability of the field, and modeling of well performance. The results of all four tasks are consistent with field observations. Authors Gudmundur S. Bodvarsson and Karsten Pruess Published Journal Geothermal Resources Council Transactions, 1983 DOI Not Provided Check for DOI availability: http://crossref.org

124

40AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD | Open Energy  

Open Energy Info (EERE)

AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 40AR/39AR THERMAL HISTORY OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: The age of the geothermal system and the granitic host rock at Coso geothermal system in California is poorly known. This is mainly due to a paucity of vein-type minerals (e.g. adularia, sericite) that can be directly dated. A downhole 40Ar/39Ar thermochronology study of granitic host-rock Kfeldspar is presently being undertaken at the New Mexico Geochronology Research Laboratory at New Mexico Tech. The technique couples the measurement of argon loss from K-feldspar and knowledge of the diffusion parameters of transport in K-feldspar to estimate the longevity

125

Field Mapping At Coso Geothermal Area (1977-1978) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1977-1978) Coso Geothermal Area (1977-1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Coso Geothermal Area (1977-1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Field Mapping Activity Date 1977 - 1978 Usefulness not indicated DOE-funding Unknown Notes Hydrogeologic investigation of Coso hot springs was conducted by field examination of geologic rock units and springs and other features of hydrologic significance and sampling of waters for chemical analysis; determination of the local Coso Hot Springs and regional groundwater hydrology, including consideration of recharge, discharge, movement, and water quality; determination of the possible impact of large-scale geothermal development on Coso Hot Springs.

126

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

127

A Test Of The Transiel Method On The Travale Geothermal Field | Open Energy  

Open Energy Info (EERE)

Of The Transiel Method On The Travale Geothermal Field Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Test Of The Transiel Method On The Travale Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: An original electromagnetic method has been applied to geothermal prospecting on the Travale test site. The results show good correlations between observed polarization anomalies and productive zones. It is believed that these anomalies are related to reduction phenomena that occurred in the overburden (such as pyrite formation) caused by thermochemical exchanges between the reservoir and the overburden above those zones where the reservoir permeability is highest. Author(s): A. Duprat, M. Roudot, S. Spitz Published: Geothermics, 1985

128

Determination of a Geothermal Energy Field with Audio-Magnetotelluric (AMT) Data at the South of Manisa, Turkey  

Science Journals Connector (OSTI)

In this study, we present an investigation of the geothermal energy field and its energy potential at the south of Manisa in Turkey. The resistivities of the geothermal energy field have a key role in determining...

Hatice Karakilcik

2014-01-01T23:59:59.000Z

129

Geothermal Data via the Virginia Tech and DMME Portal to the National Geothermal Data System for the Eastern and Southeastern United States from the Regional Geophysics Laboratory of Virginia Polytechnic Institute and State University  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The former title for this record was "Geothermal Data for the Eastern and Southeastern U.S. from the Regional Geophysics Laboratory of Virginia Tech." The content originally referenced is still available. It includes geothermal maps of seven southeastern states with accompanying data tables. The seven states are: New Jersey, Maryland, Delaware, Virginia, North Carolina, South Caroline, and Georgia. Data types include geothermal data, seismic data, and magnetic and gravity data. Typical geothermal data may include tables of temperature versus depth data, plots of temperature/gradient versus depth, tables of thermal conductivity data, and tables of gamma log data. Other resources available from the RGL provide information about hot springs in the southeastern U.S., temperatures for Atlantic Coastal Plain sediments, and deep fracture permeability in crystalline rocks in the eastern and southeastern U.S. Recently, this website and its collection of geothermal data has been renamed and reorganized as a portal into the National Geothermal Data System, a move that makes far more data both available and integrated.

130

Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange.

131

STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS  

Open Energy Info (EERE)

STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: STRESS AND FAULTING IN THE COSO GEOTHERMAL FIELD: UPDATE AND RECENT RESULTS FROM THE EAST FLANK AND COSO WASH Details Activities (1) Areas (1) Regions (0) Abstract: We integrate new geologic mapping and measurements of stress orientations and magnitudes from wells 34-9RD2 and 58A-10 with existing data sets to refine a geomechanical model for the Coso geothermal field. Vertically averaged stress orientations across the field are fairly uniform and are consistent with focal mechanism inversions of earthquake clusters for stress and incremental strain. Active faults trending NNW-SSE to

132

A Model For The Sulphur Springs Geothermal Field St Lucia | Open Energy  

Open Energy Info (EERE)

Model For The Sulphur Springs Geothermal Field St Lucia Model For The Sulphur Springs Geothermal Field St Lucia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Model For The Sulphur Springs Geothermal Field St Lucia Details Activities (0) Areas (0) Regions (0) Abstract: A model to explain the behaviour of the Sulphur Springs geothermal field has been derived from downhole temperature records in the exploration boreholes. The model incorporates a main reservoir at 1 - 1.5 km depth, intersected by steeply inclined fissures which carry steam and gas to the well bores, and to the natural fumaroles. A substantial decline in the gas content of the steam could have serious consequences where the fissures are utilised as conduits between the boreholes and the deep reservoir. Further development of the field should concentrate on the

133

Modeling discharge requirements for deep geothermal wells at the Cerro Prieto geothermal field, MX  

SciTech Connect (OSTI)

During the mid-l980's, Comision Federal de Electricidad (CFE) drilled a number of deep wells (M-200 series) at the Cerro Prieto geothermal field, Baja California, Mexico to investigate the continuation of the geothermal reservoir to the east of the Cerro Prieto-II and III production areas. The wells encountered permeability at depths ranging from 2,800 to 4,400 m but due to the reservoir depth and the relatively cold temperatures encountered in the upper 1,000 to 2,000 m of the wells, it was not possible to discharge some of the wells. The wells at Cerro Prieto are generally discharged by injecting compressed air below the water level using 2-3/8-inch tubing installed with either a crane or workover rig. The objective of this technique is to lift sufficient water out of the well to stimulate flow from the reservoir into the wellbore. However, in the case of the M-200 series wells, the temperatures in the upper 1,000 to 2,000 m are generally below 50 C and the heat loss to the formation is therefore significant. The impact of heat loss on the stimulation process was evaluated using both a numerical model of the reservoir/wellbore system and steady-state wellbore modeling. The results from the study indicate that if a flow rate of at least 300 liters/minute can be sustained, the well can probably be successfully stimulated. This is consistent with the flow rates obtained during the successful stimulations of wells M-202 and M-203. If the flow rate is closer to 60 liters/minute, the heat loss is significant and it is unlikely that the well can be successfully discharged. These results are consistent with the unsuccessful discharge attempts in wells M-201 and M-205.

Menzies, Anthony J.; Granados, Eduardo E.; Puente, Hector Gutierrez; Pierres, Luis Ortega

1995-01-26T23:59:59.000Z

134

Geothermal injection treatment: process chemistry, field experiences, and design options  

SciTech Connect (OSTI)

The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

1984-09-01T23:59:59.000Z

135

Exploration and development of the Cerro Prieto geothermal field  

SciTech Connect (OSTI)

A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of U.S. organizations sponsored by the U.S. Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; geochemical surveys help to define zones of recharge and paths of fluid migration; and reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

1983-10-01T23:59:59.000Z

136

Exploration and development of the Cerro Prieto geothermal field  

SciTech Connect (OSTI)

A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

1983-07-01T23:59:59.000Z

137

CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA |  

Open Energy Info (EERE)

CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: CRUSTAL STRESS HETEROGENEITY IN THE VICINITY OF COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Borehole induced structures in image logs of wells from the Coso Geothermal Field (CGF), CA record variation in the azimuth of principal stress. Image logs of these structures from five wells were analyzed to quantify the stress heterogeneity for three geologically distinct locations: two wells within the CGF (one in an actively produced volume), two on the margin of the CGF and outside the production area, and a control well several tens of kilometers south of the CGF. Average directions of

138

An Updated Conceptual Model Of The Travale Geothermal Field Based On Recent  

Open Energy Info (EERE)

Travale Geothermal Field Based On Recent Travale Geothermal Field Based On Recent Geophysical And Drilling Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Travale Geothermal Field Based On Recent Geophysical And Drilling Data Details Activities (0) Areas (0) Regions (0) Abstract: an updated picture of the Travale field is given, based on geophysical and drilling data acquired since 1978. In deriving the model, extensive use is made of the geophysical data produced in the course of the EEC test site programme (1980-1983), particularly from seismic and time domain EM methods which allowed for penetrating thick and conductive cover formations and to match deep tectonic and hydrothermal alteration trends thought to indirectly characterize the geothermal reservoir. It is

139

Isotopic Analysis At Dixie Valley Geothermal Field Area (Kennedy & Van  

Open Energy Info (EERE)

Dixie Valley Geothermal Field Area (Kennedy & Van Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Dixie Valley study suggests that helium isotopes may provide a new tool for mapping zones of deep permeability and therefore the potential for high fluid temperatures. The permeable zones are identified by local enrichments in 3He relative to a regional helium isotope trend. More work needs to be done, but it appears that helium isotopes may provide the best and perhaps

140

Scattering from a fault interface in the Coso geothermal field | Open  

Open Energy Info (EERE)

Scattering from a fault interface in the Coso geothermal field Scattering from a fault interface in the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Scattering from a fault interface in the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: Large-amplitude, secondary arrivals are modeled as scattering anomalies near the Coso, California, geothermal field. Polarization and ray tracing methods determine the orientation and location of the scattering body. Two models are proposed for the scatterer: (1) a point scatterer located anywhere in a one-dimensional (1-D), layered velocity model; and (2) a dipping interface between two homogeneous half spaces. Each model is derived by non-linear, grid search inversion for the optimal solution which best predicts observed travel times. In each case the models predict a

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and  

Open Energy Info (EERE)

Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Seismicity and seismic stress in the Coso Range, Coso geothermal field, and Indian Wells Valley region, Southeast-Central California Details Activities (1) Areas (1) Regions (0) Abstract: The temporal and spatial distribution of seismicity in the Coso Range, the Coso geothermal field, and the Indian Wells Valley region of southeast-central California are discussed in this paper. An analysis of fault-related seismicity in the region led us to conclude that the Little Lake fault and the Airport Lake fault are the most significant seismogenic zones. The faulting pattern clearly demarcates the region as a transition

142

A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles  

Open Energy Info (EERE)

Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Details Activities (10) Areas (2) Regions (0) Abstract: The Baca location #1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene Valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 260°C at depths of less than 2 km. Stratigraphically the reservoir region can be described as a five-layer sequence that includes Tertiary and Quaternary volcanic rocks, and Mesozoic and Tertiary sediments overlying Precambrian granitic

143

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

144

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

145

Imaging Structure With Fluid Fluxes At The Bradys Geothermal Field With  

Open Energy Info (EERE)

Imaging Structure With Fluid Fluxes At The Bradys Geothermal Field With Imaging Structure With Fluid Fluxes At The Bradys Geothermal Field With Satellite Interferometric Radar (Insar)- New Insights Into Reservoir Extent And Structural Controls Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Imaging Structure With Fluid Fluxes At The Bradys Geothermal Field With Satellite Interferometric Radar (Insar)- New Insights Into Reservoir Extent And Structural Controls Details Activities (1) Areas (1) Regions (0) Abstract: We present a new example of Interferometric Synthetic Aperture Radar's (InSAR) remarkable utility for defining an operating geothermal reservoir's lateral extent and hydrologically active fracture systems. InSAR reveals millimeter-level surface change due to volume change in the reservoir and overlying aquifer systems caused by fluid pressure reduction

146

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field,  

Open Energy Info (EERE)

3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: 3-D Interpretation Of Magnetotelluric Data At The Bajawa Geothermal Field, Indonesia Details Activities (0) Areas (0) Regions (0) Abstract: Three-dimensional (3-D) interpretation was carried out for the magnetotelluric (MT) data obtained in a geothermal area in Indonesia. The inversion scheme was based on the linearized leastsquares method with smoothness regularization. In addition to the subsurface resistivity structure, static shifts were also included as unknown parameters in the inversion. Forward modeling was by the finite difference scheme. The sensitivity matrix was computed once for a homogeneous half space and used

147

Microearthquake Studies at the Salton Sea Geothermal Field  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

Templeton, Dennise

148

Microearthquake Studies at the Salton Sea Geothermal Field  

SciTech Connect (OSTI)

The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

Templeton, Dennise

2013-10-01T23:59:59.000Z

149

The Ahuachapan geothermal field, El Salvador: Reservoir analysis  

SciTech Connect (OSTI)

The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

1989-08-01T23:59:59.000Z

150

The Geysers Geothermal Area | Department of Energy  

Energy Savers [EERE]

The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field....

151

Field evidence in the Koryak Mountains Lake Mainitz region of far eastern Russia  

E-Print Network [OSTI]

ABSTRACT Field evidence in the Koryak Mountains­ Lake Mainitz region of far eastern Russia supports

Ingólfsson, ?lafur

152

Field Mapping At Long Valley Caldera Geothermal Area (Sorey,...  

Open Energy Info (EERE)

is relatively low, promoting surface flow of geothermal fluids, as exemplified at Fish Hatchery springs. The distribution, quantity, and age of borate minerals in Searles...

153

RAPID/Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

receive approval from the Bureau of Land Management (BLM) of a Notice of Intent (NOI) to Conduct Geothermal Resource Exploration Operations. For other types of wells on federal...

154

Characterizing Fractures in Geysers Geothermal Field by Micro...  

Open Energy Info (EERE)

Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on...

155

Regional hydrology of the Dixie Valley geothermal field, Nevada...  

Open Energy Info (EERE)

Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal Trans Geotherm Resour Counc, 1999 DOI Not Provided Check for DOI...

156

RAPID/Geothermal/Well Field/Texas | Open Energy Information  

Open Energy Info (EERE)

- Drilling Permits Online Filing User's Guide webpage RRC - Geothermal Production Test Completion or Recompletion Report and Log Form GT-1 RRC - Online Drilling Permit System...

157

Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior  

SciTech Connect (OSTI)

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

Lippmann, M.J.

1989-03-01T23:59:59.000Z

158

Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior  

SciTech Connect (OSTI)

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

Lippmann, Marcelo J.

1989-03-21T23:59:59.000Z

159

Field Mapping At Northern Basin and Range Geothermal Region (1993) | Open  

Open Energy Info (EERE)

Geothermal Region (1993) Geothermal Region (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Northern Basin and Range Geothermal Region (1993) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Field Mapping Activity Date 1993 Usefulness not indicated DOE-funding Unknown Notes New apatite fission track cooling age and track length data, supplemented by other information, point to the Early to Middle Miocene as an additional time of very significant extension-induced uplift and range formation. Many ranges in a 700-km-long north-south corridor from the Utah-Nevada-Idaho border to southernmost Nevada experience extension and major exhumation in Early to Middle Miocene time. Reconnaissance apatite ages from the Toiyabe

160

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data,  

Open Energy Info (EERE)

Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Fracture Characterization Technologies Project Description The proposed program will focus on predicting characteristics of fractures and their orientation prior to drilling new wells. It will also focus on determining the location of the fractures, spacing and orientation during drilling, as well as characterizing open fractures after stimulation to help identify the location of fluid flow pathway within the EGS reservoir. These systems are created by passively injecting cold water, and stimulating the permeation of the injected water through existing fractures into hot wet and hot dry rocks by thermo-elastic cooling shrinkage. The stimulated, existing fractures thus enhance the permeability of the hot rock formations, hence enabling better circulation of water for the purpose of producing the geothermal resource. The main focus of the project will be on developing better understanding of the mechanisms for the stimulation of existing fractures, and to use the information for better exploitation of the high temperature geothermal resources located in the northwest portion of the Geysers field and similar fields.

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA)  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA) USING REMOTE SENSING AND FIELD DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SEARCH FOR THERMAL ANOMALIES IN THE COSO GEOTHERMAL FIELD (CALIFORNIA) USING REMOTE SENSING AND FIELD DATA Details Activities (2) Areas (1) Regions (0) Abstract: We attempt to identify thermal anomalies using thermal infrared (TIR) data collected over the Coso Geothermal Power Project with the spaceborne ASTER instrument. Our analysis emphasizes corrections for thermal artifacts in the satellite images caused by topography, albedo, and

162

E-Print Network 3.0 - azufres geothermal field Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: temperature of 103 on the surface. This geothermal field was planned to provide district heating... -70, dip SE30-50. Figure 1 Regional geological tectonic map of...

163

Discovery and geology of the Desert Peak geothermal field: a case history. Bulletin 97  

SciTech Connect (OSTI)

A case history of the exploration, development (through 1980), and geology of the Desert Peak geothermal field is presented. Sections on geochemistry, geophysics, and temperature-gradient drilling are included.

Benoit, W.R.; Hiner, J.E.; Forest, R.T.

1982-09-01T23:59:59.000Z

164

The Coso geothermal field: A nascent metamorphic core complex | Open Energy  

Open Energy Info (EERE)

The Coso geothermal field: A nascent metamorphic core complex The Coso geothermal field: A nascent metamorphic core complex Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: The Coso geothermal field: A nascent metamorphic core complex Abstract Investigation of the Coso Range using seismicity, gravity, and geochemistry of rocks and fluids, supports the interpretation that the structure hosting the geothermal resource is a nascent metamorphic core complex. The structural setting is a releasing bend in a dextral strike-slip system that extends from the Indian Wells Valley northward into the Owens Valley. This tectonic setting results in NW-directed transtension, which is accommodated by normal and strike-slip faulting of the brittle upper 4-6 km of the crust, and shearing and ductile stretching below this depth, accompanied by

165

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

166

An Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field,  

Open Energy Info (EERE)

Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field, Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field, Italy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Oxygen Isotope Study Of Silicates In The Larderello Geothermal Field, Italy Details Activities (0) Areas (0) Regions (0) Abstract: Stable-isotope analyses were carried out on hydrothermal minerals sampled from the deep metamorphic units at Larderello, Italy. The D18O values obtained for the most retentive minerals, quartz and tourmaline, are from + 12.0‰ to + 14.7‰ and 9.9‰, respectively, and indicate deposition from an 18O-rich fluid. Calculated D18O values for these fluids range from + 5.3‰ to + 13.4‰. These values, combined with available fluid inclusion and petrographic data, are consistent with the proposed

167

Results of investigations at the Ahuachapan geothermal field, El Salvador  

SciTech Connect (OSTI)

Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B. (comps.)

1990-04-01T23:59:59.000Z

168

RAPID/Geothermal/Well Field/Idaho | Open Energy Information  

Open Energy Info (EERE)

Any person, owner or operator who proposes to construct a well for the production of or exploration for geothermal resources or to construct an injection well shall first apply...

169

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

170

InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Laney, 2005) Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: InSAR At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique InSAR Activity Date Usefulness useful DOE-funding Unknown Notes Localized Strain as a Discriminator of Hidden Geothermal Systems, Vasco and Foxall, 2005. Recent work has focused on (1) collaborating with Alessandro Ferretti to use Permanent Scatterer (PS) InSAR data to infer strain at depth, (2) working with Lane Johnson to develop a dynamic faulting model, and (3) acquiring InSAR data for the region surrounding the Dixie Valley fault zone in collaboration with Dr. William Foxall of LLNL. The InSAR data have been processed and an initial interpretation of the results is

171

Mushroom growing project at the Los Humeros, Mexico geothermal field  

SciTech Connect (OSTI)

There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. The mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.

Rangel, M.E.R. [Comision Federal de Electricidad (Mexico)

1998-12-01T23:59:59.000Z

172

The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study  

SciTech Connect (OSTI)

This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.

None

1982-07-01T23:59:59.000Z

173

Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho  

SciTech Connect (OSTI)

The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

2013-09-01T23:59:59.000Z

174

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

E-Print Network [OSTI]

vertical black lines: geothermal wells. Fig. 4. Downholeproduced by Pauzhetsky geothermal wells. The arrows indicate

Kiryukhin, A.V.

2008-01-01T23:59:59.000Z

175

Geothermal well-field and power-plant investment-decision analysis  

SciTech Connect (OSTI)

Investment decisions pertaining to hydrothermal well fields and electric power plants are analyzed. Geothermal investment decision models were developed which, when coupled to a site-specific stochastic cash flow model, estimate the conditional probability of a positive decision to invest in the development of geothermal resource areas. Quantitative decision models have been developed for each major category of investor currently involved in the hydrothermal projects. These categories include: large, diversified energy resource corporations; independently operating resource firms; investor-owned electric utilities; municipal electric utilities; state-run resource agencies; and private third-party power plant investors. The geothermal cash flow, the investment decision analysis, and an example of model application for assessing the likely development of geothermal resource areas are described. The sensitivity of this investment behavior to federal incentives and research goals is also analyzed and discussed.

Cassel, T.A.V.; Amundsen, C.B.; Edelstein, R.H.; Blair, P.D.

1981-05-31T23:59:59.000Z

176

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network [OSTI]

faults and wells, Cerro Prieto geothermal field, Mexico (faults and wells, Cerro Prieto geothermal field, Mexico (geothermal system in Mexico and the Pleasant Bayou exploratory geopressured well

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

177

Geothermal News  

Broader source: Energy.gov (indexed) [DOE]

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System http://energy.gov/articles/nevada-deploys-first-us-commercial-grid-connected-enhanced-geothermal-system geothermal-system" class="title-link">Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System

178

Geothermal Blog  

Broader source: Energy.gov (indexed) [DOE]

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

179

Casa Diablo Geothermal Area | Department of Energy  

Energy Savers [EERE]

Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough...

180

CALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES  

E-Print Network [OSTI]

geothermal energy exploration and development are most important. Geothermal resources in Costa Rica have of energy development in Costa Rica. The Miravalles geothermCALCIUM CARBONATE DEPOSITION IN GEOTHERMAL WELLBORES MIRAVALLES GEOTHERMAL FIELD COSTA RICA

Stanford University

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et  

Open Energy Info (EERE)

Blackwell, Et Blackwell, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al., 2009) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes "The gravity data are described by (Blackwell et al., 1999; 2002). On a basin-wide scale the gravity low in Dixie Valley is strongly asymmetrical from east to west. The west side is relatively well-defined by rapid horizontal changes in the gravity anomaly value, whereas along the east side horizontal changes are more subdued and often consist of several steps. The horizontal gradient of the gravity field has proved most useful

182

Session 10: The Cerro Prieto Geothermal Field, Mexico: The Experiences Gained from Its Exploration and Development  

SciTech Connect (OSTI)

The Cerro Prieto case study demonstrated the value of a multidisciplinary effort for exploring and developing a geothermal field. There was no problem in recognizing the geothermal potential of the Cerro Prieto area because of the many obvious surface manifestations. However, the delineation of the geothermal reservoir at depth was not so straightforward. Wells drilled near the abundant surface manifestations only produced fluids of relatively low enthalpy. Later it was determined that these zones of high heat loss corresponded to discharge areas where faults and fractures allowed thermal fluids to leak to the surface, and not to the main geothermal reservoir. The early gravity and seismic refraction surveys provided important information on the general structure of the area. Unaware of the existence of a higher density zone of hydrothermally altered sediments capping the geothermal reservoir, CFE interpreted a basement horst in the western part of the field and hypothesized that the bounding faults were controlling the upward flow of thermal fluids. Attempting to penetrate the sedimentary column to reach the ''basement horst'', CFE discovered the {alpha} geothermal reservoir (in well M-5). The continuation of the geothermal aquifer (actually the {beta} reservoir) east of the original well field was later confirmed by a deep exploration well (M-53). The experience of Cerro Prieto showed the importance of chemical ratios, and geothermometers in general, in establishing the subsurface temperatures and fluid flow patterns. Fluid chemical and isotopic compositions have also been helpful to determine the origin of the fluids, fluid-production mechanisms and production induced effects on the reservoir.

Lippman, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

1983-12-01T23:59:59.000Z

183

Fundamentals of Geothermics  

Science Journals Connector (OSTI)

The expression geothermics of the Earth is understood to be restricted to the solid Earth and is usually shortened to geothermics. Hence, the field of geothermics starts as soon as the solid Earth has been e...

R. Haenel; L. Rybach; L. Stegena

1988-01-01T23:59:59.000Z

184

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

185

Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study  

SciTech Connect (OSTI)

The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

1983-12-15T23:59:59.000Z

186

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes The seismic reflection data are very useful and can be site specific when a profile is in the right place, but are sparse, very difficult to interpret correctly, and expensive to collect. The velocity values used are uncertain even though there are several sonic logs for the wells. A VSP, Vertical Seismic Profile, survey would significantly improve the precision of the interpretation References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada

187

Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney,  

Open Energy Info (EERE)

2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault

188

Seismic response to fluid injection and production in two Salton Trough geothermal fields, southern California  

E-Print Network [OSTI]

D I P IPPO , R. (2012). Geothermal Power Plants: Principles,in the vicinity of geothermal power plants worldwide, it isregional effects of geothermal power production. This study

Lajoie, Lia Joyce

2012-01-01T23:59:59.000Z

189

Controls on the geomorphic expression and evolution of gryphons, pools, and caldera features at hydrothermal seeps in the Salton Sea Geothermal Field,  

E-Print Network [OSTI]

at hydrothermal seeps in the Salton Sea Geothermal Field, southern California Nathan Onderdonk a, , Adriano In the Salton Sea Geothermal Field in southern California, expulsion of gas, sediment and water creates unique.1. Regional setting The Salton Sea Geothermal Field (SSGF) is an area of high heat flow located

Svensen, Henrik

190

Thermal And-Or Near Infrared At Coso Geothermal Area (2007) | Open Energy  

Open Energy Info (EERE)

2007) 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2007) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Analyze if coupling remote sensing and field data is effective for determining geothermal areas Notes Thermal infrared (TIR) data from the spaceborne ASTER instrument was used to detect surface temperature anomalies in the Coso geothermal field in eastern California. The identification of such anomalies in a known geothermal area serves as an incentive to apply similar markers and techniques to areas of unknown geothermal potential. Field measurements

191

Three-dimensional temperature field simulation of magma chamber in the Los Humeros geothermal field, Puebla, Mexico  

Science Journals Connector (OSTI)

Three-dimensional (3-D) thermal modeling of a magma chamber in the Los Humeros geothermal field of Mexico was carried out for the entire geological history of about 500,000y. Earlier application of 3-D modeling for only about 30,000y of total simulation time with discretization time of 1000y and mesh size of 0.25km, had indicated that the thermal regime is affected more by the depth of magma chamber than its volume. Now using a chamber depth of 5km, chamber volume of 1400km3, shorter discretization time of 10 years, mesh size of 0.25km, convection in the geothermal reservoir, and magma recharge in the chamber, we present our best 3-D thermal model for the Los Humeros geothermal field. Although this model is consistent with the static formation temperature estimates from geothermal wells, ways to improve this model to make it suitable for the estimation of geothermal budget are also pointed out.

Surendra P. Verma; Efran Gmez-Arias

2013-01-01T23:59:59.000Z

192

3?D tomographic imaging of the geologic structure in the Salton Sea Geothermal Field  

Science Journals Connector (OSTI)

A three?dimensional tomographic reconstruction of the Salton Sea Geothermal Field is presented. This reconstruction is developed from data gathered in the course of one year between 15 September 1987 and 30 September 1988 using a microearthquake network. This geothermal field is important not only due to understanding potential energy sources but also because it is the result of a tectonic spreading zone bounded between two transverse fault systems: The San Andres system to the North and the Brawley fracture zone (BFZ) to the South. Here magma has penetrated into the crust to a depth of at least 8 km. This magmatic source is responsible for the microearthquakes generated along the BFZ as well as providing the thermal source for the geothermal activity. Using techniques for both blind source estimation as well as blind deconvolution a travel time tomographic algorithm is applied to these data. The objective is to characterize the subterranean geological structure and estimate the fracturing that supports the geothermal field. These studies are a necessary foundation for future research into the energy capacity of this field. [Work performed under the auspices of the Department of Energy by the Lawrence Livermore National Laboratory under Contract No. W?7405?Eng?48.

2002-01-01T23:59:59.000Z

193

Geothermal Energy Potential of South Bossier Parish, Louisiana.  

E-Print Network [OSTI]

??Northwestern Louisiana sits atop a geothermal anomaly that stretches across Eastern Texas and into Southern Arkansas. Geothermal gradients are observed in this area that are (more)

D'Aquin, John Adam

2010-01-01T23:59:59.000Z

194

An Integrated Geophysical Study Of The Geothermal Field Of Tule Chek, Bc,  

Open Energy Info (EERE)

Tule Chek, Bc, Tule Chek, Bc, Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Geothermal Field Of Tule Chek, Bc, Mexico Details Activities (0) Areas (0) Regions (0) Abstract: A method is described to determine bounds characterizing axisymmetric bodies from a set of gravity data. Bounds on the density contrast as a function of depth to the top and thickness of the anomalous source are obtained by using Parker's ideal body theory and linear programming algorithms. Such bounds are given in terms of trade-off diagrams, where regions of feasible solutions compatible with the observed data can be assured. Gravity data from the Tule Chek, B.C., Mexico, geothermal area were used to compute such trade-off diagrams. Seismic

195

A Geothermal Field Model Based On Geophysical And Thermal Prospectings In  

Open Energy Info (EERE)

Model Based On Geophysical And Thermal Prospectings In Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geothermal Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Details Activities (0) Areas (0) Regions (0) Abstract: The present study completes a study by Thanassoulas et al. (1986) Geophys. Prosp.34, 83-97 and deals with geophysical exploration for geothermal resources in Nea Kessani area, NE Greece. The results of some deep electrical soundings (AB = 6000 m) with the interpretation of a gravity profile crossing the investigated area are considered together with thermal investigations. All subsequent information, along with the conclusions of an earlier paper dealing with a reconnaissance geophysical

196

Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Rock At Coso Geothermal Area (1997) Rock At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Determine a major lithospheric boundary Notes Sr and Nd isotope ratios of Miocene-Recent basalts in eastern California, when screened for crustal contamination, vary dramatically and indicate the presence of a major lithospheric boundary that is not obvious from surface geology. Isotope ratios from the Coso field form a bull's-eye pattern with very low 87Sr/86Sr (0.7033) centered just south of the geothermal area. The

197

Fluid chemistry and temperatures prior to exploitation at the Las Tres Vrgenes geothermal field, Mexico  

Science Journals Connector (OSTI)

Generation of electricity at the Las Tres Vrgenes (LTV) geothermal field, Mexico, began in 2001. There are currently nine geothermal wells in the field, which has an installed electricity generating capacity of 10MWe. The chemical and temperature conditions prevailing in the field prior to its exploitation have been estimated, including their central tendency and dispersion parameters. These conditions were computed on the basis of: (i) geochemical data on waters from springs and domestic wells, and on geothermal well fluids (waters and gases); most of the sampling took place between 1995 and 1999; (ii) fluid inclusion studies; (iii) geothermometric data; and (iv) static formation temperatures computed using a modified quadratic regression Horner method. Fluid inclusion homogenization temperatures (in the 100290C range) suggest that there is a high-temperature fluid upflow zone near wells LV3 and LV4 in the southern part of the field. Computed average chemical equilibrium temperatures for the geothermal fluids are ?260C, based on the Na/K and SiO2 geothermometers, and ?265C, based on the H2/Ar, and CO2/Ar geothermometers. In general, the fluid inclusion homogenization temperatures are consistent with geothermometric data, as well as with static formation temperatures. Some of the observed differences could be related to well interference effects and different fluid production/sampling depths. The deeper geothermal waters show higher concentrations of Cl, Na, K, B, Ba, but lower concentrations of SO4, Ca, and Mg than the shallower waters. Fluid inclusion salinities are also higher in the deeper rocks. The measured Na/Cl ratios of the geothermal well waters are more or less uniform throughout the field and are very similar to that of seawater, strongly suggesting a seawater component in the fluid of the LTV system. The heat stored in the LTV geothermal system was estimated to be at least 9נ1012MJ, of which some 4נ1011MJ (equivalent to about 148MWe for 30 years of operation, assuming a conversion efficiency of ?35%) might be extracted using wells. These results indicate that the installed capacity at LTV could be safely increased from the current 10MWe.

Surendra P. Verma; Kailasa Pandarinath; Edgar Santoyo; Eduardo Gonzlez-Partida; Ignacio S. Torres-Alvarado; Enrique Tello-Hinojosa

2006-01-01T23:59:59.000Z

198

Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia  

SciTech Connect (OSTI)

A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.

Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.

2008-04-01T23:59:59.000Z

199

Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry  

SciTech Connect (OSTI)

The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

1991-07-01T23:59:59.000Z

200

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal energy development in the Eastern United States. Technical assistance report No. 4. Geothermal space heating: Pittsville Middle/Elementary School, Pittsville, Maryland  

SciTech Connect (OSTI)

A technical evaluation was made to determine whether geothermal energy obtained from a well could be used to space heat the new school building being constructed as well as the existing elementary wing of the Pittsville School. The first part deals with space heating the new school building only; the second part pertains to space heating the new school building together with the new existing wing. An addendum was added for new well and production pump costs. (MHR)

Briesen, R.V.; Yu, K.

1980-06-01T23:59:59.000Z

202

Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy  

Broader source: Energy.gov [DOE]

Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy presentation at the April 2013 peer review meeting held in Denver, Colorado.

203

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power  

Open Energy Info (EERE)

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Geopressured Resources Project Description Within the Sweet Lake Oil and Gas Field, the existence of a geopressured-geothermal system was confirmed in the 1980s as part of the DOE's Gulf Coast Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and job creation it would entail, provide the opportunity to develop thousands of megawatts of geopressured-geothermal power in the South Eastern United States.

204

Geothermal Energy Development in the Eastern United States: Technical assistance report No. 6 geothermal space heating and airconditioning -- McGuire Air Force Base, New Jersey  

SciTech Connect (OSTI)

A method of utilizing the geothermal (66 F) water resource for space heating and cooling of 200 of the 1452 housing units at McGuire AFB is suggested. Using projections of future costs of gas, coal and electricity made by DOD and by industry (Westinghouse), the relative costs of the geothermal-water-plus-heat-pump system and the otherwise-planned central gas heating (to be converted to coal in 1984) and air-conditioning (using individual electric units) system are compared. For heating with the geothermal/heat-pump system, an outlet temperature of 130 F is selected, requiring a longer running time than the conventional system (at 180 F) but permitting a COP (coefficient of performance) of the heat pump of about 3.4. For cooling (obtained in this study by changing directions of water flow, not refrigerant cycles), the change in temperature is less, and a COP near 4.5 is obtained. The cost of cooling in the summer months would be significantly less than the cost of using individual electric air-conditioners. Thus, by using nonreversible heat pumps, geothermal water is used to heat and to cool a section of the housing compound, minimizing operating expenditures. It is estimated that, to drill 1000 ft deep production and reinjection wells and to install ten heat pumps, heat exchangers and piping, would require a capital outlay of $643 K. This cost would replace the capital cost of purchasing and installing 200 air-conditioning units and 14% of the cost of the future coal-fired central heating system (which would otherwise serve all 1452 housing units at McGuire). The net additional capital outlay would be $299 K, which could be amortized in 10 years by the lower operating cost of the geothermal system if electricity and coal prices escalate as industry suggests. If the coal and electricity costs rise at the more modest rates that DOD projects, the capital costs would be amortized in a 15 year period.

Hill, F.K.; Briesen R. von

1980-12-01T23:59:59.000Z

205

Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Dixie Valley Direct-Current Resistivity Survey At Dixie Valley Geothermal Field Area (Laney, 2005) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation Mt/Galvanic Array Profiling, Phillip Wannamaker. A new-generation MT/DC array resistivity measurement system was applied at the Dixie Valley thermal area. Basic goals of the survey are 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity;

206

3-D seismic velocity and attenuation structures in the geothermal field  

SciTech Connect (OSTI)

We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)] [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)

2013-09-09T23:59:59.000Z

207

Geothermal energy in Turkey: 2008 update  

Science Journals Connector (OSTI)

Geological studies indicate that the most important geothermal systems of western Turkey are located in the major grabens of the Menderes Metamorphic Massif, while those that are associated with local volcanism are more common in the central and eastern parts of the country. The present (2008) installed geothermal power generation capacity in Turkey is about 32.65MWe, while that of direct use projects is around 795MWt. Eleven major, high-to-medium enthalpy fields in western part of the country have 570MWe of proven, 905MWe of probable and 1389MWe of possible geothermal reserves for power generation. In spite of the complex legal issues related to the development of Turkey's geothermal resources, their use is expected to increase in the future, particularly for electricity generation and for greenhouse heating.

Umran Serpen; Niyazi Aksoy; Tahir ngr; E. Didem Korkmaz

2009-01-01T23:59:59.000Z

208

Concept Testing and Development at the Raft River Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho DOE 2010 Geothermal Technologies...

209

GEOPHYSICAL RESEARCH LETTERS, VOL. 24, NO. 14, PAGES 1839-1842, JULY 15, 1997 Subsidence at The Geysers geothermal field, N.  

E-Print Network [OSTI]

of the stresses and strains in- duced by geothermal power production in that region. Each survey spanned in the coast ranges of northern California. It is the largest producer of geothermal power in the world. At its at The Geysers geothermal field, N. California from a comparison of GPS and leveling surveys Antony Mossop

Segall, Paul

210

Derivation and implementation of a nonlinear experimental design criterion and its application to seismic network expansion at Kawerau geothermal field, New Zealand  

Science Journals Connector (OSTI)

......be hostile because of geothermal surface features or...of such challenges, geothermal operators are particularly...both a low intrinsic energy and propagation paths...however, such as in a geothermal field, the optimal...considering the immense cost of deploying, maintaining......

Z. J. Rawlinson; J. Townend; R. Arnold; S. Bannister

2012-11-01T23:59:59.000Z

211

Microearthquake Study of the Salton Sea Geothermal Field, California: Evidence of Stress Triggering - Masters Thesis  

SciTech Connect (OSTI)

A digital network of 24 seismograph stations was operated from September 15, 1987 to September 30, 1988, by Lawrence Livermore National Laboratory and Unocal as part of the Salton Sea Scientific Drilling Project to study seismicity related to tectonics and geothermal activity near the drilling site. More than 2001 microearthquakes were relocated in this study in order to image any pervasive structures that may exist within the Salton Sea geothermal field. First, detailed velocity models were obtained through standard 1-D inversion techniques. These velocity models were then used to relocate events using both single event methods and Double-Differencing, a joint hypocenter location method. An anisotropic velocity model was built from anisotropy estimates obtained from well logs within the study area. During the study period, the Superstition wills sequence occurred with two moderate earthquakes of MS 6.2 and MS 6.6. These moderate earthquakes caused a rotation of the stress field as observed from the inversion of first motion data from microearthquakes at the Salton Sea geothermal field. Coulomb failure analysis also indicates that microearthquakes occurring after the Superstition Hills sequence are located within a region of stress increase suggesting stress triggering caused by the moderate earthquakes.

Holland, Austin Adams

2002-02-01T23:59:59.000Z

212

Small biphase wellhead plant for the Cerro Prieto Mexico geothermal field  

SciTech Connect (OSTI)

In a system of geothermal wells in a geothermal field, there are different production conditions of the flows, temperatures and pressures. At plants where the installed capacity requires the use of many wells, it is necessary to regulate the well`s pressure to ensure a stable condition for the turbines. Reducing the steam pressure on the wellhead is achieved by using an orifice plate (flash orifice). Use of an orifice plate results in a waste or loss of well pressure that could be utilized for production of electricity. The Cerro Prieto field, operated by the Comision Federal de Electricidad (CFE), has many wells operating at a very high pressure and producing a lot of water. Much of this pressure and water is not utilized in the production of electricity. With the purpose of taking advantage of this pressure CFE has evaluated a proposal by Biphase Energy Co. Biphase has designed and patented a turbine that works directly with the steam and water mixture coming from the wellhead, acting as a separator. Biphase has developed a model of its turbine and successfully operated it in Coso Hot Springs California. Knowing this CFE has signed an agreement with Biphase Energy Company to install and operate a biphasic turbine at the Cerro Prieto geothermal field located near Mexicali, Mexico.

Oropeza, A.; Hays, L.

1996-12-31T23:59:59.000Z

213

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

as defined from deep geothermal wells at Baca. c o TABLE 1.log of Jemez Springs geothermal well. Los Alamos ScientificThe most productive geothermal wells are located in Redondo

Wilt, M.

2011-01-01T23:59:59.000Z

214

FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...  

Open Energy Info (EERE)

deep structural controls on fluid pathways in the field, which has compartmentalized the fluids and limited the degree of mixing between them. Authors Ayling, B.; Molling, P.;...

215

A PLAUSIBLE TWO-DIMENSIONAL VERTICAL MODEL OF THE EAST MESA GEOTHERMAL FIELD, CALIFORNIA, U.S.A  

E-Print Network [OSTI]

Geothermal resource investigations, Imperial Valley,Geothermal resource investigations, Imperial Valley,Geothermal resource :i.nvestigations, Imperial Valley

Goyal, K.P.

2013-01-01T23:59:59.000Z

216

RAPID/Geothermal/Well Field/Hawaii | Open Energy Information  

Open Energy Info (EERE)

& Well Field Permit A developer seeking to drill, modify, or modify the use of a well for exploration or development must receive a drilling or modification permit prior to...

217

Energy Department Announces Up to $31 Million for Initial Phases of Enhanced Geothermal Systems Field Observatory  

Office of Energy Efficiency and Renewable Energy (EERE)

As part of the Administrations all-of-the-above energy strategy, the Energy Department today announced up to $31 million to establish the initial phases of the Frontier Observatory for Research in Geothermal Energy (FORGE), a field laboratory dedicated to cutting-edge research on enhanced geothermal systems (EGS). EGS are engineered reservoirs, created beneath the surface of the Earth, where there is hot rock but limited pathways through which fluid can flow. During EGS development, underground fluid pathways are safely created and their size and connectivity increased. These enhanced pathways allow fluid to circulate throughout the hot rock and carry heat to the surface to generate electricity. In the long term, EGS may enable domestic access to a geographically diverse baseload, and carbon-free energy resource on the order of 100 gigawatts, or enough to power about 100 million homes.

218

Geothermal: News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

219

Interpretation of some wireline logs in geothermal fields of the Imperial Valley, California  

SciTech Connect (OSTI)

This study reviews the wireline log responses of some geothermal fields in the Imperial Valley, California. The fields under study include the Heber, the East Mesa, the Brawley and the Westmoreland. The selected well logs obtained under special arrangements with the operators were chosen to maintain the anonymity of specific well locations but are only representative of each area. Analysis of the well logs indicate that on an individual field basis, the well logs are excellent for correlation purposes. The presence of extremely saline fluids in some fields precludes the monitoring of Q /SUB V/ profile for detection of hydrothermally altered zones. The producing sections in all the fields are characterized by low porosity and high resistivity.

Ershaghi, I.; Abdassah, D.

1983-03-01T23:59:59.000Z

220

Well log interpretation of certain geothermal fields in the Imperial Valley, California  

SciTech Connect (OSTI)

This study reviews the wireline log responses of some geothermal fields in the Imperial Valley, California. The fields under study include the Heber, the East Mesa, the Brawley, and the Westmoreland. The well logs used in the study did not include all the wireline surveys obtained by the operators. The selected well logs obtained under special arrangements with the operators were chosen to maintain the anonymity of specific well locations but are only representative of each area. Analysis of the well logs indicates that on an individual field basis, the well logs are excellent for correlation purposes. The presence of extremely saline fluids in some fields precludes the monitoring of Q/sub v/ (cation exchange capacity per unit volume) profile for detection of hydrothermally altered zones. The producing sections in all the fields are characterized by low porosity and high resistivity.

Ershaghi, I.; Abdassah, D.

1984-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geothermal energy development in the eastern United States: technical assistance report no. 5. Geothermal space heating-naval air rework facility, Norfolk, Virginia. [Aircraft hangers  

SciTech Connect (OSTI)

The electronic integration hangar, designated LP-167, was selected for study, as it was a single-story building with a large floor area. Because of the high ceiling and the sliding doors necessary to admit aircraft, the heat loss rate, based on floor area, was about twice that of commercial buildings. It was furnished with an oil-fired hot water heating system capable of high thermal output to meet heating requirements in the coldest weather. On the basis of the known characteristics of geothermal sources for the Atlantic Coastal Plain, and wells drilled and assayed in the Norfolk area, a reasonable estimate of the parameters of a well drilled at NARF was made. This included a low temperature output from the well of only 107/sup 0/F, so that direct transfer of warm water between the wellhead heat exchanger (HX) and the hot water radiating system in the building was not practical. Four design options are explored and calculations are presented on each one.

Hill, F.K.; Henderson, R.W.

1980-06-01T23:59:59.000Z

222

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

223

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

224

Property:GeothermalDevelopmentPhases | Open Energy Information  

Open Energy Info (EERE)

GeothermalDevelopmentPhases GeothermalDevelopmentPhases Jump to: navigation, search Property Name GeothermalDevelopmentPhases Property Type Page Pages using the property "GeothermalDevelopmentPhases" Showing 25 pages using this property. (previous 25) (next 25) B BLM-NV-WN-ES-08-01-1310, NV-020-08-01 + Geothermal/Power Plant + C CA-017-05-051 + Geothermal/Well Field + CA-170-02-15 + Geothermal/Exploration + CA-650-2005-086 + Geothermal/Exploration + CA-670-2010-CX + Geothermal/Exploration + CA-96062042 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + D DOE-EA-1116 + Geothermal/Power Plant +, Geothermal/Well Field +, Geothermal/Transmission + DOE-EA-1621 + Geothermal/Power Plant + DOE-EA-1676 + Geothermal/Power Plant + DOE-EA-1733 + Geothermal/Well Field +

225

Thermal And-Or Near Infrared At Coso Geothermal Area (2009) | Open Energy  

Open Energy Info (EERE)

And-Or Near Infrared At Coso Geothermal Area (2009) And-Or Near Infrared At Coso Geothermal Area (2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Coso Geothermal Area (2009) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Thermal And-Or Near Infrared Activity Date 2009 Usefulness useful DOE-funding Unknown Exploration Basis Determine the importance of elevation and temperature inversions using thermal infrared satellite images Notes Examples of nighttime temperature inversions are shown in thermal infrared satellite images collected over the Coso geothermal field in eastern California. Temperature-elevation plots show the normal trend of temperature decrease with elevation, on which temperature inversions appear

226

Use of silica waste from the Cerro Prieto geothermal field as construction material  

SciTech Connect (OSTI)

The Cerro Prieto geothermal field generates 620 MW of electric power and in the process produces 11,000 tonnes of brine per hour that is disposed of in surface ponds. Approximately 1300 tonnes of silica waste is the residual product from this hourly production of brine. At present, there is no use for this waste silica. Some experimental work has been undertaken by CFE to utilize this waste silica such as for surfacing roads with a cement-silica mixture and making bricks with various additives. However, none of this research has been documented. Approximately two years ago, a joint USDOE/CFE research project was proposed to investigate the use of the waste silica. The proposal included using the silica mixed with asphalt and cement to produce a suitable road surfacing material, and to combine the silica with various additives to be used as bricks for low cost housing. It was thought, that the low specific gravity of the silica and the proposed mixtures would give the bricks a high insulating value (low-thermal conductivity), thus protecting the residents from high solar heating, typical of Baja California and the area around Mexicali. Finally, since the geothermal fields of the area extend into the Imperial Valley of California where 420 MW of geothermal power is generated, it was hoped that this research would also be applicable to the U.S. side of the border. Some attempt has been made by UNOCAL at their Imperial Valley plant (now owned by Magma Power) to use the waste silica stabilized with cement for roads and dikes around the plant.

Lund, J.W.; Boyd, T.; Monnie, D.

1995-02-01T23:59:59.000Z

227

1992--1993 low-temperature geothermal assessment program, Colorada  

SciTech Connect (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

Cappa, J.A.; Hemborg, H.T.

1995-01-01T23:59:59.000Z

228

Hydraulic model and steam flow numerical simulation of the Cerro Prieto geothermal field, Mexico, pipeline network  

Science Journals Connector (OSTI)

Abstract The development of a hydraulic model and numerical simulation results of the Cerro Prieto geothermal field (CPGF) steam pipeline network are presented. Cerro Prieto is the largest water-dominant geothermal field in the world and its transportation network has 162 producing wells, connected through a network of pipelines that feeds 13 power-generating plants with an installed capacity of 720MWe. The network is about 125km long and has parallel high- and low-pressure networks. Prior to this study, it was suspected that steam flow stagnated or reversed from its planned direction in some segments of the network. Yet, the network complexity and extension complicated the analysis of steam transport for adequate delivery to the power plants. Thus, a hydraulic model of the steam transportation system was developed and implemented numerically using an existing simulator, which allowed the overall analysis of the network in order to quantify the pressure and energy losses as well as the steam flow direction in every part of the network. Numerical results of the high-pressure network were obtained which show that the mean relative differences between measured and simulated pressures and flowrates are less than 10%, which is considered satisfactory. Analysis of results led to the detection of areas of opportunity and to the recommendation of changes for improving steam transport. A main contribution of the present work is having simulated satisfactorily the longest (to our knowledge), and probably the most complex, steam pipeline network in the world.

A. Garca-Gutirrez; A.F. Hernndez; J.I. Martnez; M. Ceceas; R. Ovando; I. Canchola

2015-01-01T23:59:59.000Z

229

Anaerobic Respiration on Tellurate and Other Metalloids in Bacteria from Hydrothermal Vent Fields in the Eastern Pacific Ocean  

Science Journals Connector (OSTI)

...Hydrothermal Vent Fields in the Eastern Pacific Ocean Julius T. Csotonyi 1 Erko Stackebrandt...hydrothermal vent fields in the eastern Pacific Ocean. In 2003, samples of sulfide...the Juan de Fuca Ridge in the Pacific Ocean. Appl. Environ. Microbiol...

Julius T. Csotonyi; Erko Stackebrandt; Vladimir Yurkov

2006-07-01T23:59:59.000Z

230

Mulitdimensional reactive transport modeling of CO2 minreal sequestration in basalts at the Helllisheidi geothermal field, Iceland  

E-Print Network [OSTI]

3 km SW of the Hellisheidi geothermal power plant, owned andbuilt next to Hellisheidi geothermal power plant. The pilotfrom Hellisheidi geothermal power plant. In simulations of

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

231

Salton Sea Geothermal Field, Imperial Valley, California as a site for continental scientific drilling. [Abstract only  

SciTech Connect (OSTI)

The Salton Trough, where seafloor spreading systems of the East Pacific Rise transition into the San Andreas transform fault system, is the site of such continental rifting and basin formation today. The largest thermal anomaly in the trough, the Salton Sea Geothermal Field (SSGF), is of interest to both thermal regimes and mineral resources investigators. At this site, temperatures >350/sup 0/C and metal-rich brines with 250,000 mg/L TDS have been encountered at <2 km depth. Republic Geothermal Inc. will drill a new well to 3.7 km in the SSGF early in 1983; we propose add-on experiments in it. If funded, we will obtain selective water and core samples and a large-diameter casing installed to 3.7 km will permit later deepening. In Phase 2, the well would be continuously cored to 5.5 km and be available for scientific studies until July 1985. The deepened well would encounter hydrothermal regimes of temperature and pressure never before sampled.

Elders, W.A.; Cohen, L.H.

1983-03-01T23:59:59.000Z

232

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

of Proceedings that stand as one of the prominent literature sources in the field of geothermal energySTANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 94105 SGP-TR- 61 GEOTHERMAL APPENDIX A: PARTICIPANTS IN THE STANFORD GEOTHERMAL PROGRAM '81/'82 . 60 APPENDIX B: PAPERS PRESENTED

Stanford University

233

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY  

E-Print Network [OSTI]

STANFORD GEOTHERMAL PROGRAM STANFORD UNIVERSITY STANFORD, CALIFORNIA 34105 Stanford Geothermal, California SGP-TR-72 A RESERVOIR ENGINEERING ANALYSIS OF A VAPOR-DOMINATED GEOTHERMAL FIELD BY John Forrest Dee June 1983 Financial support was provided through the Stanford Geothermal Program under Department

Stanford University

234

GEOTHERM Data Set  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

DeAngelo, Jacob

235

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network [OSTI]

and development geothermal wells and section lines A - d andof the Cerro Prieto Geothermal wells (Figure 4) are drilled

Noble, John E.

2011-01-01T23:59:59.000Z

236

Reflection Survey At Dixie Valley Geothermal Field Area (Blackwell, Et Al.,  

Open Energy Info (EERE)

9) 9) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Reflection Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes "The seismic reflection profiles of the range front structures are difficult to interpret because of he steep dips and 3-d fault zone geometry, in the-classical paper by Okaya and Thompson (1985) the range-bounding fault is not imaged as they proposed. The reflection seismic studies are the most useful of the geophysical techniques also the most expensive. The reflection data are two-dimensional making structural interpretation complicated for the three-dimensional geometry of the basin so that the other structural studied have been critical in correctly interpreting the seismic profiles. There are many

237

Chemical Stimulation Treatment of the Rossi 21-19 Well Beowawe Geothermal Field  

SciTech Connect (OSTI)

The tests reported were part of the DOE Geothermal Reservoir Well Stimulation Program. This was an attempt to ameliorate near-wellbore restricted permeability in a well at a field where other wells flowed at high rates. The two stage treatment first injected HCl followed by a large volume of HCl-HF acid solution. This was a relatively inexpensive treatment, with costs shown. Injectivity tests showed a 2.2 fold increase in injectivity attributable to the second treatment, but mechanical complications with the well precluded an adequate production test. Flow of the fluid out into the formation was measured by Sandia using surface electrical potential. LANL detected microseismic events during the stimulation, which might be especially significant.

None

1984-01-01T23:59:59.000Z

238

Geothermal: Sponsored by OSTI -- Development of a Geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a Geothermal Well Database for Estimating In-Field EGS Potential in the State of Nevada...

239

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

240

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Helium isotope study of geothermal features in Chile with field and laboratory data  

SciTech Connect (OSTI)

Helium isotope and stable isotope data from the El Tatio, Tinginguirica, Chillan, and Tolhuaca geothermal systems, Chile. Data from this submission are discussed in: Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

Dobson, Patrick

2013-02-11T23:59:59.000Z

242

geothermal_test.cdr  

Office of Legacy Management (LM)

The Bureau of Land Management (BLM) began studies The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at

243

geothermal_test.cdr  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The Bureau of Land Management (BLM) began studies of the geothermal resources of an area known as the East Mesa site in 1968. In 1978, the U.S. Department of Energy (DOE) became the exclusive operator of the site, which was called the Geothermal Test Facility, and negotiated a right-of-way agreement with BLM to operate the facility. Geothermal test activities were discontinued in 1987 as development of commercial- scale geothermal power began to flourish in the region. In 1993, DOE agreed to remediate the site and return it to BLM. The Geothermal Test Facility is an 82-acre site located on the eastern edge of the Imperial Valley in Imperial County, California. The site is 140 miles east of San Diego and 10 miles north of the Mexico border. Topography of the area is generally flat; the site is at an elevation of about 28 feet above sea level. The Salton Sea is approximately 40 miles northwest

244

Geothermal resources  

SciTech Connect (OSTI)

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

245

Helium isotope study of geothermal features in Chile with field and laboratory data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Dobson, P.F., Kennedy, B.M., Reich, M., Sanchez, P., and Morata, D. (2013) Effects of volcanism, crustal thickness, and large scale faulting on the He isotope signatures of geothermal systems in Chile. Proceedings, 38th Workshop on Geothermal Reservoir Engineering, Stanford University, Feb. 11-13, 2013

Dobson, Patrick

246

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

SciTech Connect (OSTI)

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01T23:59:59.000Z

247

Geothermal Technologies Office Annual Report 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Idaho State Wins National Student Competition Students at Idaho State University display their poster at the annual meeting of the Geothermal Resources Council in Reno, Nevada this year, as one of 3 top finalists in the National Geothermal Student Competition hosted by the Energy Department's Geothermal Technologies Office. The group won the competition with their study on Development of an Integrated, Testable Conceptual Model of Blind Geothermal Resources in the Eastern

248

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

249

Wellbore and soil thermal simulation for geothermal wells: development of computer model and acquisition of field temperature data. Part I report  

SciTech Connect (OSTI)

A downhole thermal simulator has been developed to improve understanding of the high downhole temperatures that affect many design factors in geothermal wells. This development is documented and field temperature data presented for flowing and shut-in conditions.

Wooley, G.R.

1980-03-01T23:59:59.000Z

250

COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Electrical and acoustic image logs collected from well 58A-10 in crystalline rock on the eastern margin of the Coso Geothermal Field, CA, reveal different populations of planar structures intersecting the borehole. Electrical image logs appear to be sensitive to variations in

251

Water adsorption at high temperature on core samples from The Geysers geothermal field  

SciTech Connect (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal field, California, was measured at 150, 200, and 250 C as a function of steam pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption and desorption runs were made in order to investigate the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were made on the same rock samples. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there was no direct correlation between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The hysteresis decreased significantly at 250 C. The results indicate that multilayer adsorption, rather than capillary condensation, is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

252

Efficiency of partial water removal during transmission of steam-water mixture on geothermal fields  

Science Journals Connector (OSTI)

The partial water removal from a steam-water mixture before transmission to prevent a pipeline from entering pulsation mode and to increase the flow of the heat carrier coming to the geothermal power plant is ...

A. N. Shulyupin

2007-10-01T23:59:59.000Z

253

Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland  

E-Print Network [OSTI]

Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

Parker, Beatrice Smith

2012-01-01T23:59:59.000Z

254

Concept Testing and Development at the Raft River Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development...

255

Integrated Geophysical Exploration of a Known Geothermal Resource...  

Open Energy Info (EERE)

in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends...

256

A PLAUSIBLE TWO-DIMENSIONAL VERTICAL MODEL OF THE EAST MESA GEOTHERMAL FIELD, CALIFORNIA, U.S.A  

E-Print Network [OSTI]

DIPMETER PRODUCING GEOTHERMAL WELL IN.JECTION WELL ABANDONEDis for the Republic geothermal wells ranged from 68.8 me to

Goyal, K.P.

2013-01-01T23:59:59.000Z

257

Results of the 1992-1993 low-temperature geothermal assessment program in Colorado  

SciTech Connect (OSTI)

Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid to late-1970s. The purpose of the 1992-1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the U.S. Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into databases. For the purpose of this report, a geothermal area is defined as a broad area, usually less than three square miles in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Duntton area, and Cottonwood Hot Springs.

Cappa, J.A.

1994-07-01T23:59:59.000Z

258

Geological characterization of a sandstone reservoir in Eastern Kansas: Savonburg NE field, Allen County, Kansas  

SciTech Connect (OSTI)

Production on the Nelson leases of the Savonburg NE oil field in eastern Kansas is from sandstone that is part of the fill of a paleovalley that was eroded after deposition of the Tebo coal but before deposition of the Scammon coal. Sandstone in this interval is called the Chelsea Sandstone; the interval is referred to as the Skinner interval. (That interval is part of the Cabaniss Formation, Cherokee Group, and assigned to the Desmoinesian stage of the Middle Pennsylvanian). In addition to determining the stratigraphic relationships of the reservoir, geological characterization helped to understand the distribution of the most productive areas of the field and led to specific recommendations for abandonment of wells, workovers, well treatments, well conversions from producers to injectors, and drilling of new wells, all with the aim of increasing productivity and decreasing costs for the operator. The reservoir characterization used information routinely gathered in the course of oil field operations in eastern Kansas. Gamma-neutron logs indicated lithology as well as stratigraphy, while core descriptions provided insight into stratigraphic distinctions and depositional processes. Core analysis of porosity, permeability, and fluid saturations permitted depiction of the distribution of such attributes throughout the productive region. Key geological concepts of regional marker intervals and incised valley fills provided the theoretical framework for analyzing the reservoir.

Walton, A.W.; Beaty, D.S.

1995-12-31T23:59:59.000Z

259

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

260

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

262

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

263

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties,

264

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

265

Geothermal/Leasing | Open Energy Information  

Open Energy Info (EERE)

Leasing Leasing < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Geothermal Leasing General List of Geothermal Leases Regulatory Roadmap NEPA (1) The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Leasing ... Geothermal Leasing NEPA Documents Fluid Mineral Leasing within Six Areas on the Carson City District (January 2009) Geothermal Resources Leasing in Churchill, Mineral, & Nye Counties, Nevada (May 2008)

266

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

267

Postgraduate Certificate in Geothermal Energy  

E-Print Network [OSTI]

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

268

Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Coso Geothermal Area Fluid Inclusion Analysis At Coso Geothermal Area (1999) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 1999 Usefulness not indicated DOE-funding Unknown Exploration Basis Well and steam sample comparison Notes Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

269

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect (OSTI)

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

270

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

271

Geothermal Tomorrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Eritrea, and Djibouti. Kenya was the first of these countries to develop geothermal energy and has the largest geothermal plant in Africa-near Naivasha (Olkaria), yield- ing...

272

NREL: Financing Geothermal Power Projects - Guidebook to Geothermal Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance Guidebook to Geothermal Power Finance The Guidebook to Geothermal Power Finance (the Guidebook), funded by the U.S. Department of Energy's Geothermal Technologies Program, provides insights and conclusions related to past influences and recent trends in the geothermal power project financing market before and after the 2008 economic downturn. Using the information in the Guidebook, developers and investors can innovate in new ways and develop partnerships that match investors' risk tolerance with the capital requirements of geothermal power projects in a dynamic and evolving marketplace. The Guidebook relies heavily on interviews conducted with leaders in the field of geothermal project finance. It includes detailed information on

273

Geothermal Energy Association Recognizes the National Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

274

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Details Activities (1) Areas (1) Regions (0) Abstract: Vein and alteration assemblages from eight Coso wells have been collected and their fluid-inclusion gases analyzed by quadrupole mass spectrometry. Four major types of alteration were sampled: 1) young calcite-hematite-pyrite veins; 2) wairakite or epidote veins and alteration that are spatially associated with deep reservoirs in the main field and eastern wells; 3) older sericite and pyrite wallrock alteration; and 4) stilbite-calcite veins that are common in cooler or marginal portions of

275

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

276

Geothermal: Sponsored by OSTI -- Monitoring deformation at the...  

Office of Scientific and Technical Information (OSTI)

Monitoring deformation at the Geysers Geothermal Field, California, using C-band and X-band interferometric synthetic aperture radar Geothermal Technologies Legacy Collection Help...

277

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

278

2010 Geothermal Technology Program Peer Review Report | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Fielding of...

279

Compound and Elemental Analysis At International Geothermal Area...  

Open Energy Info (EERE)

geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with...

280

Fluid Inclusion Analysis At International Geothermal Area Mexico...  

Open Energy Info (EERE)

geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with...

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

282

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...  

Open Energy Info (EERE)

Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

283

Low Cost Exploration, Testing, and Development of the Chena Geothermal...  

Open Energy Info (EERE)

Article: Low Cost Exploration, Testing, and Development of the Chena Geothermal Resource Abstract The Chena Hot Springs geothermal field was intensivelyexplored, tested, and...

284

Aeromagnetic Survey At Raft River Geothermal Area (1981) | Open...  

Open Energy Info (EERE)

at the Raft River geothermal area by the USGS. References Geological Survey, Denver, CO (USA) (1 January 1981) Total field aeromagnetic map of the Raft River known Geothermal...

285

Time-dependent thermal state of the lithosphere in the foreland of the Eastern Carpathians bend. Insights from new geothermal measurements and modelling results  

Science Journals Connector (OSTI)

......pressure, R the universal gas constant, E the creep activation energy, V the activation volume and n and A the material creep parameters...E. , Shen P.Y., 1989. On a more rigorous approach to geothermic problems, Tectonophysics, 164, 83-92. Blackwell D.D......

C. Demetrescu; H. Wilhelm; M. Tumanian; S.B. Nielsen; A. Damian; V. Dobric?; M. Ene

2007-08-01T23:59:59.000Z

286

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network [OSTI]

Imperial and Mexicali Valleys. 8 A Study of the Structural Control of Fluid Flow within the Cerro Prieto GeothermalImperial-Mexicali Valley is recognized as having a potential for large scale production of elec- dominated geothermal

Noble, John E.

2011-01-01T23:59:59.000Z

287

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

288

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

289

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

290

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

291

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

292

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

293

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

294

Mineralization associated with scale and altered rock and pipe fragments from the Berlin geothermal field, El Salvador;  

E-Print Network [OSTI]

control precipitation of gold and silver in geothermal wells can be used to model directly the formation

Long, Bernard

295

Geothermal Technologies Program Annual Peer Review Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal * In existing hydrothermal fields * Margins of existing hydrothermal fields * "Green Field" development 3 Energy Efficiency & Renewable Energy eere.energy.gov Industry...

296

geothermal2.qxp  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

N N M T R A P E D O F E N E R G Y E T A T S D E T I N U S O F A M E R I CA E GEOTHERMAL TESTING S ince 2006, several geothermal power production companies and the Department of Energy have expressed interest in demonstrating low- temperature geothermal power projects at the Rocky Mountain Oilfield Testing Center (RMOTC). Located at Teapot Dome Oilfield in Naval Petroleum Reserve No. 3 (NPR-3), RMOTC recently expanded its testing and demonstration of power production from low- temperature, co- produced oilfield geothermal waste water. With over 1,000 existing well- bores and its 10,000-acre oil field, RMOTC offers partners the unique opportunity to test their geot- hermal tech- nologies while using existing oilfield infra- structure. RMOTC's current low-temperature geothermal project uses 198°F water separated from Tensleep

297

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

298

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

299

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

300

Geothermal Literature Review At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

5) 5) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Need to develop a reservoir model for Coso Notes Analysis of complex geothermal system was done by looking at the available data on the Coso Geothermal Field References Austin, C.F.; Durbin, W.F. (1 September 1985) Coso: example of a complex geothermal reservoir. Final report, 1984-1985 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1985)&oldid=510801" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energygeo (earth) + thermal (heat)is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

302

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Environment Geothermal/Environment < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

303

Geothermal Information Dissemination and Outreach  

SciTech Connect (OSTI)

Project Purpose To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and TV station interviews were conducted during the event. Technical Program included 136 technical papers. All were published in Volume 28 of the GRC Transactions. Volume 28, GRC Transactions Pblished as a high-quality, durable casebound volume, Volume 28 of the Transactions published 119 out of 136 technical papers (692 pp) presented at the GRC 2004 Annual Meeting. The papers were submitted by geothermal experts and professionals from around the world. The papers were reviewed over a 2-day period by 25 volunteer (in-kind) geothermal experts from the private sector and DOE National Laboratories. GRC staff received and cataloged the papers, and maintained interaction with authors for revisions and corrections. DOE Geothermal Technologies Newsletter The Office of Geothermal Technologies quarterly newsletter, Geothermal Technologies, is produced at the National Renewable Energy Laboratory (NREL). This 2-color, 4- to 16-page newsletter summarizes federal geothermal research and development projects and other DOE geothermal news. The GRC receives newsletter disk copy and color-key proof from NREL for each newsletter, then follows through with print production and distribution. Circulation is 1,000 per issue (plus 300 copies of the newsletter shipped to NREL for internal and public distribution). During the project period, the GRC printed, stitched and bound the Geothermal Technologies newsletter into the Sept/Oct 2003, Jan/Feb 2004, and May/June 2004 editions of the GRC Bulletin. Multiple copies (300) of the newsletter sans magazine were provided to NREL for internal DOE distribution. GRC Geothermal Research Library The GRC has built the largest and most comprehensive library in the world devoted to geothermal energy. The GRC Geothermal Library provides rapid accessibility to the majority of technical literature crafted over the past 30 years, and preserves hard copy and on-line databases for future use by geothermal researchers and developers. A bibliography for over half of the physical library's citations is available through keyword search on the GRC web site (www.geothe

Ted J. Clutter, Geothermal Resources Council Executive Director

2005-02-18T23:59:59.000Z

304

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

305

Geothermal energy  

Science Journals Connector (OSTI)

Dry steam areas are probably rare. About 30 areas in the United States have been explored for geothermal energy, but dry steam has been proved only ... The Geysers . Extensive utilisation of geothermal energy ...

D. E. White

1966-01-01T23:59:59.000Z

306

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

307

Geothermal: Distributed Search  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Search Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Geothermal Collection (DOE) Energy Information Administration (EIA) Environmental Protection Agency (EPA) E-print Network (DOE) National Technical Information Service (NTIS) Geothermal Legacy Collection (DOE) NREL Publications U.S. Patent and Trademark Office (USPTO) Scientific and Technical Information Network (STINET) Select All Enter one or more search terms to search the following fields: [Searches for the following specific fields are available for the sites and databases as indicated below.] Author: (Geothermal Collections, NREL, STINET, and U.S. Patent Server) Title: (All sources except NTIS)

308

A STUDY OF THE STRUCTURAL CONTROL OF FLUID FLOW WITHIN THE CERRO PRIETO GEOTHERMAL FIELD, BAJA CALIFORNIA, MEXICO  

E-Print Network [OSTI]

Mexico SPE 6763 Laguna X E L 776 I I79 Figure 4 Location map of exploration and development geothermal wells

Noble, John E.

2011-01-01T23:59:59.000Z

309

Geothermal pipeline  

SciTech Connect (OSTI)

This article is a progress and development update of the Geothermal Progress Monitor which describes worldwide events and projects relating to the use of geothermal energy. Three topics are covered in this issue:(1) The proceedings at the 1995 World Geothermal Congress held in Florence, Italy. United States Energy Secretary Hazel O`Leary addressed the congress and later met with a group of mainly U.S. conferees to discuss competitiveness and the state of the geothermal industry, (2) A session at the World Geothermal Congress which dealt with the outlook and status of worldwide geothermal direct use including information on heat pumps and investment, and (3) An article about a redevelopment project in Klamath Falls, Oregon which involves a streetscape for the downtown area with brick crosswalks, antique-style light fixtures, park benches, and geothermally heated sidewalks and crosswalks.

NONE

1995-06-01T23:59:59.000Z

310

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

311

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

312

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

313

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

314

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

315

RMOTC - Testing - Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Testing Geothermal Testing Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. With the existing geologic structure at RMOTC, promising potential exists for Enhanced Geothermal System (EGS) testing. The field also has two reliable water resources for supporting low-temperature geothermal testing.

316

Geothermal progress monitor  

SciTech Connect (OSTI)

The Geothermal Progress Monitor is sponsored by the Division of Geothermal Energy/Resource Applications, DOE, to assemble the important facts about geothermal development activities in the United States in order to assess the pace of the development of this alternative energy source. The initial emphasis for the monitoring effort has been placed on the detection and analysis of important and simple indicators of what the main participants in geothermal energy utilization - field developers, energy users, and governments - are doing to foster the discovery, confirmation, and especially the use of this resource. The major indicators currently considered to be both important and measurable, are leasing activites, drilling effort, feasibility studies, construction plans and progress, costs of installations, levels of investment, environmental study and regulatory and legislative status of events, and government monetary investments in projects and activities. Additional indicators may be pursued in the future, depending on specific needs for or opportunities to capture relevant data and facts.

Lopez, A.F.; Entingh, D.J.; Neham, E.A.

1980-09-01T23:59:59.000Z

317

A COMPILATION OF DATA ON FLUIDS FROM GEOTHERMAL RESOURCES IN THE UNITED STATES  

E-Print Network [OSTI]

PRIETC GEOTHERMAL HELD B.C MEXICO WEll DATA IEMPERATUfGEOTHERMAL FIELD B,C'f MEXICO WELL INFORHATlONPRIETO GEOThERMAL FIELD B.C _, MEXICO WELL DATA TEMPERATURE

Cosner, S.R.

2010-01-01T23:59:59.000Z

318

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

319

Geothermal Heat Flow and Existing Geothermal Plants | Department...  

Energy Savers [EERE]

Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click...

320

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014  

SciTech Connect (OSTI)

The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or node is located at Southern Methodist University developed by a consortium made up of: SMU Geothermal Laboratory Siemens Corporate Technology, a division of Siemens Corporation Bureau of Economic Geology at the University of Texas at Austin Cornell Energy Institute, Cornell University Geothermal Resources Council MLKay Technologies Texas Tech University University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this teams NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory] (ORCID:0000000228898620); Richards, Maria C. [SMU Geothermal Laboratory

2014-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Geothermal: Help  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Help Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Help Table of Contents Basic Search Advanced Search Sorting Term searching Author select Subject select Limit to Date searching Distributed Search Search Tips General Case sensitivity Drop-down menus Number searching Wildcard operators Phrase/adjacent term searching Boolean Search Results Results Using the check box Bibliographic citations Download or View multiple citations View and download full text Technical Requirements Basic Search Enter your search term (s) in the search box and your search will be conducted on all available indexed fields, including full text. Advanced Search Sorting Your search results will be sorted in ascending or descending order based

322

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Water Use Geothermal/Water Use < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

323

Imperial County geothermal development annual meeting: summary  

SciTech Connect (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

324

Methods for collection and analysis of geopressured geothermal and oil field waters  

SciTech Connect (OSTI)

Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C/sub 2/ through C/sub 5/) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

Lico, M.S.; Kharaka, Y.K.; Carothers, W.W.; Wright, V.A.

1982-01-01T23:59:59.000Z

325

Water adsorption at high temperature on core samples from The Geysers geothermal field  

SciTech Connect (OSTI)

The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1998-06-01T23:59:59.000Z

326

Stanford Geothermal Workshop- Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

327

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

328

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

329

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

330

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

331

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

332

GEOTHERMAL Events | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

333

Geothermal Basics  

Broader source: Energy.gov [DOE]

Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

334

A study of production/injection data from slim holes and large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan  

SciTech Connect (OSTI)

Production and injection data from nine slim holes and sixteen large-diameter wells at the Takigami Geothermal Field, Kyushu, Japan were analyzed in order to establish relationships (1) between injectivity and productivity indices, (2) between productivity/injectivity index and borehole diameter, and (3) between discharge capacity of slim holes and large-diameter wells. Results are compared with those from the Oguni and Sumikawa fields. A numerical simulator (WELBOR) was used to model the available discharge rate from Takigami boreholes. The results of numerical modeling indicate that the flow rate of large-diameter geothermal production wells with liquid feedzones can be predicted using data from slim holes. These results also indicate the importance of proper well design.

Garg, S.K. [Maxwell Federal Div., Inc., San Diego, CA (United States)] [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos Hills, CA (United States)] [Geo-Hills Associates, Los Altos Hills, CA (United States); Azawa, Fumio [Idemitsu Kosan Co. Ltd., Tokyo (Japan)] [Idemitsu Kosan Co. Ltd., Tokyo (Japan); Gotoh, Hiroki [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)] [Idemitsu Oita Geothermal Co. Ltd., Oita (Japan)

1996-11-01T23:59:59.000Z

335

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy has been confirmed as being potentially a ... significant contributor to the Communitys supply of energy from indigenous resources. However, its expected... 1. ...

J. T. McMullan; A. S. Strub

1981-01-01T23:59:59.000Z

336

Geothermal Technologies Office: Geothermal Projects  

Energy Savers [EERE]

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

337

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

338

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

339

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

340

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

342

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

343

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

344

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

345

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

346

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

347

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

348

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

349

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

350

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

351

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

352

Geopressured geothermal bibliography (Geopressure Thesaurus)  

SciTech Connect (OSTI)

This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

Hill, T.R.; Sepehrnoori, K.

1981-08-01T23:59:59.000Z

353

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

354

The Geothermal Technologies Office  

Energy Savers [EERE]

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

355

Sandia National Laboratories: Geothermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

356

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

SciTech Connect (OSTI)

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

David Cuyler

2012-07-19T23:59:59.000Z

357

Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

David Cuyler

358

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...  

Open Energy Info (EERE)

Enhanced Geothermal Systems Experiment Abstract The Coso Geothermal Field is a large, high temperature system located in California on the western edge of the Basin and Range...

359

A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan  

SciTech Connect (OSTI)

Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

2002-06-01T23:59:59.000Z

360

2013 Annual Report -- Geothermal Technologies Office | Department...  

Office of Environmental Management (EM)

for an EGS field site project, called FORGE -- the Frontier Observatory for Research in Geothermal Energy -- after an intense, intra-office competition. The Office also had gains...

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Environment Environment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

362

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

363

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

364

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

365

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

366

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

367

Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data  

SciTech Connect (OSTI)

Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E? to ENE?striking left lateral faults and N? to NNE?striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left?lateral faults. ENE?striking sinistral faults diffuse into a system of N? to NNE?striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

James E. Faulds

2011-12-31T23:59:59.000Z

368

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

369

Geothermal : Economic Impacts of Geothermal Development in Whatcom County, Washington.  

SciTech Connect (OSTI)

This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Whatcom County, Washington, near Mt. Baker, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Whatcom County was chosen due to both identified geotherrnal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Whatcom County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

Lesser, Jonathan A.

1992-07-01T23:59:59.000Z

370

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

371

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

372

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

373

Geothermal energy  

Science Journals Connector (OSTI)

By virtue of its geographical distribution and the quantities of energy which could be tapped, the possible overall contribution of geothermal energy towards meeting Europes future energy requirements is much sm...

1977-01-01T23:59:59.000Z

374

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy is the natural heat of the earth....31 J. This quantity of energy is inexhaustible by any technical use (the present technical energy consumption of the world is of the...20 J).

O. Kappelmeyer

1982-01-01T23:59:59.000Z

375

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

376

Enhanced Geothermal Systems (EGS) - the Future of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy Enhanced Geothermal Systems (EGS) - the Future of Geothermal Energy October 28, 2013 - 12:00am Addthis While the...

377

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

378

National Geothermal Data System (NGDS) Geothermal Data Domain...  

Open Energy Info (EERE)

Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Abstract To satisfy the critical need for geothermal data to advance geothermal energy as...

379

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

380

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

382

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

383

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

384

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

385

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

386

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

387

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

388

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

389

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

390

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

391

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

392

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

393

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

394

Geothermal/Land Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Land Use Geothermal/Land Use < Geothermal(Redirected from Land Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Land Use Planning General Regulatory Roadmap The Bureau of Land Management (BLM) and the USDA Forest Service (FS) have prepared a joint Programmatic Environmental Impact Statement (PEIS) to analyze and expedite the leasing of BLM-and FS-administered lands with high potential for renewable geothermal resources in 11 Western states and Alaska. Geothermal Land Use Planning is ... Example Land Use Plans References Information for Publication Standards for EA/EIS/Planning Documents IM 2004-110.pdf Fluid Mineral Leasing and Related Planning and National Environmental Policy Act (NEPA) Processes April 11, 2004 and

395

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

396

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

397

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

398

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

399

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

400

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

402

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

403

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

404

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

405

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

406

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... "minzoom":false,"mappingservice":"googlem...

407

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

408

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

409

Compound and Elemental Analysis At International Geothermal Area, Mexico  

Open Energy Info (EERE)

Mexico Mexico (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Compound and Elemental Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful in developing management procedures for geothermal fields characterized by

410

Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository  

SciTech Connect (OSTI)

The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

Bruton, C.J.; Glassley, W.E.; Meike, A.

1995-02-01T23:59:59.000Z

411

Geothermal Literature Review (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Geothermal Literature Review (Laney, 2005) Geothermal Literature Review (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Field Case Studies, Marcelo Lippmann. This on-going project has collected a large set of publications on EGS activities, particularly in foreign geothermal fields, continues to search for news on current projects and on plans for future EGS activities. Information has been e-mailed to DOE and U.S. geothermal organizations like the Geothermal Energy Association, the Geothermal Resources Council and DOE contractors. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_(Laney,_2005)&oldid=510792"

412

Chemical Impact of Elevated CO2on Geothermal Energy Production  

Broader source: Energy.gov [DOE]

This is a two phase project to assess the geochemical impact of CO2on geothermal energy production by: analyzing the geochemistry of existing geothermal fields with elevated natural CO2; measuring realistic rock-water rates for geothermal systems using laboratory and field-based experiments to simulate production scale impacts.

413

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network [OSTI]

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed...

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

414

Hot-dry-rock geothermal resource 1980  

SciTech Connect (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

415

Geothermal/Water Use | Open Energy Information  

Open Energy Info (EERE)

Water Use Water Use < Geothermal(Redirected from Water Use) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Water Use General Regulatory Roadmap The Geysers in northern California is the world's largest producer of geothermal power. The dry-steam field has successfully produced power since the early 1960s when Pacific Gas & Electric installed the first 11-megawatt plant. The dry steam plant consumes water by emitting water vapor into the atmosphere. Geothermal power production utilizes water in two major ways: The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second is using water for cooling (for some plants only).

416

Geothermal initiatives in Central America  

SciTech Connect (OSTI)

The US Agency for International Development is supporting a new project in energy and resources exploitation for Central America. One of the largest components of the project involves exploration and reservoir development investigations directed at enhancing the production of electricity from the region's geothermal resources. An assessment of the geothermal resources of Honduras is in progress, and interesting geothermal regions in the Guanacaste Province of Costa Rica are being explored. Well-logging activities are in progress in the production wells at the Miravalles geothermal field in Costa Rica, and preparations are being made for logging critical wells at Ahuachapan in El Salvador. A self-contained logging truck, complete with high-temperature logging cable and logging tools designed for geothermal service, is being fabricated and will be made available for dedicated use throughout Central America. Geochemical and isotopic analyses of water samples collected in Panama are being evaluated to select a high-priority geothermal site in that country. Application of low- and medium-enthalpy geothermal fluids for industrial and agricultural processes is being investigated in Guatemala.

Hanold, R.J.; Loose, V.W.; Laughlin, A.W.; Wade, P.E.

1986-01-01T23:59:59.000Z

417

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

418

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

419

Geothermal Resources Exploration And Assessment Around The Cove  

Open Energy Info (EERE)

Geothermal Resources Exploration And Assessment Around The Cove Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Details Activities (4) Areas (1) Regions (0) Abstract: The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the Basin and Range to the west and the Colorado Plateau to the east. We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different

420

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez, Egypt |  

Open Energy Info (EERE)

Regional Geothermal Assessment Of The Gulf Of Suez, Egypt Regional Geothermal Assessment Of The Gulf Of Suez, Egypt Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preliminary Regional Geothermal Assessment Of The Gulf Of Suez, Egypt Details Activities (0) Areas (0) Regions (0) Abstract: The tectonic setting of Egypt, in the northeastern corner of the African continent, suggests that it may possess significant geothermal resources, especially along its eastern margin. The most promising areas for geothermal development in the NW Red Sea-Gulf of Suez rift system are locations along the eastern shore of the Gulf of Suez that are characterized by surface thermal manifestations, including a cluster of hot springs with varied temperatures. The Gulf of Suez region is one of the most interesting geothermal areas in Egypt because of the high temperatures

422

Geothermal Literature Review At Coso Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare multiple theories of the structural control of the geothermal system Notes The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. The identified producing fractures occur in zones which range from 10 - 100s of feet in extent, separated by regions of essentially unfractured rock of similar composition. Wells in the Devil's Kitchen area have encountered fluids in excess of 4500F and flow rates of 1 million lb/hr at depths less than 4000

423

McGuiness Hills Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: McGuiness Hills Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: McGuiness Hills Geothermal Area McGuiness Hills Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

424

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

425

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

426

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

427

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

428

Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman &  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman & Moore, 2004) Exploration Activity Details Location International Geothermal Area Mexico Exploration Technique Fluid Inclusion Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Our examination of Cerro Prieto gas analyses indicates that the geothermal system structure is changing with time. Gas data routinely measured in most geothermal fields; hence fluid-flow plots as presented here can be accomplished with little cost. Gas analytical data, therefore, are useful

429

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

430

Field testing of paper/polymerized vegetable oil mulches for enhancing growth of eastern cottonwood trees for pulp  

Science Journals Connector (OSTI)

Field studies of biodegradable polymerized vegetable oil-coated paper mulches were conducted to determine if these could replace non-degradable polyethylene mulches for stopping weeds and promoting growth of cottonwood trees. Tests were conducted over two growing seasons in two adjacent field sites in southeastern Missouri. At the end of the 2001 season, eastern cottonwood trees grown on the coated paper mulches had average heights (4.574.66m, 15.015.3ft), which were not significantly different from the control black polyethylene mulch (4.75m, 15.6ft). Tree heights were significantly less for uncoated paper mulch (4.45m, 14.6ft) or no mulch (3.90m, 12.8ft), presumably due to heavy weed growth around the trees. Uncoated paper mulch was extensively degraded after only about 4 weeks, while the coated paper persisted until the fall. Addition of ZnO to the oil coating delayed the onset of visible degradation, such as the formation of holes and tears, especially near the buried edge and above the drip tube. Similar results were seen for the 2002 study except that weed growth was not extensive so that tree heights for the mulched and bare plots were not significantly different. These results suggest that polymerized vegetable oil-coated paper mulches can function as effective mulches during the first year of tree growth, and thus, eliminate the need to use non-degradable polyethylene mulches.

Randal L. Shogren; Randall J. Rousseau

2005-01-01T23:59:59.000Z

431

Geothermal development in Australia  

SciTech Connect (OSTI)

In Australia, natural hot springs and hot artesian bores have been developed for recreational and therapeutic purposes. A district heating system at Portland, in the Otway Basin of western Victoria, has provided uninterrupted service for 12 Sears without significant problems, is servicing a building area of 18 990 m{sup 2}, and has prospects of expansion to manufacturing uses. A geothermal well has provided hot water for paper manufacture at Traralgon, in the Gippsland Basin of eastern Victoria. Power production from hot water aquifers was tested at Mulka in South Australia, and is undergoing a four-year production trial at Birdsville in Queensland. An important Hot Dry Rock resource has been confirmed in the Cooper Basin. It has been proposed to build an HDR experimental facility to test power production from deep conductive resources in the Sydney Basin near Muswellbrook.

Burns, K.L. [Los Alamos National Lab., NM (United States); Creelman, R.A. [Creelman (R.A.) and Associates, Sydney, NSW (Australia); Buckingham, N.W. [Glenelg Shire Council, Portland, VIC (Australia); Harrington, H.J. [Australian National Univ., Canberra, ACT (Australia)]|[Sydney Univ., NSW (Australia)

1995-03-01T23:59:59.000Z

432

Geothermal Energy Production Coupled with CCS: a Field Demonstration at the SECARB Cranfield Site, Cranfield, Mississippi, USA  

Science Journals Connector (OSTI)

Abstract A major global research and development effort is underway to commercialize carbon capture and storage (CCS) as a method to mitigate climate change. Recent studies have shown the potential to couple CCS with geothermal energy extraction using supercritical CO2 (ScCO2) as the working fluid. In a geothermal reservoir, the working fluid produces electricity as a byproduct of the CCS process by mining heat out of a reservoir as it is circulated between injector and producer wells. While ScCO2 has lower heat capacity than water, its lower viscosity more than compensates by providing for greater fluid mobility. Furthermore, CO2 exhibits high expansivity and compressibility, which can both help reduce parasitic loads in fluid cycling. Given the high capital costs for developing the deep well infrastructure for geologic storage of CO2, the potential to simultaneously produce geothermal energy is an attractive method to offset some of the costs and added energy requirements for separating and transporting the waste CO2 stream. We present here the preliminary design and reservoir engineering associated with the development of direct-fired turbomachinery for pilot-scale deployment at the SECARB Cranfield Phase III CO2 Storage Project, in Cranfield, Mississippi, U.S.A. The pilot-scale deployment leverages the prior investment in the Cranfield Phase III research site, providing the first ever opportunity to acquire combined CO2 storage/geothermal energy extraction data necessary to address the uncertainties involved in this novel technique. At the SECARB Cranfield Site, our target reservoir, the Tuscaloosa Formation, lies at a depth of 3.0km, and an initial temperature of 127C. A CO2 injector well and two existing observation wells are ideally suited for establishing a CO2 thermosiphon and monitoring the thermal and pressure evolution of the well-pair on a timescale that can help validate coupled models. It is hoped that this initial demonstration on a pre-commercial scale can accelerate commercialization of combined CCS/geothermal energy extraction by removing uncertainties in system modeling.

Barry Freifeld; Steven Zakim; Lehua Pan; Bruce Cutright; Ming Sheu; Christine Doughty; Timothy Held

2013-01-01T23:59:59.000Z

433

Relating Geothermal Resources To Great Basin Tectonics Using Gps | Open  

Open Energy Info (EERE)

Relating Geothermal Resources To Great Basin Tectonics Using Gps Relating Geothermal Resources To Great Basin Tectonics Using Gps Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Relating Geothermal Resources To Great Basin Tectonics Using Gps Details Activities (8) Areas (4) Regions (0) Abstract: The Great Basin is characterized by non-magmatic geothermal fields, which we hypothesize are created, sustained, and controlled by active tectonics. In the Great Basin, GPS-measured rates of tectonic "transtensional" (shear plus dilatational) strain rate is correlated with geothermal well temperatures and the locations of known geothermal fields. This has led to a conceptual model in which non-magmatic geothermal systems are controlled by the style of strain, where shear (strike-slip faulting)

434

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

435

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

436

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

437

Geothermal/Transmission | Open Energy Information  

Open Energy Info (EERE)

Transmission Transmission < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Transmission General Regulatory Roadmap NEPA (5) The Geysers power plant showing condensers being retrofitted with direct contact condensers (DCCs). The DCCs were designed by NREL researchers working with Calpine Corporation for improved efficiency. With a 750-megawatt output from 14 units, the Geysers is the largest producer of geothermal power in the world. Geothermal power plants are located very close to the geothermal resource because the hot water/steam would cool down before reaching the power plant, unlike a natural gas plant which pipe gas hundreds or even thousands

438

NREL: Geothermal Technologies - News Release Archives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) assembled a panel of geothermal experts to identify the obstacles to geothermal energy growth and more. May 9, 2011 Department of Energy to Issue Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S. In early June 2011, the U.S. Department of Energy's Geothermal Technologies

439

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

440

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

442

Near-surface groundwater responses to injection of geothermal wastes  

SciTech Connect (OSTI)

This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

Arnold, S.C.

1984-06-01T23:59:59.000Z

443

Stanford geothermal program. Final report, July 1990--June 1996  

SciTech Connect (OSTI)

This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

NONE

1998-03-01T23:59:59.000Z

444

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

445

ANALYSIS OF PRODUCTION DECLINE IN GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

their Application to Geothermal Well Testing, in Geothermalthe Performance of Geothermal Wells, Geothermal Res.of Production Data from Geothermal Wells, Geothermal Res.

Zais, E.J.; Bodvarsson, G.

2008-01-01T23:59:59.000Z

446

NREL: Geothermal Technologies - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

447

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

448

HDR geothermal energy  

Science Journals Connector (OSTI)

HDR geothermal energy, petrothermal geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

449

petrothermal geothermal energy  

Science Journals Connector (OSTI)

petrothermal geothermal energy, HDR geothermal energy, Hot Dry Rock energy ? Hot-Dry-Rock Energie f, (geothermische) HDR-Energie, petrothermale geothermische Energie f, petrothermale Geothermie [Gege...

2014-08-01T23:59:59.000Z

450

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

451

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

452

1982 geothermal well drilling summary  

SciTech Connect (OSTI)

This summary lists all geothermal wells spudded in 1982, which were drilled to a depth of at least 2,000 feet. Tables 1 and 2 list the drilling information by area, operator, and well type. For a tabulation of all 1982 geothermal drilling activity, including holes less than 2,000 feet deep, readers are referred to the February 11, 1983, issue of Petroleum Information's ''National Geothermal Service.'' The number of geothermal wells drilled in 1982 to 2,000 feet or more decreased to 76 wells from 99 ''deep'' wells in 1981. Accordingly, the total 1982 footage drilled was 559,110 feet of hole, as compared to 676,127 feet in 1981. Most of the ''deep'' wells (49) completed were drilled for development purposes, mainly in The Geysers area of California. Ten field extension wells were drilled, of which nine were successful. Only six wildcat wells were drilled compared to 13 in 1980 and 20 in 1981, showing a slackening of exploration compared to earlier years. Geothermal drilling activity specifically for direct use projects also decreased from 1981 to 1982, probably because of the drastic reduction in government funding and the decrease in the price of oil. Geothermal power generation in 1982 was highlighted by (a) an increase of 110 Mw geothermal power produced at The Geysers (to a total of 1,019 Mw) by addition of Unit 17, and (b) by the start-up of the Salton Sea 10 Mw single flash power plant in the Imperial Valley, which brought the total geothermal electricity generation in this area to 31 Mw.

Parmentier, P.P.

1983-08-01T23:59:59.000Z

453

Geothermal materials development  

SciTech Connect (OSTI)

Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results transferred to industry. In FY 1990, the R D efforts were focused on reducing well drilling and completion costs and on mitigating corrosion in well casing. Activities on lost circulation control materials, CO{sub 2}- resistant lightweight cements, and thermally conductive corrosion and scale-resistant protective liner systems have reached the final development stages, and cost-shared field tests are planned for the FY 1991--1992 time frame. Technology transfer efforts on high temperature elastomers for use in drilling tools are continuing under Geothermal Drilling Organization (GDO) sponsorship.

Kukacka, L.E.

1991-02-01T23:59:59.000Z

454

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal  

Open Energy Info (EERE)

Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

455

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

Kilauea Southwest Rift And South Flank Geothermal Area Kilauea Southwest Rift And South Flank Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

456

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

457

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

458

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

459

Lahaina-Kaanapali Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lahaina-Kaanapali Geothermal Area Lahaina-Kaanapali Geothermal Area (Redirected from Lahaina-Kaanapali Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lahaina-Kaanapali Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

460

Valley Of Ten Thousand Smokes Region Geothermal Area | Open Energy  

Open Energy Info (EERE)

Valley Of Ten Thousand Smokes Region Geothermal Area Valley Of Ten Thousand Smokes Region Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Valley Of Ten Thousand Smokes Region Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "geothermal field eastern" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

462

Winnemucca Dry Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Winnemucca Dry Lake Geothermal Area Winnemucca Dry Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Winnemucca Dry Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

463

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Southwest Rift Geothermal Area Mauna Loa Southwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Southwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

464

Olowalu-Ukumehame Canyon Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Olowalu-Ukumehame Canyon Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Olowalu-Ukumehame Canyon Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

465

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

466

Upper Hot Creek Ranch Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Upper Hot Creek Ranch Geothermal Area Upper Hot Creek Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Upper Hot Creek Ranch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

467

Dead Horse Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dead Horse Wells Geothermal Area Dead Horse Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dead Horse Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

468

Final Technical Resource Confirmation Testing at the Raft River Geothermal  

Open Energy Info (EERE)

Final Technical Resource Confirmation Testing at the Raft River Geothermal Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield. Author(s): Glaspey, Douglas J. Published: DOE Information Bridge, 1/30/2008 Document Number: Unavailable DOI: 10.2172/922630 Source: View Original Report Flow Test At Raft River Geothermal Area (2008) Raft River Geothermal Area Retrieved from

469

Walker Lake Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Walker Lake Valley Geothermal Area Walker Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Walker Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

470

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

471

Seven Mile Hole Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Seven Mile Hole Geothermal Area Seven Mile Hole Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Seven Mile Hole Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (4) 10 References Area Overview Geothermal Area Profile Location: Wyoming Exploration Region: Yellowstone Caldera Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

472

Gabbs Alkali Flat Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Alkali Flat Geothermal Area Gabbs Alkali Flat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Alkali Flat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

473

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

474

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

475

Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume IV. Field activities. Final report  

SciTech Connect (OSTI)

This volume describes those activities which took place at the Sperry DOE Gravity Head plant site at the East Mesa Geothermal Reservoir near Holtville, California between February 1980, when site preparation was begun, and November 1982, when production well 87-6 was permanently abandoned. Construction activities were terminated in July 1981 following the liner collapse in well 87-6. Large amounts of program time manpower, materials, and funds had been diverted in a nine-month struggle to salvage the production well. Once these efforts proved futile, there was no rationale for continuing with the site work unless and until sufficient funding to duplicate well 87-6 was obtained. Activities reported here include: plant construction and pre-operational calibration and testing, drilling and completion of well 87-6, final repair effort on well 87-6, abando