Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers (EERE)

Geothermal Electricity Technology Evaluation Model Geothermal Electricity Technology Evaluation Model The Geothermal Electricity Technology Evaluation Model (GETEM) aids the...

2

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers (EERE)

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

3

GETEM - Geothermal Electricity Technology Evaluation Model |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GETEM - Geothermal Electricity Technology Evaluation Model GETEM - Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal...

4

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

5

GETEM-Geothermal Electricity Technology Evaluation Model  

Energy.gov (U.S. Department of Energy (DOE))

A guide to providing input to GETEM, the Geothermal Electricity Technology Evaluation Model. GETEM is designed to help the Geothermal Technologies Program of the U.S. Department of Energy in estimating some of the technical and economic values of its research projects and subprograms. The tool is intended to estimate and summarize the performance and cost of various geothermal electric power systems at geothermal reservoirs with a wide variety of physical characteristics.

6

U.S. Department of Energy Geothermal Electricity Technology Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar...

7

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation...

8

Geothermal Electricity Technology Evaluation Model (GETEM) | Open Energy  

Open Energy Info (EERE)

Electricity Technology Evaluation Model (GETEM) Electricity Technology Evaluation Model (GETEM) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Geothermal Electricity Technology Evaluation Model (GETEM) Agency/Company /Organization: National Renewable Energy Laboratory Sector: Climate Focus Area: Geothermal Phase: Evaluate Options Topics: Opportunity Assessment & Screening Resource Type: Software/modeling tools User Interface: Desktop Application Website: www1.eere.energy.gov/geothermal/getem.html OpenEI Keyword(s): EERE tool Equivalent URI: cleanenergysolutions.org/content/geothermal-electricity-technology-eva Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance References: Geothermal Electricity Technology Evaluation Model[1] Model the estimated performance and costs of available U.S. geothermal

9

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Greg Mines Idaho National Laboratory June 30, 2011 U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar EERE Business Administration...

10

Geothermal Technology Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

about: Direct-Use Geothermal Technologies Geothermal Electricity Production Geothermal Heat Pumps Geothermal Resources Or read more about EERE's geothermal technologies...

11

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

12

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers (EERE)

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

13

Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6/ kWh by 2030.

14

Geothermal: Sponsored by OSTI -- Advanced Electric Submersible...  

Office of Scientific and Technical Information (OSTI)

Advanced Electric Submersible Pump Design Tool for Geothermal Applications Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic...

15

The Geothermal Technologies Office  

Energy Savers (EERE)

Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety...

16

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Geothermal Technologies Geothermal Technologies (Redirected from Geothermal Conversion Technologies) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal

17

Geothermal Technologies Office: Geothermal Projects  

Energy Savers (EERE)

Skip to Content U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Geothermal Technologies Office Search Search...

18

Geothermal Technologies Subject Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

alike at: Introducing The Geothermal Technologies Subject Portal is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and is...

19

Geothermal Technologies Legacy Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

sponsored by DOE The Geothermal Technologies Subject Portal founding sponsorship by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy (EERE), and...

20

Stanford Geothermal Workshop- Geothermal Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

22

NREL: Geothermal Technologies - Geothermal Policymakers' Guidebooks  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map NREL's Policymakers' Guidebooks help guide state and local officials in developing effective policies that support geothermal electricity generation and geothermal heating and cooling technologies. Explore the guidebooks to learn about five key steps for creating useful policy and increasing the deployment of geothermal energy. Electricity Generation Electricity Generation Heating and Cooling Heating and Cooling Printable Version Electricity Generation Heating & Cooling NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

23

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

SciTech Connect

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

John Sullivan

2013-06-04T23:59:59.000Z

24

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

DOE Data Explorer (OSTI)

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

25

NREL: Geothermal Technologies - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Program Web site or search the NREL Publications Database. For additional geothermal documents, including those published since 1970, please visit the Office of Science and Technology Information Geothermal Legacy Collection. Policymakers' Guidebooks Five steps to effective policy. Geothermal Applications Market and Policy Analysis Program Activities R&D Activities Geothermal Applications

26

Video Resources on Geothermal Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

27

2008 Geothermal Technologies Market Report  

Energy.gov (U.S. Department of Energy (DOE))

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

28

Geothermal: Sponsored by OSTI -- Project Title: Small Scale Electrical...  

Office of Scientific and Technical Information (OSTI)

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

29

Emerging geothermal energy technologies  

Science Journals Connector (OSTI)

Geothermal energy, whether as a source of electricity or ... , has an enormous potential as a renewable energy source. This paper presents a broad overview of geothermal energy, with a focus on the emerging techn...

I. W. Johnston; G. A. Narsilio; S. Colls

2011-04-01T23:59:59.000Z

30

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers (EERE)

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

31

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Resources and Technologies Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

32

Geothermal drilling technology update  

SciTech Connect

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

33

NREL: Energy Analysis - Geothermal Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by...

34

NREL: Geothermal Technologies - Financing Geothermal Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Technologies Search More Search Options Site Map Guidebook to Geothermal Power Finance Thumbnail of the Guidebook to Geothermal Power Finance NREL's Guidebook to Geothermal Power Finance provides an overview of the strategies used to raise capital for geothermal power projects that: Use conventional, proven technologies Are located in the United States Produce utility power (roughly 10 megawatts or more). Learn more about the Guidebook to Geothermal Power Finance. NREL's Financing Geothermal Power Projects website, funded by the U.S. Department of Energy's Geothermal Technologies Program, provides information for geothermal power project developers and investors interested in financing utility-scale geothermal power projects. Read an overview of how financing works for geothermal power projects, including

35

Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Print PDF Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way. Regardless of the energy conversion, geothermal energy requires heat(in the form of rock), water, and flow; and every resources will have different values for each. Some resources have very high temperature rock with high porosity (allowing for flow) but little to know water (see Enhanced Geothermal Systems (EGS). Some resources have plenty of water, great flow, but the temperatures are not very high which are commonly used for direct use. Any combination of those 3 things can be found in nature, and for that reason there are different classifications of geothermal energy. It is possible for a resource to be technically capable of both electricity production and heating purposes, but the basic classifications

36

Subscribe to Geothermal Technologies Office Updates | Department...  

Energy Savers (EERE)

Subscribe to Geothermal Technologies Office Updates Subscribe to Geothermal Technologies Office Updates...

37

Geothermal Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Geothermal Resources and Technologies Geothermal Resources and Technologies October 7, 2013 - 9:24am Addthis Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat

38

Doug Hollett, Director Geothermal Technologies Office Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The DOE Perspective International Forum on Geothermal Energy October 28-29, 2013 Mexico City Courtesy GRC Courtesy CPikeACEP Courtesy RAM Power 2 4 Renewable Electricity...

39

Production engineering in geothermal technology: A review  

Science Journals Connector (OSTI)

Geothermal energy is abundant and renewable, but only a very small fraction can currently be converted commercially to electricity and heating value with today's technology. In recent years, the installed geothermal capacity worldwide has more than doubled. The increase in the use of geothermal energy is the result of a multi-disciplinary effort. Highlighted are some production engineering advances that have played a significant part in making geothermal a competitive renewable energy resource.

Darrell L. Gallup

2009-01-01T23:59:59.000Z

40

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geothermal Technologies Office Annual Report 2012 | Department...  

Office of Environmental Management (EM)

Geothermal Technologies Office Annual Report 2012 Geothermal Technologies Office Annual Report 2012 This annual report for the U.S. Department of Energys Geothermal Technologies...

42

Geothermal Technologies FY14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL TECHNOLOGIES FY14 BUDGET AT-A-GLANCE Geothermal Technologies accelerates the development technologies in pre-commercial stages of development. and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce both the risks and costs of bringing geothermal power online. As a key component of our clean energy mix, geothermal is a renewable energy that generates power around the clock. What We Do The EERE geothermal technologies portfolio consists of a three-pronged investment approach to facilitate the growth of installed electrical capacity:  Research and Development invests in innovative technologies and techniques to improve the process of identifying, accessing, and developing geothermal

43

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

44

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 August 1, 2011 Geothermal Electricity Technology Evaluation Model Webinar Materials Now Available This webinar provided an overview of the model and its use with an emphasis on how the model calculates the generation costs associated with exploration and confirmation activities, well field development, and reservoir definition. August 1, 2011 Blue Ribbon Panel Recommendations Report Available Earlier this spring, the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) assembled a panel of geothermal experts to identify the obstacles to geothermal energy growth and more. May 9, 2011 Department of Energy to Issue Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S. In early June 2011, the U.S. Department of Energy's Geothermal Technologies

45

Geothermal Energy Technology: a current-awareness bulletin  

SciTech Connect

This bulletin announces on a semimonthly basis the current worldwide information available on the technology required for economic recovery of geothermal energy and its use either directly or for production of electric power. The subject content encompasses: resource status and assessment, geology and hydrology of geothermal systems, geothermal exploration, legal and institutional aspects, economic and final aspects, environmental aspects and waste disposal, by-products, geothermal power plants, geothermal engineering, direct energy utilization, and geothermal data and theory.

Smith, L.B. (ed.)

1983-01-15T23:59:59.000Z

46

Geothermal electric power plant status  

SciTech Connect

A status summary of the activity for the 44 proposed geothermal electric power plants in the United States as of March 31, 1981 is presented, as well as the power on-line electric plants to date. The information comes from the Department of Energy Geothermal Progress Monitor System (DOE, 1981).

Murphy, M.; Entingh, D.J.

1981-10-01T23:59:59.000Z

47

NREL: Learning - Geothermal Electricity Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Production Electricity Production Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped directly from underground wells to the power plant where it is directed into a turbine/generator unit. There are only two known underground resources of steam in the United States: The Geysers in northern California and Yellowstone National Park in Wyoming, where there's

48

Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop  

Energy.gov (U.S. Department of Energy (DOE))

General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses.

49

Geothermal Technologies Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Overview Geothermal Technologies Program Overview This overview of the Geothermal Technologies Program was given at the GTP Program Peer Review on May 18,...

50

Geothermal innovative technologies catalog  

SciTech Connect

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

51

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Resources and Technologies Geothermal Resources and Technologies Photo of steam rising high in the air from a geyser. Geothermal energy leverages heated air and water from beneath the earth's surface. This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector. Overview Geothermal energy is produced from heat and hot water found within the earth. Federal agencies can harness geothermal energy for heating and cooling air and water, as well as for electricity production. Geothermal resources can be drawn through several resources. The resource can be at or near the surface or miles deep. Geothermal systems move heat from these locations where it can be used more efficiently for thermal or electrical energy applications. The three typical applications include:

52

Geothermal Technologies Office: Financial Opportunities  

Office of Environmental Management (EM)

partners with industry, academia, and research facilities to further the development of geothermal energy technologies. Competitive solicitations issued as Funding Opportunity...

53

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

54

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers (EERE)

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

55

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

56

Geothermal Electricity Production  

Science Journals Connector (OSTI)

...georef;1974029979 development economics geothermal energy global production...space heating and cooling and water desalination, and (for the long term) to...produLced in thermiial stations. Economics and Rate of Developnment The National...

Geoffrey R. Robson

1974-04-19T23:59:59.000Z

57

List of Geothermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 1258 Geothermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1258) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

58

Geothermal Electric Plant Planned in N.M. | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Electric Plant Planned in N.M. Geothermal Electric Plant Planned in N.M. July 3, 2008 - 3:57pm Addthis Publicly traded Raser Technologies Inc. of Provo, Utah, said...

59

NREL: Geothermal Technologies - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

60

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

62

Geothermal Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

pressure, temperature, and directional measurement and telemetry. The rechargeable energy storage unit for geothermal applications can handle extreme, high-temperature downhole...

63

Geothermal Technologies Program Fact Sheet | Department of Energy  

Office of Environmental Management (EM)

Geothermal Technologies Program Fact Sheet Geothermal Technologies Program Fact Sheet Overview of DOE Geothermal Technologies Program. geothermalfs.pdf More Documents &...

64

Geothermal energy technology and current status: an overview  

Science Journals Connector (OSTI)

Geothermal energy is the energy contained as heat in the Earths interior. This overview describes the internal structure of the Earth together with the heat transfer mechanisms inside mantle and crust. It also shows the location of geothermal fields on specific areas of the Earth. The Earths heat flow and geothermal gradient are defined, as well as the types of geothermal fields, the geologic environment of geothermal energy, and the methods of exploration for geothermal resources including drilling and resource assessment. Geothermal energy, as natural steam and hot water, has been exploited for decades to generate electricity, and both in space heating and industrial processes. The geothermal electrical installed capacity in the world is 7974 \\{MWe\\} (year 2000), and the electrical energy generated is 49.3 billion kWh/year, representing 0.3 % of the world total electrical energy which was 15,342 billion kWh in 2000. In developing countries, where total installed electrical power is still low, geothermal energy can play a significant role: in the Philippines 21% of electricity comes from geothermal steam, 20% in El Salvador, 17% in Nicaragua, 10% in Costa Rica and 8% in Kenya. Electricity is produced with an efficiency of 1017%. The geothermal kWh is generally cost-competitive with conventional sources of energy, in the range 210 UScents/kWh, and the geothermal electrical capacity installed in the world (1998) was 1/5 of that from biomass, but comparable with that from wind sources. The thermal capacity in non-electrical uses (greenhouses, aquaculture, district heating, industrial processes) is 15,14 \\{MWt\\} (year 2000). Financial investments in geothermal electrical and non-electrical uses world-wide in the period 19731992 were estimated at about US$22,000 million. Present technology makes it possible to control the environmental impact of geothermal exploitation, and an effective and easily implemented policy to encourage geothermal energy development, and the abatement of carbon dioxide emissions would take advantage from the imposition of a carbon tax. The future use of geothermal energy from advanced technologies such as the exploitation of hot dry rock/hot wet rock systems, magma bodies and geopressured reservoirs, is briefly discussed. While the viability of hot dry rock technology has been proven, research and development are still necessary for the other two sources. A brief discussion on training of specialists, geothermal literature, on-line information, and geothermal associations concludes the review.

Enrico Barbier

2002-01-01T23:59:59.000Z

65

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

66

Realizing the geothermal electricity potential?water use and consequences  

Science Journals Connector (OSTI)

Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l?kWh ? 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8?100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

Gouri Shankar Mishra; William E Glassley; Sonia Yeh

2011-01-01T23:59:59.000Z

67

Geothermal Electricity Production Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Production Basics Electricity Production Basics Geothermal Electricity Production Basics August 14, 2013 - 1:49pm Addthis A photo of steam emanating from geothermal power plants at The Geysers in California. Geothermal energy originates from deep within the Earth and produces minimal emissions. Photo credit: Pacific Gas & Electric Heat from the earth-geothermal energy-heats water that has seeped into underground reservoirs. These reservoirs can be tapped for a variety of uses, depending on the temperature of the water. The energy from high-temperature reservoirs (225°-600°F) can be used to produce electricity. In the United States, geothermal energy has been used to generate electricity on a large scale since 1960. Through research and development, geothermal power is becoming more cost-effective and competitive with

68

Geothermal Technologies Office 2012 Peer Review Report | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program...

69

Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

70

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network (OSTI)

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

71

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

72

NREL: Geothermal Technologies Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Geothermal energy taps the heat from beneath the earth's surface to generate electricity. Existing reservoirs of steam or hot water are brought to the surface to power electrical generators throughout the Western United States. In the future, the intense heat deep below the surface will accessed for electricity generation by the advanced engineering of reservoirs all across the country. In addition to electricity production, lower temperature geothermal resources are used for direct heating applications and the constant temperature that exists at shallow depths can be used as an energy-efficient method of heating and cooling, called ground-source heat

73

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

74

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

75

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems Nevada Deploys Grid-Connected Electricity from Enhanced Geothermal Systems May 16, 2013 - 12:00am Addthis...

76

Geothermal electric cash flow model (GCFM)  

SciTech Connect

The Geothermal Cash Flow Model (GCFM) is a user-interactive computer model that estimates the costs and cash flow patterns of geothermal electric development projects. It was developed as a financial analysis tool for the US Department of Energy Geothermal Loan Guaranty Program. It contains a power-plant sizing and costing routine that is useful for preliminary feasibility studies of geothermal projects. The model can be operated using either a few preliminary estimates of geothermal resource characteristics or detailed estimates from reservoir engineering and power plant engineering studies. GCFM is available for public distribution.

Entingh, D.J.; Keimig, M.A.

1981-10-01T23:59:59.000Z

77

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

Low-Temperature Geothermal Resources Low-Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power Generation from Low-Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The team of university and industry engineers, scientists, and project developers will evaluate the power capacity, efficiency, and economics of five commercially available ORC engines in collaboration with the equipment manufacturers. The geothermal ORC system will be installed at an oil field operated by Continental Resources, Inc. in western North Dakota where geothermal fluids occur in sedimentary formations at depths of 10,000 feet. The power plant will be operated and monitored for two years to develop engineering and economic models for geothermal ORC energy production. Data and experience acquired can be used to facilitate the installation of similar geothermal ORC systems in other oil and gas settings.

78

Geothermal Technologies Office Contacts | Department of Energy  

Office of Environmental Management (EM)

Building Technologies Office because the U.S. Department of Energy classifies geothermal heat pumps as a technology that makes buildings more energy efficient, productive, and...

79

Sandia National Laboratories: Geothermal Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities,...

80

Geothermal: Sponsored by OSTI -- Nuclear Technology Division...  

Office of Scientific and Technical Information (OSTI)

Nuclear Technology Division annual progress report for period ending June 30, 1973 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. STEP 1 Assess the Local Industry and Resource Potential STEP 2 Identify Challenges to Local Development STEP 3 Evaluate Current Policy STEP 4 Consider Policy Options STEP 5 Implement Policies Increased Development Policymakers' Guidebook for Geothermal Electricity Generation This document identifies and describes five steps for implementing geothermal policies that may reduce barriers and result in deployment and implementation of geothermal technologies that can be used for electricity generation, such as conventional hydrothermal, enhanced geothermal systems (EGS), geopressured, co-production, and low temperature geothermal resources. Step 1: Assess the Local Industry and Resource Potential Increasing the use of geothermal

82

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

83

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

A new energy-efficient approach to building occupancy detection, a better way to detect heat loss in electric-vehicle batteries and a high-efficiency silicon solar cell - all...

84

Geothermal Technologies Office Annual Report 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho State Wins National Student Competition Students at Idaho State University display their poster at the annual meeting of the Geothermal Resources Council in Reno, Nevada this year, as one of 3 top finalists in the National Geothermal Student Competition hosted by the Energy Department's Geothermal Technologies Office. The group won the competition with their study on Development of an Integrated, Testable Conceptual Model of Blind Geothermal Resources in the Eastern

85

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search...

86

El Paso County Geothermal Electric Generation Project: Innovative Research  

Open Energy Info (EERE)

County Geothermal Electric Generation Project: Innovative Research County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title El Paso County Geothermal Electric Generation Project: Innovative Research Technologies Applied to the Geothermal Resource Potential at Ft. Bliss Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description A dynamic and technically capable project team has been assembled to evaluate the commercial viability of geothermal resources on the Ft. Bliss Military Reservation with a focus on the McGregor Test Range. Driving the desire of Ft. Bliss and El Paso County to assess the commercial viability of the geothermal resources are four factors that have converged in the last several years. The first is that Ft. Bliss will be expanding by nearly 30,000 additional troops, an expansion which will significantly increase utilization of energy resources on the facility. Second is the desire for both strategic and tactical reasons to identify and control a source of power than can directly provide the forward fire bases with "off grid" electricity in the event of a major power outage. In the worst case, this power can be sold to the grid and be used to reduce energy costs at the main Ft. Bliss installation in El Paso. Finally, Congress and the Department of Defense have mandated that Ft. Bliss and other military reservations obtain specified percentages of their power from renewable sources of production. The geothermal resource to be evaluated, if commercially viable, could provide Ft. Bliss with all the energy necessary to meet these goals now and in the future. To that end, the garrison commander has requested a target of 20 megawatts as an initial objective for geothermal resources on the installation. Finally, the County government has determined that it not only wishes to facility this effort by Ft. Bliss, but would like to reduce its own reliance on fossil based energy resources to provide power for current and future needs.

87

Geothermal Technologies Office 2012 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to address induced seismicity issues. Subsurface energy technologies associated with shale gas exploration, carbon capture and storage, and geothermal energy utilization can...

88

Geothermal Technologies Program Annual Peer Review Presentation...  

Energy Savers (EERE)

Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett 2012 Peer Review presentation by Doug Hollett,...

89

Development of Enhanced Geothermal Systems Technologies Workshops...  

Energy Savers (EERE)

in the report by the Massachusetts Institute of Technology (MIT) titled The Future of Geothermal Energy (MIT 2006). Three of the presentations (in the areas of Reservoir...

90

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

91

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(Kalina Cycle) * Gulf Coast Geothermal ("Green Machine") (ORC) * Deluge Inc. * Linear Power Ltd. * In a binary cycle, the heat from a geothermal fluid is transferred to another...

92

2010 Geothermal Technology Program Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Validation of Geothermally- produced Electricity from Co-produced Water at Existing OilGas Wells in TX Alcorn, Universal GeoPower LLC Electric Power Generation from Co-produced...

93

Federal Energy Management Program: Geothermal Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Geothermal Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Geothermal Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Google Bookmark Federal Energy Management Program: Geothermal Resources and Technologies on Delicious Rank Federal Energy Management Program: Geothermal Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Geothermal Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies Solar Wind

94

Oregon Institute of Technology Snowmelt Low Temperature Geothermal...  

Open Energy Info (EERE)

of Technology Snowmelt Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type Snowmelt Location Klamath Falls, Oregon...

95

Recovery Act - Geothermal Technologies Program:Ground Source...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

96

DOE and Partners Test Enhanced Geothermal Systems Technologies...  

Office of Environmental Management (EM)

DOE and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on...

97

2010 Geothermal Technology Program Peer Review Report | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Fielding of...

98

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

99

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

100

Evaluation of Emerging Technology for Geothermal Drilling and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology for Geothermal Drilling and Logging Applications Technology Development and Field Trials of EGS Drilling Systems GEA Geothermal Summit Presentation Lauren Boyd...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

El Paso County Geothermal Project: Innovative Research Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to...

102

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

103

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

Policymakers' Guidebook for Geothermal Electricity Generation Policymakers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policymakers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Resource Type: Publications, Guide/manual User Interface: Other Website: www.nrel.gov/docs/fy11osti/49476.pdf Cost: Free References: Policymakers' Guidebook for Geothermal Electricity Generation[1] Overview This guidebook is a short discussion on how to create policy that overcomes challenges to geothermal implementation. The document follows a five step

104

Finding Geothermal Energy based on Radioisotopes Technology  

Science Journals Connector (OSTI)

Abstract Increasing energy consumption in Indonesia wont fulfilled if only rely on availability of available energy nowadays. There are many natural resources that can be used as renewable energy. One of them is geothermal energy. Nowadays, Geothermal known only on the surface of earth with observation from geysers and hot springs. With the sophistication of modern technology, geothermal energy can be found by observing radioisotope to find content silicate and carbonate potential more accurately in groundwater. So it's expected geothermal energy more stronger to turn on a turbine at the power plant on a large scale.

Doddy Dirgantara Putra; Irma Lelawati

2014-01-01T23:59:59.000Z

105

Application Of Electrical Resistivity And Gravimetry In Deep Geothermal  

Open Energy Info (EERE)

Resistivity And Gravimetry In Deep Geothermal Resistivity And Gravimetry In Deep Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Electrical Resistivity And Gravimetry In Deep Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The electrical resistivity method has been proven applicable to geothermal exploration because of the direct relationship between fluid and rock temperatures on the one hand electrical conductivity on the other. The problem of exploitation of a surface technique, such as resistivity, to the determination of geothermal gradients or 'hot spots' is complicated by the other geological parameters which affect resistivity: porosity, fluid salinity, cementation factor and clay content. However, by rational

106

2008 Geothermal Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the economic arena, the policy environment in 2008 was favorable to continued geothermal power development. In the United States, the Emergency Economic Stabilization Act (EESA)...

107

NREL: Geothermal Technologies - Research Staff  

NLE Websites -- All DOE Office Websites (Extended Search)

Stacee Foster Administrative Assistant Colorado Collaboration for Subsurface Research in Geothermal Energy (SURGE) Tom Williams, Executive Diretor Dag Nummedal, Colorado School of...

108

DOE Awards $20 Million to Develop Geothermal Power Technologies  

Energy.gov (U.S. Department of Energy (DOE))

DOE announced on September 15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids recovered from oil and gas wells, and highly pressurized geothermal fluids.

109

Progress report on electrical resistivity studies, COSO Geothermal Area,  

Open Energy Info (EERE)

Progress report on electrical resistivity studies, COSO Geothermal Area, Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The first phase of an electrical geophysical survey of the Coso Geothermal Area is described. The objective of the survey was to outline areas of anomalously conductive ground that may be associated with geothermal activity and to assist in locating drilling sites to test the geothermal potential. Author(s): Ferguson, R. B. Published: Publisher Unknown, 6/1/1973 Document Number: Unavailable DOI: Unavailable Source: View Original Report Electrical Resistivity At Coso Geothermal Area (1972)

110

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

111

Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) is announcing a new collaboration with the Office of Fossil Energy (FE) to demonstrate the versatility, reliability, and deployment capabilities of low-temperature geothermal electrical power generation systems using co-produced water from oilfield operations at the Rocky Mountain Oilfield Testing Center (RMOTC) in Wyoming.

112

Geothermal Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Geothermal Technologies Office accelerates the development and deployment of clean, domestic geothermal energy. It supports innovative technologies that reduce the risks and costs of bringing geothermal power online. As a key component of the U.S. clean energy mix, geothermal is a renewable energy that generates power around the clock.

113

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

114

Rural Cooperative Geothermal Development Electric & Agriculture...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Southwest Alaska Regional Geothermal Energy Project District Wide Geothermal Heating Conversion Blaine County School District Novel Energy...

115

Geothermal Technology Advancement for Rapid Development of Resources...  

Energy Savers (EERE)

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011 Geothermal Technology Advancement for Rapid Development of Resources in the U.S....

116

A study of geothermal drilling and the production of electricity from geothermal energy  

SciTech Connect

This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

Pierce, K.G. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants, Inc., Encinitas, CA (United States)

1994-01-01T23:59:59.000Z

117

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Environmental Management (EM)

Office 2013 Peer Review Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells PI - Bernie Karl Chena Hot Springs Resort Track 1 Project Officer:...

118

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting:  

Open Energy Info (EERE)

Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Authors H.M. Bibby, G.F. Risk, T.G. Caldwell and S.L. Bennie Conference World Geothermal Congress 2005; Antalya, Turkey; 2005/04/24 Published ?, 2005 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from the Taupo Volcanic Zone Citation H.M. Bibby,G.F. Risk,T.G. Caldwell,S.L. Bennie. 2005. Misinterpretation of Electrical Resistivity Data in Geothermal Prospecting: a Case Study from

119

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

SciTech Connect

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

120

International Partnership for Geothermal Technology - 2012 Peer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H Hydrothermal System S Sedimentary Geothermal Systems Retrieved from "http:...

122

Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For Geothermal Exploration Details Activities (7) Areas (6) Regions (0) Abstract: To increase our knowledge of gaseous species in geothermal systems by fluid inclusion analysis in order to facilitate the use of gas analysis in geothermal exploration. The knowledge of gained by this program can be applied to geothermal exploration, which may expand geothermal

123

Geothermal Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office focuses only on electricity generation. For additional information about geothermal heating and cooling and ground source heat pumps, please visit the U.S. Department of Energy (DOE)'s Buildings Technologies Office.

124

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Financing Relatively small size of the Industry + perceived risk project financing challenges Grid Integration Solutions to supply geothermal electricity to the grid...

125

Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet)  

SciTech Connect

The current state of geothermal technology has limitations that hinder the expansion of utility scale power. One limitation that has been discussed by the current industry is the limitation of Electric Submersible Pump (ESP) technology. With the exception of a few geothermal fields artificial lift technology is dominated by line shaft pump (LSP) technology. LSP's utilize a pump near or below reservoir depth, which is attached to a power shaft that is attached to a motor above ground. The primary difference between an LSP and an ESP is that an ESP motor is attached directly to the pump which eliminates the power shaft. This configuration requires that the motor is submersed in the geothermal resource. ESP technology is widely used in oil production. However, the operating conditions in an oil field vary significantly from a geothermal system. One of the most notable differences when discussing artificial lift is that geothermal systems operate at significantly higher flow rates and with the potential addition of Enhanced Geothermal Systems (EGS) even greater depths. The depths and flow rates associated with geothermal systems require extreme horsepower ratings. Geothermal systems also operate in a variety of conditions including but not limited to; high temperature, high salinity, high concentrations of total dissolved solids (TDS), and non-condensable gases.

Not Available

2014-09-01T23:59:59.000Z

126

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Power: Meeting the Challenge of Electric Price Stabilization in Geothermal Power: Meeting the Challenge of Electric Price Stabilization in the West Speaker(s): Jon Wellinghoff Steve Munson Date: January 30, 2001 - 12:00pm Location: Bldg 90 Seminar Host/Point of Contact: Julie Osborn Existing data indicates that extensive geothermal resources of power production grade exist throughout the western United States. These resources may be capable of producing clean, reliable electric power in sufficient quantities to act as a hedge against the price volatility of gas-fired electric generation. The challenge facing energy policy makers is developing effective strategies and appropriate incentives to assist developers in moving competitive quantities of geothermal electric capacity into the western power marketplace. Issues related to achieving this goal

127

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

NLE Websites -- All DOE Office Websites (Extended Search)

US DOE Geothermal Program US DOE Geothermal Program eere.energy.gov Public Service of Colorado Ponnequin Wind Farm Geothermal Technologies Program 2010 Peer Review Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. Insert photo of your choice 2 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Geothermal Technologies Program 2010 Peer Review May 20, 2010 3 | US DOE Geothermal Program eere.energy.gov DAEMEN COLLEGE Open Loop, Geo-exchange System Principal Investigators Robert C. Beiswanger Jr. Vice President for Business Affairs and Treasurer Dr. Edwin G. Clausen Vice President for Academic Affairs and Dean of the College

128

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

129

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program...

130

Geothermal Technologies FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

Geothermal Technologies FY14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

131

2015 Peer Review Agenda for the Geothermal Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department's Geothermal Technologies Office hosts its 2015 Peer Review on May 11-14, 2015, with a rigorous review of the technical project portfolio.

132

Discussion on a Code Comparison Effort for the Geothermal Technologies...  

Office of Environmental Management (EM)

Effort for the Geothermal Technologies Program Code comparison presentation by Mark White of PNNL at the 2012 Peer Review meeting on May 10. gtp2012peerreviewpnnlwhite.pdf...

133

Geothermal Technologies Office FY 2015 Budget At-A-Glance  

Energy Savers (EERE)

systems will be deployment ready. Technologies include a Geothermal Ultrasonic Fracture Imager, electronic submersible pump, and downhole orientation module-representing...

134

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Energy.gov (U.S. Department of Energy (DOE))

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

135

Final Report: Enhanced Geothermal Systems Technology Phase II...  

Open Energy Info (EERE)

Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New...

136

Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

mixed working fluids * Technology developed to bring the geothermal heat to the surface with minimal loss of "availability" or energy when used for power...

137

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Energy.gov (U.S. Department of Energy (DOE))

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

138

Electric Power Generation Using Geothermal Fluid Coproduced from...  

Open Energy Info (EERE)

Systems (PWPS), and the United StatesDepartment of Energy will demonstrate that electric power can begenerated from the geothermal heat co-produced when extractingoil and gas from...

139

Application Of Geothermal Energy To The Supply Of Electricity...  

Open Energy Info (EERE)

To The Supply Of Electricity In Rural Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geothermal Energy To The Supply Of...

140

Geothermal Technologies Program Coproduction Fact Sheet | Department...  

Office of Environmental Management (EM)

& Publications Low TemperatureCoproducedGeopressured Subprogram Overview Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

NREL: Geothermal Technologies - Data and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

for geothermal researchers and others interested in the viability and development of geothermal energy. Resource Maps NREL develops resource and characterization maps to help...

142

Geothermal Technologies Office Hosts Collegiate Competition ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EDT Final presentation will be in Portland, OR. To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case...

143

Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electrical Resistivity and Self-Potential Surveys Blue Mountain Geothermal Area, Nevada Abstract Self potential and electrical resistivity surveys have been completed at the Blue Mountain geothermal area to search for the source of thermal fluids discovered during drilling for mineral exploration, and to help characterize the geothermal resource. Two large SP anomalies are associated with the artesian thermal area and the area of highest temperature observed in drill holes. Two similar anomalies were mapped 1 to 3 km to the south

144

Geothermal Resource Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Name Geothermal Resource Technologies Place Asheville, North Carolina Zip 28806 4229 Sector Services Product String representation "GRTI has evolve ... ign assistance." is too long. Coordinates 35.59846°, -82.553144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.59846,"lon":-82.553144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Electric Turbo Compounding Technology Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turbo Compounding Technology Update Electric Turbo Compounding Technology Update 15 August, 2007 Carl Vuk 15 August, 2007 Carl Vuk Electric Turbo Compounding Highlights Electric...

146

Electrical Generating Capacities of Geothermal Slim Holes  

SciTech Connect

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

147

Geothermal technology transfer for direct heat applications: Final report, 1983--1988  

SciTech Connect

This report describes a geothermal technology transfer program, performed by Oregon Institute of Technology's Geo-Heat Center, used to aid in the development of geothermal energy for direct heat applications. It provides a summary of 88 technical assistance projects performed in 10 states for space heating, district heating, green-houses, aquaculture, industrial processing, small scale binary electric power generation and heat pump applications. It describes an inventory compiled for over 100 direct heat projects that contains information on project site, resource and engineering data. An overview of information services is provided to users of the program which includes; advisory, referrals, literature distribution, geothermal technology library, quarterly Bulletin, training programs, presentations and tours, and reporting of activities for the USDOE Geothermal Progress Monitor.

Lienau, P.J.; Culver, G.

1988-01-01T23:59:59.000Z

148

Geothermal Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Blog Geothermal Blog RSS October 23, 2013 This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. April 12, 2013 Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Innovative clean energy project is up and running in Nevada.

149

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project |  

Open Energy Info (EERE)

BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Abstract No abstract available. Author Bureau of Land Management Organization Bureau of Land Management, Carson City Field Office, Nevada Published U.S. Department of the Interior, 2011 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project Citation Bureau of Land Management (Bureau of Land Management, Carson City Field Office, Nevada). 2011. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy Project. Carson City, Nevada: U.S. Department of the

150

Geothermal Energy  

SciTech Connect

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

151

Vehicle Technologies Office: Electrical Machines  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Machines to Electrical Machines to someone by E-mail Share Vehicle Technologies Office: Electrical Machines on Facebook Tweet about Vehicle Technologies Office: Electrical Machines on Twitter Bookmark Vehicle Technologies Office: Electrical Machines on Google Bookmark Vehicle Technologies Office: Electrical Machines on Delicious Rank Vehicle Technologies Office: Electrical Machines on Digg Find More places to share Vehicle Technologies Office: Electrical Machines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Electrical Machines Emphasis in the electrical machines activity is on advanced motor

152

Geothermal: Sponsored by OSTI -- GeoEnergy technology  

Office of Scientific and Technical Information (OSTI)

GeoEnergy technology Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs...

153

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

154

Immediate Need for Science and Technology Policy Fellowships in the Geothermal Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office is seeking Science and Technology Policy Fellows to join the office in managing pathfinding science and engineering initiatives.

155

Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of a ranch in the mountains. As part of a geothermal exploration effort to search for geothermal resources nationwide, a 5 million U.S. Department of Energy investment to...

156

NREL: Geothermal Technologies - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 December 31, 2012 NREL Leads Wind Farm Modeling Research Researchers study the atmosphere surrounding large turbines to optimize performance. Archives Current News | 2011 | | 2010 | | 2009 | | 2008 Printable Version Geothermal Technologies Home Capabilities Projects Publications Data & Resources Research Staff Working with Us News Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a moment to tell us how we can improve this page? Submit We value your feedback. Thanks! We've received your feedback. Something went wrong. Please try again later. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Alliance for Sustainable Energy, LLC

157

DOE Geothermal Technologies Office | Open Energy Information  

Open Energy Info (EERE)

Office Office Jump to: navigation, search Name Department of Energy - Energy Efficiency and Renewable Energy - Geothermal Technologies Office Short Name DOE GTO Place Washington, District of Columbia Coordinates 38.8869784°, -77.0252967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8869784,"lon":-77.0252967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

SciTech Connect

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Ezra Zemach

2010-01-01T23:59:59.000Z

159

Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development  

Energy.gov (U.S. Department of Energy (DOE))

This report explores the effectiveness of the historical and current body of policies in terms of increased geothermal electricity development. Insights are provided into future policies that may drive the market to optimize development of available geothermal electricity resources.

160

United States geothermal technology: Equipment and services for worldwide applications  

SciTech Connect

This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

NONE

1995-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Policy Makers' Guidebook for Geothermal Electricity Generation | Open  

Open Energy Info (EERE)

Policy Makers' Guidebook for Geothermal Electricity Generation Policy Makers' Guidebook for Geothermal Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy, Land Focus Area: Renewable Energy, Geothermal, People and Policy Phase: Create a Vision, Evaluate Options, Develop Goals, Develop Finance and Implement Projects Resource Type: Guide/manual, Case studies/examples, Templates, Technical report User Interface: Website Website: www.nrel.gov/geothermal/publications.html Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Geothermal fracture stimulation technology. Volume III. Geothermal fracture fluids  

SciTech Connect

A detailed study of all available and experimental frac fluid systems is presented. They have been examined and tested for physical properties that are important in the stimulation of hot water geothermal wells. These fluids consist of water-based systems containing high molecular weight polymers in the uncrosslinked and crosslinked state. The results of fluid testing for many systems are summarized specifically at geothermal conditions or until breakdown occurs. Some of the standard tests are ambient viscosity, static aging, high temperature viscosity, fluid-loss testing, and falling ball viscosity at elevated temperatures and pressures. Results of these tests show that unalterable breakdown of the polymer solutions begins above 300/sup 0/F. This continues at higher temperatures with time even if stabilizers or other high temperature additives are included.

Not Available

1981-01-01T23:59:59.000Z

163

El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss  

Energy.gov (U.S. Department of Energy (DOE))

El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss presentation at the April 2013 peer review meeting held in Denver, Colorado.

164

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Energy Savers (EERE)

portfolio for the coming years - the Frontier Observatory for Research in Geothermal Energy (FORGE). Click below for the full presentation. To see a listing of all GTO...

165

Geothermal Technologies Office | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

more Energy Department Announces 18 Million for Innovative Projects to Advance Geothermal Energy Energy Department Announces 18 Million for Innovative Projects to Advance...

166

Geothermal Technologies Program Annual Peer Review Presentation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal * In existing hydrothermal fields * Margins of existing hydrothermal fields * "Green Field" development 3 Energy Efficiency & Renewable Energy eere.energy.gov Industry...

167

2013 Annual Report -- Geothermal Technologies Office | Department...  

Office of Environmental Management (EM)

for an EGS field site project, called FORGE -- the Frontier Observatory for Research in Geothermal Energy -- after an intense, intra-office competition. The Office also had gains...

168

2013 Geothermal Technologies Office Peer Review Technical Report  

Energy.gov (U.S. Department of Energy (DOE))

The 2013 Geothermal Technologies Office Peer Review Report is now available for download. The report provides a summary and compilation of expert, independent technical feedback on GTO-funded projects, as well as feedback from the Peer Review reviewers.

169

Preliminary Technical Risk Analysis for the Geothermal Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program.

170

Levelized costs of electricity and direct-use heat from Enhanced Geothermal Systems  

Science Journals Connector (OSTI)

GEOPHIRES (GEOthermal energy for the Production of Heat and Electricity (IR) Economically Simulated) is a software tool that combines reservoir wellbore and power plant models with capital and operating cost correlations and financial levelized cost models to assess the technical and economic performance of Enhanced Geothermal Systems (EGS). It is an upgrade and expansion of the MIT-EGS program used in the 2006 Future of Geothermal Energy study. GEOPHIRES includes updated cost correlations for well drilling and completion resource exploration and Organic Rankine Cycle (ORC) and flash power plants. It also has new power plant efficiency correlations based on AspenPlus and MATLAB simulations. The structure of GEOPHIRES enables feasibility studies of using geothermal resources not only for electricity generation but also for direct-use heating and combined heat and power (CHP) applications. Full documentation on GEOPHIRES is provided in the supplementary material. Using GEOPHIRES the levelized cost of electricity (LCOE) and the levelized cost of heat (LCOH) have been estimated for 3 cases of resource grade (low- medium- and high-grade resource corresponding to a geothermal gradient of 30 50 and 70?C/km) in combination with 3 levels of technological maturity (today's mid-term and commercially mature technology corresponding to a productivity of 30 50 and 70?kg/s per production well and thermal drawdown rate of 2% 1.5% and 1%). The results for the LCOE range from 4.6 to 57 /kWhe and for the LCOH from 3.5 to 14 $/MMBTU (1.2 to 4.8 /kWhth). The results for the base-case scenario (medium-grade resource and mid-term technology) are 11 /kWhe and 5 $/MMBTU (1.7 /kWhth) respectively. To account for parameter uncertainty a sensitivity analysis has been included. The results for the LCOE and LCOH have been compared with values found in literature for EGS as well as other energy technologies. The key findings suggest that given today's technology maturity electricity and direct-use heat from EGS are not economically competitive under current market conditions with other energy technologies. However with moderate technological improvements electricity from EGS is predicted to become cost-effective with respect to other renewable and non-renewable energy sources for medium- and high-grade geothermal resources. Direct-use heat from EGS is calculated to become cost-effective even for low-grade resources. This emphasizes that EGS for direct-use heat may not be neglected in future EGS development.

2014-01-01T23:59:59.000Z

171

Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A  

Open Energy Info (EERE)

Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Abstract N/A Authors James Kauahikaua and Douglas Klein Published Journal Geothermal Resources Council, TRANSACTIONS, 1978 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Citation James Kauahikaua,Douglas Klein. 1978. Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A. Geothermal Resources Council, TRANSACTIONS. 2:363-366. Retrieved from "http://en.openei.org/w/index.php?title=Results_of_Electric_Survey_in_the_Area_of_Hawaii_Geothermal_Test_Well_HGP-A&oldid=682499

172

Un Seminar On The Utilization Of Geothermal Energy For Electric Power  

Open Energy Info (EERE)

Un Seminar On The Utilization Of Geothermal Energy For Electric Power Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Details Activities (3) Areas (1) Regions (0) Abstract: Unavailable Author(s): o ozkocak Published: Geothermics, 1985 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Modeling-Computer Simulations (Ozkocak, 1985) Observation Wells (Ozkocak, 1985) Reflection Survey (Ozkocak, 1985) Unspecified Retrieved from "http://en.openei.org/w/index.php?title=Un_Seminar_On_The_Utilization_Of_Geothermal_Energy_For_Electric_Power_Production_And_Space_Heating,_Florence_1984,_Section_2-_Geothermal_Resources&oldid=386949"

173

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing, demonstrating, and deploying innovative technologies to support the continued expansion of the geothermal industry across the United States. Featured Pinpointing America's Geothermal Resources with Open Source Data

174

A Technology Breakthrough for Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal April 25, 2012 - 4:08pm Addthis The Energy Department's Oak Ridge National Laboratory, in partnership with ClimateMaster, has developed a highly efficient ground-source heat pump appliance for heating and cooling interior spaces. Learn more about this clean energy technology by watching the video above. | Video by the U.S. Department of Energy. Alexis Abramson Acting Emerging Technologies Supervisor, Building Technologies Program What does this project do? Oak Ridge National Laboratory and ClimateMaster have developed a more efficient process for using ground-source heat pumps to heat and cool homes. Instead of just pushing or pulling heat around to cool or heat your house, the ClimateMaster integrated heat pump also uses that heat to

175

Cumulative energy, emissions, and water consumption for geothermal electric power production  

Science Journals Connector (OSTI)

A life cycle analysis has been conducted on geothermal electricity generation. The technologies covered in the study include flash binary enhanced geothermal systems (EGS) and coproduced gas and electricity plants. The life cycle performance metrics quantified in the study include materials water and energy use and greenhouse gas (GHG) emissions. The life cycle stages taken into account were the plant and fuel cycle stages the latter of which includes fuel production and fuel use (operational). The plant cycle includes the construction of the plant wells and above ground piping and the production of the materials that comprise those systems. With the exception of geothermal flash plants GHG emissions from the plant cycle are generally small and the only such emissions from geothermal plants. Some operational GHGs arise from flash plants and though substantial when compared to other geothermal power plants these are nonetheless considerably smaller than those emitted from fossil fuel fired plants. For operational geothermal emissions an emission rate (g/kW h) distribution function vs. cumulative capacity was developed using California plant data. Substantial GHG emissions arise from coproduced facilities and two other renewable power plants but these are almost totally due to the production and use of natural gas and biofuels. Nonetheless those GHGs are still much less than those from fossil fuel fired plants. Though significant amounts of water are consumed for plant and well construction especially for well field stimulation of EGS plants they are small in comparison to estimated water consumed during plant operation. This also applies to air cooled plants which nominally should consume no water during operation. Considering that geothermal operational water use data are scarce our estimates show the lowest water consumption for flash and coproduced plants and the highest for EGS though the latter must be considered provisional due to the absence of field data. The EGS estimate was based on binary plant data.

J. L. Sullivan; C. Clark; J. Han; C. Harto; M. Wang

2013-01-01T23:59:59.000Z

176

Employment Impacts of Geothermal Electric Projects  

SciTech Connect

Table 1 summarizes the number of jobs associated with the development and operation of a 50 MW geothermal dual flash power system. The values shown are person years (PY) of employment for the 50 MW system. About 1500 person years (PY) of labor are incorporated in the manufacture and installation of capital components of the system. Of these, about 300 PY are local to the area of the geothermal system, and about 1200 are dispersed elsewhere in the U.S. or other countries. About 71 PY of labor per year are required for the operation of the system. Of those, about 39 PY are local to the plant, and about 32 are dispersed. The total person years of labor over the entire life cycle of such a system, assuming a 30-year operational life, is on the order of 3630 person years. These include jobs during the 5 to 10 years of exploration and construction activities prior to plant start up. Of these jobs, about 1470 PY are local to the system, and about 21 60 are dispersed elsewhere.

Entingh, Daniel J.

1993-05-23T23:59:59.000Z

177

Oregon Institute of Technology District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

178

Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Snowmelt Low Temperature Geothermal Facility Snowmelt Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology Snowmelt Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type Snowmelt Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

179

International Partnership for Geothermal Technology - 2012 Peer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems (EGS) IEA-GIA ExCo - National Geothermal Data System and Online Tools The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs...

180

Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy  

Energy.gov (U.S. Department of Energy (DOE))

Americas First Geothermally Heated University Campus Adds 3.5 Megawatts of Clean Electricity Generation

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

emission*from geothermal power plants W. Investigation ofI i. Plant size. Geothermal power plants are expected TheProcesses for Geothermal Electric Power Generation,

Apps, J.A.

2011-01-01T23:59:59.000Z

182

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems  

Open Energy Info (EERE)

Technology Adapted to Analyzing and Developing Geothermal Systems Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description Historically, areas where the Earth surface is covered by an exposed high-velocity rock layer have been locations where conventional, single-component, seismic P-waves have failed to provide usable geological information. The research will use new seismic sources that emphasize shear waves and new seismic data-acquisition technology based on cable-free data recording to acquire seismic research data across two sites covered with surface-exposed highvelocity rocks. Research tasks will involve acquiring, processing, and interpreting both conventional seismic data and multicomponent seismic data. Scientists at BEG will analyze well logs, cores, and reservoir test data to construct geological models of the targeted geology across each study site.

183

Geothermal Technology Evolution Rationale for the National Energy Strategy  

SciTech Connect

The DOE developed ''Technology Evolution Rationale'' documents for many of its technology development programs, at this time (report is dated October 1, 1990). This is a very significant description of the status of resources, technology, and industry in 1990, and the thinking that guided the DOE Geothermal Research Program at this time. The report describes: Geothermal energy conversion and use technologies, Resources and land use, Stakeholder and users, Industry status, and Market acceptance and experience in the U.S. The Economic status chapter covers Figures of Merit for assessing geothermal energy systems, and trends in geothermal development. The chapter on Cost/performance projections provides much detail on estimates of system costs, and projections for how DOE R&D would likely affect those costs. The Rationale chapter provides much detail on how subsystems are linked together to provide system performance and cost estimates, and details of technology improvements being worked on that are likely to reduce the cost of power from geothermal. Includes references (citations) to the background studies used to develop the details here. (DJE 2005)

None

1990-10-01T23:59:59.000Z

184

Water Use in the Development and Operation of Geothermal Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

...48 Appendix C - Summary of Water Consumption for Electricity Generation Technologies ...51 v FIGURES 1 Example GIS Map: Geothermal Water...

185

Geothermal energy: technological aspects of exploitation  

Science Journals Connector (OSTI)

Discusses the exploitation of geothermal energy once hot aquifers have been located. The drilling method is briefly described, and various steam cycles considered along with the choice of prime mover for the turbines. It is concluded that geothermal energy is best suited to the provision of base load in an integrated power system. District heating, hot water, and air conditioning applications are considered, e.g. in Reykjavik. Also considered are industrial applications such as the use of tepid water in fish farming, de-icing of roads, soil warming etc. Corrosion and pollution problems are examined and future prospects discussed

H.C.H. Armstead

1979-01-01T23:59:59.000Z

186

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

187

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

188

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

189

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

190

Funding Opportunity: Technology Advancement for Rapid Development of Geothermal Resources in the U.S.  

Energy.gov (U.S. Department of Energy (DOE))

In early June 2011, the U.S. Department of Energy's Geothermal Technologies Program (GTP) intends to issue a Funding Opportunity Announcement to expand its partnership with the geothermal community on geothermal systems research and development throughout the United States in order to support GTP's goal of lowering the cost of geothermal energy to 6 /kWh.

191

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events April 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

192

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events May 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

193

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events March 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

194

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events February 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

195

GEOTHERMAL Events | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEOTHERMAL Events GEOTHERMAL Events January 2018 < prev next > Geothermal Home About the Geothermal Technologies Office Enhanced Geothermal Systems Hydrothermal Low-Temperature &...

196

Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources  

Energy.gov (U.S. Department of Energy (DOE))

Presentation about Systems for Electrical Power from Coproduced and Low Temperature Geothermal Resources includes background, results and discussion, future plans and conclusion.

197

NREL: Geothermal Policymakers' Guidebooks - Policymakers' Guidebook for  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Generation Electricity Generation The Policymakers' Guidebook for Electricity Generation outlines five steps for implementing geothermal policy and provides links to helpful resources. Developing policy that reduces barriers and results in market deployment will lead to greater implementation of geothermal electricity generation. Geothermal technologies that can be used for electricity generation include co-production, conventional hydrothermal, enhanced geothermal systems, and low temperature geothermal resources. Learn more about geothermal energy at NREL's renewable energy Web site. Increased Development Step 5 Implement Policies Step 4 Consider Policy Options Step 3 Evaluate Current Policy Step 2 Identify Challenges to Local Development Step 1 Assess the Local Industry and Resource Potential

198

Strategies for compensating for higher costs of geothermal electricity with environmental benefits  

Science Journals Connector (OSTI)

After very high growth in the 1980s, geothermal electricity production has slowed in the mid- and late-1990s. While Japanese, Indonesian and Philippine geothermal growth has remained high as a consequence of supportive government policies, geothermal electricity production has been flat or reduced in much of Europe and North America. Low prices for coal and natural gas, combined with deregulation, means that in much of the world electricity from new fuel-burning electricity plants can be provided at half the cost of new geothermal electricity. Cost-cutting must be pursued, but is unlikely to close the price gap by itself. Geothermal production is widely perceived as being environmentally clean, but this is not unambiguously true, and requires reinjection to be fully realized. Strategies for monetizing the environmental advantages of geothermal, including the carbon tax, are discussed.

Hugh Murphy; Hiroaki Niitsuma

1999-01-01T23:59:59.000Z

199

A Technology Breakthrough for Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » A Technology Breakthrough for Geothermal A Technology Breakthrough for Geothermal April 25, 2012 - 4:08pm Addthis The Energy Department's Oak Ridge National Laboratory, in partnership with ClimateMaster, has developed a highly efficient ground-source heat pump appliance for heating and cooling interior spaces. Learn more about this clean energy technology by watching the video above. | Video by the U.S. Department of Energy. Alexis Abramson Acting Emerging Technologies Supervisor, Building Technologies Program What does this project do? Oak Ridge National Laboratory and ClimateMaster have developed a more efficient process for using ground-source heat pumps to heat and cool homes. Instead of just pushing or pulling heat around to cool or heat your

200

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona  

Open Energy Info (EERE)

Searching For An Electrical-Grade Geothermal Resource In Northern Arizona Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Details Activities (1) Areas (1) Regions (0) Abstract: The U.S Department of Energy's "Geopowering the West" initiative seeks to double the number of states (currently 4) that generate geothermal electric power over the next few years. Some states, like New Mexico and Oregon, have plentiful and conspicuous geothermal manifestations, and are thus likely to further DOE'S goal relatively easily. Other states, including Arizona, demonstrate less geothemal potential, but nevertheless

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Department of Energy Announces up to $70 Million to Advance Technology and Reduce Cost of Geothermal Energy  

Energy.gov (U.S. Department of Energy (DOE))

In support of President Obama's goal of generating 80 % of the country's electricity from clean energy sources by 2035, U.S. Department of Energy Secretary Steven Chu today announced the availability of up to $70 million in new funding over three years for technology advancements in geothermal energy to accelerate development of this promising clean energy resource.

202

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical  

Open Energy Info (EERE)

Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Finding Hidden Geothermal Resources In The Basin And Range Using Electrical Survey Techniques- A Computational Feasibility Study Details Activities (21) Areas (4) Regions (0) Abstract: For many years, there has been speculation about "hidden" or "blind" geothermal systems- reservoirs that lack an obvious overlying surface fluid outlet. At present, it is simply not known whether "hidden" geothermal reservoirs are rare or common. An approach to identifying promising drilling targets using methods that are cheaper than drilling is needed. These methods should be regarded as reconnaissance tools, whose

203

Geothermal Technologies Office Annual Report 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The project will utilize diverter technologies to temporarily plug zones of fluid loss so that new fractures can be reopened and extended, ultimately facilitating the...

204

Geothermal News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About Us » News & Blog » Geothermal News and Blog About Us » News & Blog » Geothermal News and Blog Geothermal News and Blog Blog This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 1:31 PM This year marks the centennial of the first commercial electricity production from geothermal resources. As geothermal technologies advance, the Energy Department is working to improve, and lower the cost of, enhanced geothermal systems. Read The Full Story Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

205

Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

206

Above Ground Geothermal and Allied Technologies Masters Scholarship in Energy & Materials: design of a rig  

E-Print Network (OSTI)

Above Ground Geothermal and Allied Technologies Masters Scholarship in Energy & Materials: design into the largest green energy resources; industrial waste heat, biomass combustion and geothermal energy. Research of geothermal energy after completing the degree. Proficiency in English is essential. Contact: mark

Hickman, Mark

207

Enhanced Geothermal Systems Webinar | Department of Energy  

Energy Savers (EERE)

Electric Cooperative Associate, Western Area Power Administration, and U.S. Department of Energy Geothermal Technologies Office. The Webinar covered topics including federal...

208

Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology |  

Open Energy Info (EERE)

and TAS Celebrate Innovative Binary Geothermal Technology and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Abstract N/A Authors Terra-Gen Power and LLC Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Citation Terra-Gen Power, LLC. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology [Internet]. [updated 2011;cited 2011]. Available from: http://www.terra-genpower.com/News/TERRA-GEN-POWER-AND-TAS-CELEBRATE-INNOVATIVE-BINAR.aspx Retrieved from "http://en.openei.org/w/index.php?title=Terra-Gen_Power_and_TAS_Celebrate_Innovative_Binary_Geothermal_Technology&oldid=682514

209

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

210

Base Technologies and Tools for Supercritical Reservoirs Geothermal Lab  

Open Energy Info (EERE)

Technologies and Tools for Supercritical Reservoirs Geothermal Lab Technologies and Tools for Supercritical Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Base Technologies and Tools for Supercritical Reservoirs Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 High-Temperature Downhole Tools Project Description Development of downhole tools capable of reliable operation in supercritical environments is a significant challenge with a number of technical and operational hurdles related to both the hardware and electronics design. Hardware designs require the elimination of all elastomer seals and the use of advanced materials. Electronics must be hardened to the extent practicable since no electronics system can survive supercritical temperatures. To develop systems capable of logging in these environments will require a number of developments. More robust packaging of electronics is needed. Sandia will design and develop innovated, highly integrated, high-temperature (HT) data loggers. These data loggers will be designed and developed using silicon-on-insulator/silicon carbide (SOI/SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and decreasing the size of the electronics package. Tools employing these electronics will be capable of operating continuously at temperatures up to 240 °C and by using advanced Dewar flasks, will operate in a supercritical reservoir with temperatures over 450 °C and pressures above 70 MPa. Dewar flasks are needed to protect the electronic components, but those currently available are only reliable in temperature regimes in the range of 350 °C; promising advances in materials will be investigated to improve Dewar technologies. HT wireline currently used for logging operations is compromised at temperatures above 300 °C; along with exploring the development of a HT wireline for logging purposes, alternative approaches that employ HT batteries (e.g., those awarded a recent R&D 100) will also be investigated, and if available will enable deployment using slickline, which is not subject to the same temperature limitations as wireline. To demonstrate the capability provided by these improvements, tools will be developed and fielded. The developed base technologies and working tool designs will be available to industry throughout the project period. The developed techniques and subsystems will help to further the advancement of HT tools needed in the geothermal industry.

211

Geothermal technology publications and related reports: a bibliography, January-December 1981  

SciTech Connect

Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology, Magma and General Geoscience Studies with cross references listed by author.

Hudson, S.R. (ed.)

1982-05-01T23:59:59.000Z

212

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

213

Geothermal Energy: Current abstracts  

SciTech Connect

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

214

Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices  

SciTech Connect

This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

Not Available

1988-10-01T23:59:59.000Z

215

NREL: Geothermal Technologies - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us NREL offers industry, academia, and other government agencies opportunities to work with us and leverage our research expertise. Our technology partnership agreements help you gain access to our capabilities and facilities. There are several ways for your organization to get involved with us: Work collaboratively with NREL through Cooperative Research and Development Agreements- the most widely used means of industrial collaboration. Pay NREL to conduct research without your collaboration through Work for Others Research-an effective way for industry to use NREL's expertise. Commercialize NREL-developed energy technologies and products through our licensing agreements. Partner with NREL to use the lab's state-of-the-art research facilities.

216

Geothermal Technologies Program Peer Review Program June 6 -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplenary...

217

2008 Geothermal Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives,...

218

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network (OSTI)

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

219

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells....

220

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of geothermal prospects beneath volcanic outcrops. * Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells. *...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Oregon: DOE Advances Game-Changing EGS Geothermal Technology...  

Office of Environmental Management (EM)

demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can...

222

Geothermal Life Cycle Calculator  

SciTech Connect

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

223

Geothermal Energy (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Geothermal energy is one of the components of the National Energy Policy: Reliable, Affordable, and Environmentally Sound Energy for Americas Future. This lesson includes five activities that will give your students information on the principles of heat transfer and the technology of using geothermal energy to generate electricity.

224

Innovative Drivetrains in Electric Automotive Technology Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells...

225

NREL: Financing Geothermal Power Projects - Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links Related Links View these websites for more information on geothermal power project financing. NREL Geothermal Policymakers' Guidebooks NREL Geothermal Policymakers' Guidebooks Learn the five key steps for creating effective policy and increasing the deployment of geothermal electricity generation technologies. California Energy Commission's Geothermal Program Here you'll find information on the California Energy Commission's geothermal program, including geothermal energy, funding opportunities, and contacts. Database of State Incentives for Renewables and Energy Efficiency This database of state, local, utility, and federal incentives and policies that promote renewable energy and energy efficiency can help you find financing incentives and opportunities in your state.

226

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii...

227

COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Details Activities (1) Areas (1) Regions (0) Abstract: Electrical and acoustic image logs collected from well 58A-10 in crystalline rock on the eastern margin of the Coso Geothermal Field, CA, reveal different populations of planar structures intersecting the borehole. Electrical image logs appear to be sensitive to variations in

228

Electrical Technology for Telecommunications  

Science Journals Connector (OSTI)

... for varied branches of applied electricity, and the war-time pressure on educationists to emphasize telecommunications, especially radio, must lead them to reconsider what in fundamental theory their students must ... in view of the known work they are later to undertake. Without anticipating more specialized telecommunication work, the author has found space, by rejecting the direct-current machine and the ...

L. E. C. HUGHES

1943-04-03T23:59:59.000Z

229

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Executive Summary  

SciTech Connect

In 1983, the Bonneville Power Administration contracted for an evaluation and ranking of all geothermal resource sites in the states of Idaho, Montana, Oregon, and Washington which have a potential for electrical generation and/or electrical offset through direct utilization of the resource. The objective of this program was to consolidate and evaluate all geologic, environmental, legal, and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of all known geothermal sites. This data base would enhance the making of credible forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. The four states, working together under a cooperative agreement, identified a total of 1,265 potential geothermal sites. The 1,265 sites were screened to eliminate those with little or no chance of providing either electrical generation and/or electrical offset. Two hundred and forty-five of the original 1,265 sites were determined to warrant further study. The Four-State team proceeded to develop a methodology which would rank the sites based upon an estimate of development potential and cost. Development potential was estimated through the use of weighted variables selected to approximate the attributes which a geothermal firm might consider in its selection of a site for exploration and possible development. Resource; engineering; and legal, institutional, and environmental factors were considered. Cost estimates for electrical generation and direct utilization sites were made using the computer programs CENTPLANT, WELLHEAD, and HEATPLAN. Finally, the sites were ranked utilizing a technique which allowed for the integration of development and cost information. On the basis of the developability index, 78 high temperature sites and 120 direct utilization sites were identified as having ''good'' or ''average'' potential for development and should be studied in detail. On the basis of cost, at least 29 of the high temperature sites appear to be technically capable of supporting a minimum total of at least 1,000 MW of electrical generation which could be competitive with the busbar cost of conventional thermal generating technologies. Sixty direct utilization sites have a minimum total energy potential of 900+ MW and can be expected to provide substantial amounts of electrical offset at or below present conventional energy prices. The combined development and economic rankings can be used to assist in determining sites with superior characteristics of both types. Five direct utilization sites and eight high temperature sites were identified with both high development and economic potential. An additional 27 sites were shown to have superior economic characteristics, but development problems. The procedure seems validated by the fact that two of the highest ranking direct utilization sites are ones that have already been developed--Boise, Idaho and Klamath Falls, Oregon. Most of the higher ranking high temperature sites have received serious examination in the past as likely power production candidates.

Bloomquist, R.G.; Black, G.L.; Parker, D.S.; Sifford, A.; Simpson, S.J.; Street, L.V.

1985-06-01T23:59:59.000Z

230

Co-Produced Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Produced Geothermal Systems Produced Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Co-Produced Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Co-Produced Geothermal System: Co-Produced water is the water that is produced as a by-product during oil and gas production. If there is enough water produced at a high enough temperature co-produced water can be utilized for electricity production. Other definitions:Wikipedia Reegle General Air Cooled Co-Produced geothermal system demonstration at RMOTC oil site.

231

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

Energy.gov (U.S. Department of Energy (DOE))

Project Will Take Advantage of Abundant Water in Shallow Aquifer. Demonstrate Low Temperature GSHP System Design. Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits.

232

Electric Power Generation from Low-Temperature Geothermal Resources...  

Open Energy Info (EERE)

2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

233

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

234

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

235

Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6  

Energy.gov (U.S. Department of Energy (DOE))

GTO Director Doug Hollett took the stage this week at the Geothermal Resources Council industry meeting in Portland, Oregon to address barriers to geothermal development and how the office is...

236

Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP)  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides an overview of geothermal energy production using co-produced and geopressured resources.

237

Geothermal Energy Program overview  

SciTech Connect

The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program.

Not Available

1991-12-01T23:59:59.000Z

238

Geothermal technology publications and related reports: A bibliography, January 1986 through December 1987  

SciTech Connect

Sandia publications resulting from DOE programs in Geothermal Technologies, Magma Energy and Continental Scientific Drilling are listed for reference. The RandD includes borehole-related technologies, in situ processes, and wellbore diagnostics.

Tolendino, C.D. (ed.)

1988-08-01T23:59:59.000Z

239

Sandia National Laboratories: Geothermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Energy & Drilling Technology On November 10, 2010, in Geothermal energy is an abundant energy resource that comes from tapping the natural heat of molten rock...

240

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Management plan for fiscal year 1981: Environmental Control Technology Project, geothermal development  

SciTech Connect

The management of the following four assessment tasks are discussed: current progress in H/sub 2/S abatement technology; solid wastes from geothermal power production operations: characterization, handling, and disposal; problems associated with the use of agricultural drainage water for geothermal power plant cooling in the Imperial Valley; and liquid dominated, low total dissolved solids geothermal resources: characterization and evaluation of potential problems due to composition. (MHR)

Morris, W.F.; Stephens, F.B.

1980-10-14T23:59:59.000Z

242

The Geothermal Technologies Office Congratulates this Year's GEA Honors Awardees  

Energy.gov (U.S. Department of Energy (DOE))

On December 10, the Geothermal Energy Association announced its 2013 GEA Honors awards for advances and achievements in geothermal energy. Among this year's eleven winners and honorable mentions are five projects that the Energy Department investe

243

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Demonstrate geothermal mineral extraction; Demonstrate technical and economic feasibility; Produce products for market development; Generate operational data and scale up data so a commercial scale plant can be designed and built.

244

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Energy.gov (U.S. Department of Energy (DOE))

Doug Hollett's presentation at the Geothermal Resources Council (GRC) Annual Meeting on October 1, 2012 in Reno, Nevada.

245

Sandia National Laboratories: Sandia Wins DOE Geothermal Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal, Materials Science, News, News & Events, Partnership,...

246

Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño August 27, 2010 - 5:21pm Addthis Blue flame generated by natural gas. Blue flame generated by natural gas. Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs With the opening of a new IKEA in suburban Denver slated for fall 2011, Coloradans can expect more than affordable home furnishings: the Centennial store will be the first IKEA to be built with geothermal heating and cooling. The retailers have partnered with the National Renewable Energy Laboratory to study and demonstrate the advantages of a geothermal heating system. By

247

Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.27.10] -- Geothermal Stores, Graphene Loops, Nozzle 8.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle Technology and the 1918 El Niño August 27, 2010 - 5:21pm Addthis Blue flame generated by natural gas. Blue flame generated by natural gas. Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs With the opening of a new IKEA in suburban Denver slated for fall 2011, Coloradans can expect more than affordable home furnishings: the Centennial store will be the first IKEA to be built with geothermal heating and cooling. The retailers have partnered with the National Renewable Energy Laboratory to study and demonstrate the advantages of a geothermal heating system. By

248

Climate Change Update: Baseload Geothermal is One of the Lowest Emitting Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal energy energy derived from the heat of the earth has the ability to produce electricity consistently around the clock, draws a small environmental footprint, and emits little or no greenhouse gases (GHG).

249

Geothermal/Power Plant | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Power Plant Geothermal/Power Plant < Geothermal(Redirected from Power Plant) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Power Plants General List of Plants Map of Plants Regulatory Roadmap NEPA (19) Binary power system equipment and cooling towers at the ORMAT Ormesa Geothermal Power Complex in Southern California. Geothermal Power Plants discussion Electricity Generation Converting the energy from a geothermal resource into electricity is achieved by producing steam from the heat underground to spin a turbine which is connected to a generator to produce electricity. The type of energy conversion technology that is used depends on whether the resource is predominantly water or steam, the temperature of the resource, and the

250

Electric power generation from a geothermal source utilizing a low-temperature organic Rankine cycle turbine  

SciTech Connect

A demonstration project to generate electricity with a geothermal source and low-temperature organic Rankine cycle turbine in a rural Alaskan location is described. Operating data and a set of conclusions are presented detailing problems and recommendations for others contemplating this approach to electric power generation.

Aspnes, J.D.; Zarling, J.P.

1982-12-01T23:59:59.000Z

251

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments  

Energy.gov (U.S. Department of Energy (DOE))

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments: Impacts of a Cluster of Energy Technologies, August 2010.

252

California: Geothermal Plant to Help Meet High Lithium Demand...  

Energy Savers (EERE)

technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to power 300,000-600,000 electric vehicles per...

253

California Geothermal Power Plant to Help Meet High Lithium Demand  

Energy.gov (U.S. Department of Energy (DOE))

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

254

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

SciTech Connect

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

255

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

SciTech Connect

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

256

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

SciTech Connect

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

257

American Electric Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Technologies Inc Electric Technologies Inc Jump to: navigation, search Name American Electric Technologies Inc Place Houston, Texas Zip TX 77087 Sector Services Product American Electric Technologies (formerly M&I Electric Industries) is a global supplier of power delivery products and services to the traditional and alternative energy industries. References American Electric Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Electric Technologies Inc is a company located in Houston, Texas . References ↑ "American Electric Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=American_Electric_Technologies_Inc&oldid=342113"

258

Federal Geothermal Research Program Update - Fiscal Year 2004 | Open Energy  

Open Energy Info (EERE)

Geothermal Research Program Update - Fiscal Year 2004 Geothermal Research Program Update - Fiscal Year 2004 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Federal Geothermal Research Program Update - Fiscal Year 2004 Details Activities (91) Areas (26) Regions (0) Abstract: The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are

259

Economic Impact Analysis for EGS Geothermal Project | Open Energy  

Open Energy Info (EERE)

Impact Analysis for EGS Geothermal Project Impact Analysis for EGS Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Economic Impact Analysis for EGS Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description This proposed study will involve studying the impacts associated with jobs, energy and environment (as a result of investments in geothermal industry and specific EGS technologies) through the creation of a Geothermal Economic Calculator tool (GEC). The study will cover Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. The GEC created will be capable of helping end users (public and the industry) perform region specific economic impact analyses using a web platform that will be hosted by EGI for different geothermal technologies under EGS that will be used for electric power production.

260

Electric Turbo Compounding Technology Update | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compounding Technology Update Electric Turbo Compounding Technology Update Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007)....

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Geothermal | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewables » Geothermal Renewables » Geothermal Geothermal EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Photo of a geothermal power plant with a fumarole, or steam vent, in the foreground. The U.S. Department of Energy (DOE) develops innovative technologies to

262

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

263

Electric Micro Imager Log At Coso Geothermal Area (2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Electric Micro Imager Log At Coso Geothermal Area (2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Single-Well and Cross-Well Resistivity At Coso Geothermal Area (2003) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Single-Well and Cross-Well Resistivity Activity Date 2003 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture/stress analysis Notes A preliminary fracture/stress analysis was conducted for the recently drilled well 38C-9 as part of a continuing effort to characterize the

264

Programmatic Objectives of the Geothermal Technology Division: Volume 1  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

Meridian Corporation, Alexandria, VA

1989-05-01T23:59:59.000Z

265

The Geothermal Technologies Office Invests $18 Million for Innovative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy today announced up to 18 million for 32 projects that will advance geothermal energy development in the United States. The selected projects target research and...

266

Technological Advancements Paving the Way for Geothermal Growth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

also shows that Nevada, the nation's second leading geothermal capacity state behind California, now has over 500 MW of installed capacity. In 2012, Enel Green Power's Stillwater...

267

Monitoring SERC Technologies Geothermal/Ground Source Heat Pumps  

Energy.gov (U.S. Department of Energy (DOE))

A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

268

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Energy.gov (U.S. Department of Energy (DOE))

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

269

Geothermal Energy Association Honors NREL's Dr. Bharathan for Work in Condenser Technology  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Energy Association (GEA) recently announced the finalists for the GEA Honors, which recognizes companies and individuals that have made significant contributions during the past year to advancing technology, spurring economic development or protecting the environment.

270

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network (OSTI)

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

271

Geothermal: Distributed Search Help  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Help Search Help Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Distributed Search Help Table of Contents General Information Search More about Searching Browse the Geothermal Legacy Collection Obtaining Documents Contact Us General Information The Distributed Search provides a searchable gateway that integrates diverse geothermal resources into one location. It accesses databases of recent and archival technical reports in order to retrieve specific geothermal information - converting earth's energy into heat and electricity, and other related subjects. See About, Help/FAQ, Related Links, or the Site Map, for more information about the Geothermal Technologies Legacy Collection .

272

geothermal | OpenEI  

Open Energy Info (EERE)

geothermal geothermal Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

273

Comparison of Life Cycle Carbon Dioxide Emissions and Embodied Energy in Four Renewable Electricity Generation Technologies in New Zealand  

Science Journals Connector (OSTI)

Comparison of Life Cycle Carbon Dioxide Emissions and Embodied Energy in Four Renewable Electricity Generation Technologies in New Zealand ... Fugitive emissions from geothermal fields were noted, though not added to the result for geothermal power generation, but all other CO2 emissions pertaining to this study arose from construction, maintenance, and decommissioning of power stations, since renewable technologies (apart from geothermal) do not emit CO2 during normal operation. ... Hondo, H. Life cycle GHG emission analysis of power generation systems: Japanese case Energy 2005, 30 ( 11?12 SPEC. ...

Bridget M. Rule; Zeb J. Worth; Carol A. Boyle

2009-07-16T23:59:59.000Z

274

Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal energy can be used either to generate base- ... in buildings. Globally, the annual production of geothermal electricity is somewhat smaller than solar PV ... locations with adequate resources. For powe...

Ricardo Guerrero-Lemus; Jos Manuel Martnez-Duart

2013-01-01T23:59:59.000Z

275

Geothermal Basics  

Energy.gov (U.S. Department of Energy (DOE))

Geothermal energygeo (earth) + thermal (heat)is heat energy from the earth. What is a geothermal resource? To understand the basics of geothermal energy production, geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Mile-or-more-deep wells can be drilled into underground reservoirs to tap steam and very hot water that can be brought to the surface for use in a variety of applications, including electricity generation, direct use, and heating and cooling. In the United States, most geothermal reservoirs are located in the western states. This page represents how geothermal energy can be harnessed to generate electricity.

276

Vehicle Technologies Office: Electric Drive Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Advanced power electronics and electric motors (APEEM) that make up vehicles' electric drive system are essential to hybrid and plug-in electric vehicles. As such, improvements in these...

277

Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator  

SciTech Connect

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, Gerhard; Ruhland, Johannes

1996-01-24T23:59:59.000Z

278

Altheim geothermal plant for electricity production by organic Rankine cycle turbogenerator  

SciTech Connect

The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

Pernecker, G. [Municipality of Altheim (Austria); Ruhland, J. [TERRAWAT GmbH, Schwaben (Germany)

1996-12-31T23:59:59.000Z

279

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

280

Geothermal: Sponsored by OSTI -- NATIONAL GEOTHERMAL DATA SYSTEM...  

Office of Scientific and Technical Information (OSTI)

SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geothermal News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

News News Geothermal News RSS April 12, 2013 Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. September 8, 2011 Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and

282

Geothermal Heat Pumps Deliver Big Savings for Federal Facilities - Technology Focus  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EE-0291 EE-0291 Internet: www.eere.energy.gov/femp/ No portion of this publication may be altered in any form without prior written consent from the U.S. Department of Energy, Energy Efficiency and Renewable Energy, and the authoring national laboratory. Geothermal heat pump surface water loops. Geothermal Heat Pumps Deliver Big Savings for Federal Facilities An update on geothermal heat pump technologies and the Super ESPC Energy-efficiency improvements at federal facilities must enhance support for the agency's critical missions while also saving energy and money. Geothermal heat pumps (GHPs, also known as ground-source heat pumps or GeoExchange systems) can do both, and can help meet energy-conservation, emissions-reduction, and renewable-energy goals. GHP technology is now well known as a proven, reliable, efficient, and

283

DOE Awards $20 Million to Develop Geothermal Power Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fluid will then be used as the heat source for a heating system, a greenhouse, and a fish farm. This "cascading" use of the geothermal resource is meant to improve the economics...

284

DOE and Navy Collaborate on Geothermal Drilling Technology |...  

Energy Savers (EERE)

PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy. To read the Sandia Labs news release, click on the link below:...

285

The Geothermal Technologies Office Invests $18 Million for Innovative Projects  

Energy.gov (U.S. Department of Energy (DOE))

In support of a low carbon future, the United States Department of Energy today announced up to $18 million for 32 projects that will advance geothermal energy development in the United States. The...

286

Up to $1.15 Million Available to Small Businesses for New Products or Technologies that Expand Geothermal Markets  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department announced funds targeted to small businesses in two separate geothermal subtopics: a) innovations to develop under-utilized markets and b) a technology transfer opportunity...

287

Guidebook to Geothermal Power Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project...

288

Geothermal Tomorrow | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Tomorrow Geothermal Tomorrow This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of...

289

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

290

Electrical Power Generation Using Geothermal Fluid Co-produced from Oil & Gas  

Energy.gov (U.S. Department of Energy (DOE))

Project objectives: To validate and realize the potential for the production of low temperature resource geothermal production on oil & gas sites. Test and document the reliability of this new technology.; Gain a better understanding of operational costs associated with this equipment.

291

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

292

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

293

Geothermal: Sponsored by OSTI -- Identifying Potential Geothermal...  

Office of Scientific and Technical Information (OSTI)

Identifying Potential Geothermal Resources from Co-Produced Fluids Using Existing Data from Drilling Logs: Williston Basin, North Dakota Geothermal Technologies Legacy Collection...

294

Geothermal: Sponsored by OSTI -- Structure of the Electric Double...  

Office of Scientific and Technical Information (OSTI)

Structure of the Electric Double Layer in Hydrothermal Systems. Molecular Simulation Approach and Interpretation of Experimental Results...

295

Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy  

Science Journals Connector (OSTI)

In the Republic of Croatia there are some medium temperature geothermal sources by means of which it is possible to produce electricity. However, only recently concrete initiatives for the construction of geothermal power plants have been started. Consequently, the paper provides proposals of the possible cycles for the Republic of Croatia. On the example of the most prospective geothermal source in the Republic of Croatia detailed analysis for the proposed energy conversion cycles is performed: for Organic Rankine Cycle (ORC) and Kalina cycle. On the basis of analysis results both the most suitable cycle for selected and for other geothermal sources in the Republic of Croatia are proposed. It is ORC which in case of the most prospective geothermal source in the Republic of Croatia has better both the thermal efficiency (the First Law efficiency) and the exergetic efficiency (the Second Law efficiency): 14.1% vs. 10.6% and 52% vs. 44%. The ORC gives net power of 5270kW with mass flow rate 80.13kg/s, while the Kalina cycle gives net power of 3949kW with mass flow rate 35.717kg/s.

Z. Guzovi?; D. Lon?ar; N. Ferdelji

2010-01-01T23:59:59.000Z

296

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

297

Water Use in the Development and Operations of Geothermal Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

298

Water Use in the Development and Operation of Geothermal Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

299

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

300

The use of geothermal energy: A reliable, cheap, and environmentally friendly method for generating electricity and heat  

Science Journals Connector (OSTI)

The economical and environmental aspects of generating electricity at traditional thermal power stations and at geothermal power stations are considered. The dynamics of prices for fossil fuel and results from...

O. A. Povarov; O. M. Dubnov; A. I. Nikolskii

2007-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

302

Impact of geothermal technology improvements on royalty collections on Federal lands: Volume 1  

SciTech Connect

The purpose of this study was to predict the value of increased royalties that could be accrued through the year 2010 by the federal government as a result of the accomplishments of the US Department of Energy (DOE) geothermal research and development (RandD) program. The technology improvements considered in this study coincide with the major goals and objectives of the DOE program as set forth in Section 3.0 and will: allow the geothermal industry to maintain a long-term competitive posture in the more favorable fields; and permit it to become competitive where the resource is of lower quality. The study was confined to power generation from liquid-dominated hydrothermal geothermal reservoirs. The technologies for exploiting the liquid-dominated, or hot water, fields for power generation are relatively new and still under development. Thus, each technology enhancement that permits greater economic use of the resource will potentially enhance royalty revenues. Potential royalty revenue from dry steam power production at The Geysers, direct use of geothermal fluids, and use of advanced geothermal technologies (i.e., hot dry rock, magma, and geopressured) has not been considered in this assessment. 12 refs.

Not Available

1988-10-01T23:59:59.000Z

303

Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential  

Office of Energy Efficiency and Renewable Energy (EERE)

Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

304

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

305

Geothermal Energy; (USA)  

SciTech Connect

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

Raridon, M.H.; Hicks, S.C. (eds.)

1991-01-01T23:59:59.000Z

306

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

geothermal area, Idaho, with the dc resistivity method (Abstract) Abstract GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER...

307

Roadmap: Electrical/Electronic Engineering Technology Electrical Engineering Technology (General) Associate of Applied Science  

E-Print Network (OSTI)

Roadmap: Electrical/Electronic Engineering Technology ­ Electrical Engineering Technology (General Major GPA Overall GPA 73 2.000 2.000 #12;Roadmap: Electrical/Electronic Engineering Technology Updated: 27-Sept-12/JS This roadmap is a recommended semester-by-semester plan of study for this major

Sheridan, Scott

308

Community Geothermal Technology Program: Silica bronze project. Final report  

SciTech Connect

Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

Bianchini, H.

1989-10-01T23:59:59.000Z

309

Geothermic fuel cell technology for clean hydrocarbon recovery  

Science Journals Connector (OSTI)

Colorado-based Independent Energy Partners Inc (IEP), which has invented a near-zero-emissions, in situ Geothermic Fuel Cell system, has engaged Delphi Corporation and the Colorado School of Mines to bring its patented system to oil shale production in Colorado, eastern Utah, and western Wyoming.

2012-01-01T23:59:59.000Z

310

Geothermal Resource Exploration and Definition Projects | Open Energy  

Open Energy Info (EERE)

Definition Projects Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geothermal Resource Exploration and Definition Projects Details Activities (2) Areas (1) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

311

Geothermal Resource Exploration And Definition Projects | Open Energy  

Open Energy Info (EERE)

And Definition Projects And Definition Projects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resource Exploration And Definition Projects Details Activities (40) Areas (10) Regions (0) Abstract: The Geothermal Resource Exploration and Definition (GRED) projects are cooperative Department of Energy (DOE)/industry projects to find, evaluate, and define additional geothermal resources throughout the western United States. The ultimate goal is to increase electrical power generation from geothermal resources in the United States and facilitate reductions in the cost of geothermal energy through applications of new technology. DOE initiated GRED in April 2000 with a solicitation for industry participation, and this solicitation resulted in seven successful

312

Geothermal power development in Hawaii. Volume I. Review and analysis  

SciTech Connect

The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

Not Available

1982-06-01T23:59:59.000Z

313

Geothermal Power [and Discussion  

Science Journals Connector (OSTI)

...May 1974 research-article Geothermal Power [and...with the development of utilization...increase in geothermal production...electric energy generated...geothermoelectric energy costs ranged...The total geothermal capacity...remarkable development in this type...

1974-01-01T23:59:59.000Z

314

New Mexico/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Mexico/Geothermal Mexico/Geothermal < New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF New Mexico Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in New Mexico Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Lightning Dock I Geothermal Project Raser Technologies Inc Lordsburg, New Mexico Phase I - Resource Procurement and Identification Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Lightning Dock II Geothermal Project Raser Technologies Inc Lordsburg, NV Phase III - Permitting and Initial Development Lightning Dock Geothermal Area Rio Grande Rift Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in New Mexico

315

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

316

Department of Energy Awards up to $38 Million to Advance Technology and Reduce Cost of Geothermal Energy  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Energy Secretary Steven Chu today announced $38 million over three years for projects to accelerate the development of promising geothermal energy technologies and help diversify America's sources of clean, renewable energy. Thirty-two innovative projects in 14 states will develop and test new ways to locate geothermal resources and improve resource characterization, drilling, and reservoir engineering techniques, which will enable geothermal energy sources to help reduce the nation's reliance on fossil fuels.

317

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

Environmental Effects of Geothermal Power Production, 11the potential use of geothermal energy for power generationlargest producer of geothermal electric power in the world.

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

318

DOE Seeks to Invest up to $90 Million in Advanced Geothermal Energy Technology and Research  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) for up to $90 million over four years to advance the research, development and demonstration of next-generation geothermal energy technology which will harness the earths interior heat extracted from hot water or rocks.

319

Department of Energy Awards More Than $11 Million to Advance Innovative Geothermal Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Energy Secretary Steven Chu today announced that eight projects in five statesCalifornia, Connecticut, Louisiana, Texas, and Utahhave been selected to receive up to $11.3 million to support the research and development of pioneering geothermal technologies.

320

Oregon Institute of Technology Recognized for Increasing its Use of Geothermal and Solar Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the Department of Energy recognized the Oregon Institute of Technology (OIT) for boosting its use of clean energy at the first campus in America to be heated by geothermal energy, achieving a major milestone toward its goal of making all seven schools in the Oregon University System carbon-neutral by 2020.

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas  

Energy.gov (U.S. Department of Energy (DOE))

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing Oil/Gas Wells in Texas.

322

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network (OSTI)

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

323

Geothermal Technologies Office Director Doug Hollett Keynotes at Annual Technical Conference of the Geothermal Resources Council in September  

Energy.gov (U.S. Department of Energy (DOE))

GTO Director Doug Hollett took the stage this week at the Geothermal Resources Council industry meeting in Portland, Oregon to address barriers to geothermal development and how the office is...

324

Advanced Geothermal Turbodrill  

SciTech Connect

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

325

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

326

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

SciTech Connect

High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

2014-06-01T23:59:59.000Z

327

Electrical Engineering Technology (EET) LONG RANGE SCHEDULE  

E-Print Network (OSTI)

and Machinery C T C T EET 365W Electrical Power & Machinery Laboratory C C, V V C C, V V EET 370T Energy=Virtual Laboratory, W=Web based This schedule is tentative. All Course offerings are subject to minimum enrollmentElectrical Engineering Technology (EET) LONG RANGE SCHEDULE Course Number and Name Fall 2010 Spr

328

Air Cooling Technology for Advanced Power Electronics and Electric...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Cooling Technology for Advanced Power Electronics and Electric Machines Air Cooling Technology for Advanced Power Electronics and Electric Machines 2009 DOE Hydrogen Program...

329

Department of Energy Quadrennial Technology Review Clean Electricity...  

Energy Savers (EERE)

Department of Energy Quadrennial Technology Review Clean Electricity Workshop Department of Energy Quadrennial Technology Review Clean Electricity Workshop Public release of the...

330

Enhanced Geothermal Systems Subprogram Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Systems Subprogram Overview May 18, 2010 Geothermal Technologies Program Peer Review Crystal City, VA Energy Efficiency & Renewable Energy eere.energy.gov Technology...

331

Northern California: Innovative Exploration Technologies Yield Geothermal Potential  

Office of Energy Efficiency and Renewable Energy (EERE)

First-ever achievement to re-open an abandoned steam field, validating universally applicable technologies.

332

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

333

Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology  

SciTech Connect

Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

Morris, W.; Hill, J. (eds.)

1980-07-01T23:59:59.000Z

334

FY 2014 Annual Progress Report- Electric Drive Technologies Program  

Energy.gov (U.S. Department of Energy (DOE))

FY 2014 Annual Progress Report for the Electric Drive Technologies Program of the Vehicle Technologies Office, DOE/EE-1163

335

American Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Geothermal Systems Place: Austin, Texas Sector: Geothermal energy Product: Installer of geothermal heating and cooling technologies, also has a patented water to air heat pump...

336

Enhanced Geothermal Systems | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

337

Geothermal materials project input for conversion technology task  

SciTech Connect

This ongoing laboratory-based high risk/high payoff R D program has already yielded several durable cost-effective materials of construction which are being used by the geothermal energy industry. In FY 1992, R D in the following areas will be performed: (1) advanced high-temperature (300{degrees}C) CO{sub 2}-resistant lightweight well-cementing materials, (2) high-temperature chemical systems for lost-circulation control, (3) thermally conductive composites for heat exchange applications, (4) corrosion mitigation at the Geysers, and (5) high-temperature chemical coupling materials to bond elastomers to steel substrates. Work to address other materials problems will commence in FY 1993, as their needs are verified. All of the activities will be performed as cost-shared activities with other National Laboratories and/or industry. Successful developments will significantly reduce the cost of well drilling and completion, and energy-extraction processes. 3 figs., 2 tabs.

Kukacka, L.E.

1991-04-01T23:59:59.000Z

338

A Technology Roadmap for Strategic Development of Enhanced Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sufficient for electric power production. With the exception of the Landau project in Germany, past projects have not successfully sustained commercial production rates (50-100...

339

List of Geothermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Geothermal Incentives Geothermal Incentives Jump to: navigation, search The following contains the list of 1895 Geothermal Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1895) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment

340

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011  

Energy.gov (U.S. Department of Energy (DOE))

Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

342

Renewable Energy Technologies | Department of Energy  

Energy Savers (EERE)

EnergyGeothermal technologies are divided into three types of systems: ground-source heat pumps, electricity generation, and direct use. Ground-source heat pumps extract or...

343

Funding Opportunity Announcement Webinar: Technology Advancement...  

Energy Savers (EERE)

website. Presentation Materials Now Available Addthis Related Articles U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Amendment to...

344

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

345

Colorado State Capitol Building Geothermal Program Geothermal Project |  

Open Energy Info (EERE)

State Capitol Building Geothermal Program Geothermal Project State Capitol Building Geothermal Program Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Colorado State Capitol Building Geothermal Program Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description This building is approximately 100 years old, and much of the building is heated with expensive district steam and lacks sufficient central cooling. The requested funding pertains to Topic Area 1 Technology Demonstration Projects. Funding would be used for Phase I - Feasibility Study and Engineering Design, Phase II - Installation and Commissioning of Equipment, and Phase III - Operation, Data Collection, and Marketing. Geothermal energy provided by an open-loop ground source heat pump system and upgrades to the building HVAC systems will reduce consumption of electricity and utility steam created with natural gas. Additionally, comfort, operations and maintenance, and air quality will be improved as a result. It is anticipated that the open loop GHP system will require a 500-650 gpm water flow rate.

346

Discussion on a Code Comparison Effort for the Geothermal Technologies...  

Office of Environmental Management (EM)

gas hydrate accumulations * Suboceanic gas hydrate accumulations * Piceance Basin oil shale * Enhanced oil recovery technologies Experimental Links * CCl 4 Migration and...

347

Geothermal: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us | Admin Log On Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links News DOE Geothermal Technologies Program News Geothermal Technologies Legacy Collection September 30, 2008 Update: "Hot Docs" added to the Geothermal Technologies Legacy Collection. A recent enhancement to the geothermal legacy site is the addition of "Hot Docs". These are documents that have been repeatedly searched for and downloaded more than any other documents in the database during the previous month and each preceding month. "Hot Docs" are highlighted for researchers and stakeholders who may find it valuable to learn what others in their field are most interested in. This enhancement could serve, for

348

Geothermal Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

blog Office of Energy Efficiency & blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Geothermal Energy: A Glance Back and a Leap Forward http://energy.gov/eere/articles/geothermal-energy-glance-back-and-leap-forward geothermal-energy-glance-back-and-leap-forward" class="title-link"> Geothermal Energy: A Glance Back and a Leap Forward

349

Coal based electric generation comparative technologies report  

SciTech Connect

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

350

Extending the Temperature Range of Electric Submersible Pumps...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extending the Temperature Range of Electric Submersible Pumps to 338 C - Hotline IV - High-temperature ESP; 2010 Geothermal Technology Program Peer Review Report Extending the...

351

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

388 388 February 2010 Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis Katherine R. Young and Chad Augustine National Renewable Energy Laboratory Arlene Anderson U.S. Department of Energy Presented at Stanford Geothermal Workshop Stanford, California February 1, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

352

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

353

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

354

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System (NGDS) Geothermal Data: Community Requirements and Information Engineering Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

355

Geothermal: Sponsored by OSTI -- National Geothermal Data System...  

Office of Scientific and Technical Information (OSTI)

System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

356

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

357

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search...

358

Geothermal: Sponsored by OSTI -- Creation of an Enhanced Geothermal...  

Office of Scientific and Technical Information (OSTI)

Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

359

Geothermal Photo Gallery  

Energy.gov (U.S. Department of Energy (DOE))

The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

360

Geothermal FAQs | Department of Energy  

Office of Environmental Management (EM)

Back to Top 5. What is the visual impact of geothermal technologies? Answer: District heating systems and geothermal heat pumps are easily integrated into communities with almost...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15 its selection of seven projects to research, develop, and demonstrate cutting-edge geothermal energy technologies involving low-temperature fluids, geothermal fluids...

362

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network (OSTI)

electric utilization of geothermal power. Then, of course,are pertinent to geothermal power and life in Lake County.issues relative to geothermal power. Thank you. Sincerely ,

Churchman, C.W.

2011-01-01T23:59:59.000Z

363

Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR) Geothermal Energy Technology  

SciTech Connect

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components. The economic models reviewed include the following studies sponsored by Electric Power Research Institute (EPRI)-Cummings and Morris (1979), Los Alamos National Laboratory (LANL)-Murphy, et al. (1982), United Kingdom (UK)-Shock (1986), Japan-Hori, et al. (1986), Meridian-Entingh (1987) and Bechtel (1988). A general evaluation of the technical feasibility of HDR technology components was also conducted in view of their importance in establishing drilling and reservoir performance parameters required for any economic assessment. In this review, only economic projections for base load electricity produced from HDR systems were considered. Bases of 1989 collars ($) were selected to normalize costs. Following the evaluation of drilling and reservoir performance, power plant choices and cost estimates are discussed in section 6 of the report. In Section 7, the six economics studies cited above are reviewed and compared in terms of their key resource, reservoir and plant performance, and cost assumptions. Based on these comparisons, the report estimates parameters for three composite cases. Important parameters include: (1) resource quality-average geothermal gradient (C/km) and well depth, (2) reservoir performance-effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components-drilling, reservoir formation, and power plant costs and (4) economic factors-discount and interest rates, taxes, etc. In Section 8, composite case conditions were used to reassess economic projections for HDR-produced electricity. In Section 9, a generalized economic model for HDR-produced electricity is presented to show the effects of resource grade, reservoir performance parameters, and other important factors on projected costs. A sensitivity and uncertainty analysis using this model is given in Section 10. Section 11 treats a modification of the economic model for predicting costs for direct, non-electric applications. HDR economic projections for the U.S. are broken down by region in Section 12. In Section 13, the report provides recommendations for continued research and development to reduce technical and economic uncertainties relevant to the commercialization of HDR. [DJE-2005

Tester, Jefferson W.; Herzog, Howard J.

1990-07-01T23:59:59.000Z

364

Finnish Electric Vehicle Technologies FEVT | Open Energy Information  

Open Energy Info (EERE)

Finnish Electric Vehicle Technologies FEVT Finnish Electric Vehicle Technologies FEVT Jump to: navigation, search Name Finnish Electric Vehicle Technologies (FEVT) Place Finland Zip 4320 Product Offers large capacity electrical energy storage solutions using technology based on lithium-ion batteries and intelligent cell control systems. References Finnish Electric Vehicle Technologies (FEVT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Finnish Electric Vehicle Technologies (FEVT) is a company located in Finland . References ↑ "Finnish Electric Vehicle Technologies (FEVT)" Retrieved from "http://en.openei.org/w/index.php?title=Finnish_Electric_Vehicle_Technologies_FEVT&oldid=345367"

365

Honey Lake Geothermal Area  

Energy.gov (U.S. Department of Energy (DOE))

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

366

The Future of Geothermal Energy  

E-Print Network (OSTI)

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

367

Beowawe Bottoming Binary Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Beowawe Bottoming Binary Project Geothermal Project Beowawe Bottoming Binary Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Beowawe Bottoming Binary Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description The proposed two-year project supports the DOE GTP's goal of promoting the development and commercial application of energy production from low-temperature geothermal fluids, i.e., between 150°F and 300°F. State Nevada Objectives Demonstrate the technical and economic feasibility of electricity generation from nonconventional geothermal resources of 205°F using the first commercial use of a cycle at a geothermal power plant inlet temperature of less than 300°F.

368

geothermal | OpenEI Community  

Open Energy Info (EERE)

geothermal geothermal Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind Much of the discussion surrounding green buildings centers around reducing energy use. The term net zero is the platinum standard for green buildings, meaning the building in question does not take any more energy from the utility grid than it produces using renewable energy resources, such as solar, wind, or geothermal installations (and sometimes these renewable energy resources actually feed energy back to the utility grid).

369

RISK AVERSION AND TECHNOLOGY MIX IN AN ELECTRICITY Guy MEUNIER  

E-Print Network (OSTI)

RISK AVERSION AND TECHNOLOGY MIX IN AN ELECTRICITY MARKET Guy MEUNIER Cahier n° 2013-23 ECOLE:chantal.poujouly@polytechnique.edu hal-00906944,version1-20Nov2013 #12;Risk aversion and technology mix in an electricity market Guy-aversion on the long-term equilibrium technology mix in an electricity market. It develops a model where firms can

Paris-Sud XI, Université de

370

Geothermal Brief: Market and Policy Impacts Update  

SciTech Connect

Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

Speer, B.

2012-10-01T23:59:59.000Z

371

Center for the Commercialization of Electric Technologies | Open Energy  

Open Energy Info (EERE)

Commercialization of Electric Technologies Commercialization of Electric Technologies Jump to: navigation, search Name Center for the Commercialization of Electric Technologies Place Austin, Texas Zip 78701 Product Texas-based research institution that promotes the development of the electrical system. References Center for the Commercialization of Electric Technologies[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Center for the Commercialization of Electric Technologies is a company located in Austin, Texas . References ↑ "Center for the Commercialization of Electric Technologies" Retrieved from "http://en.openei.org/w/index.php?title=Center_for_the_Commercialization_of_Electric_Technologies&oldid=343363

372

Geothermal Direct Use | Open Energy Information  

Open Energy Info (EERE)

Direct Use Direct Use Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF [edit] Geothermal Direct Use Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Direct Use Links Related documents and websites EERE's Direct Use Report National Institute of Building Science's Whole Building Design Guide Policy Makers' Guidebook for Geothermal Heating and Cooling Dictionary.png Geothermal Direct Use: Low- to moderate-temperature water from geothermal reservoirs can be used to provide heat directly to buildings, or other applications that require

373

Geothermal: Sponsored by OSTI -- Electronic Submersible Pump...  

Office of Scientific and Technical Information (OSTI)

Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet) Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact...

374

DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 DOE GEOTHERMAL RISK ANALYSIS: Prepared by the National Renewable Energy Laboratory (NREL) 2009 DOE GEOTHERMAL RISK ANALYSIS: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov The Parker Ranch installation in Hawaii DOE 2009 Geothermal Risk Analysis: Methodology and Results DOE Geothermal Technologies Program arlene.anderson@ee.doe.gov February 1, 2010 Geothermal Technologies Program (GTP) Arlene Anderson & Chad Augustine NREL Strategic Energy Analysis Center Chad.Augustine@nrel.gov Katherine R. Young (NREL) Chad Augustine (NREL) Arlene Anderson (DOE-2046GTP) NREL/PR-6A2-47526 Presented at the Stanford Geothermal Workshop, 1-3 February 2010, Stanford, California Jim McVeigh (Sentech), Ed Eugeni, (Sentech), Joe Cohen (SAIC) Pacific Gas & Electric/PIX 00059 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by

375

Vehicle Technologies Office: Materials for Hybrid and Electric Drive  

NLE Websites -- All DOE Office Websites (Extended Search)

for Hybrid and for Hybrid and Electric Drive Systems to someone by E-mail Share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Facebook Tweet about Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Twitter Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Google Bookmark Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Delicious Rank Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on Digg Find More places to share Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines

376

Overview of Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geothermal Energy Geothermal Energy Development Kermit Witherbee Geothermal Geologist/Analyst DOE Office of Indian Energy Webcast: Overview of Geothermal Energy Development Tuesday, January 10, 2012 Geothermal Geology and Resources Environmental Impacts Geothermal Technology - Energy Conversion Geothermal Leasing and Development 2 PRESENTATION OUTLINE GEOTHERMAL GEOLOGY AND RESOURCES 3 Geology - Plate Tectonics 4 Plate Tectonic Processes Schematic Cross-Section "Extensional" Systems- "Rifting" Basin and Range Rio Grand Rift Imperial Valley East Africa Rift Valley "Magmatic" Systems Cascade Range 6 Geothermal Resources(USGS Fact Sheet 2008-3062) 7 State Systems

377

VDE Association for Electrical Electronic Information Technologies | Open  

Open Energy Info (EERE)

VDE Association for Electrical Electronic Information Technologies VDE Association for Electrical Electronic Information Technologies Jump to: navigation, search Name VDE (Association for Electrical, Electronic & Information Technologies) Place Germany Sector Services, Solar Product VDE provides certification services for, amongst others, solar panels. References VDE (Association for Electrical, Electronic & Information Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. VDE (Association for Electrical, Electronic & Information Technologies) is a company located in Germany . References ↑ "VDE (Association for Electrical, Electronic & Information Technologies)" Retrieved from "http://en.openei.org/w/index.php?title=VDE_Association_for_Electrical_Electronic_Information_Technologies&oldid=352739

378

Concept Testing and Development at the Raft River Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho DOE 2010 Geothermal Technologies...

379

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

380

Geothermal Power Generation  

SciTech Connect

The report provides an overview of the renewed market interest in using geothermal for power generation including a concise look at what's driving interest in geothermal power generation, the current status of geothermal power generation, and plans for the future. Topics covered in the report include: an overview of geothermal power generation including its history, the current market environment, and its future prospects; an analysis of the key business factors that are driving renewed interest in geothermal power generation; an analysis of the challenges that are hindering the implementation of geothermal power generation projects; a description of geothermal power generation technologies; a review of the economic drivers of geothermal power generation project success; profiles of the major geothermal power producing countries; and, profiles of the major geothermal power project developers.

NONE

2007-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hybrid & electric vehicle technology and its market feasibility ; Hybrid and electric vehicle technology and its market feasibility ; HEV technology and its market feasibility ; PHEV technology and its market feasibility ; EV technology and its market feasibility .  

E-Print Network (OSTI)

??In this thesis, Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV) and Electric Vehicle (EV) technology and their sales forecasts are discussed. First, the (more)

Jeon, Sang Yeob

2010-01-01T23:59:59.000Z

382

Geothermal energy research and development  

Science Journals Connector (OSTI)

Thermal springs have been used for bathing, washing and cooking for thousands of years in many countries. At the beginning of this century, experiments started with piping the hot water to houses for space heating and with using geothermal steam for the production of electricity. Geothermal is a proven energy resource that uses mostly conventional technology. Commercial production on the scale of hundreds of MW has been undertaken for over three decades both for electricity generation and direct utilization. Today, electricity is generated from geothermal energy in 21 countries. The installed capacity is nearly 6300 MW-electric. Four developing countries (El Salvador 18%, Kenya 11%, Nicaragua 18% and Philippines 21%) produce over 10% of their total electricity from geothermal. Electric generation cost is commonly around 4 U.S.cents/kWh. Direct utilization of geothermal water (space heating, horticulture, fish farming, industry and/or bathing) is known in about 40 countries, thereof 14 countries have each an installed capacity of over 100 MW-thermal. The overall installed capacity for direct utilization is about 11,400 MW-thermal. The production cost/kWh for direct utilization is highly variable, but commonly under 2 U.S.cents/kWht. A worldwide survey shows that the total investments in geothermal energy between 1973 and 1992 amounted to approximately 22 billion U.S.$. During the two decades, 30 countries invested each over 20 million U.S.$, 12 countries over 200 million U.S.$, and 5 countries over 1 billion U.S.$. During the first decade, 19731982, public funding amounted to 4.6 billion U.S.$ and private funding to 3 billion U.S.$. During the second decade, 19831992, public funding amounted to 6.6 billion U.S.$ and private funding to 7.7 billion U.S.$. Geothermal development has in the past been much affected by the development of prices of the competing fuels, especially oil and natural gas. Assuming a continuation of the present oil prices, the annual growth rate in geothermal utilization is likely to be some 4% for electricity generation and 10% for direct utilization. This would imply installed capacities of 8900 \\{MWe\\} and 30,000 \\{MWt\\} in the year 2000. The total investment cost of geothermal in the world during the next decade can be expected to be some 1520 billion U.S.$. Properly implemented, geothermal energy is a sustainable resource and benign to the environment. The emission of greenhouse gases is minimal compared to fossil fuels. The removal of hydrogen sulphide from high temperature steam and the reinjection of spent geothermal fluids into the ground make the potential negative environmental effects negligible. The relative economic viability of geothermal energy will improve significantly if and when a pollution tax is endorsed on power production using fossil fuels. Geothermal exploration and exploitation requires skills from many scientific and engineering disciplines. International geothermal training centres are operated in Iceland, Italy, Japan, Mexico, and New Zealand. The International Geothermal Association was founded in 1988 and has over 2000 members in all parts of the world.

Ingvar B. Fridleifsson; Derek H. Freeston

1994-01-01T23:59:59.000Z

383

Large Scale Geothermal Exchange System for Residential, Office and Retail  

Open Energy Info (EERE)

Geothermal Exchange System for Residential, Office and Retail Geothermal Exchange System for Residential, Office and Retail Development Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Large Scale Geothermal Exchange System for Residential, Office and Retail Development Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description RiverHeath will be a new neighborhood, with residences, shops, restaurants, and offices. The design incorporates walking trails, community gardens, green roofs, and innovative stormwater controls. A major component of the project is our reliance on renewable energy. One legacy of the land's industrial past is an onsite hydro-electric facility which formerly powered the paper factories. The onsite hydro is being refurbished and will furnish 100% of the project's electricity demand.

384

Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen  

NLE Websites -- All DOE Office Websites (Extended Search)

5: July 23, 2001 5: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen to someone by E-mail Share Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen on Facebook Tweet about Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen on Twitter Bookmark Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen on Google Bookmark Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen on Delicious Rank Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen on Digg Find More places to share Vehicle Technologies Office: Fact #175: July 23, 2001 Electricity Chosen over Ethanol and Hydrogen on

385

Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

9: September 30, 9: September 30, 2013 Electricity Generation by Source, 2003-2012 to someone by E-mail Share Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 on Facebook Tweet about Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 on Twitter Bookmark Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 on Google Bookmark Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 on Delicious Rank Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 on Digg Find More places to share Vehicle Technologies Office: Fact #799: September 30, 2013 Electricity Generation by Source, 2003-2012 on

386

MHK Technologies/Current Electric Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Electric Generator.jpg Technology Profile Primary Organization Current Electric Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Current Electric Generator will create electricity in three different processes simultaniously by harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The generators will be wired up together in large fields on open waterways sumerged from harm The electricity will be sent back to mainland via an underwater wire for consumption The Current Electric Generator is designed with the environment in mind and will primarilly be constructed from recycled materials cutting emmisions cost

387

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

388

Geothermal: Sponsored by OSTI -- Geothermal Greenhouse Information...  

Office of Scientific and Technical Information (OSTI)

Greenhouse Information Package Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

389

The New Era of Geothermal Energy Utilization with Aid of Nuclear Reactor Technology  

Science Journals Connector (OSTI)

Japan has about 120 active volcanoes. Estimated potential of geothermal power generation is 23,470 MWe from ... reservoirs to a depth of 3 km. Geothermal energy is expected to be an important role ... Currently, ...

Takehiko Yokomine; Masato Miura; Chineo Tawara

2012-01-01T23:59:59.000Z

390

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Office of Energy Efficiency and Renewable Energy (EERE)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

391

MHK Technologies/Float Wave Electric Power Station | Open Energy  

Open Energy Info (EERE)

Wave Electric Power Station Wave Electric Power Station < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Float Wave Electric Power Station.jpg Technology Profile Primary Organization Applied Technologies Company Ltd Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The module of FWEPS is an oblong axisymmetrical capsule float which is located on the sea surface Inside the capsule there is a mechanical wave energy converter consisting of an oscillatory system and drive and an electric generator and energy accumulator Under the wave effect the capsule float and inner oscillatory system of the mechanical converter are in continuous oscillatory motion while the drive engaged with the system provides a continuous turn for the electric generator

392

DOE/EA-1621: Oregon Institute of Technology Deep Geothermal Well and Power Plant Project (September 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oregon Institute of Technology (OIT) Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center Oregon Institute of Technology (OIT) Klamath Falls, OR 97601 Oregon Institute of Technology (OIT) Deep Geothermal Well and Power Plant Project Final Environmental Assessment September 2008 Prepared for: U.S. Department of Energy 1617 Cole Boulevard Golden, CO 80401 Prepared by: MHA Environmental Consulting, An RMT Business 4 West Fourth Avenue, Suite 303 San Mateo, CA 94402 www.mha-inc.com - www.rmtinc.com Geo-Heat Center

393

Vehicle Technologies Office: Materials for Hybrid and Electric Drive Systems  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office (VTO) is working to lower the cost and increase the convenience of electric drive vehicles, which include hybrid and plug-in electric vehicles. These vehicles use...

394

Vehicle Technologies Office: Fact #766: February 11, 2013 Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

6: February 11, 6: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices to someone by E-mail Share Vehicle Technologies Office: Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices on Facebook Tweet about Vehicle Technologies Office: Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices on Twitter Bookmark Vehicle Technologies Office: Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices on Google Bookmark Vehicle Technologies Office: Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices on Delicious Rank Vehicle Technologies Office: Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices on Digg Find More places to share Vehicle Technologies Office: Fact #766:

395

Advanced Electric Traction System Technology Development  

SciTech Connect

As a subcontractor to General Motors (GM), Ames Laboratory provided the technical expertise and supplied experimental materials needed to assess the technology of high energy bonded permanent magnets that are injection or compression molded for use in the Advanced Electric Traction System motor. This support was a sustained (Phase 1: 6/07 to 3/08) engineering effort that builds on the research achievements of the primary FreedomCAR project at Ames Laboratory on development of high temperature magnet alloy particulate in both flake and spherical powder forms. Ames Lab also provide guidance and direction in selection of magnet materials and supported the fabrication of experimental magnet materials for development of injection molding and magnetization processes by Arnold Magnetics, another project partner. The work with Arnold Magnetics involved a close collaboration on particulate material design and processing to achieve enhanced particulate properties and magnetic performance in the resulting bonded magnets. The overall project direction was provided by GM Program Management and two design reviews were held at GM-ATC in Torrance, CA. Ames Lab utilized current expertise in magnet powder alloy design and processing, along with on-going research advances being achieved under the existing FreedomCAR Program project to help guide and direct work during Phase 1 for the Advanced Electric Traction System Technology Development Program. The technical tasks included review of previous GM and Arnold Magnets work and identification of improvements to the benchmark magnet material, Magnequench MQP-14-12. Other benchmark characteristics of the desired magnet material include 64% volumetric loading with PPS polymer and a recommended maximum use temperature of 200C. A collaborative relationship was maintained with Arnold Magnets on the specification and processing of the bonded magnet material required by GM-ATC.

Anderson, Iver

2011-01-14T23:59:59.000Z

396

NEPA COMPLIANCE SURVEY Project Information Project TitJe: Geothermal Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Information Project TitJe: Geothermal Technologies Program Date: 12-11-()9 DOE Code: 6730.020.61041 Contractor Code: Project Lead: Project Overview This NEPA is for the laying of a 2,975 foot, 8" welded plastic water line from Little Teapot Creek near in the 1. What are the environmental impacts? intersection with Teapot Creek to the North Waterflood Facility (NWF) building. The entire project area is within Section 21 T39N R78W (map attached) and will not impact any wet land areas but will cross one 2. What is the legal location? intermittent stream. The stream is presently dry. The project will include the clearing of vegetation from a 12 3. What is the duration of the project? foot wide construction corridor along the route, digging a 5 foot deep trench, welding and placing the plastic

397

DOE Announces Investment of up to $84 Million in Geothermal Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment of up to $84 Million in Geothermal Energy Investment of up to $84 Million in Geothermal Energy DOE Announces Investment of up to $84 Million in Geothermal Energy March 4, 2009 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu today announced the release of two Funding Opportunity Announcements (FOAs) for up to $84 million to support the development of Enhanced Geothermal Systems (EGS). Geothermal energy technologies use energy from the earth to heat buildings and generate electricity. Enhanced Geothermal Systems offer the potential to extend geothermal resources to larger areas of the western United States, as well as into new geographic areas of the entire country. These projects will help support the Administration's efforts to invest in clean energy technologies, create millions of new jobs, end our addiction to

398

Session: Reservoir Technology  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

399

3D MAGNETOTELLURIC CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD | Open  

Open Energy Info (EERE)

CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD CHARACTERIZATION OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: 3D Magnetotelluric characterization of the COSO Geothermal Field Details Activities (0) Areas (0) Regions (0) Abstract: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring

400

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description Using mass-produced chiller equipment for "reverse refrigeration" to generate electricity: This approach allows Johnson Controls to take advantage of the economies of scale and manufacturing experience gained from current products while minimizing performance risks. Process efficiencies will be increased over the current state of the art in two ways: better working fluids and improved cycle heat management.

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Category:Electricity Generating Technologies | Open Energy Information  

Open Energy Info (EERE)

Energy (4 categories) W + Wind (2 categories) 3 pages Pages in category "Electricity Generating Technologies" The following 3 pages are in this category, out of 3...

402

New ORNL electric vehicle technology packs more punch in smaller...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL electric vehicle technology packs more punch in smaller package ORNL's 30-kilowatt power inverter offers greater reliability and power in a compact package. ORNL's 30-kilowatt...

403

An integrated model to compare net electricity generation for CO?- and water-based geothermal systems.  

E-Print Network (OSTI)

??Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed byBrown in 2000 and its advantages have been discussed by him (more)

Agarwal, Vikas, 1986-

2010-01-01T23:59:59.000Z

404

A Thermogravimetric Loop for Converting Low Enthalpy Geothermal Energy into Electricity  

Science Journals Connector (OSTI)

ENEL is completing, under contract with the Commission of the European Communities, the construction in Larderello of a pilot plant suitable for the exploitation of low temperatures geothermal sources.

G. Trebbi

1980-01-01T23:59:59.000Z

405

Geothermal status report  

SciTech Connect

This article examines the effects of competition of geothermal energy production with other technologies. The topics of the article include near-term market growth, cause for cautious optimism, limits to development of geothermal energy production, economic arguments for development of geothermal power plants, the effects of a competitive market on industry survival.

Short, W.P. III (Kidder, Peabody and Co. Inc., New York, NY (United States))

1992-10-01T23:59:59.000Z

406

Geothermal direct-heat utilization assistance  

SciTech Connect

Progress on technical assistance, R D activities, technology transfer, and geothermal progress monitoring is summarized.

Not Available

1992-12-01T23:59:59.000Z

407

Utah Geothermal Area | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy...

408

MULTIPARAMETER OPTIMIZATION STUDIES ON GEOTHERMAL ENERGY CYCLES  

E-Print Network (OSTI)

and J. W. Tester, Geothermal Energy as a Source of Electricat the Susanville Geothermal Energy Converence, July 1976.and J. W. Tester, Geothermal Energy as a Source of Electric

Pope, W.L.

2011-01-01T23:59:59.000Z

409

Hawaii/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Geothermal Hawaii/Geothermal < Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hawaii Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Hawaii Developer Location Estimated Capacity (MW) Development Phase Geothermal Area Geothermal Region Haleakala SW Rift Zone Exploration Ormat Technologies Inc , US Department of Energy Haleakala Southwest Rift Zone Haleakala Volcano Geothermal Area Hawaii Geothermal Region Puna Geothermal Venture Ormat Technologies Inc Pahoa, Hawaii 38 MW38,000 kW 38,000,000 W 38,000,000,000 mW 0.038 GW 3.8e-5 TW Kilauea East Rift Geothermal Area Hawaii Geothermal Region Add a geothermal project. Operational Geothermal Power Plants in Hawaii Owner Facility Type Capacity (MW) Commercial Online

410

Upgrading of Traditional Electric Meter into Wireless Electric Meter Using ZigBee Technology  

Science Journals Connector (OSTI)

Since the electric generating, distributing and marketing has been possible; the Electric Meter was introduced and developed along the years, but never like this time. The digital technology, the wireless comm...

Berhanu Regassa; Ana Vernica Medina; Isabel M. Gmez; Octavio Rivera

2012-01-01T23:59:59.000Z

411

Electricity Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Generation Electricity Generation Photo of geothermal power plant. A geothermal resource requires fluid, heat and permeability in order to generate electricity:...

412

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

413

Geothermal: Sponsored by OSTI -- Development in California's...  

Office of Scientific and Technical Information (OSTI)

Development in California's geothermal regions: implications for Energy Commission regulatory policy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

414

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

415

NREL: Climate Neutral Research Campuses - Geothermal Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

following documents are viewable as Adobe PDFs. Download Adobe Reader. Geothermal Basics: DOE explains the fundamentals of geothermal technologies. DOE Department of Energy...

416

Utility Geothermal Development Strategies | Department of Energy  

Energy Savers (EERE)

hosted by the Geothermal Resources Council (GRC) and sponsored by the U.S. Department of Energy Geothermal Technologies Office. The Webinar focused on ways utilities can include...

417

Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...  

Office of Scientific and Technical Information (OSTI)

ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

418

Welcome - Energy Efficiency & Electricity Technologies Program - EESD  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome ORNL delivers key support to DOE's Office of Energy Efficiency and Renewable Energy (EERE) programs through three broad areas of research and development. Sustainable electricity is aligned under the Energy Efficiency and Electricity Technologies Program. ORNL's sustainable electricity program develops technologies to create a cleaner environment. This program addresses challenges in renewable generation, electricity distribution and end-use in buildings to ensure our nation's energy security through cost effective solutions while mitigating and reducing environmental impacts. Sustainable manufacturing is aligned under ORNL's Office of Energy Materials, which manages the EERE Industrial Technologies Program at ORNL. Sustainable manufacturing draws on the laboratory's world-class

419

Geothermal R&D Program Technology Transfer Outlook, FY-85 through FY-1989  

SciTech Connect

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

None

1986-03-01T23:59:59.000Z

420

Postgraduate Certificate in Geothermal Energy  

E-Print Network (OSTI)

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EA-1750: Smart Grid, Center for Commercialization of Electric Technology,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

750: Smart Grid, Center for Commercialization of Electric 750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas Summary This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid. Public Comment Opportunities No public comment opportunities available at this time.

422

Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

0: October 22, 0: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving to someone by E-mail Share Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Facebook Tweet about Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Twitter Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Google Bookmark Vehicle Technologies Office: Fact #750: October 22, 2012 Electric Vehicle Energy Requirements for Combined City/Highway Driving on Delicious Rank Vehicle Technologies Office: Fact #750: October 22, 2012

423

Geothermal Case Study Challenge  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department's Geothermal Technologies Office hosts an annual student competition in exploration research to engage students pursuing STEM careers and, ultimately, to aid in the next...

424

Stanford Geothermal Workshop  

Energy Savers (EERE)

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

425

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power  

Open Energy Info (EERE)

Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field Cameron Parish, Louisiana Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Geopressured Resources Project Description Within the Sweet Lake Oil and Gas Field, the existence of a geopressured-geothermal system was confirmed in the 1980s as part of the DOE's Gulf Coast Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and job creation it would entail, provide the opportunity to develop thousands of megawatts of geopressured-geothermal power in the South Eastern United States.

426

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Enhanced Geothermal Systems (EGS) (Redirected from EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation)

427

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network (OSTI)

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

428

Induced seismicity associated with enhanced geothermal system  

E-Print Network (OSTI)

and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

429

GEOTHERMAL HEAT PUMPS Jack DiEnna  

E-Print Network (OSTI)

by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

430

Geothermal energy abstract sets. Special report No. 14  

SciTech Connect

This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

Stone, C. (comp.)

1985-01-01T23:59:59.000Z

431

Geothermal resources  

SciTech Connect

The United States uses geothermal energy for electrical power generation and for a variety of direct use applications. The most notable developments are The Geysers in northern California, with approximately 900 MWe, and the Imperial Valley of southern California, with 14 MWe being generated, and at Klamath Falls, Oregon and Boise, Idaho, where major district heating projects are under construction. Geothermal development is promoted and undertaken by private companies, public utilities, the federal government, and by state and local governments. Geothermal drilling activity showed an increase in exploratory and development work over the five previous years, from an average of 61 wells per year to 96 wells for 1980. These 96 wells accounted for 605,175 ft of hole. The completed wells included 18 geothermal wildcat discoveries, 15 wildcat failures, and 5 geopressured geothermal failures, a total of 38 exploratory attempts. Of the total of 58 geothermal development wells attempted, 55 were considered capable of production amounting to a success ratio of 94.8%. During 1980, two new power plants were put on line at The Geysers, increasing by 37% the total net generating capacity to over 900 MWe. Two power plants commenced production in the Imperial Valley in 1980. Southern California Edison started up a 10-MWe flash steam unit at the Brawley geothermal field in June. Steam is supplied by the Union Oil Company. After an intermittent beginning, Imperial Magma's pilot binary cycle, 11-MWe unit went on line on a continuous basis, producing 7 MWe of power. Hot water is supplied to the plant by Imperial Magma's wells.

Berge, C.W. (Phillips Petroleum Co., Sandy, UT); Lund, J.W.; Combs, J.; Anderson, D.N.

1981-10-01T23:59:59.000Z

432

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

433

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume I.  

SciTech Connect

The objective was to consolidate and evaluate all geologic, environmental, and legal and institutional information in existing records and files, and to apply a uniform methodology to the evaluation and ranking of sites to allow the making of creditable forecasts of the supply of geothermal energy which could be available in the region over a 20 year planning horizon. A total of 1265 potential geothermal resource sites were identified from existing literature. Site selection was based upon the presence of thermal and mineral springs or wells and/or areas of recent volcanic activity and high heat flow. 250 sites were selected for detailed analysis. A methodology to rank the sites by energy potential, degree of developability, and cost of energy was developed. Resource developability was ranked by a method based on a weighted variable evaluation of resource favorability. Sites were ranked using an integration of values determined through the cost and developability analysis. 75 figs., 63 tabs.

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

434

Demonstration of an Enhanced Geothermal System at the Northwest...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bradys Hot Springs, Nevada Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program...

435

Iceland Geothermal Conference 2013- Geothermal Policies and Impacts in the U.S.  

Energy.gov (U.S. Department of Energy (DOE))

Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office.

436

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? Desert Peak 2 is the nation's first commercial enhanced geothermal system to supply electricity to the grid. Based in Churchill County, Nevada, the project has increased power

437

Technology Roadmap of Electric Vehicle Industrialization  

Science Journals Connector (OSTI)

Through the understanding of the development of the domestic and foreign electric vehicle dynamic and trend, we can know the state new energy vehicles encouraging policies and development strategies, combine with...

Qinghua Bai; Shupeng Zhao; Pengyun Xu

2012-01-01T23:59:59.000Z

438

Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne Lab's Breakthrough Cathode Technology Powers Electric Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today Argonne Lab's Breakthrough Cathode Technology Powers Electric Vehicles of Today February 14, 2011 - 6:15pm Addthis Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR Jeff Chamberlain Speaks at Brookings Battery Forum | Photo Courtesy of Audra Capas, 5StarPR David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy The Department of Energy has been investing in vehicle electrification for more than a decade, with results that speak for themselves: The battery technologies in almost all of the electric vehicles and hybrids on the road today were developed with support from the Department. As you may have read

439

Comparison of various battery technologies for electric vehicles  

E-Print Network (OSTI)

four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

440

E-Print Network 3.0 - agency geothermal project Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Opportunity Analysis Summary: Water Heating 5.2 Technology and Trends 6.0 Geothermal Project Planning... .0 Geothermal Project Planning 12;6.0 Geothermal Project...

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Resources Council's 36  

Office of Scientific and Technical Information (OSTI)

Geothermal Resources Council's 36 Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300°C geothermal water at 80kg/s flow rate in a maximum 10-5/8" diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis

442

Low-Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010  

Energy.gov (U.S. Department of Energy (DOE))

This action plan presents an agenda for GTPs Low-Temperature and Coproduced Subprogram to efficiently and effectively leverage its resources in support of the geothermal communitys goals and priorities.

443

Market Power and Technological Bias: The Case of Electricity Generation  

E-Print Network (OSTI)

, the intermittent nature of output from wind turbines and solar panels is frequently discussed as a potential obstacle to larger scale application of these tech- nologies. Contributions of 10-20% of electrical energy from individual intermittent technologies create... , Cambridge CB3 9DE, UK, Tel: ++ 44 1223 335200, paul.twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However...

Twomey, Paul; Neuhoff, Karsten

2006-03-14T23:59:59.000Z

444

Geothermal energy: 1992 program overview  

SciTech Connect

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

445

DOE Updated U.S. Geothermal: Supply Curve (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov The Parker Ranch installation in Hawaii Geothermal Technologies Program (GTP) DOE Updated U.S. Geothermal Supply Curve Chad Augustine National Renewable Energy Laboratory Strategic Energy Analysis Center Chad.Augustine@nrel.gov February 1, 2010 Chad Augustine (NREL) Katherine R. Young (NREL) Arlene Anderson (DOE-GTP) NREL/PR-6A2-47527 Pacific Gas & Electric/PIX 00059 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 2 | 2009 DOE GEOTHERMAL SUPPLY CURVE UPDATE: Prepared by the National Renewable Energy Laboratory (NREL) eere.energy.gov

446

Core Analysis At Coso Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (1979) Coso Geothermal Area (1979) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Core Analysis Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis Compare microcracks between Coso and Raft River geothermal areas Notes Microcracks were observed in core samples from Coso. Both permeability and electrical conductivity were measured for a suite of samples with a range of microcracks characteristics. A partial set of samples were collected to study migration of radioactive elements. References Simmons, G.; Batzle, M. L.; Shirey, S. (1 April 1979) Microcrack technology. Progress report, 1 October 1978--31 March 1979 Retrieved from "http://en.openei.org/w/index.php?title=Core_Analysis_At_Coso_Geothermal_Area_(1979)&oldid=473689

447

SETS, March 2006Institute of Electrical Engineering and Information Technology  

E-Print Network (OSTI)

Motivation Shrinking feature size Aging effects · Electron/thermal migration · Dielectric breakdownSETS, March 2006Institute of Electrical Engineering and Information Technology Alg. & Tools Ibers, Marc Hunger, Michael Schnittger Alg. & Tools for Test & Diagnosis 2 Institute of Electrical

Hellebrand, Sybille

448

Review on electrical discharge plasma technology for wastewater remediation  

Science Journals Connector (OSTI)

Abstract As wastewater remediation becomes a global concern, the development of innovative advanced oxidation processes for wastewater treatment is still a major challenge. With regard to its fast removal rate and environmental compatibility, plasma technology is considered as a promising remediation technology for water remediation. The principles of electrical plasma with liquids for pollutant removal and the reactors of various electrical discharge types are outlined in this review. To improve energy efficiency, combination of plasma technology with catalysts has attracted significant attention. The present review is concerned about present understanding of the mechanisms involved in these combined processes. Further on, detailed discussions are given of the effects of various factors on the performance of pulsed electrical plasma technology in water treatment processes. Finally, special attention is paid to the future challenges of plasma technology utilized for industrial wastewater treatment.

Bo Jiang; Jingtang Zheng; Shi Qiu; Mingbo Wu; Qinhui Zhang; Zifeng Yan; Qingzhong Xue

2014-01-01T23:59:59.000Z

449

Assessment of low temperature electricity production with focus on geothermal energy.  

E-Print Network (OSTI)

??With the rise of environmental awareness and increased electricity prices, low temperature electricity production cycles are getting more and more into focus. These include applications (more)

Scheyhing, Andreas

2012-01-01T23:59:59.000Z

450

Electricity on the rig. Part 3 - New electric rig technology  

SciTech Connect

The use of an SCR-controlled power system on an offshore drilling rig has lead to an increased acceptance of high technology equipment. Such equipment increases drilling productivity, reduces maintenance, and improves reliability. Most new rigs now have AC squirrel cage motors, brushless AC generators, silicon controlled rectifiers, DC motors, and swtichgear and motor starters. Several opportunities for cost reductions in SCR systems, such as improving the power factor, are studied in this paper.

McNair, W.L.

1983-07-01T23:59:59.000Z

451

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

452

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

453

Solar electricity-a low power technology  

Science Journals Connector (OSTI)

The author examines the future potential of solar power with regard to its applications. He suggests that although the large size and small power output of solar cell electric systems are obstacles to high power usage, realistic low power applications can make a valuable contribution to world energy needs

L.B. Harris

1982-01-01T23:59:59.000Z

454

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

Technology Pathways Technology Pathways Industry Vision & Roadmaps The following documents are available for download as Adobe PDF documents. Download Acrobat Reader A Climate Contingency Roadmap for the U.S. Electricity Sector: Phase II (PDF 192 KB) This roadmap examines the role of the electric sector in climate change and the sectoral impacts of alternative climate policy designs. The document explores the capabilities and costs of emissions reduction options and the influence of company-specific circumstances on the design of cost-effective response strategies. It also investigates mechanisms to create incentives for support of advanced climate-related technology research, development, and demonstration. Electric Power Research Institute Roadmap The Electric Power Research Institute is initiating an effort to develop an

455

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

456

MHK Technologies/Underwater Electric Kite Turbines | Open Energy  

Open Energy Info (EERE)

Underwater Electric Kite Turbines Underwater Electric Kite Turbines < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Underwater Electric Kite Turbines.jpg Technology Profile Primary Organization UEK Corporation Project(s) where this technology is utilized *MHK Projects/Atchafalaya River Hydrokinetic Project II *MHK Projects/Chitokoloki Project *MHK Projects/Coal Creek Project *MHK Projects/Half Moon Cove Tidal Project *MHK Projects/Indian River Tidal Hydrokinetic Energy Project *MHK Projects/Luangwa Zambia Project *MHK Projects/Minas Basin Bay of Fundy Commercial Scale Demonstration *MHK Projects/Passamaquoddy Tribe Hydrokinetic Project *MHK Projects/Piscataqua Tidal Hydrokinetic Energy Project *MHK Projects/UEK Yukon River Project Technology Resource

457

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

458

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers (EERE)

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

459

Lightning Dock KGRA, New Mexico's Largest Geothermal Greenhouse...  

Open Energy Info (EERE)

Largest Geothermal Greenhouse, Largest Aquaculture Facility, and First Binary Electrical Power Plant. Geo-Heat Center Bulletin. 23:37-41. Related Geothermal Exploration Activities...

460

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Geothermal: Home Page  

Office of Scientific and Technical Information (OSTI)

Home Page Home Page Geothermal Technologies Legacy Collection Help/FAQ | Site Map | Contact Us Home/Basic Search About Publications Advanced Search New Hot Docs News Related Links Search for: (Place phrase in "double quotes") Sort By: Relevance Publication Date System Entry Date Document Type Title Research Org Sponsoring Org OSTI Identifier Report Number DOE Contract Number Ascending Descending Search Quickly and easily search geothermal technical and programmatic reports dating from the 1970's to present day. These "legacy" reports are among the most valuable sources of DOE-sponsored information in the field of geothermal energy technology. See "About" for more information. The Geothermal Technologies Legacy Collection is sponsored by the Geothermal Technologies Program, DOE Energy Efficiency and Renewable Energy

462

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

463

Technologies for Production of Heat and Electricity  

SciTech Connect

Biomass is a desirable source of energy because it is renewable, sustainable, widely available throughout the world, and amenable to conversion. Biomass is composed of cellulose, hemicellulose, and lignin components. Cellulose is generally the dominant fraction, representing about 40 to 50% of the material by weight, with hemicellulose representing 20 to 50% of the material, and lignin making up the remaining portion [4,5,6]. Although the outward appearance of the various forms of cellulosic biomass, such as wood, grass, municipal solid waste (MSW), or agricultural residues, is different, all of these materials have a similar cellulosic composition. Elementally, however, biomass varies considerably, thereby presenting technical challenges at virtually every phase of its conversion to useful energy forms and products. Despite the variances among cellulosic sources, there are a variety of technologies for converting biomass into energy. These technologies are generally divided into two groups: biochemical (biological-based) and thermochemical (heat-based) conversion processes. This chapter reviews the specific technologies that can be used to convert biomass to energy. Each technology review includes the description of the process, and the positive and negative aspects.

Jacob J. Jacobson; Kara G. Cafferty

2014-04-01T23:59:59.000Z

464

Geothermal Drilling Organization  

SciTech Connect

The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

Sattler, A.R.

1999-07-07T23:59:59.000Z

465

Analysis of Low-Temperature Utilization of Geothermal Resources Geothermal  

Open Energy Info (EERE)

Temperature Utilization of Geothermal Resources Geothermal Temperature Utilization of Geothermal Resources Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Analysis of Low-Temperature Utilization of Geothermal Resources Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. Full realization of the potential of what might be considered "low-grade" geothermal resources will require the examination many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source the project will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects.

466

Geothermal Glossary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Use of geothermal heat without first converting it to electricity, such as for space heating and cooling, food preparation, industrial processes, etc. District Heating A type of...

467

U.S. Geothermal Announces Successful Completion  

Energy.gov (U.S. Department of Energy (DOE))

U.S. Geothermal Inc. (U.S. Geothermal), a renewable energy company focused on the production of electricity from geothermal energy, announced today that the first full size production well (NHS-1) at the Neal Hot Springs Project was successfully completed on May 23 and an initial flow test confirms the presence of a geothermal reservoir.

468

Geothermal slim holes for small off-grid power projects  

Science Journals Connector (OSTI)

Economically viable, small (100 kWe to 1000 kWe), geothermal power generation units using slim holes are available for the production of electrical power in remote areas and for rural electrification in developing countries. Based on borehole data from geothermal fields in the United States and Japan, slim holes have been proven as adequate fuel sources for small-scale geothermal power plants (SSGPPs) and can deliver enough geothermal fluid to the wellhead in a baseload mode to be of practical interest for off-grid electrification projects. The electrical generating capacity of geothermal fluids which can be produced from typical slim holes (150-mm diameter or less), both by conventional, self-discharge, flash-steam methods for hotter geothermal reservoirs, and by binary-cycle technology with downhole pumps for low- to moderate-temperature reservoirs are estimated using a simplified theoretical approach. Depending mainly on reservoir temperature, the numerical simulations indicate that electrical capacities from a few hundred kilowatts to over one megawatt per slim hole are possible. In addition to the advantage of price per kilowatt-hour in off-grid applications, \\{SSGPPs\\} fueled by slim holes are far more environmentally benign than fossil-burning power plants, which is crucial in view of current worldwide climate-change concerns and burgeoning electricity demand in the less-developed and developing countries.

Jim Combs; Sabodh K Garg; John W Pritchett

1997-01-01T23:59:59.000Z

469

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

public acceptance of geothermal energy and, for that matter,Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systems

Apps, J.A.

2011-01-01T23:59:59.000Z

470

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

471

THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING  

E-Print Network (OSTI)

Geosciences relating to geothermal energy a. ThermodynamicsI 2omputer modeling of geothermal energy extraction systemstubes used. in geothermal energy plants Feasibility study of

Apps, J.A.

2011-01-01T23:59:59.000Z

472

Xian Jieli Electric Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xian Jieli Electric Technology Co Ltd Xian Jieli Electric Technology Co Ltd Jump to: navigation, search Name Xian Jieli Electric Technology Co Ltd Place Xian, Shaanxi Province, China Zip 710016 Sector Wind energy Product Xian based manufacturer of Wind turbine generator. Coordinates 34.27301°, 108.928009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.27301,"lon":108.928009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Ningbo Zhonghuan Electrical Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhonghuan Electrical Technology Co Ltd Zhonghuan Electrical Technology Co Ltd Jump to: navigation, search Name Ningbo Zhonghuan Electrical Technology Co Ltd Place Cixi, Zhejiang Province, China Zip 315322 Sector Solar Product China-based firm focused on the research, development and production of solar PV module junction boxes and connectors. Coordinates 30.168501°, 121.235023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.168501,"lon":121.235023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Practical Approach in Design of HVAC Systems Utilizing Geothermal Energy  

Science Journals Connector (OSTI)

Geothermal is the Earths thermal energy. In recent years geothermal energy has been utilized for generation of electricity, heating and air conditioning (HVAC). Geothermal HVAC systems are cost effective, energy

M. Fathizadeh; D. Seims

2014-01-01T23:59:59.000Z

475

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

476

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

477

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

478

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

SciTech Connect

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

479

The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results  

E-Print Network (OSTI)

2000. A Hot Dry Rock geothermal energy concept utilizing2006. The Future of Geothermal Energy Impact of EnhancedU.S. Department of Energy, Geothermal Technologies Program,

Xu, T.

2014-01-01T23:59:59.000Z

480

Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid  

E-Print Network (OSTI)

Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofenhanced geothermal systems (EGS), predicting larger energy

Pruess, Karsten

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal electricity technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geothermal R and D project report, October 1, 1976--March 31, 1977 | Open  

Open Energy Info (EERE)

report, October 1, 1976--March 31, 1977 report, October 1, 1976--March 31, 1977 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geothermal R and D project report, October 1, 1976--March 31, 1977 Details Activities (2) Areas (1) Regions (0) Abstract: Testing and analysis on the three deep geothermal wells in Raft River and the two shallow (1200 ft) wells in Boise, plus the experiments leading to improved technology and lower cost for electricity produced from 300°F wells are covered. Non-electric direct heat uses of geothermal, to as low as 100°F also receive special attention. Appendix A contains a paper: Evaluation and Design Considerations for Liquid-Liquid Direct Contact Heat Exchangers for Geothermal Applications. Appendix B is a summary of the Freon-113 experiment results.

482

MHK Technologies/Electric Buoy | Open Energy Information  

Open Energy Info (EERE)

Buoy Buoy < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Buoy.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description AMI s Ocean Swell and Wave Energy Conversion OSWEC device uses a patented linear generator to directly convert the motion of ocean swells and waves into electric power In our initial designs the generator mounts underneath a floating buoy or on the surface of a platform with the buoy below however it is possible to fit the generator on other types of wave motion energy extracting mechanisms Housing moves up and down with the motion of the Buoy on the ocean s surface while the Damping Plates hold the Generator Coil in a stable position The relative motion between the magnetic field in the generator housing and Generator Coil creates an electric voltage in the Generator Coil After four design evolutions Aqua Magnetics Inc has created our patented reciprocating linear generator Scalable for a wide range of applications and able to operate in a wide range of sea states Generator prototype will produce approximately 10 watts of power in 15 cm 6 inch wind chop in the intraco

483

Geothermal: Sponsored by OSTI -- Geothermal Energy: Current abstracts  

Office of Scientific and Technical Information (OSTI)

Energy: Current abstracts Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

484

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

485

Geothermal: Sponsored by OSTI -- Survey of expert geological...  

Office of Scientific and Technical Information (OSTI)

Survey of expert geological opinion on feasibility of Plowshare stimulation of natural geothermal systems. Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact...

486

Geothermal: Sponsored by OSTI -- Monitoring deformation at the...  

Office of Scientific and Technical Information (OSTI)

Monitoring deformation at the Geysers Geothermal Field, California, using C-band and X-band interferometric synthetic aperture radar Geothermal Technologies Legacy Collection Help...

487

Geothermal: Sponsored by OSTI -- Application of seismic tomographic...  

Office of Scientific and Technical Information (OSTI)

Application of seismic tomographic techniques in the investigation of geothermal systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

488

Applications Now Being Accepted for National Geothermal Academy  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy's Geothermal Technologies Program is pleased to announce that applications are now being accepted for The National Geothermal Academy.

489

Sandia National Laboratories: enhanced geothermal systems R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

enhanced geothermal systems R&D Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy,...

490

Doug Hollett Gives Keynote Presentation at Stanford Geothermal Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The Program Manager of the Geothermal Technologies Program, Doug Hollett gave a keynote address at the 37th Stanford Geothermal Workshop in Stanford, California.

491

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

492

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

493

Geothermal Energy Production with Co-produced and Geopressured...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Geopressured Resources (Fact Sheet), Geothermal Technologies Program (GTP) Geothermal Energy Production with Co-produced and Geopressured Resources (Fact Sheet),...

494

Laser Drills Could Relight Geothermal Energy Dreams | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laser Drills Could Relight Geothermal Energy Dreams Laser Drills Could Relight Geothermal Energy Dreams December 14, 2012 - 12:26pm Addthis Commercial-grade laser technology is...

495

Pinpointing America's Geothermal Resources with Open Source Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and direct-use through an open source data...

496

Geothermal: Sponsored by OSTI -- Ways to Minimize Water Usage...  

Office of Scientific and Technical Information (OSTI)

Ways to Minimize Water Usage in Engineered Geothermal Systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

497

Environmental overview for the development of geothermal resources in the State of New Mexico. Final report  

SciTech Connect

A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

1980-06-01T23:59:59.000Z

498

Space-reactor electric systems: subsystem technology assessment  

SciTech Connect

This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified.

Anderson, R.V.; Bost, D.; Determan, W.R.

1983-03-29T23:59:59.000Z

499

NREL: Learning - Geothermal Energy Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings. NREL helps advance technologies for the following geothermal applications: Heat pumps - Using the Earth's shallow ground temperature for heating and cooling....

500

Geothermal News | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and support a domestic supply of critical materials, such as lithium carbonate and rare earth elements. February 7, 2014 The Energy Department's Geothermal Technologies Office...