Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

2

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

3

Property:PotentialGeothermalHydrothermalGeneration | Open Energy  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalGeneration PotentialGeothermalHydrothermalGeneration Jump to: navigation, search Property Name PotentialGeothermalHydrothermalGeneration Property Type Quantity Description The estimated potential energy generation from Geothermal Hydrothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialGeothermalHydrothermalGeneration"

4

Fostering a New Generation of Geothermal Workers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers Fostering a New Generation of Geothermal Workers October 5, 2010 - 4:31pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Editor's Note: The Registration Deadline has been extended to November 12th. If there's one thing that absolutely must be in place to build a robust clean energy economy, it's a robust and well-trained clean energy workforce. Think about it - we're doing something here that we've never really done before, at least not to this scale. It's one thing to install solar panels on top of large building complexes and in huge fields - but how about every home in America? And if we're really going to use electric vehicles to the scale that David Sandalow talked about yesterday,

5

Geothermal Energy  

U.S. Energy Information Administration (EIA)

The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within the Earth.

6

Grid-Connected Renewable Energy Generation Toolkit-Geothermal...  

Open Energy Info (EERE)

for International Development Sector: Energy Focus Area: Geothermal Resource Type: Training materials Website: www.energytoolbox.orggcremod3index.shtml Grid-Connected...

7

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

8

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

9

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy, Office of GeothermalApproach for Generating Renewable Energy with Simultaneous

Pruess, Karsten

2006-01-01T23:59:59.000Z

10

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

1996-02-01T23:59:59.000Z

11

Miles Below the Earth: The Next-Generation of Geothermal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy Miles Below the Earth: The Next-Generation of Geothermal Energy February 7, 2011 - 12:34pm Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What will the project do? Enhanced geothermal systems (EGS) essentially create man-made reservoirs that mimic naturally occurring pockets of steam- with the potential for use as a reliable, 24/7 source of renewable energy. For more than a century, traditional geothermal power plants have been generating electricity by extracting pockets of steam found miles below the Earth's surface. Until recently though, those plants could only be constructed in locations where pockets of steam had formed naturally. Enhanced geothermal systems (EGS) have been crafted to solve that problem

12

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy...

13

EERE: Renewable Electricity Generation - Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy Search Search Search Help | A-Z Subject Index EERE Geothermal Renewable Electricity Generation EERE plays a key role in advancing America's "all...

14

Geothermal energy  

DOE Green Energy (OSTI)

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

15

New Hampshire/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < New Hampshire Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Hampshire Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Hampshire No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Hampshire No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Hampshire Mean Capacity (MW) Number of Plants Owners Geothermal Region White Mountains Geothermal Area Other GRR-logo.png Geothermal Regulatory Roadmap for New Hampshire Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

16

Geothermal energy for industrial application  

DOE Green Energy (OSTI)

The types of geothermal resources are reviewed briefly. The uses of geothermal energy are covered under electrical generation and non-electric direct uses. (MHR)

Fulton, R.L.

1979-03-01T23:59:59.000Z

17

Use of Geothermal Energy for Electric Power Generation  

DOE Green Energy (OSTI)

The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

Mashaw, John M.; Prichett, III, Wilson (eds.)

1980-10-23T23:59:59.000Z

18

Geothermal Energy  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

19

Geothermal energy  

SciTech Connect

The following subjects are discussed: areas of ''normal'' geothermal gradient, large areas of higher-than-''normal'' geothermal gradient, hot spring areas, hydrothermal systems of composite type, general problems of utilization, and domestic and world resources of geothermal energy. Almost all estimates and measurements of total heat flow published through 1962 for hot spring areas of the world are tabulated. (MHR)

White, D.E.

1965-01-01T23:59:59.000Z

20

Energy Basics: Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Technologies Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal...

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Energy Technology Guide  

Science Conference Proceedings (OSTI)

Geothermal power production is a renewable technology with a worldwide operating capacity of more than 11,000 MW. Geothermal reservoirs have been a commercial reality in Italy, Japan, the United States, Iceland, New Zealand, and Mexico for many decades. According to the Energy Information Administration, the United States is the world leader in electricity production from geothermal resources with approximately 16,791 GWh of net production in 2012. Future geothermal power generation will depend on ...

2013-12-23T23:59:59.000Z

22

Geothermal: Sponsored by OSTI -- Geothermal Power Generation...  

Office of Scientific and Technical Information (OSTI)

Geothermal Power Generation - A Primer on Low-Temperature, Small-Scale Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

23

Missouri/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Missouri/Geothermal Missouri/Geothermal < Missouri Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Missouri Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Missouri No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Missouri No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Missouri No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Missouri Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

24

Oklahoma/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Oklahoma Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oklahoma Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oklahoma No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Oklahoma No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Oklahoma No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Oklahoma Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

25

Arkansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arkansas/Geothermal Arkansas/Geothermal < Arkansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arkansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arkansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arkansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arkansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Arkansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

26

Maryland/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maryland/Geothermal Maryland/Geothermal < Maryland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maryland Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maryland No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maryland No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maryland No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maryland Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

27

Alabama/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Alabama/Geothermal Alabama/Geothermal < Alabama Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Alabama Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Alabama No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Alabama No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Alabama No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Alabama Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

28

Illinois/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Illinois/Geothermal Illinois/Geothermal < Illinois Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Illinois Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Illinois No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Illinois No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Illinois No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Illinois Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

29

Minnesota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Minnesota/Geothermal Minnesota/Geothermal < Minnesota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Minnesota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Minnesota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Minnesota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Minnesota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Minnesota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

30

Massachusetts/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Geothermal Massachusetts/Geothermal < Massachusetts Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Massachusetts Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Massachusetts No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Massachusetts No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Massachusetts No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Massachusetts Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

31

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

32

Kansas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kansas/Geothermal Kansas/Geothermal < Kansas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kansas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kansas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kansas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kansas No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kansas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

33

Kentucky/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Geothermal Kentucky/Geothermal < Kentucky Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Kentucky Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Kentucky No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Kentucky No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Kentucky No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Kentucky Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

34

Nebraska/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Geothermal Nebraska/Geothermal < Nebraska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nebraska Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nebraska No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Nebraska No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Nebraska No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Nebraska Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

35

Florida/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Florida/Geothermal Florida/Geothermal < Florida Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Florida Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Florida No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Florida No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Florida No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Florida Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

36

Pennsylvania/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Geothermal Pennsylvania/Geothermal < Pennsylvania Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Pennsylvania Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Pennsylvania No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Pennsylvania No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Pennsylvania No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Pennsylvania Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

37

Ohio/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Ohio Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Ohio Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Ohio No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Ohio No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Ohio No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Ohio Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

38

Vermont/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Vermont/Geothermal Vermont/Geothermal < Vermont Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Vermont Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Vermont No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Vermont No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Vermont No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Vermont Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

39

Louisiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Geothermal Louisiana/Geothermal < Louisiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Louisiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Louisiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Louisiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Louisiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Louisiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

40

Mississippi/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Geothermal Mississippi/Geothermal < Mississippi Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Mississippi Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Mississippi No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Mississippi No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Mississippi No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Mississippi Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Maine/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Maine/Geothermal Maine/Geothermal < Maine Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Maine Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Maine No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Maine No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Maine No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Maine Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

42

Connecticut/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Connecticut Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Connecticut Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Connecticut No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Connecticut No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Connecticut No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Connecticut Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

43

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

44

Indiana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Indiana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Indiana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Indiana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Indiana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Indiana No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Indiana Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

45

Michigan/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Michigan/Geothermal Michigan/Geothermal < Michigan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Michigan Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Michigan No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Michigan No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Michigan No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Michigan Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

46

Geothermal energy: a brief assessment  

DOE Green Energy (OSTI)

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

47

Geothermal energy: a brief assessment  

SciTech Connect

This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

1982-07-01T23:59:59.000Z

48

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

49

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

50

Geothermal Technologies Office: Electricity Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search Help Geothermal Technologies Office HOME ABOUT...

51

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

52

Energy Basics: Geothermal Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

53

South Dakota/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Dakota Dakota Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Dakota Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Dakota No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Dakota No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Dakota No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Dakota Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

54

Rhode Island/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Rhode Island Rhode Island Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rhode Island Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Rhode Island No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Rhode Island No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Rhode Island No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Rhode Island Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

55

Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Virginia Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

56

Tennessee/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Tennessee Tennessee Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Tennessee Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Tennessee No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Tennessee No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Tennessee No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Tennessee Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

57

South Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF South Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in South Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in South Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in South Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for South Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

58

Potential of geothermal energy in China  

E-Print Network (OSTI)

This thesis provides an overview of geothermal power generation and the potential for geothermal energy utilization in China. Geothermal energy is thermal energy stored in the earth's crust and currently the only ubiquitously ...

Sung, Peter On

2010-01-01T23:59:59.000Z

59

Geothermal energy program summary  

DOE Green Energy (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

60

Geothermal Energy Program overview  

SciTech Connect

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

DOE Green Energy (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

62

Geothermal energy  

SciTech Connect

Dry hot rock in the Earth's crust represents the largest and most broadly distributed reservoir of usable energy accessible to man. The engineering equipment and methods required to extract and use this energy appear to exist and are now being investigated actively at LASL. At least for deep systems in relatively impermeable rock, not close to active faults, the extraction of energy frtom dry geothermal resertvoirs should involve no significant environmental hazards. The principal environmental effects of such energy systems will be those associated with the surface facilities that use the geothermal heat; these will be visual, in land use, and in the thermal-pollution potential of low-temperature power plants. The energy extraction system itself should be clean; safe, unobtrusive, and economical. (auth)

Smith, M.C.

1973-01-01T23:59:59.000Z

63

Colorado/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Colorado/Geothermal Colorado/Geothermal < Colorado Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Colorado Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Colorado No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Colorado No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Colorado Mean Capacity (MW) Number of Plants Owners Geothermal Region Flint Geothermal Geothermal Area Rio Grande Rift Geothermal Region Mt Princeton Hot Springs Geothermal Area 4.615 MW4,614.868 kW 4,614,868.309 W 4,614,868,309 mW 0.00461 GW 4.614868e-6 TW Rio Grande Rift Geothermal Region Poncha Hot Springs Geothermal Area 5.274 MW5,273.619 kW 5,273,618.589 W

64

Texas/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Texas/Geothermal Texas/Geothermal < Texas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Texas Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Texas No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Texas No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Texas Mean Capacity (MW) Number of Plants Owners Geothermal Region Fort Bliss Geothermal Area Rio Grande Rift Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Texas Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and

65

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

66

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

67

Geothermal energy: feasibility study  

DOE Green Energy (OSTI)

A research program initiated to investigate the feasibility of using the geothermal energy available in salt domes to generate electrical power and of using cavities developed in salt domes as high temperature, high pressure chemical reaction vessels for converting municipal wastes to fuel oil or gas is described. Power generation from geothermal was not found to be economically feasible. The conversion of waste to fuel is possible if the problems of cavity collapse can be avoided. (MHR)

Hodgson, E.W. Jr.; Ziegler, R.C.

1976-02-01T23:59:59.000Z

68

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

69

Arizona/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Arizona/Geothermal Arizona/Geothermal < Arizona Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Arizona Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Arizona No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Arizona No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Arizona Mean Capacity (MW) Number of Plants Owners Geothermal Region Clifton Hot Springs Geothermal Area 14.453 MW14,453.335 kW 14,453,335.43 W 14,453,335,430 mW 0.0145 GW 1.445334e-5 TW Rio Grande Rift Geothermal Region Gillard Hot Springs Geothermal Area 11.796 MW11,796.115 kW 11,796,114.7 W 11,796,114,700 mW 0.0118 GW 1.179611e-5 TW Rio Grande Rift Geothermal Region

70

Montana/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Montana/Geothermal Montana/Geothermal < Montana Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Montana Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Montana No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Montana No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Montana Mean Capacity (MW) Number of Plants Owners Geothermal Region Boulder Hot Springs Geothermal Area 5.21 MW5,210.319 kW 5,210,318.609 W 5,210,318,609 mW 0.00521 GW 5.210319e-6 TW Northern Basin and Range Geothermal Region Broadwater Hot Spring Geothermal Area 5.256 MW5,255.823 kW 5,255,823.43 W 5,255,823,430 mW 0.00526 GW 5.255823e-6 TW Northern Basin and Range Geothermal Region

71

Energy Basics: Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Resources Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are...

72

North Carolina/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Carolina/Geothermal Carolina/Geothermal < North Carolina Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF North Carolina Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in North Carolina No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in North Carolina No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in North Carolina No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for North Carolina Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

73

Iowa/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Iowa/Geothermal Iowa/Geothermal < Iowa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Iowa Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Iowa No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Iowa No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Iowa No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Iowa Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water resource acquisition, and relevant environmental considerations.

74

New York/Geothermal | Open Energy Information  

Open Energy Info (EERE)

New York/Geothermal New York/Geothermal < New York Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New York Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New York No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New York No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New York No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New York Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

75

West Virginia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Geothermal West Virginia/Geothermal < West Virginia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF West Virginia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in West Virginia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in West Virginia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in West Virginia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for West Virginia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

76

New Jersey/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Jersey/Geothermal Jersey/Geothermal < New Jersey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Jersey Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Jersey No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in New Jersey No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in New Jersey No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for New Jersey Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

77

EIA Energy Kids - Geothermal - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Geothermal Basics What Is Geothermal Energy? The word geothermal comes from the Greek words geo (earth) and therme (heat). So, geothermal energy is heat from within ...

78

Geothermal Energy Summary  

DOE Green Energy (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earths crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

79

Geothermal: Sponsored by OSTI -- Fairbanks Geothermal Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fairbanks Geothermal Energy Project Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications...

80

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Basics: Geothermal Electricity Production  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Electricity Production A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep...

82

Washington/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Washington/Geothermal < Washington Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Washington Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Washington No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Washington No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Washington Mean Capacity (MW) Number of Plants Owners Geothermal Region Baker Hot Spring Geothermal Area 22.7 MW22,700 kW 22,700,000 W 22,700,000,000 mW 0.0227 GW 2.27e-5 TW Cascades Geothermal Region

83

Energy Basics: Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

84

Next Generation Geothermal Power Plants  

Science Conference Proceedings (OSTI)

This report analyzes several approaches to reduce the costs and enhance the performance of geothermal power generation plants. Electricity supply planners, research program managers, and engineers evaluating geothermal power plant additions or modifications can use this report to compare today's geothermal power systems to several near- and long-term future options.

1996-04-05T23:59:59.000Z

85

Geothermal energy in Nevada  

SciTech Connect

The nature of goethermal resources in Nevada and resource applications are discussed. The social and economic advantages of utilizing geothermal energy are outlined. Federal and State programs established to foster the development of geothermal energy are discussed. The names, addresses, and phone numbers of various organizations actively involved in research, regulation, and the development of geothermal energy are included. (MHR)

1980-01-01T23:59:59.000Z

86

Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

87

Definition: Geothermal energy | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Geothermal energy Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) )[1] View on Wikipedia Wikipedia Definition Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. The geothermal energy of the Earth's crust originates from the original formation of the planet (20%) and from radioactive decay of minerals (80%). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots γη (ge), meaning earth, and θερμος (thermos), meaning hot. At the

88

Analysis of the potential use of geothermal energy for power generation along the Texas Gulf Coast  

DOE Green Energy (OSTI)

Three forms of potential geothermal energy may exist in the State of Texas: hot rocks in the Trans Pecos region, convection type geothermal water in the Rio Grande Rift basin, and geopressured geothermal water along the Gulf Coast. Of these, only the geopressured waters have been verified. Exploration wells for oil and gas have established the presence of deep hot water deposits along the coastal area, offshore and inland for 75 miles. These exist in thick shale and sand beds in the geopressured zone. The most favorable area appears to be at depths of 12,000 to 15,000 feet where the temperatures range from 300 to 400/sup 0/F. Indications are that a series of relatively small, 10 to 50 megawatt, power plants could be located along the coastal plain of Texas. These plants could produce at least 20,000 megawatts and possibly as much as 100,000 megawatts under the most favorable conditions. Cost of the power appears to be in the range of 25 to 35 mills per kilowatt hour in 1980 providing the water is saturated with natural gas which could be sold to offset some of the cost. If the gas is present, at least 6 billion cubic feet per day of natural gas would be produced. Unit capital investment for such plants would exceed projected costs for nuclear or fossil fueled power plants. Successful development of a demonstration plant with public funds could establish the viability of geopressured waters as a source of power and natural gas and encourage private investment to exploit this energy source, should it prove competitive with other sources of electric power generation.

Wilson, J.S.; Shepherd, B.P.; Kaufman, S.

1975-10-15T23:59:59.000Z

89

Geothermal News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » News & Blog » Geothermal News and Blog About Us » News & Blog » Geothermal News and Blog Geothermal News and Blog Blog This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 1:31 PM This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. Read The Full Story Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

90

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Well Field < Geothermal(Redirected from Well Field) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (45) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques

91

Geothermal Energy Development  

DOE Green Energy (OSTI)

The Nation has embarked on an aggressive program to develop its indigenous resources of geothermal energy. For more than a decade, geothermal energy has been heralded as one of the more promising forms of energy alternate to oil and gas for electric power generation, but during the last fifteen years, the total capacity in the U.S. has reached 502 MWe, about half the size of a single modern nuclear power plant. And yet, the United States, especially its western and Gulf coast states, is believed to possess a vast resource base of geothermal heat at depths up to 3 to 10 km. Many estimates of these potential resources suitable for the production of electric power have been published and they range over a spectrum of more than a factor of 100. This variation suggests that the potential is essentially unknown. Table 1 gives a range of published forecasts for the year 1985 and the equivalent potential in number of 1000 Mwe power plants and in oil consumption in millions of barrels per day. In view of the estimated construction of about 200 to 250 nuclear power reactors by 1985-90, the pessimistic forecasts clearly show that the contribution of geothermal energy to the Nation's energy supply may indeed be small. The optimistic forecasts represent more than 15% of the total electric power requirements estimated for the year 1985. The Task Force for Geothermal Energy, in the Federal Energy Administration Project Independence Blueprint report of November 1974, established a national goal for 1985 of 20,000 to 30,000 MWe, the latter value representing an equivalent energy supply of one million barrels of oil per day. This goal was clearly a compromise between what is worth a national effort and what might be realistically achieved. The potential for adding or replacing the equivalent of some 25 nuclear power plants or for conserving one million barrels of oil per day should be an adequate incentive for the Nation to accelerate the development of a viable geothermal industry.

Kruger, Paul

1975-11-03T23:59:59.000Z

92

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

93

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal power) Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

94

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Geothermal Power) (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy is heat extracted from the Earth [Geo (Earth) + thermal (heat)].The temperature of the Earth varies widely, and a wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from several sources, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located both near the Earth's surface as well as several miles deep into the Earth, even reaching the Earth's magma.[2][3] Geothermal

95

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Geothermal) Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and

96

Economics of geothermal energy  

DOE Green Energy (OSTI)

A selected summary is presented of the resource, technical, and financial considerations which influence the economics of geothermal energy in the US. Estimates of resource base and levelized busbar cost of base load power for several types of geothermal resources are compared with similar estimates for more conventional energy resources. Current geothermal electric power plants planned, under construction, and on-line in the US are noted.

Morris, G.E.; Tester, J.W.; Graves, G.A.

1980-01-01T23:59:59.000Z

97

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

About Renewable Energy Search More Search Options Site Map Printable Version Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal...

98

Strategic plan for the geothermal energy program  

SciTech Connect

Geothermal energy (natural heat in the Earth`s crust) represents a truly enormous amount of energy. The heat content of domestic geothermal resources is estimated to be 70,000,000 quads, equivalent to a 750,000-year supply of energy for the entire Nation at current rates of consumption. World geothermal resources (exclusive of resources under the oceans) may be as much as 20 times larger than those of the US. While industry has focused on hydrothermal resources (those containing hot water and/or steam), the long-term future of geothermal energy lies in developing technology to enable use of the full range of geothermal resources. In the foreseeable future, heat may be extracted directly from very hot rocks or from molten rocks, if suitable technology can be developed. The US Department of Energy`s Office of Geothermal Technologies (OGT) endorses a vision of the future in which geothermal energy will be the preferred alternative to polluting energy sources. The mission of the Program is to work in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to the US and world energy supply. In executing its mission and achieving its long-term vision for geothermal energy, the Program has identified five strategic goals: electric power generation; direct use applications and geothermal heat pumps; international geothermal development; science and technology; and future geothermal resources. This report discusses the objectives of these five goals.

1998-06-01T23:59:59.000Z

99

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

100

Forrest County Geothermal Energy Project Geothermal Project ...  

Open Energy Info (EERE)

of replacing the existing air cooled chiller with geothermal water to water chillers for energy savings at the Forrest County Multi Purpose Center. The project will also replace...

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Tribal Energy Program: Geothermal Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Printable Version Share this resource Send a link to Tribal Energy Program: Geothermal Energy Resources to someone by E-mail Share Tribal Energy Program: Geothermal Energy...

102

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network (OSTI)

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

Pruess, Karsten

2006-01-01T23:59:59.000Z

103

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

104

Geothermal/Well Field | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Well Field Geothermal/Well Field < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Well Fields and Reservoirs General Techniques Tree Techniques Table Regulatory Roadmap NEPA (42) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating hydrothermal geothermal development. Copyright © 1995 Warren Gretz Geothermal Well Fields discussion Groups of Well Field Techniques There are many different techniques that are utilized in geothermal well field development and reservoir maintenance depending on the region's geology, economic considerations, project maturity, and other considerations such as land access and permitting requirements. Well field

105

Next Generation Geothermal Power Plants  

SciTech Connect

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a giv

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

106

Next Generation Geothermal Power Plants  

DOE Green Energy (OSTI)

A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

1995-09-01T23:59:59.000Z

107

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Geothermal Heat Pumps Geothermal heat pumps use the constant temperature of the earth as an exchange medium for heat. Although many parts of the country...

108

California/Geothermal | Open Energy Information  

Open Energy Info (EERE)

California/Geothermal California/Geothermal < California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF California Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in California Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Bald Mountain Geothermal Project Oski Energy LLC Susanville, California 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase II - Resource Exploration and Confirmation Black Rock I Geothermal Project CalEnergy Generation Phase III - Permitting and Initial Development North Shore Mono Lake Geothermal Area Walker-Lane Transition Zone Geothermal Region

109

Geothermal Energy | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting & Policy Links Geothermal Energy The Sierra Nevada Mountains provide a spectacular backdrop for a cooling tower array at the ORMAT Mammoth Geothermal Power Plant in Central California. Geothermal energy is heat extracted from the Earth. A wide range of temperatures can be suitable for using geothermal energy, from room temperature to above 300° F.[1] This heat can be drawn from various depths, ranging from the shallow ground (the upper 10 feet beneath the surface of the Earth) that maintains a relatively constant temperature of approximately 50° to 60° F, to reservoirs of extremely hot water and steam located several miles deep into the Earth.[2][3]

110

Geothermal Energy: Current abstracts  

DOE Green Energy (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

111

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

112

CE Geothermal | Open Energy Information  

Open Energy Info (EERE)

CE Geothermal CE Geothermal Jump to: navigation, search Name CE Geothermal Place California Sector Geothermal energy Product CE Geothermal previously owned the assets of Western States Geothermal Company, which owns the 10MW nameplate Desert Peak Geothermal Power Plant. References CE Geothermal[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CE Geothermal is a company located in California . References ↑ "CE Geothermal" Retrieved from "http://en.openei.org/w/index.php?title=CE_Geothermal&oldid=343310" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties

113

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

~Iilora and J. W. Tester, Geothermal Energy as a Source ofpresented at the Susanville Geothermal Energy Converence,of Practical Cycles for Geothermal Power Plants." General

Pope, W.L.

2011-01-01T23:59:59.000Z

114

Geothermal Energy; (USA)  

DOE Green Energy (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

115

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

116

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal/Power Plant < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (20) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine

117

Geothermal energy program summary  

DOE Green Energy (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

118

Geothermal energy program summary  

SciTech Connect

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

1990-01-01T23:59:59.000Z

119

NREL: Learning - Student Resources on Geothermal Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy The following resources can provide you with information on geothermal energy - heat from the earth. Geothermal direct use - Producing heat directly from hot water within the earth. Geothermal electricity production - Generating electricity from the earth's heat. Geothermal heat pumps - Using the shallow ground to heat and cool buildings. Printable Version Learning About Renewable Energy Home Renewable Energy Basics Using Renewable Energy Energy Delivery & Storage Basics Advanced Vehicles & Fuels Basics Student Resources Biomass Geothermal Direct Use Electricity Production Heat Pumps Hydrogen Solar Wind Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback.

120

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name American Geothermal Systems Place Austin, Texas Sector Geothermal energy Product Installer of geothermal heating and cooling technologies, also has a...

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Geothermal Technology Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Or read more about EERE's geothermal technologies research. Addthis Related Articles Geothermal Direct-Use Basics Glossary of Energy-Related Terms Geothermal Resource Basics...

122

Sound Geothermal Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Jump to: navigation, search Name Sound Geothermal Corporation Place Sandy, Utah Zip 84094 Sector Geothermal energy Product Sound Geothermal coporation helps...

123

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

124

Geothermal: Sponsored by OSTI -- Multi-Fluid Geothermal Energy...  

Office of Scientific and Technical Information (OSTI)

Multi-Fluid Geothermal Energy Production and Storage in Stratigraphic Reservoirs Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

125

Geothermal: Sponsored by OSTI -- Daemen Alternative Energy/Geothermal...  

Office of Scientific and Technical Information (OSTI)

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

126

Geothermal energy: 1992 program overview  

DOE Green Energy (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

127

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

128

Geothermal energy. Program summary  

DOE Green Energy (OSTI)

Brief descriptions of geothermal projects funded through the Department of Energy during FY 1978 are presented. Each summary gives the project title, contractor name, contract number, funding level, dates, location, and name of the principal investigator, together with project highlights, which provide informaion such as objectives, strategies, and a brief project description. (MHR)

Not Available

1979-06-01T23:59:59.000Z

129

Geothermal Energy Information Dissemination and Outreach  

DOE Green Energy (OSTI)

The objective of this project is to continue on-going work by the Geo-Heat Center to develop and disseminate information; provide educational materials; develop short courses and workshops; maintain a comprehensive geothermal resource database; respond to inquiries from the public, industry and government; provide engineering, economic and environmental information and analysis on geothermal technology to potential users and developers; and provide information on market opportunities for geothermal development. These efforts are directed towards increasing the utilization of geothermal energy in the US and developing countries, by means of electric power generation and direct-use.

Dr. John W. Lund

2005-12-31T23:59:59.000Z

130

Geothermal Energy - An Emerging Resource  

SciTech Connect

Address on the Department of Energy's overall energy policy, the role of alternative energy sources within the policy framework, and expectations for geothermal energy. Commendation of the industry's decision to pursue the longer-term field effort while demand for geothermal energy is low, and thus prepare for a substantial geothermal contribution to the nation's energy security.

Berg, John R.

1987-01-20T23:59:59.000Z

131

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

Science Conference Proceedings (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

132

GEOTHERMAL PILOT STUDY FINAL REPORT: CREATING AN INTERNATIONAL GEOTHERMAL ENERGY COMMUNITY  

E-Print Network (OSTI)

B. Direct Application of Geothermal Energy . . . . . . . . .Reservoir Assessment: Geothermal Fluid Injection, ReservoirD. E. Appendix Small Geothermal Power Plants . . . . . . .

Bresee, J. C.

2011-01-01T23:59:59.000Z

133

Postgraduate Certificate in Geothermal Energy  

E-Print Network (OSTI)

Postgraduate Certificate in Geothermal Energy Technology Department of Engineering Science to study for the PGCertGeothermTech will require a visa. Details about how to obtain a visa to study in New your visa. Geothermal Training in New Zealand New Zealand is a beautiful country in the South Pacific

Auckland, University of

134

Exergetic Performance Investigation of Medium-Low Enthalpy Geothermal Power Generation  

Science Conference Proceedings (OSTI)

The renewable energy sources are becoming attractive solutions for clean and sustainable energy needs. Geothermal energy is increasingly contributing to the power supply worldwide. In evaluating the efficiency of energy conservation systems, the most ... Keywords: geothermal energy, power generation, binary cycle, exergetic efficiency, exergy analysis, geothermal power plant

Junkui Cui; Jun Zhao; Chuanshan Dai; Bin Yang

2009-10-01T23:59:59.000Z

135

South Dakota Geothermal Energy Handbook  

SciTech Connect

The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are detailed. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resources are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized.

1980-06-01T23:59:59.000Z

136

Geothermal Impact Analysis Geothermal Project | Open Energy Informatio...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

137

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

138

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

139

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

140

Geothermal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Geothermal News RSS April 12, 2013 Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. September 8, 2011 Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: Energy Analysis - Geothermal Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program...

142

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

143

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

144

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

145

Next Generation Geothermal Power Plants: 2012 Update  

Science Conference Proceedings (OSTI)

The intent of this report is to provide an update of historical and current trends in geothermal power plant technology, extending the previous Next Generation Geothermal Power Plant (NGGPP) report originally developed by EPRI in 1996.BackgroundIn its 1996 study, EPRI evaluated a number of technologies with the potential to lower the cost of geothermal power production or to expand cost effective power production to lower temperature resources, thus opening ...

2012-12-13T23:59:59.000Z

146

Earthquake and Geothermal Energy  

E-Print Network (OSTI)

The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

Kapoor, Surya Prakash

2013-01-01T23:59:59.000Z

147

Tribal Renewable Energy Foundational Course: Geothermal | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Tribal Renewable Energy Foundational Course: Geothermal Tribal Renewable Energy Foundational Course: Geothermal Watch the U.S. Department of...

148

Overview of Geothermal Energy Development Webcast | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Overview of Geothermal Energy Development Webcast Overview of Geothermal Energy Development Webcast...

149

Energy Education and Workforce Development: Explore Geothermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Careers to someone by E-mail Share Energy Education and Workforce Development: Explore Geothermal Careers on Facebook Tweet about Energy Education and Workforce...

150

Geothermal energy in Nevada: development and utilization  

SciTech Connect

The nature of geothermal resources in Nevada and resource applications are discussed. The social and economic advantages of using geothermal energy are outlined. Federal and state programs established to foster the development of geothermal energy are discussed. (MHR)

1982-01-01T23:59:59.000Z

151

Direct application of geothermal energy  

DOE Green Energy (OSTI)

An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

Reistad, G.M.

1980-01-01T23:59:59.000Z

152

Multipurpose Use of Geothermal Energy  

DOE Green Energy (OSTI)

The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

Lienau, Paul J.; Lund, John W. (eds.)

1974-10-09T23:59:59.000Z

153

Alaska: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

154

Oregon: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

155

Washington: a guide to geothermal energy development  

DOE Green Energy (OSTI)

A brief overview is given of the geological characteristics of each region of the state as they relate to potential geothermal development. Those exploration methods which can lead to the siting of a deep exploration well are described. Requirements and techniques needed for drilling deeper higher temperature exploration and production wells are presented. Electrical generation, direct utilization, and indirect utilization are reviewed. Economic factors of direct use projects are presented. A general guide to the regulatory framework affecting geothermal energy development is provided. The general steps necessary to gain access to explore, develop, distribute, and use geothermal resources are outlined. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-01-01T23:59:59.000Z

156

Geothermal Properties Measurement Tool | Open Energy Information  

Open Energy Info (EERE)

Geothermal Properties Measurement Tool Geothermal Properties Measurement Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Properties Measurement Tool Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Geothermal Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.ornl.gov/sci/ees/etsd/btric/ground-source.shtml Cost: Free References: Geothermal Properties Measurement Tool [1] Logo: Geothermal Properties Measurement Tool The Geothermal Properties Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a certain location. The Geothermal Properties Measurement Excel tool was developed at Oak Ridge

157

Engineered Geothermal Systems Energy Return On Energy Investment  

NLE Websites -- All DOE Office Websites (Extended Search)

EGS EROI - 1 EGS EROI - 1 Engineered Geothermal Systems Energy Return On Energy Investment A.J. Mansure, Geothermal Consultant, ajm@q.com Albuquerque, NM 12/10/2012 Key Words: energy, EROI, EGS, efficiency, energy investment, energy return, input energy, energy payback, and net energy. Abstract Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use "efficiency" when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS

158

Geothermal Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Resources There are a number of different resource potential estimates that have been developed. A few are listed below. NREL Geothermal Favorability Map NREL Supply Characterization and Representation In 2011, NREL conducted an analysis to characterize and represent the supply of electricity generation potential from geothermal resources in the United States. The principal products were: Capacity Potential Estimates - quantitative estimates of the potential electric capacity of U.S. geothermal resources

159

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Print PDF Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal energy. It is possible for a resource to be technically capable of both electricity production and heating purposes, but the basic classifications

160

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

162

US Geothermal Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Boise, Idaho Zip 83706 Sector Geothermal energy Product Former Idaho-based project developer that held the rights to the Raft River Geothermal Project. Website http:...

163

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

164

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

165

Neutron imaging for geothermal energy systems  

Science Conference Proceedings (OSTI)

Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

Bingham, Philip R [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Polsky, Yarom [ORNL

2013-01-01T23:59:59.000Z

166

U.S. Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Jump to: navigation, search 200px Name U.S. Geothermal Address 1505 Tyrell Lane Place Boise, Idaho Zip 83706 Sector Geothermal energy Stock Symbol HTM Website http:...

167

THE FUTURE OF GEOTHERMAL ENERGY  

DOE Green Energy (OSTI)

Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

J. L. Renner

2006-11-01T23:59:59.000Z

168

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

SciTech Connect

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

1976-04-01T23:59:59.000Z

169

Geothermal project summaries. Geothermal energy research, development, and demonstration program  

DOE Green Energy (OSTI)

The Division of Geothermal Energy ''Geothermal Project Summaries'' provides pertinent information on each active ERDA Geothermal project, includes a listing of all contractors and a compilation of completed projects. New project summaries and necessary revisions to current project data will be prepared on a quarterly basis.

Not Available

1976-04-01T23:59:59.000Z

170

Nevada/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Nevada/Geothermal Nevada/Geothermal < Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Nevada Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Nevada Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Alligator Geothermal Geothermal Project Oski Energy LLC Ely, Nevada 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW Phase I - Resource Procurement and Identification Alum Geothermal Project Ram Power Silver Peak, Nevada 64 MW64,000 kW 64,000,000 W 64,000,000,000 mW 0.064 GW 6.4e-5 TW Phase II - Resource Exploration and Confirmation Alum Geothermal Area Walker-Lane Transition Zone Geothermal Region Aurora Geothermal Project Gradient Resources Hawthorne, Nevada 190 MW190,000 kW

171

Volcanology and geothermal energy | Open Energy Information  

Open Energy Info (EERE)

PRESS, 1992 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Volcanology and geothermal energy Citation Kenneth Wohletz, Grant Heiken....

172

GEOTHERMAL ENERGY PROGRAM - Home - Energy Innovation Portal  

28 geothermal energy program allan jelacic program manager allan.jelacic@ee.doe.gov (202) 586-6054 venture capital technology showcase aug 21 and 22, 2007

173

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

174

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient...

175

Health impacts of geothermal energy  

DOE Green Energy (OSTI)

The focus is on electric power production using geothermal resources greater than 150/sup 0/C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of noncondensing gases such as hydrogen sulfide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. It is shown that hydrogen sulfide emissions from most geothermal power plants are apt to cause odor annoyances among members of the exposed public - some of whom can detect this gas at concentrations as low as 0.002 parts per million by volume. A risk assessment model is used to estimate the lifetime risk of incurring leukemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. The risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic is also assessed. Finally, data on the occurrence of occupational disease in the geothermal industry are summarized briefly.

Layton, D.W.; Anspaugh, L.R.

1981-06-15T23:59:59.000Z

176

DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leverages Fossil Energy Expertise to Develop and Explore Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop and Explore Geothermal Energy Resources February 7, 2011 - 12:00pm Addthis Washington, D.C. - Focusing on reducing the upfront costs of geothermal development as well as improve its effectiveness, the U.S. Department of Energy today announced plans to leverage oil and gas expertise to test the reliability and efficiency of geothermal power generation at oil and gas fields. DOE's Office of Fossil Energy and Office of Energy Efficiency and Renewable Energy will combine efforts to have experts test and validate low temperature geothermal power generation technologies at the Rocky Mountain Oilfield Testing Center (RMOTC) near Casper, Wyoming.

177

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Alligator Geothermal Geothermal Project Alligator Geothermal Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Alligator Geothermal Geothermal Project Project Location Information Coordinates 39.741169444444°, -115.51666666667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741169444444,"lon":-115.51666666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

179

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

180

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean,...

182

Geothermal Energy Development Webcast Transcript  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Indian Energy Overview of Geothermal Energy Indian Energy Overview of Geothermal Energy Development Webcast (text version) Below is the text version of the webcast titled "Overview of Geothermal Energy Development," originally presented on January 10, 2012. In addition to this text version of the audio, you can access the recorded webcast and a PDF of the slides at www.energy.gov/indianenergy/resources/education-and-training. Alex Dane: All right, folks. We're going to go ahead and get started right now. It's my pleasure to introduce to you the Deputy Director of the Office of Indian Energy, Pilar Thomas, who's going to have a couple minutes here to introduce some background of the office of what they do and Pilar, I've un-muted your line so feel free to jump on in. I think we can hear

183

Miles Below the Earth: The Next-Generation of Geothermal Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(EGS) essentially create man-made reservoirs that mimic naturally occurring pockets of steam- with the potential for use as a reliable, 247 source of renewable energy. For more...

184

Policy Makers' Guidebook for Geothermal Electricity Generation | Open  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Electricity Generation Policy Makers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Geothermal energy for American Samoa  

SciTech Connect

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

1980-03-01T23:59:59.000Z

186

Geothermal energy for American Samoa  

DOE Green Energy (OSTI)

The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

Not Available

1980-03-01T23:59:59.000Z

187

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

188

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

189

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

190

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

191

Energy Basics: Direct-Use of Geothermal Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

192

Geysers Geothermal Association GGA | Open Energy Information  

Open Energy Info (EERE)

GGA GGA Jump to: navigation, search Name Geysers Geothermal Association (GGA) Place Santa Rosa, California Zip 95404 Sector Geothermal energy Product Trade association focused on addressing issues relating to the geothermal industry. References Geysers Geothermal Association (GGA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geysers Geothermal Association (GGA) is a company located in Santa Rosa, California . References ↑ "Geysers Geothermal Association (GGA)" Retrieved from "http://en.openei.org/w/index.php?title=Geysers_Geothermal_Association_GGA&oldid=345852" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

193

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

194

Geothermal energy well casing seal  

SciTech Connect

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water. The super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop steam generator-turbine-alternator combination for the beneficial generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water regenerated at the surface-located system is returned to the deep well pumping system also for lubrication of a fluid bearing arrangement supporting the turbine-driven pump system. The deep well pump system is supported within the well casing pipe from the earth's surface by the turbine exhaust steam conduit. In view of differential expansion effects on the relative lengths of the casing pipe and the exhaust steam conduit, a novel flexible seal is provided between the suspended turbine-pump system and the well pipe casing. 9 claims, 2 drawing figures.

Matthews, H.B.

1976-07-06T23:59:59.000Z

195

NREL: Energy Analysis - Geothermal Results - Life Cycle Assessment Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Results - Life Cycle Assessment Review Geothermal Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Geothermal Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for geothermal technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions from geothermal power generation Credit: Goldstein, B., G. Hiriart, R. Bertani, C. Bromley, L. Gutiérrez-Negrín, E. Huenges, H. Muraoka, A. Ragnarsson, J. Tester, V. Zui, 2011: Geothermal Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press. Figure 4.6 Enlarge image

196

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

197

Innovative Design of New Geothermal Generating Plants  

SciTech Connect

This very significant and useful report assessed state-of-the-art geothermal technologies. The findings presented in this report are the result of site visits and interviews with plant owners and operators, representatives of major financial institutions, utilities involved with geothermal power purchases and/or wheeling. Information so obtained was supported by literature research and data supplied by engineering firms who have been involved with designing and/or construction of a majority of the plants visited. The interviews were conducted by representatives of the Bonneville Power Administration, the Washington State Energy Office, and the Oregon Department of Energy during the period 1986-1989. [DJE-2005

Bloomquist, R. Gordon; Geyer, John D.; Sifford, B. Alexander III

1989-07-01T23:59:59.000Z

198

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

199

Assessing geothermal energy potential in upstate New York. Final report  

DOE Green Energy (OSTI)

The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

Hodge, D.S. [SUNY, Buffalo, NY (United States)

1996-08-01T23:59:59.000Z

200

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rotordynamics in alternative energy power generation.  

E-Print Network (OSTI)

??This thesis analyses and discusses the main alternative energy systems that work with rotordynamics machines to generate power. Hydropower systems, wave and ocean energy, geothermal, (more)

Cortes-Zambrano, Ivan

2011-01-01T23:59:59.000Z

202

Geothermal Technologies Available for Licensing - Energy ...  

Geothermal Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating institutions research and develop ...

203

International Geothermal Association | Open Energy Information  

Open Energy Info (EERE)

Logo: International Geothermal association Name International Geothermal association Place Bochum, Germany Website http://www.geothermal-energy.o References IGA website[1] LinkedIn Connections International Geothermal Association is an organization based in Bochum, Germany. The International Geothermal Association (IGA), founded in 1988, is a scientific, educational and cultural organization established to operate worldwide. It has more than 5,200 members in over 65 countries. The IGA is a non-political, non-profit, non-governmental organization. The objectives of the IGA are to encourage research, the development and utilization of geothermal resources worldwide through the publication of scientific and technical information among the geothermal specialists, the

204

Utah/Geothermal | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Utah/Geothermal < Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Utah Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Utah Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Cove Fort Geothermal Project Oski Energy LLC 50 MW50,000 kW 50,000,000 W 50,000,000,000 mW 0.05 GW 5.0e-5 TW Phase II - Resource Exploration and Confirmation Cove Fort Geothermal Area Northern Basin and Range Geothermal Region Drum Mountain Geothermal Project Raser Technologies Inc Delta, Utah 0 MW0 kW

205

Geothermal Energy Program Summary Document, FY 1982  

SciTech Connect

Geothermal energy is derived from the internal heat of the earth. Much of it is recoverable with current or near current technology. Geothermal energy can be used for electric power production, residential and commercial space heating and cooling, industrial process heat, and agricultural applications. Three principal types of geothermal resources are exploitable through the year 2000. In order of technology readiness, these resources are: hydrothermal; geopressured (including dissolved natural gas); and hot dry rock. In hydrothermal systems, natural water circulation moves heat from deep internal sources toward the earth's surface. Geothermal fluids (water and steam) tapped by drilling can be used to generate electricity or provide direct heat. Geopressured resources, located primarily in sedimentary basins along the Gulf Coast of Texas and of Louisiana, consist of water and dissolved methane at high pressure and at moderately high temperature. In addition to recoverable methane, geopressured resources provide thermal energy and mechanical energy derived from high fluid pressures, although methane offers the greatest immediate value. Commercial development of geopressured energy may begin in the mid-1980s. Economic feasibility depends on the amount of methane that a given well can produce, a highly uncertain factor at present.

1981-01-01T23:59:59.000Z

206

Geothermal Energy Program Summary Document, FY 1982  

DOE Green Energy (OSTI)

Geothermal energy is derived from the internal heat of the earth. Much of it is recoverable with current or near current technology. Geothermal energy can be used for electric power production, residential and commercial space heating and cooling, industrial process heat, and agricultural applications. Three principal types of geothermal resources are exploitable through the year 2000. In order of technology readiness, these resources are: hydrothermal; geopressured (including dissolved natural gas); and hot dry rock. In hydrothermal systems, natural water circulation moves heat from deep internal sources toward the earth's surface. Geothermal fluids (water and steam) tapped by drilling can be used to generate electricity or provide direct heat. Geopressured resources, located primarily in sedimentary basins along the Gulf Coast of Texas and of Louisiana, consist of water and dissolved methane at high pressure and at moderately high temperature. In addition to recoverable methane, geopressured resources provide thermal energy and mechanical energy derived from high fluid pressures, although methane offers the greatest immediate value. Commercial development of geopressured energy may begin in the mid-1980s. Economic feasibility depends on the amount of methane that a given well can produce, a highly uncertain factor at present.

None

1981-01-01T23:59:59.000Z

207

Geothermal Energy Industry Briefing Packet  

DOE Green Energy (OSTI)

The Earl Warren Legal Institute, part of the University of California at Berkeley, is a center for law-related interdisciplinary research and public service in areas of national social concern. Since 1975, we have worked with the U.S. Department of Energy and Lawrence Berkeley Laboratory on various projects addressing energy policy and environmental issues. We are now engaged in a major effort to identify current legal, economic and institutional obstacles to commercial development and use of geothermal energy sources. Geothermal resources--heat reservoirs beneath the earth's surface--have received increasing attention in recent years of growing energy consciousness, and much progress has been made toward understanding their nature, extent and uses. Encouraged by federal and state development programs, there now exists an active and growing community of geologists, geophysicists, engineers, drilling companies, developers and end-users of geothermal heat. However, Department of Energy studies indicate that current knowledge and available technology would support substantially broader use of the resource, particularly by private sector commercial, industrial and agricultural concerns. Accordingly, we are now seeking to determine the knowledge and attitudes of such entities toward geothermal use; the factors which will influence decisions to utilize geothermal or not; the perceived obstacles, if any, to expanded use in their own industries; and the types of government policies or programs which might minimize such obstacles. The industries we have chosen to approach have been targeted by others as potential geothermal users. However, we recognize that many firms today have little or no knowledge of the resource or of its potential applications. We have therefore prepared the following brief summary as an introduction for some, perhaps a refresher for others, and hopefully a stimulus for an exchange of ideas with all whose views we intend to solicit as our work proceeds.

Bressler, Sandra E.; Hanemann, Michael; Katz, Ira Benjamin; Nimmons, John T.

1976-01-01T23:59:59.000Z

208

Newberry Geothermal | Open Energy Information  

Open Energy Info (EERE)

Newberry Geothermal Jump to: navigation, search Davenport Newberry Holdings (previously named Northwest Geothermal Company) started to develop a 120MW geothermal project on its...

209

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production...

210

Geothermal Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Geothermal Technologies August 14, 2013 - 1:45pm Addthis Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from...

211

San Emido Geothermal Energy North Project | Open Energy Information  

Open Energy Info (EERE)

San Emido Geothermal Energy North Project San Emido Geothermal Energy North Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NEPA Document Collection for: San Emido Geothermal Energy North Project EA at San Emidio Desert Geothermal Area for Geothermal/Power Plant, Geothermal/Well Field, {{{NEPA_Name}}} General NEPA Document Info Energy Sector Geothermal energy Environmental Analysis Type EA Applicant USG Nevada LLC Geothermal Area San Emidio Desert Geothermal Area Project Location Nevada Project Phase Geothermal/Power Plant, Geothermal/Well Field Techniques Production Wells Comments USG Nevada submitted Utilization POU on 7/25/2013 Time Frame (days) Participating Agencies Lead Agency BLM Funding Agency none provided Managing District Office Winnemucca Managing Field Office BLM Black Rock

212

CREST Geothermal | Open Energy Information  

Open Energy Info (EERE)

CREST Geothermal CREST Geothermal Jump to: navigation, search Tool Summary Name: CREST Geothermal Agency/Company /Organization: Sustainable Energy Advantage Partner: NREL Sector: Energy Focus Area: Geothermal Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: financere.nrel.gov/finance/webfm_send/41/NREL_CREST_Geothermal_version Country: United States RelatedTo: CREST Solar, CREST Wind Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Nevada Geothermal Operating Company LLC | Open Energy Information  

Open Energy Info (EERE)

Operating Company LLC Operating Company LLC Jump to: navigation, search Name Nevada Geothermal Operating Company LLC Place Blue Mountain, NV Sector Geothermal energy Website http://www.nevadageothermal.co References Alternative Earth Resources Inc Website[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Nevada Geothermal Operating Company LLC is a subsidiary of Alternative Earth Resources Inc based in Blue Mountain, NV. Alternative Earth Resources Inc. (formerly Nevada Geothermal Power) is an experienced renewable energy company, focused on developing and generating clean, sustainable electric power from geothermal resources. The Company has headquarters in Vancouver, BC and trades on the Toronto Venture Exchange under the symbol AER. Alternative Earth holds leasehold interests in four geothermal projects

214

Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ormat Geothermal Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada September 23, 2011 - 3:37pm Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced the Department finalized a partial guarantee for up to a $350 million loan to support a geothermal power generation project. The project, sponsored by Ormat Nevada, Inc., is expected to produce up to 113 megawatts (MW) of clean, baseload power from three geothermal power facilities and will increase geothermal power production in Nevada by nearly 25 percent. The facilities are Jersey Valley in Pershing County, McGinness Hills in Lander County and Tuscarora in Elko County. The company estimates the project will fund 332 jobs during construction and 64 during operations.

215

Geothermal Energy: National Estimate for Direct Use  

DOE Green Energy (OSTI)

The purpose of this report is to present the first national estimate of direct geothermal energy use based upon an aggregation of site-specific analyses of all known geothermal resources. The conclusions are: (1) Geothermal energy can make a significant contribution can to the nation's low temperature energy needs and lessen dependence on foreign energy sources. (2) Federal tax incentives and regulatory easement will enhance the development of geothermal energy in the U.S. (3) District heating applications will constitute the major portion of geothermal market penetration. (4) Most development will occur in the western U.S.

None

1980-12-01T23:59:59.000Z

216

Geothermal Energy: National Estimate for Direct Use  

SciTech Connect

The purpose of this report is to present the first national estimate of direct geothermal energy use based upon an aggregation of site-specific analyses of all known geothermal resources. The conclusions are: (1) Geothermal energy can make a significant contribution can to the nation's low temperature energy needs and lessen dependence on foreign energy sources. (2) Federal tax incentives and regulatory easement will enhance the development of geothermal energy in the U.S. (3) District heating applications will constitute the major portion of geothermal market penetration. (4) Most development will occur in the western U.S.

1980-12-01T23:59:59.000Z

217

Geothermal Energy Resource Assessment  

DOE Green Energy (OSTI)

This report covers the objectives and the status of a long-range program to develop techniques for assessing the resource potential of liquid-dominated geothermal systems. Field studies underway in northern Nevada comprise a systematic integrated program of geologic, geophysical, and geochemical measurements, necessary to specify a drilling program encompassing heat flow holes, deep calibration holes, and ultimately, deep test wells. The status of Nevada field activities is described. The areas under study are in a region characterized by high heat flow where temperatures at depth in some geothermal systems exceed 180 C. Areas presently being examined include Beowawe Hot Springs in Whirlwind Valley. Buffalo Valley Hot Springs, Leach Hot Springs in Grass Valley, and Kyle Hot Springs in Buena Vista Valley. Geologic studies encompass detailed examinations of structure and lithology to establish the geologic framework of the areas. The geothermal occurrences are characterized by zones of intense fault intersection, which furnish permeable channelways for the introduction of meteoric water into regions of high temperature at depth.

Wollenberg, H.A.; Asaro, F.; Bowman, H.; McEvilly, T.; Morrison, F.; Witherspoon, P.

1975-07-01T23:59:59.000Z

218

Geothermal Energy Program Overview: Fiscal Year 1991  

DOE Green Energy (OSTI)

In FY 1990-1991, the Geothermal Energy Program made significant strides in hydrothermal, geopressured brine, hot dry rock, and magma research, continuing a 20-year tradition of advances in geothermal technology.

Not Available

1991-12-01T23:59:59.000Z

219

Low temperature Direct Use Geothermal Facilities Contains generating  

Open Energy Info (EERE)

Low temperature Direct Use Geothermal Facilities Contains generating capacity information for low temperature direct use geothermal facilities by state.
2010-08-10T17:02:22Z...

220

Calpine: America's largest geothermal energy producer | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer Calpine: America's largest geothermal energy producer October 6, 2010 - 12:37pm Addthis Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Calpine operates 15 plants at The Geysers in northwest California, which generate enough clean energy daily to power a city the size of San Francisco.| Photo Courtesy of Calpine Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Amid the Mayacamas Mountains in northwest California sits the world's largest geothermal field: The Geysers. Since 1960, steam from the 45 square mile field spanning Lake and Sonoma

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

222

Unearthing Geothermal's Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unearthing Geothermal's Potential Unearthing Geothermal's Potential Unearthing Geothermal's Potential September 16, 2010 - 12:33pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Our latest geothermal technologies awards are for those who think outside of the box (and below the surface). Secretary of Energy Steven Chu announced $20 million towards the research and development of non-conventional geothermal energy technologies in three areas: low temperatures fluids, geothermal fluids recovered from oil and gas wells and highly pressurized geothermal fluids. As the Secretary said, these innovative projects have the potential to expand the use of geothermal energy to more areas around the country. Low temperature resources are widely available across the country and offer

223

Property:Geothermal/Awardees | Open Energy Information  

Open Energy Info (EERE)

Awardees Awardees Jump to: navigation, search Property Name Geothermal/Awardees Property Type String Description Awardees (Company / Institution) Pages using the property "Geothermal/Awardees" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Magma Energy + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Montana Tech of The University of Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + New Mexico Institute of Mining and Technology +

224

Definition: Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Geothermal Direct Use Geothermal Direct Use Jump to: navigation, search Dictionary.png Geothermal Direct Use Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require heat. Generally, the water in the geothermal reservoirs withdrawn for direct use is between 68° F to 302° F. In addition to residential, commercial and industrial buildings, homes, pools and spas, greenhouses, fish farms, and even mining operations utilize direct use of geothermal resources for heat[1][2] View on Wikipedia Wikipedia Definition Geothermal heating is the direct use of geothermal energy for heating applications. Humans have taken advantage of geothermal heat this way since the Paleolithic era. Approximately seventy countries made direct

225

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Environment Geothermal/Environment < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

226

Grace Geothermal | Open Energy Information  

Open Energy Info (EERE)

Grace Geothermal Grace Geothermal Jump to: navigation, search Name Grace Geothermal Address 514 Water Street Place Chardon, Ohio Zip 44024 Sector Geothermal energy Product Energy provider: energy transmission and distribution; Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone number 440-379-4200 Website http://www.ggeothermal.com Coordinates 41.581247°, -81.214073° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.581247,"lon":-81.214073,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

"Assistance to States on Geothermal Energy"  

SciTech Connect

This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energyContract Number DE-FG03-01SF22367with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

Linda Sikkema; Jennifer DeCesaro

2006-07-10T23:59:59.000Z

228

"Assistance to States on Geothermal Energy"  

SciTech Connect

This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energyContract Number DE-FG03-01SF22367with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines

Linda Sikkema; Jennifer DeCesaro

2006-07-10T23:59:59.000Z

229

Geothermal Prospector | Open Energy Information  

Open Energy Info (EERE)

Geothermal Prospector Geothermal Prospector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Prospector Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Geothermal Resource Type: Software/modeling tools User Interface: Website Website: maps.nrel.gov/gt_prospector Country: United States Web Application Link: maps.nrel.gov/gt_prospector Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 39.7405574°, -105.1719904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7405574,"lon":-105.1719904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Available work in geothermal energy  

DOE Green Energy (OSTI)

The most important thermodynamic considerations needed for a clear understanding of the operation of geothermal installations used for the production of electricity are presented. A brief description is given of the nature of a geothermal reservoir and the characteristics of the most practical systems for the conversion of geothermal energy into work are described. The appropriate specialized forms of the First and Second Laws of Thermodynamics are derived and the related concepts of optimum available work, available work, entropy production, dissipated energy, and utilization factor are introduced. The shortcomings of the method of cycle analysis are discussed when applied to geothermal plants. Special attention is devoted to a detailed discussion of the most important general indicators that follow for the designer from a thermodynamic analysis. Various methods of graphically interpreting the concept of available work are described in detail and the importance of easily accessible, reliable formulations of the thermophysical properties of the pure substances, solutions, and mixtures that the designer needs for success are discussed. (MHR)

Kestin, J.

1978-07-01T23:59:59.000Z

231

Economics of geothermal electricity generation from hydrothermal resources  

DOE Green Energy (OSTI)

The most important factors affecting the economics of geothermal electricity production are the wellhead temperature or enthalpy, the well flow rate, and the cost of the wells. The capital cost of the powerplant is significant, but not highly sensitive to these resource characteristics. The optimum geothermal plant size will remain small, usually in the 50-100 MWe range. Therefore, the opportunities for achieving significant cost reductions through ''economies of scale'' are small. The steam and binary power cycles are closely competitive; the binary cycle appears better when the brine temperature is below 200-230/sup 0/C, and the flashed steam cycle appears better above this range. Geothermal electricity production is capital intensive; over 75 percent of the generation costs are fixed costs related to capital investment. Technological advances are needed to reduce costs from marginal geothermal resources and thus to stimulate geothermal energy development. Significant reduction in power costs would be achieved by reducing well drilling costs, stimulating well flow rates, reducing powerplant capital costs, increasing powerplant efficiency and utilization, and developing more effective exploration techniques for locating and assessing high-quality resources. (auth)

Bloomster, C.H.; Knutsen, C.A.

1976-04-23T23:59:59.000Z

232

Economics of geothermal electricity generation from hydrothermal resources  

SciTech Connect

The most important factors affecting the economics of geothermal electricity production are the wellhead temperature or enthalpy, the well flow rate, and the cost of the wells. The capital cost of the powerplant is significant, but not highly sensitive to these resource characteristics. The optimum geothermal plant size will remain small, usually in the 50-100 MWe range. Therefore, the opportunities for achieving significant cost reductions through ''economies of scale'' are small. The steam and binary power cycles are closely competitive; the binary cycle appears better when the brine temperature is below 200-230/sup 0/C, and the flashed steam cycle appears better above this range. Geothermal electricity production is capital intensive; over 75 percent of the generation costs are fixed costs related to capital investment. Technological advances are needed to reduce costs from marginal geothermal resources and thus to stimulate geothermal energy development. Significant reduction in power costs would be achieved by reducing well drilling costs, stimulating well flow rates, reducing powerplant capital costs, increasing powerplant efficiency and utilization, and developing more effective exploration techniques for locating and assessing high-quality resources. (auth)

Bloomster, C.H.; Knutsen, C.A.

1976-04-23T23:59:59.000Z

233

Geothermal energy for Hawaii: a prospectus  

DOE Green Energy (OSTI)

An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

Yen, W.W.S.; Iacofano, D.S.

1981-01-01T23:59:59.000Z

234

Geothermal Energy Development annual report 1979  

DOE Green Energy (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

235

Geothermal Energy Association | Open Energy Information  

Open Energy Info (EERE)

Energy Association Energy Association Jump to: navigation, search Logo: Geothermal Energy Association Name Geothermal Energy Association Address 209 Pennsylvania Avenue SE Place Washington, DC Zip 20003 Sector Geothermal energy Product Trade association Website http://www.geo-energy.org Coordinates 38.887103°, -77.003032° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.887103,"lon":-77.003032,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

236

Geothermal energy abstract sets. Special report No. 14  

DOE Green Energy (OSTI)

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

237

Potential for heating western tree seedling greenhouses with geothermal energy  

DOE Green Energy (OSTI)

The technology to apply geothermal energy to greenhousing is available. Geothermal energy is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. Factors influencing greenhouse heating needs include climate, elevation, structure, and growing regime, as well as the attributes of the geothermal energy source: heat, quantity, quality. Greenhouse sites should be evaluated for suitability, size, availability of labor supply, markets, etc. Problems exist in developing any new energy source, but a sound economic assessment based on good engineering and geological advice will illustrate advantages and problems. When considering geothermal energy as an alternative energy source these steps are recommended: (1) Determine the geographic region greenhouse will serve. (2) Tabulate known geothermal resources within region. (3) Rank potential locations in terms of geothermal fluid chemistry and location. (4) Obtain data on chemistry, flow potential, temperature, and probable lifespan of resources. (5) Conduct economic analysis of proposed greenhouse operation using these geothermal sources; compare with optimum fossil fuel economics and long term availability in the region. (6) Proceed with project if economically attractive.

McDonald, S.E.; Austin, C.F.; Lott, J.R.

1976-11-01T23:59:59.000Z

238

Internal/External Split Field Generator - Energy Innovation Portal  

Wind Energy Vehicles and Fuels Industrial Technologies Hydropower, Wave and Tidal Geothermal Internal/External Split Field Generator Oak Ridge ...

239

Geothermal energy geopressure subprogram  

DOE Green Energy (OSTI)

The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

Not Available

1981-02-01T23:59:59.000Z

240

Feasibility study of geothermal energy for heating greenhouses. Final report  

SciTech Connect

The technical feasibility of heating greenhouses with geothermal heat is established. Off-the-shelf equipment suitable for geothermal heating is readily available. A procedure is given to economically examine a geothermal site for its suitability. Generally, geothermal heating systems are capital intensive. Where the geothermal energy is free the geothermal system is very attractive and where the cost of geothermal heat is the same as other energy, Btu/$, geothermal heat is unattractive.

LaFrance, L.J.

1979-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Irrigation pumping using geothermal energy  

DOE Green Energy (OSTI)

The potential of using geothermal energy in an isobutane binary system to drive directly a cluster of irrigation pumps was evaluated. This three well geothermal system, based at 150{sup 0}C (302{sup 0}F) resource at 2000 m (6560 ft), would cost an estimated $7,800,000 in capital investment to provide 6000 gpm of irrigation water from 12 water wells. It would serve approximately 4.5 square miles of irrigated agricultural land, with the delivered water costing $106.76 per acre-foot. This compares with an estimated cost of $60.78 per acre-foot for a conventional irrigation system driven by natural gas at the current price (1980 dollars) of $2.72/mm Btu. It is obvious that if natural gas prices continue to rise, or if geothermal resources can be found at depths less than 2000 meters, then the geothermal irrigation pumping system would be attractive economically. The importance of water to the economy and growth of Arizona was summarized. Total water consumption in Arizona is about 7,600,000 acre-feet annually of which about 87% is used for agriculture. Total supply from the Colorado River and water runoff is only 2,600,000 acre-feet per year, resulting in a net potable groundwater depletion of about 4,000,000 acre-feet per year assuming a recharge rate of about 1,000,000 acre-feet per year.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

242

Potential for heating western tree seedling greenhouses with geothermal energy  

DOE Green Energy (OSTI)

Geothermal energy is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. The wisest approach to using geothermal energy is to seek out and use known resources. Factors influencing greenhouse heating needs include climate, elevation, structure, and growing regime, as well as the attributes of the geothermal energy source: heat, quantity, quality. Greenhouse sites should be evaluated for suitability, size, availability of labor supply, markets, etc. A sound economic assessment based on good engineering and geological advice will illustrate advantages and problems. When considering geothermal energy as an alternative energy source these steps are recommended: (1) determine the geographic region greenhouse will serve; (2) tabulate known geothermal resources within region; (3) rank potential locations in terms of geothermal fluid chemistry and location; (4) obtain data on chemistry, flow potential, temperature, and probable lifespan of resources; (5) conduct economic analysis of proposed greenhouse operation using these geothermal sources; compare with optimum fossil fuel economics and long term availability in the region; (6) proceed with project if economically attractive.

McDonald, S.E.; Austin, C.F.; Lott, J.R.

1976-11-01T23:59:59.000Z

243

Category:Geothermal Projects | Open Energy Information  

Open Energy Info (EERE)

Projects Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Geothermal Projects Each year different agencies report the upcoming geothermal developing projects. The Geothermal Energy Association (GEA) publishes their findings in their annual US Geothermal Power Production and Development Update, in which it lists geothermal projects in one of four phases of development. SNL Financial reports geothermal projects and they collect their information from a variety of sources including EIA, company websites, press releases, and various other sources. The list below is intended to be a centralized list of geothermal projects from a variety of reporting sources. This list of projects may be sourced from GEA, SNL, EIA, press releases, or individual developers.

244

A guide to geothermal energy and the environment  

DOE Green Energy (OSTI)

Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

Kagel, Alyssa; Bates, Diana; Gawell, Karl

2005-04-22T23:59:59.000Z

245

A guide to geothermal energy and the environment  

SciTech Connect

Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

Kagel, Alyssa; Bates, Diana; Gawell, Karl

2005-04-22T23:59:59.000Z

246

Geothermal Energy Association | Open Energy Information  

Open Energy Info (EERE)

(Redirected from GEA) (Redirected from GEA) Jump to: navigation, search Logo: Geothermal Energy Association Name Geothermal Energy Association Address 209 Pennsylvania Avenue SE Place Washington, DC Zip 20003 Sector Geothermal energy Product Trade association Website http://www.geo-energy.org Coordinates 38.887103°, -77.003032° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.887103,"lon":-77.003032,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

247

Geothermal Power of America | Open Energy Information  

Open Energy Info (EERE)

Power of America Power of America Jump to: navigation, search Name Geothermal Power of America Place Los Angeles, California Sector Geothermal energy Product A Nevada-based company focusing on geothermal project development and operation. References Geothermal Power of America[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Geothermal Power of America is a company located in Los Angeles, California . References ↑ "Geothermal Power of America" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Power_of_America&oldid=345810" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

248

Property:NbrGeneratingUnits | Open Energy Information  

Open Energy Info (EERE)

NbrGeneratingUnits NbrGeneratingUnits Jump to: navigation, search Property Name NbrGeneratingUnits Property Type Number Description Number of Generating Units. Pages using the property "NbrGeneratingUnits" Showing 12 pages using this property. B BLM Geothermal Facility + 3 + Blundell 1 Geothermal Facility + 1 + Blundell 2 Geothermal Facility + 1 + E ENEL Salt Wells Geothermal Facility + 2 + F Faulkner I Energy Generation Facility + 6 + N Navy I Geothermal Facility + 3 + Navy II Geothermal Facility + 3 + Neal Hot Springs Geothermal Power Plant + 3 + North Brawley Geothermal Power Plant + 5 + P Puna Geothermal Facility + 10 + R Raft River Geothermal Facility + 1 + Rocky Mountain Oilfield Testing Center + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:NbrGeneratingUnits&oldid=400184#SMWResults"

249

Geothermal Areas | Open Energy Information  

Open Energy Info (EERE)

Geothermal Areas Geothermal Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Areas Geothermal Areas are specific locations of geothermal potential (e.g., Coso Geothermal Area). The base set of geothermal areas used in this database came from the 253 geothermal areas identified by the USGS in their 2008 Resource Assessment.[1] Additional geothermal areas were added, as needed, based on a literature search and on projects listed in the GTP's 2011 database of funded projects. Add.png Add a new Geothermal Resource Area Map of Areas List of Areas Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":2500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

250

GEA Honors Geothermal Leaders - Energy Innovation Portal  

The project would produce power and cascade the remaining energy to support an existing geothermal district heating system and future greenhouse and ...

251

NREL: Energy Analysis - Geothermal Technology Analysis Models...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration Energy Analysis Search More Search Options Site Map Printable Version Geothermal Technology Analysis Models and Tools The following is a list of models and tools...

252

Occupational hazards associated with geothermal energy  

DOE Green Energy (OSTI)

Exposure to noise, H{sub 2}S, NH/sub 3/, hazardous chemicals and wastes, and heat are the major occupational health hazards associated with geothermal energy development - from drilling to power production. Exposures to these agents, although not unique to geothermal energy development, occur in situations peculiar to the industry. Reports show that occupational illnesses associated with geothermal energy development are increasing, while the corresponding rates from all power production are decreasing. Most of those related to geothermal energy result from the H{sub 2}S-abatement systems used in response to environmental pollution regulations.

Hahn, J.L.

1979-07-20T23:59:59.000Z

253

Geothermal Engineering Ltd | Open Energy Information  

Open Energy Info (EERE)

Engineering Ltd." Retrieved from "http:en.openei.orgwindex.php?titleGeothermalEngineeringLtd&oldid345808" Categories: Clean Energy Organizations Companies...

254

Geothermal Technologies Available for Licensing - Energy ...  

Site Map; Printable Version; Share this resource. Send a link to Geothermal Technologies Available for Licensing - Energy Innovation Portalto someone by E-mail

255

List of Geothermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 1258 Geothermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1258) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

256

Installed Geothermal Capacity/Data | Open Energy Information  

Open Energy Info (EERE)

Installed Geothermal Capacity/Data Installed Geothermal Capacity/Data < Installed Geothermal Capacity Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W

257

Map of Geothermal Facilities/Data | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facilities/Data Geothermal Facilities/Data < Map of Geothermal Facilities Jump to: navigation, search Download a CSV file of the table below: CSV FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate HeatRate WindTurbineManufacturer FacilityStatus Aidlin Geothermal Facility Geothermal Steam Power Plant Calpine Geysers Geothermal Area 20 MW20,000 kW 20,000,000 W 20,000,000,000 mW 0.02 GW 2.0e-5 TW 2 1989 Amedee Geothermal Facility Binary Cycle Power Plant Amedee Geothermal Venture Honey Lake, California 1.6 MW1,600 kW 1,600,000 W 1,600,000,000 mW 0.0016 GW 1.6e-6 TW 2 1988 BLM Geothermal Facility Double Flash Coso Operating Co. Coso Junction, California, 90 MW90,000 kW 90,000,000 W 90,000,000,000 mW

258

Analysis Of Geothermal Resources In Northern Switzerland | Open Energy  

Open Energy Info (EERE)

In Northern Switzerland In Northern Switzerland Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Analysis Of Geothermal Resources In Northern Switzerland Details Activities (0) Areas (0) Regions (0) Abstract: In Europe, geothermal energy becomes an attractive alternative for many conventional fuel based energy scenarios. In a time when actual political discussion favors regenerative energies, geothermal energy is an essential option since it offers the advantage of providing band energy. Recent studies provide evidence for large economical competitiveness of low-enthalpy, direct-use systems for heating and high-enthalpy systems for cogeneration (combined heat and power, CHP) or pure power generation. The study presented herein develops a detailed subsurface model of possible

259

Enthalpy restoration in geothermal energy processing system  

DOE Patents (OSTI)

A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

Matthews, Hugh B. (Boylston, MA)

1983-01-01T23:59:59.000Z

260

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy...

262

Property Tax Exemption for Wind and Geothermal Energy Producers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Savings Property Tax Exemption for Wind and Geothermal Energy Producers Property Tax Exemption for Wind and Geothermal Energy Producers...

263

Energy Department Finalizes Loan Guarantee for Ormat Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Energy Department Finalizes Loan Guarantee for Ormat Geothermal Project in Nevada Energy Department Finalizes Loan Guarantee for Ormat Geothermal...

264

The Department of Energy Geothermal Legacy Reports Collection  

Office of Scientific and Technical Information (OSTI)

Accelerator Find DOE Collections Enter Search Terms GO The Department of Energy Geothermal Legacy Reports Collection The Department of Energy Geothermal Legacy Reports...

265

Changes related to "Application Of Geothermal Energy To The Supply...  

Open Energy Info (EERE)

icon Changes related to "Application Of Geothermal Energy To The Supply Of Electricity In Rural Areas" Application Of Geothermal Energy To The Supply Of Electricity...

266

Blundell 2 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Blundell 2 Geothermal Facility Blundell 2 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blundell 2 Geothermal Facility General Information Name Blundell 2 Geothermal Facility Facility Blundell 2 Geothermal Facility Sector Geothermal energy Location Information Address Roosevelt Hot Springs Road Location Milford, Utah Zip 84751 Coordinates 38.488725220538°, -112.85238862038° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.488725220538,"lon":-112.85238862038,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

Geothermal/Environment | Open Energy Information  

Open Energy Info (EERE)

Environment Environment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Environmental Impact Life-Cycle Assessments Environmental Regulations Regulatory Roadmap The Geysers - a dry steam geothermal field in California emits steam into the atmosphere. The impact that geothermal energy has on the environment depends on the type of cooling and conversion technologies used. Environmental impacts are often discussed in terms of: Water Consumption Geothermal power production utilizes water in two major ways. The first method, which is inevitable in geothermal production, uses hot water from an underground reservoir to power the facility. The second would be

268

Phase 1 report: investigation of geothermal energy information sources  

DOE Green Energy (OSTI)

A subject screening list was developed which would be used by acquisitions specialists as a guide to the orientation of pertinent literature. The subject screening list was derived primarily from the geothermal subset of the ERDA Energy Thesaurus and from the ERDA Energy Information Data Base Subject Categories (TID-4584). The subject screening list is included. Subsequent to preparation of the subject screening list, a core list of serial publications containing geothermal energy information was generated by SIS library scientists. This list was corelated with the ERDA-TIC serial publications list. Included in both lists is an estimate of the annual geothermal information yield of the serial sources. A listing of sources of geothermal energy information other than serial publications and the conclusions, including methods of acquisitioning to be utilized and the estimated annual volume of information from all sources are presented.

Not Available

1976-07-14T23:59:59.000Z

269

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

low-temperature geothermal resources will spawn a new domestic industry, lead to job creation, and would be a positive step toward increasing domestic energy supplies and reducing...

270

Engineered Geothermal Systems Energy Return On Energy Investment  

SciTech Connect

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. Too often comparisons of energy systems use ??efficiency? when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electricity delivered to the consumer compared to the energy consumed to construct, operate, and decommission the facility. Critical factors in determining the EROI of Engineered Geothermal Systems (EGS) are examined in this work. These include the input energy embodied into the system. Embodied energy includes the energy contained in the materials, as well as, that consumed in each stage of manufacturing from mining the raw materials to assembling the finished system. Also critical are the system boundaries and value of the energy ?? heat is not as valuable as electrical energy. The EROI of an EGS depends upon a number of factors that are currently unknown, for example what will be typical EGS well productivity, as well as, reservoir depth, temperature, and temperature decline rate. Thus the approach developed is to consider these factors as parameters determining EROI as a function of number of wells needed. Since the energy needed to construct a geothermal well is a function of depth, results are provided as a function of well depth. Parametric determination of EGS EROI is calculated using existing information on EGS and US Department of Energy (DOE) targets and is compared to the ??minimum? EROI an energy production system should have to be an asset rather than a liability.

Mansure, A J

2012-12-10T23:59:59.000Z

271

Technology assessment of geothermal energy resource development  

DOE Green Energy (OSTI)

Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

Not Available

1975-04-15T23:59:59.000Z

272

GeothermEx Inc | Open Energy Information  

Open Energy Info (EERE)

GeothermEx Inc GeothermEx Inc Jump to: navigation, search Logo: GeothermEx Inc Name GeothermEx Inc Place Richmond, California Zip 94804-5829 Sector Geothermal energy Product Integrated geothermal energy consulting company. Website http://www.geothermex.com/ Coordinates 37.5407°, -77.433654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5407,"lon":-77.433654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

274

Pollution Control Guidance for Geothermal Energy Development  

DOE Green Energy (OSTI)

This report summarizes the EPA regulatory approach toward geothermal energy development. The state of knowledge is described with respect to the constituents of geothermal effluents and emissions, including water, air, solid wastes, and noise. Pollutant effects are discussed. Pollution control technologies that may be applicable are described along with preliminary cost estimates for their application. Finally discharge and emission limitations are suggested that may serve as interim guidance for pollution control during early geothermal development.

Hartley, Robert P.

1978-06-01T23:59:59.000Z

275

Hoteliers Strike Gold with Geothermal Alaskan Resort | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoteliers Strike Gold with Geothermal Alaskan Resort Hoteliers Strike Gold with Geothermal Alaskan Resort Hoteliers Strike Gold with Geothermal Alaskan Resort November 23, 2009 - 6:31pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Bernie estimates he saves anywhere from $300,000 to $400,000 in electricity costs alone each year using geothermal power generators rather than diesel. Bernie Karl knows a gold mine when he sees one. In the 1970s, Bernie and his wife Connie moved to Alaska and mined gold in the frontier before eventually landing their dream job of running Chena Hot Springs Resort, just outside of Fairbanks. "We always wanted to own a hot springs," Bernie says. In 1998, Bernie bought the Chena Hot Springs Resort, and the 22-building

276

Hoteliers Strike Gold with Geothermal Alaskan Resort | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hoteliers Strike Gold with Geothermal Alaskan Resort Hoteliers Strike Gold with Geothermal Alaskan Resort Hoteliers Strike Gold with Geothermal Alaskan Resort November 23, 2009 - 6:31pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What are the key facts? Bernie estimates he saves anywhere from $300,000 to $400,000 in electricity costs alone each year using geothermal power generators rather than diesel. Bernie Karl knows a gold mine when he sees one. In the 1970s, Bernie and his wife Connie moved to Alaska and mined gold in the frontier before eventually landing their dream job of running Chena Hot Springs Resort, just outside of Fairbanks. "We always wanted to own a hot springs," Bernie says. In 1998, Bernie bought the Chena Hot Springs Resort, and the 22-building

277

Property:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

Property Name GeothermalRegion Property Name GeothermalRegion Property Type Page Pages using the property "GeothermalRegion" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + Northern Basin and Range Geothermal Region + Adak Geothermal Area + Alaska Geothermal Region + Aidlin Geothermal Facility + Holocene Magmatic Geothermal Region + Akun Strait Geothermal Area + Alaska Geothermal Region + Akutan Fumaroles Geothermal Area + Alaska Geothermal Region + Akutan Geothermal Project + Alaska Geothermal Region + Alum Geothermal Area + Walker-Lane Transition Zone Geothermal Region + Alum Geothermal Project + Walker-Lane Transition Zone Geothermal Region + Alvord Hot Springs Geothermal Area + Northwest Basin and Range Geothermal Region +

278

DOE Announces Investment of up to $84 Million in Geothermal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment of up to $84 Million in Geothermal Energy Investment of up to $84 Million in Geothermal Energy DOE Announces Investment of up to $84 Million in Geothermal Energy March 4, 2009 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu today announced the release of two Funding Opportunity Announcements (FOAs) for up to $84 million to support the development of Enhanced Geothermal Systems (EGS). Geothermal energy technologies use energy from the earth to heat buildings and generate electricity. Enhanced Geothermal Systems offer the potential to extend geothermal resources to larger areas of the western United States, as well as into new geographic areas of the entire country. These projects will help support the Administration's efforts to invest in clean energy technologies, create millions of new jobs, end our addiction to

279

Geothermal Energy Contract List: Fiscal Year 1990  

DOE Green Energy (OSTI)

The Geothermal Division of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The Geothermal Energy R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. The program is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. The Geothermal Energy Contract List, Fiscal Year 1990 is a tabulation of geothermal R D contracts that were begun, ongoing, or completed during FY 1990 (October 1, 1989 through September 30, 1990). The R D activities are performed by national laboratories or industrial, academic, and nonprofit research institutions. The contract list is organized in accordance with the Geothermal Division R D work breakdown structure. The structure hierarchy consists of Resource Category (hydrothermal, geopressured-geothermal, hot dry rock, and magma energy), Project (hard rock penetration, reservoir technology, etc.), and Task (lost circulation control, rock penetration mechanics, etc.). For each contract, the contractor, the FY 1990 funding, and a brief description of the milestones planned for FY 1991 are provided.

Not Available

1991-10-01T23:59:59.000Z

280

Projects Geothermal | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for ProjectsGeothermal Citation Terra-Gen Power LLC. ProjectsGeothermal...

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Geothermal Resources August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in...

282

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

DOE Green Energy (OSTI)

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

Not Available

1989-02-01T23:59:59.000Z

283

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

SciTech Connect

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

1989-02-01T23:59:59.000Z

284

The cost of geothermal energy in the western US region:a portfolio-based approach a mean-variance portfolio optimization of the regions' generating mix to 2013.  

DOE Green Energy (OSTI)

Energy planning represents an investment-decision problem. Investors commonly evaluate such problems using portfolio theory to manage risk and maximize portfolio performance under a variety of unpredictable economic outcomes. Energy planners need to similarly abandon their reliance on traditional, ''least-cost'' stand-alone technology cost estimates and instead evaluate conventional and renewable energy sources on the basis of their portfolio cost--their cost contribution relative to their risk contribution to a mix of generating assets. This report describes essential portfolio-theory ideas and discusses their application in the Western US region. The memo illustrates how electricity-generating mixes can benefit from additional shares of geothermal and other renewables. Compared to fossil-dominated mixes, efficient portfolios reduce generating cost while including greater renewables shares in the mix. This enhances energy security. Though counter-intuitive, the idea that adding more costly geothermal can actually reduce portfolio-generating cost is consistent with basic finance theory. An important implication is that in dynamic and uncertain environments, the relative value of generating technologies must be determined not by evaluating alternative resources, but by evaluating alternative resource portfolios. The optimal results for the Western US Region indicate that compared to the EIA target mixes, there exist generating mixes with larger geothermal shares at equal-or-lower expected cost and risk.

Beurskens, Luuk (ECN-Energy Research Centre of the Netherland); Jansen, Jaap C. (ECN-Energy Research Centre of the Netherlands); Awerbuch, Shimon Ph.D. (.University of Sussex, Brighton, UK); Drennen, Thomas E.

2005-09-01T23:59:59.000Z

285

Steamboat Hills Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat Hills Geothermal Facility General Information Name Steamboat Hills Geothermal Facility Facility Steamboat Hills Sector Geothermal energy Location Information Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5296329,"lon":-119.8138027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Socrates Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Socrates Geothermal Facility Socrates Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Socrates Geothermal Facility General Information Name Socrates Geothermal Facility Facility Socrates Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.768706898655°, -122.74743318558° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.768706898655,"lon":-122.74743318558,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Blundell 1 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Blundell 1 Geothermal Facility Blundell 1 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blundell 1 Geothermal Facility General Information Name Blundell 1 Geothermal Facility Facility Blundell 1 Sector Geothermal energy Location Information Address Roosevelt Hot Springs Road Location Milford, Utah Zip 84751 Coordinates 38.489758141149°, -112.85339713097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.489758141149,"lon":-112.85339713097,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Heat Pumps Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest winter nights, compared to 175% to 250% for air-source heat pumps on cool

289

Aidlin Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Aidlin Geothermal Facility Aidlin Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aidlin Geothermal Facility General Information Name Aidlin Geothermal Facility Facility Aidlin Sector Geothermal energy Location Information Location Geysers Area Coordinates 38.833874378195°, -122.88103401661° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.833874378195,"lon":-122.88103401661,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

Grant Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Grant Geothermal Facility General Information Name Grant Geothermal Facility Facility Grant Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.779095546344°, -122.75466442108° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.779095546344,"lon":-122.75466442108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

291

Vulcan Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Vulcan Geothermal Facility Vulcan Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Vulcan Geothermal Facility General Information Name Vulcan Geothermal Facility Facility Vulcan Sector Geothermal energy Location Information Location Calipatria, California Coordinates 33.1255957°, -115.5141538° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1255957,"lon":-115.5141538,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Eagle Rock Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Eagle Rock Geothermal Facility Eagle Rock Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eagle Rock Geothermal Facility General Information Name Eagle Rock Geothermal Facility Facility Eagle Rock Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.826770222484°, -122.80002593994° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.826770222484,"lon":-122.80002593994,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Navy I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Navy I Geothermal Facility Navy I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Navy I Geothermal Facility General Information Name Navy I Geothermal Facility Facility Navy I Sector Geothermal energy Location Information Location Coso Junction, California Coordinates 36.03735294063°, -117.79768466949° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.03735294063,"lon":-117.79768466949,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Galena 3 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Galena 3 Geothermal Facility Galena 3 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Galena 3 Geothermal Facility General Information Name Galena 3 Geothermal Facility Facility Galena 3 Sector Geothermal energy Location Information Address 1010 Power Plant Drive Location Reno, Nevada Zip 89521 Coordinates 39.388680147984°, -119.74885225296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.388680147984,"lon":-119.74885225296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Beowawe Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Beowawe Geothermal Facility General Information Name Beowawe Geothermal Facility Facility Beowawe Sector Geothermal energy Location Information Location Beowawe, Nevada Coordinates 40.554765353152°, -116.61741614342° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.554765353152,"lon":-116.61741614342,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

PLES 1 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

PLES 1 Geothermal Facility PLES 1 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home PLES 1 Geothermal Facility General Information Name PLES 1 Geothermal Facility Facility PLES-1 Sector Geothermal energy Location Information Location Sierra Nevada Mtns.-Mono, California Coordinates 37.645431°, -118.909434° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.645431,"lon":-118.909434,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

297

Heber Plant Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Plant Geothermal Facility Plant Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Plant Geothermal Facility General Information Name Heber Plant Geothermal Facility Facility Heber Plant Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

Steamboat I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Steamboat I Geothermal Facility Steamboat I Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat I Geothermal Facility General Information Name Steamboat I Geothermal Facility Facility Steamboat I Sector Geothermal energy Location Information Location Washoe County, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

Geothermal Drilling Geothermal Drilling Jump to: navigation, search Logo: Alpine Geothermal Drilling Name Alpine Geothermal Drilling Address PO Box 141 Place Kittredge, Colorado Zip 80457 Sector Geothermal energy Product Geothermal drilling solutions, subsidiary of Rocky Mountain GeoExploration Inc Website http://www.alpinegeothermal.co Coordinates 39.64888°, -105.2984842° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.64888,"lon":-105.2984842,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Heber II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber II Geothermal Facility General Information Name Heber II Geothermal Facility Facility Heber II Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Sonoma Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Sonoma Geothermal Facility Sonoma Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sonoma Geothermal Facility General Information Name Sonoma Geothermal Facility Facility Sonoma Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.790252038086°, -122.75608062744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.790252038086,"lon":-122.75608062744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Stillwater Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Facility General Information Name Stillwater Geothermal Facility Facility Stillwater Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622°, -118.778963° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.4727622,"lon":-118.778963,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

Steamboat III Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Steamboat III Geothermal Facility Steamboat III Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat III Geothermal Facility General Information Name Steamboat III Geothermal Facility Facility Steamboat III Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Grace Geothermal Inc | Open Energy Information  

Open Energy Info (EERE)

Geothermal Inc Geothermal Inc Jump to: navigation, search Name Grace Geothermal Inc Place Painesville, Ohio Zip 44077 Sector Geothermal energy Product Grace Geothermal installs geothermal pumps in Ohio. Coordinates 41.724205°, -81.245244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.724205,"lon":-81.245244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Elmore Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Elmore Geothermal Facility Elmore Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Elmore Geothermal Facility General Information Name Elmore Geothermal Facility Facility Elmore Sector Geothermal energy Location Information Address 786 W Sinclair Rd. Location Calipatria, California Zip 92233 Coordinates 33.177394744425°, -115.60355186462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.177394744425,"lon":-115.60355186462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Leathers Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Leathers Geothermal Facility Leathers Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Leathers Geothermal Facility General Information Name Leathers Geothermal Facility Facility Leathers Sector Geothermal energy Location Information Address 342 W Sinclair Rd Location Calipatria, California Zip 92233 Coordinates 33.178238843837°, -115.56443452835° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.178238843837,"lon":-115.56443452835,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

Property:Geothermal/Impacts | Open Energy Information  

Open Energy Info (EERE)

Impacts Impacts Jump to: navigation, search Property Name Geothermal/Impacts Property Type Text Description Impacts Pages using the property "Geothermal/Impacts" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + If successful, this would mark a major advance in our ability to image potentially productive fluid pathways in fracture-dominated systems. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Successful application of techniques could allow replication to buildings across campus and in City of Butte, including county court house, the Federal court building, World Museum of Mining, and numerous privately owned historic buildings.

308

Calistoga Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Calistoga Geothermal Facility Calistoga Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Calistoga Geothermal Facility General Information Name Calistoga Geothermal Facility Facility Calistoga Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.789549581861°, -122.74509429932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.789549581861,"lon":-122.74509429932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Dixie Valley Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Dixie Valley Geothermal Facility Dixie Valley Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Facility General Information Name Dixie Valley Geothermal Facility Facility Dixie Valley Sector Geothermal energy Location Information Location Dixie Valley, Nevada Coordinates 39.966973991529°, -117.85519123077° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.966973991529,"lon":-117.85519123077,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Steamboat IA Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

IA Geothermal Facility IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility Facility Steamboat IA Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

311

Richard Burdett Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Richard Burdett Geothermal Facility Richard Burdett Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Richard Burdett Geothermal Facility General Information Name Richard Burdett Geothermal Facility Facility Richard Burdett Sector Geothermal energy Location Information Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5296329,"lon":-119.8138027,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Galena 2 Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Galena 2 Geothermal Facility Galena 2 Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Galena 2 Geothermal Facility General Information Name Galena 2 Geothermal Facility Facility Galena 2 Sector Geothermal energy Location Information Address 20590 Wedge Parkway Location Reno, Nevada Zip 89511 Coordinates 39.390554087044°, -119.75488185883° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.390554087044,"lon":-119.75488185883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Heber South Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

South Geothermal Facility South Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber South Geothermal Facility General Information Name Heber South Geothermal Facility Facility Heber South Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Quicksilver Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Quicksilver Geothermal Facility Quicksilver Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Quicksilver Geothermal Facility General Information Name Quicksilver Geothermal Facility Facility Quicksilver Sector Geothermal energy Location Information Location Clear Lake, California Coordinates 38.766331182131°, -122.70672798157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.766331182131,"lon":-122.70672798157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

Gould Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Gould Geothermal Facility Gould Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gould Geothermal Facility General Information Name Gould Geothermal Facility Facility Gould Sector Geothermal energy Location Information Location Imperial Valley, California Coordinates 33.03743°, -115.621591° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.03743,"lon":-115.621591,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Amedee Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Amedee Geothermal Facility Amedee Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Amedee Geothermal Facility General Information Name Amedee Geothermal Facility Facility Amedee Sector Geothermal energy Location Information Address US 395 at Road A3, Amedee, CA Location Honey Lake, California Zip 96127 Coordinates 40.368131779392°, -120.26488244534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.368131779392,"lon":-120.26488244534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Navy II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Navy II Geothermal Facility General Information Name Navy II Geothermal Facility Facility Navy II Sector Geothermal energy Location Information Location Coso Junction, California Coordinates 36.018975669535°, -117.79197692871° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.018975669535,"lon":-117.79197692871,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

318

Ormesa IE Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Ormesa IE Geothermal Facility Ormesa IE Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ormesa IE Geothermal Facility General Information Name Ormesa IE Geothermal Facility Facility Ormesa IE Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.804103492985°, -115.2475476265° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.804103492985,"lon":-115.2475476265,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

319

Ridgeline Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Ridgeline Geothermal Facility Ridgeline Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ridgeline Geothermal Facility General Information Name Ridgeline Geothermal Facility Facility Ridgeline Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.814833644874°, -122.80135631561° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.814833644874,"lon":-122.80135631561,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

320

Wabuska Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Wabuska Geothermal Facility Wabuska Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wabuska Geothermal Facility General Information Name Wabuska Geothermal Facility Facility Wabuska Sector Geothermal energy Location Information Location Wabuska, Nevada Coordinates 39.1438073°, -119.1832104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.1438073,"lon":-119.1832104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Bear Canyon Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Canyon Geothermal Facility Canyon Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bear Canyon Geothermal Facility General Information Name Bear Canyon Geothermal Facility Facility Bear Canyon Sector Geothermal energy Location Information Location Clear Lake, California, Coordinates 38.762851116528°, -122.69217967987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.762851116528,"lon":-122.69217967987,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

Lightning Dock Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Lightning Dock Geothermal Facility General Information Name Lightning Dock Geothermal Facility Facility Lightning Dock Sector Geothermal energy Location Information Location Fallon, New Mexico Coordinates 35.115059°, -106.604598° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.115059,"lon":-106.604598,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

323

Cobb Creek Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Cobb Creek Geothermal Facility Cobb Creek Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cobb Creek Geothermal Facility General Information Name Cobb Creek Geothermal Facility Facility Cobb Creek Sector Geothermal energy Location Information Location The Geysers, Californi Coordinates 38.804734473609°, -122.78414726257° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.804734473609,"lon":-122.78414726257,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Ormesa II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ormesa II Geothermal Facility General Information Name Ormesa II Geothermal Facility Facility Ormesa II Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.787238448581°, -115.24778366089° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.787238448581,"lon":-115.24778366089,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Sulphur Springs Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Geothermal Facility Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sulphur Springs Geothermal Facility General Information Name Sulphur Springs Geothermal Facility Facility Sulphur Springs Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.786346628248°, -122.78226971626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.786346628248,"lon":-122.78226971626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

326

Steamboat II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

II Geothermal Facility II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat II Geothermal Facility General Information Name Steamboat II Geothermal Facility Facility Steamboat II Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Ormesa IH Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Ormesa IH Geothermal Facility Ormesa IH Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ormesa IH Geothermal Facility General Information Name Ormesa IH Geothermal Facility Facility Ormesa IH Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.784334091398°, -115.24750471115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.784334091398,"lon":-115.24750471115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

CE Turbo Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Turbo Geothermal Facility Turbo Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home CE Turbo Geothermal Facility General Information Name CE Turbo Geothermal Facility Facility CE Turbo Sector Geothermal energy Location Information Address 7001 Gentry Road Location Calipatria, California Zip 92233 Coordinates 33.164229333373°, -115.61447381973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.164229333373,"lon":-115.61447381973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

List of Geothermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Geothermal Incentives Geothermal Incentives Jump to: navigation, search The following contains the list of 1895 Geothermal Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1895) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment

330

Electrical Generating Capacities of Geothermal Slim Holes  

DOE Green Energy (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

331

Template:GeothermalRegion | Open Energy Information  

Open Energy Info (EERE)

GeothermalRegion GeothermalRegion Jump to: navigation, search This is the GeothermalRegion template. To define a new Geothermal Region, please use the Geothermal Region form. Parameters Map - The map of the region. State - The state in which the resource area is located. Area - The estimated size of the area in which the resource area is located, in km². IdentifiedHydrothermalPotential - The identified hydrothermal electricity generation potential in megawatts, from the USGS resource estimate. UndiscoveredHydrothermalPotential - The estimated undiscovered hydroelectric generation potential in megawatts from the USGS resource estimate. PlannedCapacity - The total planned capacity for the region in megawatts. Number of Plants Included in Planned Estimate - The number of plants

332

GEF-Colombia-Geothermal Energy Grant | Open Energy Information  

Open Energy Info (EERE)

Colombia-Geothermal Energy Grant Colombia-Geothermal Energy Grant Jump to: navigation, search Name GEF-Colombia-Geothermal Energy Grant Agency/Company /Organization Global Environment Facility (GEF), Inter-American Development Bank (IDB) Sector Energy Focus Area Geothermal Topics Finance, Implementation, Background analysis Website http://www.iadb.org/en/news/ne Program Start 2011 Country Colombia UN Region South America References Colombia promotes geothermal energy with IDB support[1] GEF-Colombia-Geothermal Energy Grant Screenshot "Colombia will promote investment in non-conventional renewable energy sources and lay the groundwork for its first geothermal project with a $2.7 million grant from the Global Environment Facility (GEF) administered by the Inter-American Development Bank (IDB). "

333

Geothermal energy: obstacles and uncertainties impede its widespread use  

DOE Green Energy (OSTI)

A perspective on geothermal energy's development and potential and a discussion of Federal actions needed to help accelerate geothermal development and use are included. (MHR)

Staats E.B.

1980-01-18T23:59:59.000Z

334

Geothermal: Sponsored by OSTI -- GeoEnergy technology  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- GeoEnergy technology Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

335

Geothermal: Sponsored by OSTI -- Programs in Renewable Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Sponsored by OSTI -- Programs in Renewable Energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

336

Chemical Impact of Elevated CO2 on Geothermal Energy Production...  

Open Energy Info (EERE)

a heat transfer fluid yields significantly greater heat extraction rates for geothermal energy. If this technology is implemented successfully, it could increase geothermal...

337

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

icon Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to:...

338

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

339

An Investigation Of The Potential For Geothermal-Energy Recovery...  

Open Energy Info (EERE)

For Geothermal-Energy Recovery In The Calgary Area In Southern Alberta, Canada, Using Petroleum-Exploration Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

340

Overview of Geothermal Energy Anan Suleiman  

E-Print Network (OSTI)

. Additionally, about 28 gigawatts (GW) of direct geothermal heating capacity is installed for district and space University in the City of New York New York, United States as4123@columbia.edu Abstract--As economies expand to explore alternative, sustainable, and renewable sources of energy in the past few decades. Geothermal

Lavaei, Javad

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

Matthews, Hugh B. (Acton, MA)

1976-01-01T23:59:59.000Z

342

Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Regions Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regions RegionsMap2012.jpg Geothermal regions were outlined for the western United States (including Alaska and Hawaii) to identify geothermal areas, projects, and exploration trends for each region. These regions were developed based on the USGS physiographic regions (U.S. Geological Survey), and then adjusted to fit geothermal exploration parameters such as differences in geologic regime, structure, heat source, surface effects (weather, vegetation patterns, groundwater flow), and other relevant factors. The 21 regions can be seen outlined in red and overlain on the 2008 USGS Geothermal Favorability Map in Figure 1.[1] Add a new Geothermal Region List of Regions Area (km2) Mean MW

343

Combining geothermal energy capture with geologic carbon dioxide sequestration  

E-Print Network (OSTI)

of disposal, it could also be used as a working fluid in geo- thermal energy capture. CO2's high heat facility, and biofuel plants. Geothermal energy could be used for electricity generation, district heating spacing and higher permeability. [12] Fluid mobility density divided by dynamic vis- cosity (i

Saar, Martin O.

344

Geothermal energy control system and method  

DOE Patents (OSTI)

A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

Matthews, Hugh B. (Acton, MA)

1977-01-01T23:59:59.000Z

345

Unalaska geothermal exploration project. Electrical power generation analysis. Final report  

DOE Green Energy (OSTI)

The objective of this study was to determine the most cost-effective power cycle for utilizing the Makushin Volcano geothermal resource to generate electricity for the towns of Unalaska and Dutch Harbor. It is anticipated that the geothermal power plant would be intertied with a planned conventional power plant consisting of four 2.5 MW diesel-generators whose commercial operation is due to begin in 1987. Upon its completion in late 1988, the geothermal power plant would primarily fulfill base-load electrical power demand while the diesel-generators would provide peak-load electrical power and emergency power at times when the geothermal power plant would be partially or completely unavailable. This study compares the technical, environmental, and economic adequacy of five state-of-the-art geothermal power conversion processes. Options considered are single- and double-flash steam cycles, binary cycle, hybrid cycle, and total flow cycle.

Not Available

1984-04-01T23:59:59.000Z

346

Property:Geothermal/Objectives | Open Energy Information  

Open Energy Info (EERE)

Objectives Objectives Jump to: navigation, search Property Name Geothermal/Objectives Property Type Text Description Objectives Pages using the property "Geothermal/Objectives" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Apply three-dimensional/three-component (3D-3C) reflection seismic technology to define transmissive geothermal structures at the Soda Lake Geothermal area, Churchill County, NV. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Install a heat-pump system in Montana Tech's new Natural Resources Building that will (a) provide efficient, geothermally based, climate control for the building, and (b) demonstrate the efficacy of using mine waters for heat pump systems. At a minimum, the system capacity will be in the 50- to 100-ton range, but could be larger if economics warrant.

347

Geothermal Energy Technology: a current-awareness bulletin  

DOE Green Energy (OSTI)

This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

Smith, L.B. (ed.)

1983-01-15T23:59:59.000Z

348

Enhanced geothermal systems (EGS) using CO2 as working fluid - Anovelapproach for generating renewable energy with simultaneoussequestration of carbon  

Science Conference Proceedings (OSTI)

Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock. CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.

Pruess, Karsten

2006-06-07T23:59:59.000Z

349

Geothermal Energy Market in Southern California Past, Present and Future  

SciTech Connect

I'm pleased to be here as your keynote speaker from the utility industry. Today is fitting to discuss the role of an alternative/renewable energy resource such as geothermal. Three years ago today, the Exxon Valdez oil tanker spilled 11 million gallons of oil into Prince William Sound, Alaska. This ecological catastrophe was another of those periodic jolts that underscores the importance of lessening our nation's dependence on oil and increasing the use of cost-effective, environmentally benign alternative/renewable energy sources. Alternative/renewables have come a long way since the first oil crisis in 1973. Today, they provide 9 percent of electric power used in the United States. That's nearly double the figure of just two years ago. And since 1985, one-third of a new capacity has come from geothermal, solar, wind and biomass facilities. Nevertheless, geothermal supplies only about three-tenths of a percent of the country's electric power, or roughly 2,800 megawatts (MW). And most of that is in California. In fact, geothermal is California's second-largest source of renewable energy, supplying more than 5 percent of the power generated in the state. Today, I'd like to discuss the outlook for the geothermal industry, framing it within Southern California Edison's experience with geothermal and other alternative/renewable energy sources.

Budhraja, Vikram S.

1992-03-24T23:59:59.000Z

350

Geothermal Energy Market in Southern California Past, Present and Future  

DOE Green Energy (OSTI)

I'm pleased to be here as your keynote speaker from the utility industry. Today is fitting to discuss the role of an alternative/renewable energy resource such as geothermal. Three years ago today, the Exxon Valdez oil tanker spilled 11 million gallons of oil into Prince William Sound, Alaska. This ecological catastrophe was another of those periodic jolts that underscores the importance of lessening our nation's dependence on oil and increasing the use of cost-effective, environmentally benign alternative/renewable energy sources. Alternative/renewables have come a long way since the first oil crisis in 1973. Today, they provide 9 percent of electric power used in the United States. That's nearly double the figure of just two years ago. And since 1985, one-third of a new capacity has come from geothermal, solar, wind and biomass facilities. Nevertheless, geothermal supplies only about three-tenths of a percent of the country's electric power, or roughly 2,800 megawatts (MW). And most of that is in California. In fact, geothermal is California's second-largest source of renewable energy, supplying more than 5 percent of the power generated in the state. Today, I'd like to discuss the outlook for the geothermal industry, framing it within Southern California Edison's experience with geothermal and other alternative/renewable energy sources.

Budhraja, Vikram S.

1992-03-24T23:59:59.000Z

351

Symposium in the field of geothermal energy  

DOE Green Energy (OSTI)

Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

Ramirez, Miguel; Mock, John E.

1989-04-01T23:59:59.000Z

352

Sierra Geothermal's Key Find in Southern Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada July 13, 2010 - 5:17pm Addthis Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147

353

Sierra Geothermal's Key Find in Southern Nevada | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada Sierra Geothermal's Key Find in Southern Nevada July 13, 2010 - 5:17pm Addthis Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Sierra Geothermal discovered temperatures hot enough for large-scale geothermal energy production at one of its wells near Silver Peak, Nev. | Photo courtesy of Sierra Geothermal Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147

354

Energy Basics: Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Air-Source Heat Pumps Ductless Mini-Split Heat Pumps Absorption Heat Pumps Geothermal Heat Pumps Supporting Equipment for Heating & Cooling Systems Water Heating...

355

Geothermal Technologies - Energy Innovation Portal  

Electricity Transmission Geothermal Industrial Technologies Fiber-Optic Long-Line Position Sensor Sandia National ... Using only one line, instead of ...

356

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Heat Pumps Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Description An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. Duration 2:32 Topic Tax Credits, Rebates, Savings Heating & Cooling Geothermal Consumption Credit Energy Department Video MR. : We all want to save money heating or cooling our house or office, right? The answer may be under your feet, literally. Much of the heating and cooling can come from the ground, below the surface, with something called a geothermal heat pump. You see, below the frost line

357

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

358

Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan  

Science Conference Proceedings (OSTI)

Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

Not Available

1994-12-31T23:59:59.000Z

359

Raft River Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River Sector Geothermal energy Location Information Location Cassia County, Idaho Coordinates 42.358036°, -113.5728501° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.358036,"lon":-113.5728501,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Puna Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Puna Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Puna Geothermal Facility General Information Name Puna Geothermal Facility Facility Puna Sector Geothermal energy Location Information Address 14-3860 Pohioki Road Location Pāhoa, Hawaii Zip 96778 Coordinates 19.478315710339°, -154.88823652267° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.478315710339,"lon":-154.88823652267,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Heat Pumps Geothermal Heat Pumps June 24, 2012 - 5:08pm Addthis Watch how geothermal heat pumps heat and cool buildings by concentrating the naturally existing heat contained within the earth -- a clean, reliable, and renewable source of energy. How does it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as GeoExchange, earth-coupled, ground-source, or water-source heat pumps, have been in use since the late 1940s. They use the constant temperature of the earth as the exchange medium instead of the outside air temperature. This allows the system to reach fairly high efficiencies (300% to 600%) on the coldest

362

Tir (Aster) Geothermal Anomalies | Open Energy Information  

Open Energy Info (EERE)

Tir (Aster) Geothermal Anomalies Tir (Aster) Geothermal Anomalies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Tir (Aster) Geothermal Anomalies Details Activities (1) Areas (1) Regions (0) Abstract: The focus of this research is the detection of shallow thermal anomalies for geothermal exploration and field management. The objective of this paper is to outline the steps involved in applying thermal infrared imagery (TIR) for this task. This process is part of an ongoing project at the Energy & Geoscience Institute (EGI), where we are developing a methodology to use daytime and nighttime thermal infrared imagery produced by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to map shallow thermal anomalies. Kinetic temperature images

363

Lake View Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lake View Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Lake View Geothermal Facility General Information Name Lake View Geothermal Facility Facility Lake View Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.823527148671°, -122.78173327446° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.823527148671,"lon":-122.78173327446,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Western States Geothermal Company | Open Energy Information  

Open Energy Info (EERE)

States Geothermal Company States Geothermal Company Jump to: navigation, search Name Western States Geothermal Company Place Sparks, Nevada Zip 89432-2627 Sector Geothermal energy Product Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates 35.61145°, -96.821309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.61145,"lon":-96.821309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Phoenix Geothermal Services | Open Energy Information  

Open Energy Info (EERE)

Geothermal Services Geothermal Services Jump to: navigation, search Name Phoenix Geothermal Services Place Auburn, New York Sector Geothermal energy Product Designer, developer, and reseller of geothermal heating systems. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Northwest Geothermal Company | Open Energy Information  

Open Energy Info (EERE)

Northwest Geothermal Company Northwest Geothermal Company Jump to: navigation, search Name Northwest Geothermal Company Place Bend, Oregon Zip 97701 1942 Sector Geothermal energy Product Focused on geothermal power projects. Coordinates 44.05766°, -121.315549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.05766,"lon":-121.315549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

BLM Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » BLM Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home BLM Geothermal Facility General Information Name BLM Geothermal Facility Facility BLM Sector Geothermal energy Location Information Location Coso Junction, California, Coordinates 36.002382119189°, -117.78880119324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.002382119189,"lon":-117.78880119324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Regulation of geothermal energy development in Colorado  

Science Conference Proceedings (OSTI)

The regulatory system is presented in a format to help guide geothermal energy development. State, local, and federal agencies, legislation, and regulations are presented. Information sources are listed. (MHR)

Coe, B.A.; Forman, N.A.

1980-01-01T23:59:59.000Z

369

Hybrid staging of geothermal energy conversion process  

DOE Green Energy (OSTI)

Progress in the demonstration of the feasibility of hybrid staging in geothermal energy conversion is described, particularly processes involving the Lysholm engine. The performance limitations of the Lysholm engine were studied. (MHR)

Steidel, R.F. Jr.

1984-05-07T23:59:59.000Z

370

Definition: Enhanced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Definition Also Known As EGS, Engineered Geothermal Systems References http:www1.eere.energy.govgeothermalenhancedsystems.html Ret LikeLike UnlikeLike You like this.Sign...

371

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

DOE Green Energy (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

372

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

Geothermal Resource Exploration And Definition Project Geothermal Resource Exploration And Definition Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Project Details Activities (23) Areas (8) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) project is a cooperative DOEhdustry project to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to aid in the development of geographically diverse geothermal resources and increase electrical power generation from geothermal resources in the continental United States. The project was initiated in April 2000 with a solicitation for industry participation in the project, and this solicitation resulted in seven successful awards in

373

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Heat Pumps Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Addthis Below is the text version for the Energy 101: Geothermal heat pumps video. The video opens with "Energy 101: Geothermal Heat Pumps." This is followed by an illustration of a house panning to a man standing beside it. We all want to save money heating and cooling our house or office. Right? The answer may be under your feet. Literally. The ground under the man's feet is shown in cross-section. A geothermal heat pump appears in this cross-sectional illustration of the ground. Much of the heating and cooling can come from the ground - below the surface with something called... a geothermal heat pump. The video shows the Earth rotating, then revealed in cross-section. The video then returns to the house with the cross-section of the ground with a

374

Next generation geothermal power plants. Draft final report  

DOE Green Energy (OSTI)

The goal of this project is to develop concepts for the next generation geothermal power plant(s) (NGGPP). This plant, compared to existing plants, will generate power for a lower levelized cost and will be more competitive with fossil fuel fired power plants. The NGGPP will utilize geothermal resources efficiently and will be equipped with contingencies to mitigate the risk of reservoir performance. The NGGPP design will attempt to minimize emission of pollutants and consumption of surface water and/or geothermal fluids for cooling service.

Brugman, John; Hattar, John; Nichols, Kenneth; Esaki, Yuri

1994-12-01T23:59:59.000Z

375

Geothermal project summaries. Geothermal energy research, development and demonstration program  

DOE Green Energy (OSTI)

Summaries of all Division of Geothermal Energy supported projects for which contracts have been executed are compiled. Each summary includes pertinent statistical data for that project and an abstract summarizing the project plans and accomplishments. The projects summarized fall into six categories: engineering research and development, resource exploration and assessment, hydrothermal technology applications, advanced technology applications, utilization experiments, and environmental control and institutional studies. (MHR)

Not Available

1976-09-01T23:59:59.000Z

376

Holocene Magmatic Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Holocene Magmatic Geothermal Region (Redirected from Holocene Magmatic) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Holocene Magmatic Geothermal Region Details...

377

Property:Geothermal/PrincipalInvestigator | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

378

Property:Geothermal/ProjectTypeTopic3 | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

379

Category:Geothermal ARRA Funded Projects | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

380

Property:Geothermal/ProjectTypeTopic2 | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Category:Geothermal ARRA Projects | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

382

Category:Geothermal Lab Call Projects | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

383

Property:Geothermal/Partner2 | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

384

Property:Geothermal/Partner3 | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

385

Property:Geothermal/ProjectTypeTopic1 | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

386

Rio Grande Rift Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network Geothermal Incentives and Policies International Clean Energy Analysis Low Emission Development...

387

Geothermal Resources Act (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) Geothermal Resources Act (Texas) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Savings Category Buying & Making Electricity Program Info State Texas Program Type Siting and Permitting Provider Railroad Commission of Texas The policy of the state of Texas is to encourage the rapid and orderly development of geothermal energy and associated resources. The primary consideration of the development process is to provide a dependable supply of energy in an efficient manner that avoids waste of the energy resources. Secondary considerations will be afforded to the protection of the environment, the protection of correlative rights, and the conservation of

388

Wisconsin/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal < Wisconsin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wisconsin Geothermal edit General Regulatory Roadmap Geothermal Power Projects Under...

389

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from...

390

Basic research needed for the development of geothermal energy  

DOE Green Energy (OSTI)

Basic research needed to facilitate development of geothermal energy is identified. An attempt has been made to make the report representative of the ideas of productive workers in the field. The present state of knowledge of geothermal energy is presented and then specific recommendations for further research, with status and priorities, are listed. Discussion is limited to a small number of applicable concepts, namely: origin of geothermal flux; transport of geothermal energy; geothermal reservoirs; rock-water interactions, and geophysical and geochemical exploration.

Aamodt, R.L.; Riecker, R.E.

1980-10-01T23:59:59.000Z

391

Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California  

DOE Green Energy (OSTI)

The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

Not Available

1976-10-01T23:59:59.000Z

392

Geothermal energy in California: Status report  

DOE Green Energy (OSTI)

The potential for electric energy from geothermal resources in California is currently estimated to be equivalent to the output from 14 to 21 large (1000 MW) central station power plants. In addition, since over 30 California cities are located near potential geothermal resources, the non-electric applications of geothermal heat (industrial, agriculture, space heating, etc.) could be enormous. Therefore, the full-scale utilization of geothermal resources would have a major impact upon the energy picture of the state. This report presents a summary of the existing status of geothermal energy development in the state of California as of the early part of 1976. The report provides data on the extent of the resource base of the state and the present outlook for its utilization. It identifies the existing local, state, and federal laws, rules and regulations governing geothermal energy development and the responsibilities of each of the regulatory agencies involved. It also presents the differences in the development requirements among several counties and between California and its neighboring states. Finally, it describes on-going and planned activities in resource assessment and exploration, utilization, and research and development. Separate abstracts are prepared for ERDA Energy Research Abstracts (ERA) for Sections II--VI and the three Appendixes.

Citron, O.; Davis, C.; Fredrickson, C.; Granit, R.; Kerrisk, D.; Leibowitz, L.; Schulkin, B.; Wornack, J.

1976-06-30T23:59:59.000Z

393

Sino Icelandic Green Energy Geothermal Development Corporation | Open  

Open Energy Info (EERE)

Icelandic Green Energy Geothermal Development Corporation Icelandic Green Energy Geothermal Development Corporation Jump to: navigation, search Name Sino-Icelandic Green Energy Geothermal Development Corporation Place China Sector Geothermal energy Product China-based geothermal development company. References Sino-Icelandic Green Energy Geothermal Development Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sino-Icelandic Green Energy Geothermal Development Corporation is a company located in China . References ↑ "Sino-Icelandic Green Energy Geothermal Development Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Sino_Icelandic_Green_Energy_Geothermal_Development_Corporation&oldid=351117"

394

Geothermal resource requirements for an energy self-sufficient spaceport  

DOE Green Energy (OSTI)

Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

Kruger, P.; Fioravanti, M. [Stanford Univ., CA (United States). Civil Engineering Dept.; Duchane, D.; Vaughan, A. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1997-01-01T23:59:59.000Z

395

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

396

Decision analysis for geothermal energy  

E-Print Network (OSTI)

One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

Yost, Keith A

2012-01-01T23:59:59.000Z

397

Combining Geothermal Energy Capture with CO2 Sequestration  

E-Print Network (OSTI)

Combining Geothermal Energy Capture with CO2 Sequestration Cold CO2 from emitter CO2 compressor geothermal heat hot CO2 permanent CO2 storage Martin O. Saar Dept. of Earth Sciences University of Minnesota saar@umn.edu CO2-Plume Geothermal (CPG) #12;Cold CO2 from emitter CO2 compressor geothermal heat hot CO

Reich, Peter B.

398

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic

399

Property:Geothermal/Partner1Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Geothermal/Partner1Website Property Type URL Description Partner 1 Website (URL) Pages using the property "Geothermal/Partner1Website" Showing 25 pages using this property. (previous 25) (next 25) A Alum Innovative Exploration Project Geothermal Project + http://www.spectir.com/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.fpl.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.apexhipoint.com/ + Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project + http://www.unr.edu/Geothermal/ +

400

NCPA I Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home NCPA I Geothermal Facility General Information Name NCPA I Geothermal Facility Facility NCPA I Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.751790742858°, -122.7191734314° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.751790742858,"lon":-122.7191734314,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Western Geothermal Partners | Open Energy Information  

Open Energy Info (EERE)

Western Geothermal Partners Western Geothermal Partners Place Reno, Nevada Zip 89509 Sector Geothermal energy Product A Reno-based geothermal development company Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

NCPA II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

NCPA II Geothermal Facility NCPA II Geothermal Facility General Information Name NCPA II Geothermal Facility Facility NCPA II Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.74837690774°, -122.71119117737° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.74837690774,"lon":-122.71119117737,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Geothermal Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Tax Credit Geothermal Tax Credit Geothermal Tax Credit < Back Eligibility Residential Savings Category Buying & Making Electricity Maximum Rebate Not specified Program Info Start Date 1/1/2009 Expiration Date 12/31/2014 State North Dakota Program Type Personal Tax Credit Rebate Amount 15% (3% per year for five years) North Dakota offers an income tax credit to individuals, estates and trusts for the cost of acquiring and installing a geothermal energy system in a building or on property owned or leased by the taxpayer in North Dakota. For systems installed after December 31, 2008, and before January 1, 2015, the credit is equal to 3% per year for five years of the actual cost of acquisition and installation of the system. Any excess may be used as a credit carryover to each of the 10 succeeding taxable years.

404

Geothermal Energy Resource Investigations, Chocolate Mountains Aerial  

Open Energy Info (EERE)

Investigations, Chocolate Mountains Aerial Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Energy Resource Investigations, Chocolate Mountains Aerial Gunnery Range, Imperial Valley, California Details Activities (5) Areas (1) Regions (0) Abstract: The US Navy's Geothermal Program Office (GPO), has conducted geothermal exploration in the Chocolate Mountains Aerial Gunnery Range (CMAGR) since the mid-1970s. At this time, the focus of the GPO had been on the area to the east of the Hot Mineral Spa KGRA, Glamis and areas within the Chocolate Mountains themselves. Using potential field geophysics, mercury surveys and geologic mapping to identify potential anomalies related to recent hydrothermal activity. After a brief hiatus starting in

405

Big Geysers Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Geysers Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California Coordinates 38.772688555979°, -122.72887229919° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.772688555979,"lon":-122.72887229919,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Geothermal Resources Council | Open Energy Information  

Open Energy Info (EERE)

Council Council Jump to: navigation, search Logo: Geothermal Resources Council Name Geothermal Resources Council Address 2001 Second Street, Suite 5 Place Davis, California Zip 95617 Sector Geothermal energy, Renewable Energy, Services Product Global Geothermal Community Membership Stock Symbol Resources Council Geothermal Resources Council Year founded 1970 Number of employees 1-10 Phone number (530) 758-2360 Website http://www.geothermal.org Coordinates 38.547241°, -121.725533° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.547241,"lon":-121.725533,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

E-Print Network (OSTI)

Approach for Generating Renewable Energy with SimultaneousCombining Recovery of Renewable Energy with Geologic Storageof this abundant and renewable resource, geothermal energy

Pruess, K.

2010-01-01T23:59:59.000Z

408

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

409

Geothermal Energy Utilization via Effective Design of Ground-Coupled  

E-Print Network (OSTI)

Geothermal Energy Utilization via Effective Design of Ground-Coupled Heat Exchange System Charlie of Tennessee Knoxville, TN 37996 05/18/2010 #12;Geothermal energy is the most recent research subject AJ and I ­ Reactive Flow Film Cooling in Turbine · Renewable Energy ­ Geothermal Energy Heat Exchange System ­ Bio

Tennessee, University of

410

Magma energy for power generation  

DOE Green Energy (OSTI)

Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

Dunn, J.C.

1987-01-01T23:59:59.000Z

411

Geothermal Power Generation as Related to Resource Requirements  

E-Print Network (OSTI)

For the past several years geothermal exploratory work has been conducted in northern Nevada. In conjunction with that effort a proposed 55-MW steam geothermal power plant was considered for initial installation in one of the fields being developed. The characteristics of the geothermal fields under consideration were not firm, with data indicating widely varying downhole temperatures. Thus, neither the resource nor the plant operating conditions could be set. To assist both the ultimate user of the resource, the utility, and the developer of the geothermal field, a series of parametric sensitivity studies were conducted for the initial evaluation of a field vis-a-vis the power plant. Using downhole temperature as the variable, the amount of brine, brine requirements/kWh, and pounds brine/pound of steam to the turbine were ascertained. This was done over a range of downhole temperatures of from 350F to 475F. The studies illustrate the total interdependence of the geothermal resource and its associated power plant. The selection of geothermal steam power plant design conditions must be related to the field in which the plant is located. The results of the work have proven to be valuable in two major respects: (1) to determine the production required of a particular geothermal field to meet electrical generation output and (2) as field characteristics become firm, operating conditions can be defined for the associated power plant.

Falcon, J. A.; Richards, R. G.; Keilman, L. R.

1982-01-01T23:59:59.000Z

412

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

413

Energy 101: Geothermal Heat Pumps | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps Energy 101: Geothermal Heat Pumps January 4, 2011 - 12:15pm Addthis An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Quick Facts Heat pump systems can lower energy bills by up to 70% over traditional types of heating systems. During this time of year, many homeowners are searching for ways to reduce steep heating costs. One of the options they should consider during the

414

Energy Returned On Investment of Engineered Geothermal Systems Annual Report FY2010  

Science Conference Proceedings (OSTI)

Energy Return On Investment (EROI) is an important figure of merit for assessing the viability of energy alternatives. EROI analyses of geothermal energy are either out of date or presented online with little supporting documentation. Often comparisons of energy systems inappropriately use 'efficiency' when EROI would be more appropriate. For geothermal electric power generation, EROI is determined by the electric energy delivered to the consumer compared to the energy consumed to build, operate, and decommission the facility.

Mansure, A.J.

2010-12-31T23:59:59.000Z

415

Property:Geothermal/FundingOpportunityAnnouncemt | Open Energy Information  

Open Energy Info (EERE)

Geothermal/FundingOpportunityAnnouncemt Geothermal/FundingOpportunityAnnouncemt Jump to: navigation, search Property Name Geothermal/FundingOpportunityAnnouncemt Property Type String Description Funding Opportunity Announcement Pages using the property "Geothermal/FundingOpportunityAnnouncemt" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + DE-FOA-0000109 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + DE-FOA-0000116 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + DE-FOA-0000109 +

416

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-09-01T23:59:59.000Z

417

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-01-01T23:59:59.000Z

418

The role of geothermal energy in the world  

SciTech Connect

Geothermal energy, in the broadest sense, is the natural heat of the earth. Immense amounts of thermal energy are generated and stored in the earth`s core, mantle, and crust. The heat is transferred from the interior towards the surface mostly by conduction, and this conductive heat flow makes temperatures rise with increasing depth in the crust on average 25-30{degrees}C/km. This is called the geothermal gradient. The recoverable thermal energy theoretically suitable for direct applications has been estimated at 2.9 {times} 10{sup 24} Joules, which is about 10,000 times the present annual world consumption of primary energy without regard to grade (Armstead, 1983). Most of the earth`s heat is, however, far too deeply buried to be tapped by man, even under the most optimistic assumptions of technological development. Geothermal energy has at present a considerable economic potential only in areas where thermal water or steam is concentrated at depths less than 3 km(1.9 mi) in restricted volumes analogous to oil in commercial oil reservoirs. The drilling technology is similar for geothermal fluid as for oil. But as the energy content of a barrel of oil is much greater than an equivalent amount of hot water, the economic requirements for permeability of the formations and the productivity of the geothermal wells are much higher than for oil wells. Geothermal production wells are commonly 2 km (1.2 mi) deep, but rarely much over 3 km (1.9 mi) at present.

Fridleifsson, I.B. [United Nations Univ. Geothermal Training Programme, Reykjavik (Iceland)

1996-08-01T23:59:59.000Z

419

Category:Geothermal Regions | Open Energy Information  

Open Energy Info (EERE)

Geothermalpower.jpg Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal Regions, click here. Category:Geothermal Regions Add.png Add a new Geothermal Region Pages in category "Geothermal Regions" The following 22 pages are in this category, out of 22 total. A Alaska Geothermal Region C Cascades Geothermal Region Central Nevada Seismic Zone Geothermal Region G Gulf of California Rift Zone Geothermal Region H Hawaii Geothermal Region Holocene Magmatic Geothermal Region I Idaho Batholith Geothermal Region N Northern Basin and Range Geothermal Region N cont. Northern Rockies Geothermal Region Northwest Basin and Range Geothermal Region O Outside a Geothermal Region R Rio Grande Rift Geothermal Region S San Andreas Geothermal Region San Andreas Split Geothermal Region

420

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

Geothermal resources for electric power generation. i. PlantOF GEOTHERMAL SYSTEMS Electric Power Generation SystemsUSE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND

Apps, J.A.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Accomplishments At The Great Basin Center For Geothermal Energy | Open  

Open Energy Info (EERE)

Accomplishments At The Great Basin Center For Geothermal Energy Accomplishments At The Great Basin Center For Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Accomplishments At The Great Basin Center For Geothermal Energy Details Activities (0) Areas (0) Regions (0) Abstract: The Great Basin Center for Geothermal Energy (GBCGE) has been funded by DOE since March 2002 to conduct geothermal resource exploration and assessment in the Great Basin. In that time, those efforts have led to significant advances in understanding the regional and local conditions necessary for the formation of geothermal systems. Accomplishments include the development of GPS-based crustal strain rate measurements as a geothermal exploration tool, development of new methods of detecting geothermal features with remotely sensed imagery, and the detection of

422

Geothermal Analysis | Open Energy Information  

Open Energy Info (EERE)

Analysis Analysis Jump to: navigation, search Geothermal ARRA Funded Projects for Geothermal Analysis Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

423

Shaanxi Green Energy Geothermal Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Green Energy Geothermal Development Co Ltd Green Energy Geothermal Development Co Ltd Jump to: navigation, search Name Shaanxi Green Energy Geothermal Development Co Ltd Place Xianyang, Shaanxi Province, China Sector Geothermal energy Product Sino Icelandic joint venture for the exploitation and utilization of geothermal energy in China. Coordinates 34.33968°, 108.688713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.33968,"lon":108.688713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Economic analysis of geothermal energy costs  

SciTech Connect

A description is given of the computer program, GEOCOST, and its application to some analyses of the economics of geothermal energy. GEOCOST combines both technical and economic factors into one systematic cost accounting framework. The program, which simulates production of electricity from most types of geothermal resources, is composed of two parts: a reservoir model which simulates the costs associated with the exploration, development, and operation of a geothermal reservoir; and a power-plant model which simulates the costs associated with the design, construction, and operation of the power plant. The costs from the reservoir model become the energy supply costs to the power plant. The combined reservoir and power plant models represent the complete energy production system. (LBS)

Bloomster, C.H.

1975-01-01T23:59:59.000Z

425

Status of Environmental Controls for Geothermal Energy Development  

DOE Green Energy (OSTI)

This report presents the initial findings and recommendations of the Environmental Controls Panel to the Interagency Geothermal Coordinating Council (IGCC). The Panel has been charged to assess the adequacy of existing environmental controls for geothermal energy systems, to review ongoing programs to develop environmental controls, and to identify controls-related research areas where redirection of federal efforts are appropriate to assure the availability of controls on a timely basis. In its deliberations, the Panel placed greatest emphasis on the use of geothermal resources for electricity generation, the application of geothermal energy receiving greatest attention today. The Panel discussed major known environmental concerns and their potential impact on the commercialization of geothermal resources, control options, regulatory considerations, and ongoing and planned research programs. The environmental concerns reviewed in this report include: air emissions, liquid discharges, solid wastes, noise, subsidence, seismicity, and hydrological alterations. For each of these concerns a brief description of the concern, associated legislation and regulations, control approaches, federal funding trend, and the Panel's recommendations and priorities are presented. In short, the Panel recommends that controls-related research efforts be rebalanced and enhanced, with the greatest emphasis placed on controls for hydrogen sulfide (H{sub 2}S) and non-H{sub 2}S gaseous emissions, injection monitoring methods, systems to treat and use nongeothermal waters for environmental control purposes, solid waste characterization and management methods evaluation, and subsidence controls.

Caskey, John F.

1980-05-01T23:59:59.000Z

426

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN ESTIMATE OF GEOTHERMAL ENERGY RESOURCE IN MAJOR U.S. SEDIMENTARY BASINS Colleen Porro and Chad Augustine April 24, 2012 National Renewable Energy Lab, Golden, CO NREL/PR-6A20-55017 NATIONAL RENEWABLE ENERGY LABORATORY Sedimentary Basin Geothermal WHAT IS SEDIMENTARY BASIN GEOTHERMAL? 2 Geothermal Energy from Sedimentary Rock - Using 'hot" geothermal fluids (>100 o C) produced from sedimentary basins to generate electricity - Advantages: * Reservoirs are porous, permeable, and well characterized * Known/proven temperature gradients from oil and gas well records * Drilling and reservoir fracturing techniques proven in sedimentary environment - Disadvantages: * Great depths required to encounter high temperatures * Emerging industry Photo by Warren Gretz, NREL/PIX 00450

427

Oregon/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Oregon/Geothermal Oregon/Geothermal < Oregon Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Oregon Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Oregon Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Crump Geyser Geothermal Project Nevada Geo Power, Ormat Utah 80 MW80,000 kW 80,000,000 W 80,000,000,000 mW 0.08 GW 8.0e-5 TW Phase II - Resource Exploration and Confirmation Crump's Hot Springs Geothermal Area Northwest Basin and Range Geothermal Region Neal Hot Springs Geothermal Project U.S. Geothermal Vale, Oregon Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I - Resource Procurement and Identification Neal Hot Springs Geothermal Area Snake River Plain Geothermal Region

428

Overview of the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market - The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market  

DOE Green Energy (OSTI)

This overview at the Geothermal Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Technology Advancements to Support Growth in Geothermal Power Sales in a Dynamic Utility Market'' by John E. Mock; ''Geothermal Energy Market in Southern California: Past, Present and Future'' by Vikram Budraja; ''Taking the High Ground: Geothermal's Place in the Revolving Energy Market'' by Richard Jaros; ''Recent Developments in Japan's Hot Dry Rock Program'' by Tsutomu Yamaguchi; and ''Options in the Eleventh Year for Interim Standard Offer Number Four Contracts'' by Thomas C. Hinrichs.

Mock, John E.; Budraja, Vikram; Jaros, Richard; Yamaguchi, Tsutomu; Hinrichs, Thomas C.

1992-01-01T23:59:59.000Z

429

Geothermal Modeling of the Raft River Geothermal Field | Open Energy  

Open Energy Info (EERE)

Geothermal Modeling of the Raft River Geothermal Field Geothermal Modeling of the Raft River Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal Modeling of the Raft River Geothermal Field Details Activities (1) Areas (1) Regions (0) Abstract: This interim report presents the results to date of chemical modeling of the Raft River KGRA. Earlier work indicated a northwest-southeast anomaly in the contours. Modeling techniques applied to more complete data allowed further definition of the anomaly. Models described in this report show the source of various minerals in the geothermal water. There appears to be a regional heat source that gives rise to uniform conductive heat flow in the region, but convective flow is concentrated near the upwelling in the Crook well vicinity. Recommendations

430

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

431

Innovation versus monopoly: geothermal energy in the West. Final report  

DOE Green Energy (OSTI)

The following subjects are covered: geothermal energy and its use, electric utilities and the climate for geothermal development, the raw fuels industry and geothermal energy, and government and energy. The role of large petroleum companies and large public utilities is emphasized. (MHR)

Bierman, S.L.; Stover, D.F.; Nelson, P.A.; Lamont, W.J.

1977-07-01T23:59:59.000Z

432

Fairbanks Geothermal Energy Project Final Report  

SciTech Connect

The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

2013-05-31T23:59:59.000Z

433

Shaanxi Geothermal Energy Development Co Ltd CGCO | Open Energy Information  

Open Energy Info (EERE)

Shaanxi Geothermal Energy Development Co Ltd CGCO Shaanxi Geothermal Energy Development Co Ltd CGCO Jump to: navigation, search Name Shaanxi Geothermal Energy Development Co Ltd (CGCO) Place Xianyang, Shaanxi Province, China Zip 712000 Sector Geothermal energy Product A Chinese geothermal project developer Coordinates 34.33968°, 108.688713° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.33968,"lon":108.688713,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Puna Geothermal Venture 8MW Expantion | Open Energy Information  

Open Energy Info (EERE)

Venture 8MW Expantion Venture 8MW Expantion Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Puna Geothermal Venture 8MW Expantion Abstract Adding to its existing generating capacity of 27 MW, Ormat's Puna Geothermal Venture (PGV) geothermal power plant recently completed a successful 8MW expansion project bringing more renewable, low-cost electricity to the people of Hawaii. The project presented several technical challenges including use of high scale potential brine in a state-of-the-art binary plant, development of highly reliable brine pH monitoring and control system, and brine injection management in a high energy resource. Each of the project challenges were overcome with unique engineering solutions. Authors Mike Kaleikini, Paul Spielman, Tom Buchanan, Ormat Technologies

435

Annual US Geothermal Power Production and Development Report | Open Energy  

Open Energy Info (EERE)

US Geothermal Power Production and Development Report US Geothermal Power Production and Development Report Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Annual US Geothermal Power Production and Development Report Details Activities (0) Areas (0) Regions (0) Abstract: To increase the accuracy and value of information presented in its annual US Geothermal Power Production and Development Report, the Geothermal Energy Association (GEA) developed a reporting system, known as the Geothermal Reporting Terms and Definitions, in 2010. The Geothermal Reporting Terms and Definitions serve as a guideline to project developers in reporting geothermal project development information to the GEA. A basic understanding of the Geothermal Reporting Terms and Definitions will also aid the reader in fully understanding the information presented in this

436

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

437

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region (Redirected from Transition Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details...

438

Transition Zone Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Transition Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Transition Zone Geothermal Region edit Details Areas (5) Power Plants (0) Projects...

439

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region (Redirected from Idaho Batholith) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas...

440

Idaho Batholith Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Idaho Batholith Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Idaho Batholith Geothermal Region Details Areas (24) Power Plants (0) Projects (1)...

Note: This page contains sample records for the topic "geothermal energy generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties  

DOE Green Energy (OSTI)

These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

442

DOE Office of Indian Energy Foundational Course on Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE OFFICE OF INDIAN ENERGY Foundational Courses Renewable Energy Technologies GEOTHERMAL Presented by the National Renewable Energy Laboratory Course Outline What we will cover......