National Library of Energy BETA

Sample records for geothermal drilling permits

  1. Bureau of Land Management - Geothermal Drilling Permit | Open...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling Permit Abstract This page links to the BLM application for...

  2. Washington Environmental Permit Handbook - Geothermal Drilling...

    Open Energy Info (EERE)

    PermitLegal Abstract The State of Washington Governor's Office for Regulatory Innovation and Assistance provides a FAQs resource for developers. Published NA Year Signed or...

  3. NMAC 19.14.21 Geothermal Power Drilling Permit | Open Energy...

    Open Energy Info (EERE)

    1 Geothermal Power Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.14.21 Geothermal Power Drilling...

  4. IDWS Form 4003-1, Application for Permit to Drill for Geothermal...

    Open Energy Info (EERE)

    IDWS Form 4003-1, Application for Permit to Drill for Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit...

  5. C.R.S. 37-90.5-106 - Geothermal Drilling Permits | Open Energy...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-90.5-106 - Geothermal Drilling PermitsLegal Abstract Statutory provision governing the...

  6. Alpine Geothermal Drilling | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Alpine Geothermal Drilling Name: Alpine Geothermal Drilling Address: PO Box 141 Place: Kittredge, Colorado Zip: 80457 Region: Rockies Area Sector: Geothermal...

  7. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  8. NMOCD - Form G-101 - Application for Permit to Drill, Deepen...

    Open Energy Info (EERE)

    NMOCD - Form G-101 - Application for Permit to Drill, Deepen, or Plug Back Geothermal Resources Well Jump to: navigation, search OpenEI Reference LibraryAdd to library General:...

  9. Geothermal drilling in Cerro Prieto

    SciTech Connect (OSTI)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  10. The IEA's role in advanced geothermal drilling.

    SciTech Connect (OSTI)

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.

  11. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  12. European Geothermal Drilling Experience-Problem Areas and Case...

    Office of Scientific and Technical Information (OSTI)

    Drilling Experience-Problem Areas and Case Studies Baron, G.; Ungemach, P. 15 GEOTHERMAL ENERGY; BOREHOLES; DRILLING; EVALUATION; EXPLORATION; GEOTHERMAL RESOURCES; ITALY;...

  13. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of ...

  14. Handbook of Best Practices for Geothermal Drilling Released

    Broader source: Energy.gov [DOE]

    The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy’s Geothermal Technologies Program and prepared by Sandia National Laboratories, focuses on the complex process of drilling a geothermal well.

  15. Handbook of Best Practices for Geothermal Drilling

    Broader source: Energy.gov [DOE]

    This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

  16. The Iea'S Role In Advanced Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production...

  17. California Geothermal Permitting Guide | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: California Geothermal Permitting Guide Abstract The Public Interest Energy Research (PIER) Program...

  18. DOE and Navy Collaborate on Geothermal Drilling Technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Navy Collaborate on Geothermal Drilling Technology DOE and Navy Collaborate on Geothermal Drilling Technology March 21, 2012 - 3:23pm Addthis The Department of Energy's Sandia National Laboratories has teamed up with U.S. Navy's Geothermal Program Office to revive decades-old polycrystalline diamond compact (PDC) technology. The high performance PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy. To read the Sandia Labs news release,

  19. Balanced pressure techniques applied to geothermal drilling

    SciTech Connect (OSTI)

    Dareing, D.W.

    1981-08-01

    The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

  20. Property:ExplorationPermit-PreDrilling | Open Energy Information

    Open Energy Info (EERE)

    not involving drilling (pre-drilling exploration). RAPIDGeothermalExplorationNew Mexico + No permit required if the activity does not significantly damage or alter the land....

  1. Evaluation of Emerging Technology for Geothermal Drilling and Logging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon sandia_evaluation_drilling_tech_peer2013.pdf More Documents & Publications Evaluation of Emerging Technology for

  2. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  3. RRC - Drilling Permits Online Filing User's Guide webpage | Open...

    Open Energy Info (EERE)

    Drilling Permits Online Filing User's Guide webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: RRC - Drilling Permits Online Filing User's Guide...

  4. File:05DrillingPermittingOverview.pdf | Open Energy Information

    Open Energy Info (EERE)

    5DrillingPermittingOverview.pdf Jump to: navigation, search File File history File usage Metadata File:05DrillingPermittingOverview.pdf Size of this preview: 463 599 pixels....

  5. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    Open Energy Info (EERE)

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  6. Percussive Hammer Enables Geothermal Drilling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percussive Hammer Enables Geothermal Drilling Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia In 2013, Sandia National Laboratories (SNL)

  7. EERE Success Story-Percussive Hammer Enables Geothermal Drilling |

    Office of Environmental Management (EM)

    Department of Energy Percussive Hammer Enables Geothermal Drilling EERE Success Story-Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia In

  8. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect...

  9. Safety Measures a hinder for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

  10. Drilling for Geothermal Resources Rules - Idaho | Open Energy...

    Open Energy Info (EERE)

    - Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Drilling for Geothermal Resources Rules - Idaho Published Publisher Not Provided, Date Not...

  11. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    7 Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code...

  12. Geothermal Drilling of New England | Open Energy Information

    Open Energy Info (EERE)

    of New England Jump to: navigation, search Name: Geothermal Drilling of New England Address: 358 Boylston Street Place: Lowell, Massachusetts Zip: 01852 Region: Greater Boston Area...

  13. Annex 7 - The Iea'S Role In Advanced Geothermal Drilling | Open...

    Open Energy Info (EERE)

    Geothermal Drilling Abstract No abstract prepared. Authors John Travis Finger and Eddie Ross Hoover Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for...

  14. Recent Developments in Geothermal Drilling Fluids Kelsey, J....

    Office of Scientific and Technical Information (OSTI)

    M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N. 01 COAL, LIGNITE, AND PEAT; 15 GEOTHERMAL ENERGY; BENTONITE; BROWN COAL; DRILLING; DRILLING...

  15. ORNI 9, LLC, AND ORMAT NEVADA INC. APPLICATIONS FOR PERMIT TO DRILL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNI 9, LLC, AND ORMAT NEVADA INC. APPLICATIONS FOR PERMIT TO DRILL GEOTHERMAL OBSERVATION WELLS 82-14 AND 55-14 AND GEOTHERMAL PRODUCTION WELL 15-12 AND POSSIBLE FUTURE GEOTHERMAL WELLS LOCATED IN SECTIONS 12, and 14, T22N, R26E, MDB&M BLM Geothermal Leases NVN-065558 and NVN-065561 BLM Environmental Assessment No. NV-020-05-07 CONDITIONS OF APPROVAL 1. This approval is contingent upon the lessee/operator being in receipt of and in compliance with all appropriate federal, state, and local

  16. Property:ExplorationPermit-Drilling | Open Energy Information

    Open Energy Info (EERE)

    ExplorationAlaska + All wells drilled in support or in search of the recovery or production of geothermal resources must comply with 20 AAC 25.705-.740. The developer...

  17. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  18. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  19. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  20. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect (OSTI)

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  1. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  2. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  3. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  4. Idaho Application for Permit to Convert a Geothermal Injection...

    Open Energy Info (EERE)

    Convert a Geothermal Injection Well - Form 4003-3 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Idaho Application for Permit to Convert a Geothermal...

  5. Title 43 CFR 3261 Drilling Operations: Getting a Permit | Open...

    Open Energy Info (EERE)

    61 Drilling Operations: Getting a Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 43 CFR 3261...

  6. RRC - Online Drilling Permit System Login webpage | Open Energy...

    Open Energy Info (EERE)

    System Login webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: RRC - Online Drilling Permit System Login webpage Abstract This is the login...

  7. IDAPA 37.03.04 Drilling For Geothermal Resources Rules | Open...

    Open Energy Info (EERE)

    Rules for drilling Geothermal Resources released by the State of Idaho Department of Water Resources Geothermal Resource Program in Boise, Idaho. Published NA Year Signed or...

  8. WAC 332-17 Geothermal Drilling Rules and Regulations | Open Energy...

    Open Energy Info (EERE)

    17 Geothermal Drilling Rules and Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 332-17 Geothermal Drilling...

  9. Funding Mechanisms for Federal Geothermal Permitting (Presentation)

    SciTech Connect (OSTI)

    Witherbee, K.

    2014-03-01

    This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

  10. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  11. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  12. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal - GeothermalTara Camacho-Lopez2015-04-29T22:15:16+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  13. Clay-based geothermal drilling fluids

    SciTech Connect (OSTI)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  14. RRC - Application for Permit to Drill, Recomplete or Re-enter...

    Open Energy Info (EERE)

    Application for Permit to Drill, Recomplete or Re-enter Form W-1 Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RRC - Application for Permit to Drill,...

  15. U.S. Geothermal Drills Prolific Well at Neal Hot Springs | Open...

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Prolific Well at Neal Hot Springs Abstract NA Author U.S. Geothermal...

  16. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling...

    Open Energy Info (EERE)

    Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Phase 2 Reese River Geothermal...

  17. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling...

  18. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  19. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  20. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  1. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  2. EUROPEAN GEOTHERMAL DRILLING EXPERIENCE- PROBLEM AREAS AND CASE STUDIES

    Office of Scientific and Technical Information (OSTI)

    EUROPEAN GEOTHERMAL DRILLING EXPERIENCE- PROBLEM AREAS AND CASE STUDIES 0. Baron and P. Ungemach Commisslon of The European Communities Belglum ABSTRACT Geothermal d r i l l i n g h a s long been restricted i n Western Europe t o t h e sole d r y s t e a m f i e l d of L a r d e r e l l o i n I t a l y . I n t h e l a s t f e w y e a r s , a wider e x p e r i e n c e i s b u i l d i n g up a s a consequence of i n t e n s i f i e d explo- r a t i o n and development programs c a r r i e d o u t

  3. 2 CCR 402-10 - Rules and Regulations for Geothermal Well Permitting...

    Open Energy Info (EERE)

    2 CCR 402-10 - Rules and Regulations for Geothermal Well PermittingLegal Abstract Sets forth regulation for issuance of geothermal well permits by the Division of Water Resources....

  4. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  5. Validation of Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled and seismic test 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Innovative Exploration Technologies for Newberry Volcano: Map showing location of wells permitted, drilled & seismic test, 2012

  6. Geothermal leasing and permitting data base: a tool for future planning. Final report, 22 August 1979-31 December 1980

    SciTech Connect (OSTI)

    Beeland, G.V.; Schumann, E.; Wieland, M.

    1980-12-01

    A data file on all separate actions taken by the responsible agencies in implementing the Geothermal Steam Act of 1970 was developed. A computerized data base on the non-competitive leasing program is described here. The required data were obtained from the files of the BLM State Offices where the lease applications are received and from Forest Service Regional Offices responsible for that agency's consultation. The states covered include: Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming. Subsequently, the data file was expanded to include: the competitive leasing history by KGRA, pre-lease exploratory permits, post-lease exploratory permits, post-lease drilling permits, leases on state land, and state drilling permits. (MHR)

  7. U.S. Geothermal Starts New Drilling Programs at Neal Hot Springs...

    Open Energy Info (EERE)

    Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Starts New Drilling Programs at Neal Hot Springs Project Abstract NA Author...

  8. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...

    Open Energy Info (EERE)

    for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells...

  9. HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources...

    Open Energy Info (EERE)

    HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: HAR 13-183...

  10. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  11. Handbook of Best Practices for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    eventually be linked to the Geothermal Implementing Agreement (GIA) web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or...

  12. RAPID/Geothermal/Well Field/California | Open Energy Information

    Open Energy Info (EERE)

    necessary drilling fees to DOGGR. Following review, DOGGR will issue a Permit to Conduct Geothermal Operations to the developer. Local Well Field Process not available Policies &...

  13. RAPID/Geothermal/Exploration/Washington | Open Energy Information

    Open Energy Info (EERE)

    must obtain a Drilling Permit from WSDNR. Local Exploration Process not available Policies & Regulations Land Use License RCW - 78.60 Geothermal Resources RCW 78.60...

  14. A History of Geothermal Energy Research and Development in the United States. Drilling 1976-2006

    SciTech Connect (OSTI)

    none,

    2010-09-01

    This report, the second in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in drilling and to make generation of electricity from geothermal resources more cost-competitive.

  15. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect (OSTI)

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  16. Odessa fabricator builds rig specifically for geothermal drilling

    Office of Energy Efficiency and Renewable Energy (EERE)

    For 35 years, MD Cowan has built drilling rigs, developing a market for its Super Single® rig for use in the nation's oil and gas fields. Now the Odessa-based company is branching out into alternative energy.

  17. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  18. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  19. Google.org-Backed Potter Drilling Blazing Geothermal Trail

    Broader source: Energy.gov [DOE]

    Few start-ups are founded by retirement-aged scientists – and even fewer have Google.org backing. That's the unique position of Potter Drilling, a start-up founded in 2004 by a pioneering now-90-year-old and his son.

  20. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  1. Geopressured-geothermal well report. Volume I. Drilling and completion

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  2. Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling

    SciTech Connect (OSTI)

    Mark Person, Lara Owens, James Witcher

    2010-02-17

    This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 400???????????????????????????????¢????????????????????????????????????????????????????????????????1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity aquifer test completed in 2009 within fracture Paleozoic sandstones near the water table (3000 D). Flow rates measured during drilling were measured using a v-notch weir. Flow rates were consistently around 1000 gpm. While the temperatures are lower than we had anticipated, this geothermal resource can still be developed to heat the NM Tech campus using heat pump technology.

  3. Coordinating Permit Offices and the Development of Utility-Scale Geothermal Energy (Presentation)

    SciTech Connect (OSTI)

    Levine, A.; Young, K.; Witherbee, K.

    2013-10-01

    Permitting is a major component of the geothermal development process. Better coordination across government agencies could reduce uncertainty of the process and the actual time of permitting. This presentation highlights various forms of coordinating permit offices at the state and federal level in the western United States, discusses inefficiencies and mitigation techniques for permitting natural resource projects, analyzes whether various approaches are easily adaptable to utility-scale geothermal development, and addresses advantages and challenges for coordinating permit offices. Key successful strategies identified include: 1. Flexibility in implementing the approach (i.e. less statutory requirements for the approach); 2. Less dependence on a final environmental review for information sharing and permit coordination; 3. State and federal partnerships developed through memorandum of understanding to define roles and share data and/or developer information. A few of the most helpful techniques include: 1. A central point of contact for the developer to ask questions surrounding the project; 2. Pre-application meetings to assist the developer in identifying all of the permits, regulatory approvals, and associated information or data required; 3. A permit schedule or timeline to set expectations for the developer and agencies; 4. Consolidating the public notice, comment, and hearing period into fewer hearings held concurrently.

  4. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    SciTech Connect (OSTI)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert; Livesay, Bill

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650°C, even exceeding 3000°C, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

  5. Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California

    SciTech Connect (OSTI)

    Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.

    1987-09-01

    This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

  6. Geothermal : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Bloomquist, R.Gordon

    1991-10-01

    The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington better understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.

  7. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  8. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  9. Summer 2012 National Geothermal Academy: Applications Due February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geology and Geochemistry Geothermal Field Trips Geothermal Geophysics Drilling Engineering Reservoir Engineering Power Plant Design and Construction Environmental Policy ...

  10. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  11. Drilling Best Practices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Best Practices Drilling Best Practices Drilling Best Practices lunch presentation by Douglas Blankenship at the 2012 Peer Review Meeting on May 9, 2012. PDF icon gtp_2012peerreview_drilling_blankenship.pdf More Documents & Publications Canby Cascaded Geothermal Project Phase 1 Feasibility Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications

  12. Permits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Permits Permits We are committed to meeting our environmental requirements for air, waste, and water quality permitting. Contact Environmental Communication & Public...

  13. Core Hole Drilling And Testing At The Lake City, California Geothermal...

    Open Energy Info (EERE)

    And Testing At The Lake City, California Geothermal Field Authors Dick Benoit, Joe Moore, Colin Goranson and David Blackwell Published GRC, 2005 DOI Not Provided Check for DOI...

  14. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  15. Geothermal power development in Hawaii. Volume I. Review and analysis

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  16. Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    be made and then locations for further drilling can be narrowed down. Once a confident reservoir model is made Development Drilling methods can be employed. A geothermal well...

  17. Geothermal Development and the Use of Categorical Exclusions (Poster)

    SciTech Connect (OSTI)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.

  18. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Energy 1 July 1992 USFS BLM GeothermalExploration GeothermalWell Field GeothermalPower Plant Exploration Drilling Exploratory Boreholes Production Wells Thermal Gradient Holes...

  19. Permits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The operating permit program, under Title V of the Clean Air Act, streamlines the way authorities regulate air pollution by consolidating all air pollution control requirements ...

  20. Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

    2011-12-21

    CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

  1. RAPID/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration Hawaii Geothermal...

  2. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration Colorado Geothermal...

  3. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration Idaho Geothermal...

  4. Geothermal progress monitor: Report No. 10

    SciTech Connect (OSTI)

    Not Available

    1987-07-01

    This issue synthesizes information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this source of energy. The contents include: (1) the Federal Beat; (2) The Industry Scene; (3) Financing; (4) Development Status; (5) Leasing and Drilling; (6) State and Local; (7) International; and (8) Technology Transfer. (ACR)

  5. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Publication Date: to Update Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest to oldest) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All

  6. Category:Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Exploration Drilling page? For detailed information on...

  7. Directional Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... "format":"googlemaps3","type":"ROADMAP","t...

  8. Reverse trade mission on the drilling and completion of geothermal wells

    SciTech Connect (OSTI)

    Not Available

    1989-09-09

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  9. Geothermal Regulatory Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Regulatory Roadmap Katherine Young National Renewable Energy Laboratory Track: ... Objectives * To develop the permitting roadmap for geothermal power projects at the ...

  10. NEPA Process for Geothermal Power Plants in the Deschutes National...

    Open Energy Info (EERE)

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  11. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal - Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  12. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    SciTech Connect (OSTI)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In this paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing environmental reviews for geothermal exploration drilling activities and/or legislative representatives are the responsible parties to discuss the merits and implementation of new or revised CXs for geothermal development.

  13. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  14. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  15. Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results

    SciTech Connect (OSTI)

    Ross, H.P.; Forsgren, C.K.

    1992-04-01

    The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

  16. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  17. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  18. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  19. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (DB2) was drilled and completed in 2004.9 Information from these two wells showed that geothermal energy could be commercially produced at Blue Mountain. Geothermal production...

  20. Coordinating Permit Office | OpenEI Community

    Open Energy Info (EERE)

    Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White...

  1. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    accumulations of oil or gas. Exploration Permit Agency (Drilling): Alaska Division of Oil and Gas Exploration Permit (Drilling): All wells drilled in support or in search of...

  2. Technology Development and Field Trials of EGS Drilling Systems

    Broader source: Energy.gov [DOE]

    Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

  3. Drilling technology/GDO

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  4. RAPID/Geothermal/Exploration/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration New Mexico Geothermal...

  5. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect (OSTI)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  6. Geothermal Update NATIONAL ACADEMY OF SCIENCES / NOVEMBER 4,...

    Energy Savers [EERE]

    program manager for the Geothermal Technologies Office presented. Exploration drilling in the Wind River Valley basin validates the geothermal resource there. Source: ...

  7. Property:Geothermal/TargetsMilestones | Open Energy Information

    Open Energy Info (EERE)

    reservoir models and define drilling targets. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Mine waters will...

  8. Advances In Geothermal Resource Exploration Circa 2007 | Open...

    Open Energy Info (EERE)

    that will indicate the presence of geothermal resources before drilling. Advances in computer technology have propelled geothermal exploration forward, but can only go so far. New...

  9. United States, Australia, and Iceland to Promote Geothermal Energy...

    Broader source: Energy.gov (indexed) [DOE]

    widespread deployment of enhanced geothermal systems (EGS) and deep drilling technologies. ... Office website, the Iceland Deep Drilling Project website, the Geoscience ...

  10. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    Transmission Lines How a Geothermal Power Plant Works (Simple) Western Renewable Energy Zones (WREZ) Reports Geothermal Regulations and Permitting for Transmission Siting...

  11. OM300 Direction Drilling Module

    SciTech Connect (OSTI)

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  12. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  13. CCS Project Permit Acquisition Protocols

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Matthews, Vince; McPherson, Brian

    2013-06-30

    Geologic carbon storage projects require a vast range of permits prior to deployment. These include land-access permits, drilling permits, seismic survey permits, underground injection control permits, and any number of local and state permits, depending on the location of the project. For the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project in particular, critical permits included site access permits, seismic survey permits, and drilling permits for the characterization well. Permits for these and other activities were acquired either prior to or during the project.

  14. Request for Information on Geothermal Drillers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Request for Information on Geothermal Drillers Request for Information on Geothermal Drillers The Energy Department's investment in play fairway analysis is helping the geothermal industry isolate drilling sites nationwide that are most likely to yield geothermal energy. The Energy Department's investment in play fairway analysis is helping the geothermal industry isolate drilling sites nationwide that are most likely to yield geothermal energy. Following a funding opportunity announcement in

  15. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  16. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  17. Pueblo of Jemez Geothermal Feasibility Study

    Energy Savers [EERE]

    Geothermal Feasibility Study Presented by Steve Blodgett Director Pueblo of Jemez Department of Resource Protection POJ Geothermal Feasibility Study 2 Background Project funded by DOE under contract DE-FC36-02G012104 Previous studies in 1988, 1990, 1991, 1992 Evaluating geothermal potential of Red Rocks area on northern Jemez Reservation (this study) POJ Geothermal Feasibility Study 3 Study Organization Phase I- Geothermal Reservoirs and Geothermal Drilling at Jemez Pueblo by Jim Witcher,

  18. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  19. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  20. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  1. RAPID/Roadmap/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    & Wildlife Department Land 3-OR-e: Noncompetitive Geothermal Lease 3-OR-a: Oregon State Geothermal Lease 3-NM-g: Permit to Construct Access Opening on Public ROW 3-HI-e: Permit...

  2. GeothermEx Inc | Open Energy Information

    Open Energy Info (EERE)

    spectrum of resource-related issues -- from exploration and drilling through analysis, project management, financial modeling and operational support. References "GeothermEx...

  3. Geothermal Technologies Office Director Doug Hollett Keynotes...

    Office of Environmental Management (EM)

    Office presented. Exploration drilling in the Wind River Valley basin validates the geothermal resource there. Source: Wyoming State Geological Survey GEA Industry Briefing...

  4. Integrated Geoscience Investigation and Geothermal Exploration...

    Open Energy Info (EERE)

    system. The proposed Phase II holes are plannedto be drilled during 2007 in the hope of discovering hotter waters that will allow anexpansion of the geothermal power...

  5. Geothermal Technologies Office Annual Report 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for chemically reactive non- isothermal flows of multiphase fluids in porous and ... Survey (USGS), drilled seven geothermal gradient holes in Utah's Black Rock Desert basin ...

  6. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    successful 2012. December 14, 2012 Laser Drills Could Relight Geothermal Energy Dreams Commercial-grade laser technology is trying to punch holes in hard igneous rocks, a...

  7. Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These innovative exploration technologies could significantly lower the costs of geothermal development by avoiding risks associated with drilling and stranded assets. While ...

  8. Application of a New Structural Model & Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid Drilling for Geothermal Exploration: McCoy, Churchill County, NV

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. Relevance of research: Improve exploration technologies for range-hosted geothermal systems:Employ new concept models and apply existing methods in new ways; Breaking geothermal exploration tasks into new steps, segmenting the problem differently; Testing new models for dilatent structures; Utilizing shallow thermal aquifer model to focus exploration; Refining electrical interpretation methods to map shallow conductive featuresIdentifying key faults as fluid conduits; and Employ soil gas surveys to detect volatile elements and gases common to geothermal systems.

  9. Recent Drilling Activities At The Earth Power Resources Tuscarora...

    Open Energy Info (EERE)

    Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd...

  10. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    System for EGS Project Type Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Drilling Systems Project...

  11. Property:EnvReviewDrilling | Open Energy Information

    Open Energy Info (EERE)

    undergoing projects in California. California Department of Conservation, Division of Oil, Gas, and Geothermal Resources will be the lead agency for exploration and drilling...

  12. Utah Geothermal Institutional Handbook | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Utah Geothermal Institutional HandbookPermittingRegulatory GuidanceGuide...

  13. Workshop on geothermal drilling fluids

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Thirteen papers and abstracts are included. Seven papers were abstracted and six abstracts were listed by title. (MHR)

  14. Technology Development and Field Trials of EGS Drilling Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon egs_drilling_systems_peer2013.pdf More Documents & Publications Technology Development and Field Trials of EGS Drilling Systems Evaluation of Emerging Technology for Geothermal Drilling and

  15. RAPID/Geothermal/Well Field/Alaska | Open Energy Information

    Open Energy Info (EERE)

    At a Glance Jurisdiction: Alaska Drilling & Well Field Permit Agency: Alaska Division of Oil and Gas Drilling & Well Field Permit All wells drilled in support or in search of the...

  16. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Geothermal Power Plant Works (Simple) How a Geothermal Power Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power plants have much in common with traditional power-generating stations. They use many of the

  17. RAPID/Geothermal/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand Use < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  18. New York Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase III - Permitting and Initial...

  19. RAPID/Geothermal/Environment/Federal | Open Energy Information

    Open Energy Info (EERE)

    GeothermalEnvironmentFederal < RAPID | Geothermal | Environment Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  20. RAPID/Geothermal/Water Use | Open Energy Information

    Open Energy Info (EERE)

    Water Use < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  1. RAPID/Geothermal/Water Use/Texas | Open Energy Information

    Open Energy Info (EERE)

    GeothermalWater UseTexas < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  2. RAPID/Geothermal/Water Use/Colorado | Open Energy Information

    Open Energy Info (EERE)

    GeothermalWater UseColorado < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  3. RAPID/Geothermal/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir Quality < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  4. Evaluation of noise associated with geothermal development activities. Draft report, 31 July 1979-30 April 1982

    SciTech Connect (OSTI)

    Long, M.; Stern, R.

    1982-01-01

    This volume contains 93 data sheets for noise associated with geothermal development activities and geothermal well drilling noise levels from the long term noise monitoring program.

  5. Idaho Water Rights as They Pertain to Drilling Slideshow | Open...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Idaho Water Rights as They Pertain to Drilling SlideshowPermittingRegulatory GuidanceSupplemental...

  6. High Temperature 300°C Directional Drilling System

    SciTech Connect (OSTI)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.

  7. track 1: systems analysis | geothermal 2015 peer review | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy At the 2015 Peer Review in May, the Energy Department's Geothermal Technologies Office (GTO) introduced nine Energy Department-funded Systems Analysis projects for review. Research teams pursue and evaluate vital geothermal technical data that can help to locate geothermal reservoirs, target drilling, and tap geothermal systems for energy production. Innovative geothermal tools and applications under development through this portfolio can help reduce the cost and risk of geothermal

  8. New River Geothermal Research Program

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

  9. Image Logs At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    Coso Geothermal Region Notes During the second year of this project, wellbore logs and stress data were acquired in a new production well drilled in the Coso Geothermal Field,...

  10. RAPID/Geothermal/Well Field/Texas | Open Energy Information

    Open Energy Info (EERE)

    wells. A geothermal well is a well drilled within the established limits of a designated geothermal field. 16 TAC 3.79. If the proposed well is located in a Texas Groundwater...

  11. Vale exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1996-06-01

    During April-May, 1995, Sandia National Laboratories, in cooperation with Trans-Pacific Geothermal Corporation, drilled a 5825{prime} exploratory slimhole (3.85 in. diameter) in the Vale Known Geothermal Resource Area (KGRA) near Vale, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During drilling we performed several temperature logs, and after drilling was complete we performed injection tests, bailing from a zone isolated by a packer, and repeated temperature logs. In addition to these measurements, the well`s data set includes: 2714{prime} of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid records; numerous temperature logs; pressure shut-in data from injection tests; and comparative data from other wells drilled in the Vale KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  12. A Technology Roadmap for Strategic Development of Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. This technical paper outlines opportunities

  13. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  14. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. Exploratory Well At Roosevelt Hot Springs Geothermal Area (Faulder...

    Open Energy Info (EERE)

    Unknown Exploration Basis Faulder 1991 Conceptual Geological Model compilation and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Exploratory drilling in...

  16. NREL Releases Report on Policy Options to Advance Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    around the globe - loan guarantees, drilling failure insurance, lending support, grants, and government-led exploration-and their applicability to the U.S. geothermal market. ...

  17. Finding Large Aperture Fractures in Geothermal Resource Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and ...

  18. EERE Success Story-New Geothermal Exploration and Management...

    Energy Savers [EERE]

    The university developed a method to comprehensively target geothermal drilling by combining geophysical data sets to generate more complete images of the subsurface and fluid flow ...

  19. Geothermal Well Logging: Geological Wireline Logs and Fracture...

    Open Energy Info (EERE)

    Course on Geothermal Drilling, Resource Development and Power Plants; Santa Tecla, El Salvador; 20110116 Published Iceland GeoSurvey, 2011 DOI Not Provided Check for DOI...

  20. RAPID/Geothermal/Well Field/Idaho | Open Energy Information

    Open Energy Info (EERE)

    DWR, and file drilling records upon completion. Local Well Field Process not available Policies & Regulations IDAPA 37.03.04.045 - Abandonment of Geothermal Resource Wells IDWS...

  1. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Thermal gradient wells were drilled for initial exploration and assessment of the North Brawley Geothermal Area. Notes Union Oil Company...

  2. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and gas sites to reduce costs for geothermal exploration, drilling, and infrastructure. ... Learn more about the PureCycle technology and about GTO's other projects. Addthis Related ...

  3. A History of Geothermal Energy Research and Development in the...

    Broader source: Energy.gov (indexed) [DOE]

    in the United States: Drilling 1976-2006 evaluationegstech2008.pdf A History of Geothermal Energy Research and Development in the United States: Exploration 1976-2006

  4. Geothermal Direct Use Engineering and Design Guidebook - Chapter...

    Open Energy Info (EERE)

    Direct Use Engineering and Design Guidebook - Chapter 6 - Drilling and Well Construction Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Geothermal...

  5. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  6. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    from 3 core and 62 rotary drill holes. This exploration effort found sub-economic gold mineralization, but discovered a previously unknown geothermal resource. References...

  7. DOE and Calpine Corporation Tap Geothermal Energy from Abandoned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These exploration steps could significantly lower the costs of geothermal development by avoiding risks associated with drilling and stranded assets. While modeling is not a new ...

  8. RAPID/Geothermal/Exploration/California | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationCalifornia < RAPID | Geothermal | Exploration Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  9. RAPID/Geothermal/Exploration/Federal | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationFederal < RAPID | Geothermal | Exploration Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  10. Geothermal Energy and FORGE Program Current Outlook

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office Current Outlook Courtesy Ben Phillips Geothermal Resource Council Annual Meeting September 2015 2 Energy Efficiency & Renewable Energy eere.energy.gov GTO Major Initiatives EGS HRC SALT Accelerate EGS * Build upon R&D and demonstration project successes * EGS Integrated R&D FOA * Frontier Observatory for Research in Geothermal Energy (FORGE) FOA kicked off New Geothermal Opportunities * Play Fairway Analysis * Pathway to next-step drilling validation

  11. RAPID/Geothermal/Environment/Nevada | Open Energy Information

    Open Energy Info (EERE)

    permitting process for Class III, industrial solid waste disposal, for renewable energy sources (including geothermal). A Class III industrial solid waste disposal permit...

  12. NMOCD - Form G-103 - Sundry Notices & Reports on Geothermal Resource...

    Open Energy Info (EERE)

    LibraryAdd to library Legal Document- Permit ApplicationPermit Application: NMOCD - Form G-103 - Sundry Notices & Reports on Geothermal Resource WellsLegal Published NA Year...

  13. A History or Geothermal Energy Research and Development in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States: Drilling 1976-2006 | Department of Energy Drilling 1976-2006 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 This report summarizes significant research projects performed by the U.S.Department of Energy (DOE)1 over 30 years to overcome challenges inexploration and to make generation of electricity from geothermal resourcesmore cost-competitive. PDF icon geothermal_history_2_drilling.pdf More Documents & Publications Retrospective

  14. MACHINERY RESONANCE AND DRILLING

    SciTech Connect (OSTI)

    Leishear, R.; Fowley, M.

    2010-01-23

    New developments in vibration analysis better explain machinery resonance, through an example of drill bit chattering during machining of rusted steel. The vibration of an operating drill motor was measured, the natural frequency of an attached spring was measured, and the two frequencies were compared to show that the system was resonant. For resonance to occur, one of the natural frequencies of a structural component must be excited by a cyclic force of the same frequency. In this case, the frequency of drill bit chattering due to motor rotation equaled the spring frequency (cycles per second), and the system was unstable. A soft rust coating on the steel to be drilled permitted chattering to start at the drill bit tip, and the bit oscillated on and off of the surface, which increased the wear rate of the drill bit. This resonant condition is typically referred to as a motor critical speed. The analysis presented here quantifies the vibration associated with this particular critical speed problem, using novel techniques to describe resonance.

  15. NREL: Learning - Geothermal Energy Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy Basics Photo of a hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada. Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot water or steam reservoirs deep in the earth that are accessed by drilling; geothermal reservoirs located near the earth's surface, mostly located in the western U.S., Alaska, and Hawaii; and the shallow ground near

  16. Corrosion reference for geothermal downhole materials selection

    SciTech Connect (OSTI)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  17. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING (Conference) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Conference: GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING Citation Details In-Document Search Title: GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a

  18. New Geothermal Exploration and Management Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Exploration and Management Tools New Geothermal Exploration and Management Tools April 18, 2013 - 12:00am Addthis To better isolate potential geothermal resources that lack surface manifestations, EERE partnered with the Colorado School of Mines to advance resource discovery. The university developed a method to comprehensively target geothermal drilling by combining geophysical data sets to generate more complete images of the subsurface and fluid flow within geothermal systems. The

  19. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Geothermal Tomorrow 08 Injection Well Reservoir Production Wells GTP Vision and Mission EGS: A New Strategy National Laboratory Activities Price of Geothermal Power Financing Projects International Efforts Utility Geothermal Working Group State Geothermal Policies On the cover: Calpine's 35 megawatt Sonoma Geothermal Power Plant at The Geysers field in Northern California. Courtesy of Calpine Corporation About "Geothermal Tomorrow" Geothermal power is a

  20. Geothermal/Well Field | Open Energy Information

    Open Energy Info (EERE)

    Reservoirs General Techniques Tree Techniques Table Regulations & Permitting NEPA (47) Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's...

  1. RAPID/Geothermal/Roadmap | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalRoadmap < RAPID | Geothermal(Redirected from RAPIDRoadmapGeoSections) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit...

  2. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    SciTech Connect (OSTI)

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  3. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation Phase III Report

    SciTech Connect (OSTI)

    Noel, Donna

    2013-12-01

    This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed within the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 5, Phase II tasks 6 8, and Phase III tasks 9 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.

  4. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  5. Newberry exploratory slimhole: Drilling and testing

    SciTech Connect (OSTI)

    Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

    1997-11-01

    During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

  6. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect (OSTI)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  7. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  8. track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal Technologies Office portfolio presented fifty three technical project presentations on enhanced geothermal systems technologies (EGS). EGS technologies utilize directional drilling and pressurized water to capture energy from resources that were once considered

  9. C.R.S. 37-90.5-107 Relationship to water - when permit required...

    Open Energy Info (EERE)

    (Redirected from Colorado CRS 37-90.5-107, Water Rights and Irrigation Permiting for Geothermal Resources)...

  10. Geomechanical Modeling for Thermal Spallation Drilling (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Geomechanical Modeling for Thermal Spallation Drilling Citation Details In-Document Search Title: Geomechanical Modeling for Thermal Spallation Drilling Authors: Walsh, S D ; Lomov, I ; Roberts, J J Publication Date: 2011-05-05 OSTI Identifier: 1113520 Report Number(s): LLNL-PROC-483098 DOE Contract Number: W-7405-ENG-48 Resource Type: Conference Resource Relation: Conference: Presented at: Geothermal Resources Council 35th Annual Meeting, San Diego, CA, United

  11. Geothermal Discovery Offers Hope for More Potential Across the Country

    Broader source: Energy.gov [DOE]

    In summer 2012, a team of geoscientists from the Utah Geological Survey (UGS) in cooperation with the U.S. Geological Survey (USGS) drilled seven geothermal gradient holes in Utah's Black Rock Desert basin to test a new concept of high temperature geothermal resources in sedimentary basins. Seven drill holes were funded by the U.S. Department of Energy as part of a National Geothermal Data System project, managed by the Arizona Geological Survey.

  12. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power plants have much in common with traditional power-generating stations. They use many of the same components, including turbines, generators, transformers, and other standard

  13. Sierra Geothermal's Key Find in Southern Nevada

    Broader source: Energy.gov [DOE]

    In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147 degrees Celsius (297 degrees Fahrenheit). A promising discovery by a geothermal energy company that could boost use of the renewable source in southwest Nevada, power thousands of homes and create jobs.

  14. NREL: Energy Analysis - Geothermal Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program focuses in three areas: energy systems research and testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by Sandia National Laboratories; and geoscience and supporting technologies research (exploration and resource management) led by the Idaho National Engineering and Environmental

  15. Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Locate and drill two exploration wells that will be used to define the nature and extent of the geothermal resources on Jemez Pueblo in the Indian Springs area.

  16. Drilling Report- First CSDP (Continental Scientific Drilling...

    Open Energy Info (EERE)

    Area (Rowley, Et Al., 1987) Core Holes At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1986) Density Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,...

  17. About Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About About Geothermal The Geothermal Technologies Legacy Collection is available to the geothermal community and interested members of the public who may use this site and its search and knowledge tools to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching the Geothermal Technologies Legacy Collection, users can expect to find a wealth of geothermal citations and reports from various resources

  18. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect (OSTI)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  19. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  20. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  1. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  2. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Environmental Management (EM)

    More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal...

  3. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  4. Senate Energy Committee Passes New Geothermal Legislation | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Senate Energy Committee moved the ball forward for geothermal energy by passing two important geothermal measures, S. 1142 and S. 1149, on December 15. "These two measures will support exploration drilling, expand geothermal research into heating uses, and expedite leasing and development," remarked GEA Executive Director Karl Gawell. S. 1142, the Geothermal Exploration and Technology Act of 2011, is sponsored by Senators Tester, Reid, Murkowski and Begich. It has three

  5. Geothermal Progress Monitor report No. 8. Progress report

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    Geothermal Progress Monitor (GPM) Report Number 8 presents information concerning ongoing technology transfer activities and the mechanisms used to support these activities within geothermal R and D programs. A state-by-state review of major geothermal development activities for the reporting period 1 February 1983 through 31 July 1983 is provided. Recent drilling and exploration efforts and the current status of geothermal electric power plant development in the United States are summarized.

  6. High Temperature Tools and Sensors, Down-hole Pumps and Drilling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High Temperature Tools and Sensors, Down-hole Pumps and Drilling High Temperature Tools and Sensors, Down-hole Pumps and Drilling Below are the project presentations and respective peer review results for High Temperature Tools and Sensors, Down-hole Pumps and Drilling. Multiparameter Fiber Optic Sensing System for Monitoring Enhanced Geothermal Systems, Dr. Aaron J. Knobloch, GE Global Research High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems, Norman

  7. Full Reviews: High-temperature Tools and Drilling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-temperature Tools and Drilling Full Reviews: High-temperature Tools and Drilling Below are the project presentations and respective peer reviewer comments for High-temperature Tools and Drilling. GUFI: Geothermal Ultrasonic Fracture Imager Doug Patterson and Baker Hughes, Oilfield Operations Incorporated Project Presentation | Peer Reviewer Comments High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production Matthew Hooker, Composite Technology Development, Inc.

  8. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    SciTech Connect (OSTI)

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  9. Columbia Gas preserves wetlands with directional drilling

    SciTech Connect (OSTI)

    Luginbuhl, K.K.; Gartman, D.K.

    1995-10-01

    This paper reviews the use of directional drilling to install a 12 inch natural gas pipeline near Avon, Ohio. As a result of increased demand, the utility decided that it would need additional lines for pressure control with the only feasible route being through a forested and scrub/shrub wetland. This paper reviews the permitting requirements along with the directional drilling design and operation. Unfortunately during drilling, bentonite drilling fluids came to the surface requiring remedial action procedures. The paper then provides a detailed clean up strategy and makes recommendations on how to prevent such a break through in the future.

  10. Laser Drills Could Relight Geothermal Energy Dreams

    Broader source: Energy.gov [DOE]

    Commercial-grade laser technology is trying to punch holes in hard igneous rocks, a feat that would change the mathematics of low-carbon energy and could significantly decrease well costs by...

  11. Development and Application of Insulated Drill Pipe for High Temperature, High Pressure Drilling

    SciTech Connect (OSTI)

    Tom Champness; Tony Worthen; John Finger

    2008-12-31

    This project aimed to extend the insulated drill pipe (IDP) technology already demonstrated for geothermal drilling to HTHP drilling in deep gas reservoirs where temperatures are high enough to pose a threat to downhole equipment such as motors and electronics. The major components of the project were: a preliminary design; a market survey to assess industry needs and performance criteria; mechanical testing to verify strength and durability of IDP; and development of an inspection plan that would quantify the ability of various inspection techniques to detect flaws in assembled IDP. This report is a detailed description of those activities.

  12. RAPID/Geothermal/Well Field/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNevada < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  13. RAPID/Geothermal/Land Use/Federal | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand UseFederal < RAPID | Geothermal | Land Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  14. RAPID/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationNevada < RAPID | Geothermal | Exploration Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  15. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessColorado < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  16. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessOregon < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessAlaska < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  18. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  19. RAPID/Geothermal/Land Access/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessNevada < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  20. RAPID/Geothermal/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand Access < RAPID | Geothermal(Redirected from RAPIDGeothermalLeasing) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop...

  1. RAPID/Geothermal/Water Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater QualityAlaska < RAPID | Geothermal | Water Quality Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  2. RAPID/Geothermal/Water Use/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseNevada < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  3. RAPID/Geothermal/Water Use/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseHawaii < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  4. RAPID/Geothermal/Water Use/Montana | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseMontana < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  5. RAPID/Geothermal/Water Use/Idaho | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseIdaho < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  6. RAPID/Geothermal/Water Use/Oregon | Open Energy Information

    Open Energy Info (EERE)

    Water UseOregon < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  7. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseUtah < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  8. RAPID/Geothermal/Water Use/California | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseCalifornia < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  9. RAPID/Geothermal/Water Use/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseAlaska < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  10. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  11. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    SciTech Connect (OSTI)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.; Schmitt, Douglas R.; Blackwell, David D.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  12. Energy 101: Geothermal Energy | Department of Energy

    Office of Environmental Management (EM)

    Geothermal Energy Energy 101: Geothermal Energy

  13. Federal Geothermal Research Program Update - Fiscal Year 2004

    SciTech Connect (OSTI)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  14. Federal Geothermal Research Program Update Fiscal Year 2004

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  15. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  16. Geothermal Tomorrow

    Broader source: Energy.gov [DOE]

    This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of technologies and economics of the U.S. geothermal industry.

  17. RAPID/Geothermal/Well Field/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    process for the proposed drilling activities. Local Well Field Process not available Policies & Regulations H.A.R. 13-185 - Rules of Practice and Procedure for Geothermal and...

  18. Exploratory Well At North Brawley Geothermal Area (Matlick &...

    Open Energy Info (EERE)

    known geothermal area. These drilling activities led to the construction of a 10 MW experimental power plant that was put online in 1980. References Skip Matlick, Tim Jayne (2008)...

  19. Away from the Range Front- Intra-Basin Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project highlights: Escalate mechanical and structural methods to build on; Push-core may optimize shallow drilling; & Over-coring stress measurement may reveal local stress.

  20. US Geothermal Updates Status of Development Projects New Wells...

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: US Geothermal Updates Status of Development Projects New Wells Drilled at Neal Hot Springs...

  1. Geothermal Energy Research and Development Program; Project Summaries

    SciTech Connect (OSTI)

    1994-03-01

    This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

  2. A Method for Estimating Undiscovered Geothermal Resources in...

    Open Energy Info (EERE)

    areas based on the presence of drill-holes, wells, and depth to the water table. The "density of occurrence" (number of geothermal systems per km2) is calculated, taking into...

  3. Field Mapping At Coso Geothermal Area (2010) | Open Energy Information

    Open Energy Info (EERE)

    of the South Ranges to see if a geothermal resource might exist. A TGH drilling campaign may be initiated in the South Ranges in 2011. References Andrew Sabin, S. Bjornstad,...

  4. Thermochronometry At Coso Geothermal Area (2010) | Open Energy...

    Open Energy Info (EERE)

    of the South Ranges to see if a geothermal resource might exist. A TGH drilling campaign may be initiated in the South Ranges in 2011. References Andrew Sabin, S. Bjornstad,...

  5. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

    1993-03-02

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  6. Drill string enclosure

    DOE Patents [OSTI]

    Jorgensen, Douglas K. (Idaho Falls, ID); Kuhns, Douglass J. (Idaho Falls, ID); Wiersholm, Otto (Idaho Falls, ID); Miller, Timothy A. (Idaho Falls, ID)

    1993-01-01

    The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

  7. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  8. Stanford Geothermal Workshop - Geothermal Technologies Office | Department

    Energy Savers [EERE]

    of Energy - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013. PDF icon stanford_2013_hollett.pdf More Documents & Publications Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Geothermal Technologies Program GRC

  9. OIT geothermal system improvements

    SciTech Connect (OSTI)

    Lienau, P.J.

    1996-08-01

    Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorption chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.

  10. Hawaii's Geothermal Development

    SciTech Connect (OSTI)

    Uemura, Roy T.

    1980-12-01

    On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

  11. Energy Department Announces $3 Million to Identify New Geothermal Resources

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced $3 million to spur geothermal energy development using play fairway analysis. This technique identifies prospective geothermal resources in areas with no obvious surface expression by mapping the most favorable intersections of heat, permeability, and fluid. While commonly used in oil and gas exploration, play fairway analysis is not yet widely used in the geothermal industry. By improving success rates for exploration drilling, this data-mapping tool could help attract investment in geothermal energy projects and significantly lower the costs of geothermal energy.

  12. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  13. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  14. Geothermal energy geopressure subprogram

    SciTech Connect (OSTI)

    Not Available

    1981-02-01

    The proposed action will consist of drilling one geopressured-geothermal resource fluid well for intermittent production testing over the first year of the test. During the next two years, long-term testing of 40,000 BPD will be flowed. A number of scenarios may be implemented, but it is felt that the total fluid production will approximate 50 million barrels. The test well will be drilled with a 22 cm (8.75 in.) borehole to a total depth of approximately 5185 m (17,000 ft). Up to four disposal wells will provide disposal of the fluid from the designated 40,000 BPD test rate. The following are included in this assessment: the existing environment; probable environmental impacts-direct and indirect; probable cumulative and long-term environmental impacts; accidents; coordination with federal, state, regional, and local agencies; and alternative actions. (MHR)

  15. Geothermal Exploration Policy Mechanisms | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploration Policy Mechanisms Geothermal Exploration Policy Mechanisms This report focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal (geothermal) resources in the United States: (1) drilling failure insurance, (2) loan guarantees, (3) subsidized loans, (4) capital subsidies, and (5) government-led exploration. It describes each policy type and its application in other countries and

  16. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal DevelopmentThe Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  17. RAPID/Geothermal/General Construction | Open Energy Information

    Open Energy Info (EERE)

    that include construction for any phase of exploration, drilling, or potential development of power generating facilities require numerous permits from federal, state,...

  18. Validation of Innovative Exploration Technologies for Newberry Volcano: Drill Site Location Map 2010

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Newberry project drill site location map 2010. Once the exploration mythology is validated, it can be applied throughout the Cascade Range and elsewhere to locate and develop blind geothermal resources.

  19. Physical-Property Measurements on Core Samples from Drill-Holes...

    Open Energy Info (EERE)

    Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Jump to: navigation, search OpenEI Reference...

  20. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Low-temperature Stirling Engine for Geothermal Electricity Generation Citation Details In-Document Search Title: Low-temperature Stirling Engine for Geothermal Electricity Generation Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth’s crust where this energy is concentrated

  1. Southwest Alaska Regional Geothermal Energy Projec

    SciTech Connect (OSTI)

    Holdmann, Gwen

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  2. Heating the New Mexico Tech Campus with geothermal energy. Final report, July 1, 1978-October 31, 1979

    SciTech Connect (OSTI)

    LeFebre, V.; Miller, A.

    1980-01-01

    An area between the base of Socorro Peak and the New Mexico Tech Campus (located in central New Mexico) has been proposed as a site for geothermal exploratory drilling. The existing site environment is summarized, a program for site monitoring is proposed, impacts of geothermal production and reinjection are listed, and problems associated with geothermal development are examined. The most critical environmental impact is the increased seismic activity that may be associated with geothermal fluid migration resulting from geothermal production and reinjection.

  3. track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy EGS technologies utilize directional drilling and pressurized water to capture energy from resources that were once considered unrecoverable. Collaborative projects in this program seek to improve innovative technologies and speed commercial-scale deployment. The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal

  4. Optimizing drilling performance using a selected drilling fluid

    SciTech Connect (OSTI)

    Judzis, Arnis; Black, Alan D.; Green, Sidney J.; Robertson, Homer A.; Bland, Ronald G.; Curry, David Alexander; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  5. Drilling Complete on Australian Hot Dry Rock Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Complete on Australian Hot Dry Rock Project Drilling Complete on Australian Hot Dry Rock Project January 23, 2008 - 4:37pm Addthis The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth. Hot dry rock technology was invented to draw energy from deep underground areas where geothermal heat is abundant, but no water exists to carry the

  6. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  7. Rotary blasthole drilling update

    SciTech Connect (OSTI)

    Fiscor, S.

    2008-02-15

    Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

  8. Geothermal hydrothermal

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal hydrothermal section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  9. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  10. A PACIFIC-WIDE GEOTHERMAL RESEARCH LABORATORY: THE PUNA GEOTHERMAL RESEARCH FACILITY

    SciTech Connect (OSTI)

    Takahashi, P.; Seki, A.; Chen, B.

    1985-01-22

    The Hawaii Geothermal Project (HGP-A) well, located in the Kilauea volcano east rift zone, was drilled to a depth of 6450 feet in 1976. It is considered to be one of the hot-test producing geothermal wells in the world. This single well provides 52,800 pounds per hour of 371 F and 160 pounds per square inch-absolute (psia) steam to a 3-megawatt power plant, while the separated brine is discharged in percolating ponds. About 50,000 pounds per hour of 368 F and 155 psia brine is discharged. Geothermal energy development has increased steadily in Hawaii since the completion of HGP-A in 1976: (1) a 3 megawatt power plant at HGP-A was completed and has been operating since 1981; (2) Hawaiian Electric Company (HECO) has requested that their next increment in power production be from geothermal steam; (3) three development consortia are actively, or in the process of, drilling geothermal exploration wells on the Big Island; and (4) engineering work on the development of a 400 megawatt undersea cable for energy transmission is continuing, with exploratory discussions being initiated on other alternatives such as hydrogen. The purpose for establishing the Puna Geothermal Research Facility (PGRF) is multifold. PGRF provides a facility in Puna for high technology research, development, and demonstration in geothermal and related activities; initiate an industrial park development; and examine multi-purpose dehydration and biomass applications related to geothermal energy utilization.

  11. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  12. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  13. Geothermal Reservoir Well Stimulation Program: technology transfer

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

  14. Washington Environmental Permit Handbook - Air Operating Permit...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Washington Environmental Permit Handbook - Air Operating PermitPermitting...

  15. SMU Geothermal Conference 2011 - Geothermal Technologies Program |

    Energy Savers [EERE]

    Department of Energy SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. PDF icon gtp_smu_conference_reinhardt_2011.pdf More Documents & Publications Low Temperature/Coproduced/Geopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  16. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  17. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  18. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    geothermal900546 Geothermal Energy News en EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids http:energy.goveerearticles...

  19. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  20. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  1. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect (OSTI)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  2. Potter Drilling | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94063 Product: Potter Drilling was founded in 2004 to develop and commercialize novel drilling technology. References: Potter Drilling1 This article is a stub. You can...

  3. Well drilling apparatus and method

    DOE Patents [OSTI]

    Alvis, Robert L.; Newsom, Melvin M.

    1977-01-01

    Well drilling rates may be increased by impelling projectiles to fracture rock formations and drilling with rock drill bits through the projectile fractured rock.

  4. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    SciTech Connect (OSTI)

    S.A. Kelley; N. Rogers; S. Sandberg; J. Witcher; J. Whittier

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Madera Limestone, the most likely host for a major geothermal reservoir.

  5. Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community

    Office of Environmental Management (EM)

    | Department of Energy Geothermal System Creates Jobs, Reduces Emissions in Rural Community Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community November 6, 2013 - 12:00am Addthis Utilizing funding from EERE and cost shares from other federal agencies, the City of West Union, Iowa, drilled geothermal wells in order to install a closed-loop geothermal heating and cooling system. The system is designed to serve 330,000 square feet of mixed used space in the downtown area,

  6. Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Geothermal System Creates Jobs, Reduces Emissions in Rural Community Iowa: Geothermal System Creates Jobs, Reduces Emissions in Rural Community November 6, 2013 - 12:00am Addthis Utilizing funding from EERE and cost shares from other federal agencies, the City of West Union, Iowa, drilled geothermal wells in order to install a closed-loop geothermal heating and cooling system. The system is designed to serve 330,000 square feet of mixed used space in the downtown area,

  7. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    SciTech Connect (OSTI)

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E) Ulumbu mini geothermal power plant.

  8. Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia

    SciTech Connect (OSTI)

    Sulasdi, D. [Pt. PLN (PERSERO), Jakarta (Indonesia)

    1996-12-31

    This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E) Ulumbu mini geothermal power plant.

  9. Core Drilling Demonstration

    Broader source: Energy.gov [DOE]

    Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

  10. Rules and Regulations for Permitting the Development and Appropriation...

    Open Energy Info (EERE)

    for Permitting the Development and Appropriation of Geothermal Resources Through the Use of Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. HydroPulse Drilling

    SciTech Connect (OSTI)

    J.J. Kolle

    2004-04-01

    Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

  12. NREL: Geothermal Technologies - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal News Below are news stories involving geothermal research. March 10, 2016 NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop NREL geothermal experts attend the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. March 2, 2016 U.S. Bureau of Land Management Looks to NREL for Geothermal Technical Support The National Renewable Energy Laboratory (NREL) has entered into an

  13. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  14. RAPID/Geothermal/Well Field/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNew Mexico < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  15. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2008) Exploration Activity...

  17. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Exploration Activity...

  18. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  19. Geothermal Literature Review At Coso Geothermal Area (1985) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1985) Exploration Activity Details Location Coso...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Exploration Activity Details...

  1. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Fleischman, 2006) Exploration Activity...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Summers, 1976) Exploration Activity...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Exploration...

  6. Geothermal Literature Review At Salton Trough Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details...

  8. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  9. Geothermal Literature Review At Coso Geothermal Area (1984) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso...

  10. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration...

  11. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Exploration...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Exploration Activity...

  13. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  14. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS)...

  15. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  16. Geothermal Brief: Market and Policy Impacts Update

    SciTech Connect (OSTI)

    Speer, B.

    2012-10-01

    Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

  17. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  18. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Show Map Loading map... "minzoom":false,"mappingservice"...

  19. Geothermal innovative technologies catalog

    SciTech Connect (OSTI)

    Kenkeremath, D.

    1988-09-01

    The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

  20. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Technologies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating...

  1. CE Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Jump to: navigation, search Name: CE Geothermal Place: California Sector: Geothermal energy Product: CE Geothermal previously owned the assets of Western States...

  2. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  3. Idaho Geological Survey and University of Idaho Explore for Geothermal Energy

    Broader source: Energy.gov [DOE]

    The University of Idaho's Idaho Geological Survey recently drilled new wells in southeastern Idaho to provide the most accurate assessment of high-temperature geothermal energy potential in the region.

  4. Washington Environmental Permit Handbook - NPDES General Permit...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Washington Environmental Permit Handbook - NPDES General Permit...

  5. Washington Environmental Permit Handbook - NPDES Individual Permit...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Washington Environmental Permit Handbook - NPDES Individual Permit...

  6. Geothermal Exploration of Newberry Volcano, Oregon

    SciTech Connect (OSTI)

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  7. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOE Patents [OSTI]

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  8. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

  9. Geothermal Progress Monitor. Report No. 18

    SciTech Connect (OSTI)

    1996-12-31

    The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

  10. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  11. Frequently Asked Questions | Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frequently Asked Questions Frequently Asked Questions What is the Geothermal Legacy Collection? The Geothermal Legacy Collection (Geothermal) is available to the geothermal community and interested members of the public. They and others may use this site to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching Geothermal, users can expect to find a wealth of geothermal citations and reports from various

  12. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  13. EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

  14. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  15. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  16. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  17. Remote drill bit loader

    DOE Patents [OSTI]

    Dokos, J.A.

    1997-12-30

    A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

  18. Remote drill bit loader

    DOE Patents [OSTI]

    Dokos, James A. (Idaho Falls, ID)

    1997-01-01

    A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

  19. Training and Drills

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

  20. Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Powers Coso Geothermal Facility Obtains Critical Federal Permit to Increase Its...

  1. RAPID/Geothermal/Well Field/Colorado | Open Energy Information

    Open Energy Info (EERE)

    standards set forth in 2 CCR 402-10:8 and 10:9). Local Well Field Process not available Policies & Regulations 2 CCR 402-10 - Rules and Regulations for Geothermal Well Permitting...

  2. Geothermal Progress Monitor report No. 11

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  3. Microsoft Word - 338M_Geothermal_Project_Descriptions

    Office of Environmental Management (EM)

    Grantee DOE Grant Amount Project Location (City) Project Location (State) Description 1) Innovative Exploration and Drilling Projects El Paso County $5,000,000 El Paso County TX El Paso County will utilize new portable drilling technology and geological analysis techniques in Ft. Bliss, TX. Flint Geothermal LLC $4,778,234 (5 sites) CO Flint Geothermal LLC will utilize a combination of geological mapping tools to identify resources in Colorado. GeoGlobal Energy LLC $4,040,375 Gabbs NV GeoGlobal

  4. Expanding Geothermal Resource Utilization in Nevada through Directed Research and Public Outreach

    Broader source: Energy.gov [DOE]

    This project entails finding and assessing geothermal systems to: Increase geothermal development through research and outreach; Reduce risk in drill target selection, thus reducing project development costs; and Recent research includes development of shallow temperature surveys, seismic methods, aerial photography, field structural geology.

  5. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Several additional studies were conducted to explore the sensitivity of sedimentary geothermal system costs to key assumptions in the base case model. 1. Decreased Drilling Costs Assumed that drilling costs were 75% of those in the base case. * Total well field costs account for ~30%-50% of the total project costs in base case. * Assuming a 25% reduction in drilling costs reduces overall project capital costs by 8%-14%. * Impact increases with increasing reservoir depth (drilling costs

  6. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  7. Geothermal Progress Monitor report No. 5. Progress report, June 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Updated information is presented on activities and progress in the areas of electric power plants, direct heat applications, deep well drilling, leasing of federal lands, legislative and regulatory actions, research and development, and others. Special attention is given in this report to 1980 highlights, particularly in the areas of electric and direct heat uses, drilling, and the Federal lands leasing program. This report also includes a summary of the DOE FY 1982 geothermal budget request to Congress.

  8. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  9. Coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Newman, K.R.

    1993-12-01

    For several years, CT has been used to drill scale and cement in cased wells. Recently, CT has been used (in place of a rotary drilling rig) to drill vertical and horizontal open holes. At this time, < 30 openhole CT drilling (CTD) jobs have been performed. However, there is a tremendous interest in this technique in the oil industry; many companies are actively involved in developing CTD technology. This paper discusses CTD applications and presents an engineering analysis of CTD. This analysis attempts to define the limits of what can and cannot be done with CTD. These limits are calculated with CT and drilling models used for other applications. The basic limits associated with CTD are weight and size, CT force and life, and hydraulic limits. Each limit is discussed separately. For a specific application, each limit must be considered.

  10. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  11. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  12. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  13. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does

  14. Power Plays: Geothermal Energy In Oil and Gas Fields

    Broader source: Energy.gov [DOE]

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  15. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  16. Steamboat Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Steamboat Hills Geothermal Facility Steamboat I Geothermal Facility Steamboat IA Geothermal Facility Steamboat II Geothermal Facility Steamboat III Geothermal Facility...

  17. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  18. Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    of drilling for the purpose of determining the physical properties and boundaries of a reservoir. Other definitions:Wikipedia Reegle Introduction Exploration drilling is an...

  19. Geothermal FIT Design: International Experience and U.S. Considerations

    SciTech Connect (OSTI)

    Rickerson, W.; Gifford, J.; Grace, R.; Cory, K.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date, a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).

  20. Interactive Maps from the Great Basin Center for Geothermal Energy

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The interactive maps are built with layers of spatial data that are also available as direct file downloads (see DDE00299). The maps allow analysis of these many layers, with various data sets turned on or off, for determining potential areas that would be favorable for geothermal drilling or other activity. They provide information on current exploration projects and leases, Bureau of Land Management land status, and map presentation of each type of scientific spatial data: geothermal, geophysical, geologic, geodetic, groundwater, and geochemical.

  1. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  2. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  3. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National...

  4. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  5. Geothermal Resources Council's ...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) applications recommend lifting 300C geothermal water ... Therefore artificial lift techniques must be employed to return the high temperature water ...

  6. Geothermal Exploration Policy Mechanisms: Lessons for the United States from International Applications

    SciTech Connect (OSTI)

    Speer, B.; Economy, R.; Lowder, T.; Schwabe, P.; Regenthal, S.

    2014-05-01

    This report focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal (geothermal) resources in the United States: (1) drilling failure insurance, (2) loan guarantees, (3) subsidized loans, (4) capital subsidies, and (5) government-led exploration. It describes each policy type and its application in other countries and regions. It offers policymakers a guide for drafting future geothermal support mechanisms for the exploration-drilling phase of geothermal development.

  7. Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Discover new 260F and 300F geothermal reservoirs in Oregon. To demonstrate the application of high precision geophysics for well targeting. Demonstrate a combined testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and benefits of sump-less drilling for a low environmental impact. Create both short and long term employment through exploration, accelerated development timeline and operation.

  8. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    SciTech Connect (OSTI)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.; Schriener, Alex

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327? F) and exhibits an increasing, conductive, temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.

  9. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  10. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  11. Recovery Act. Sub-Soil Gas and Fluid Inclusion Exploration and Slim Well Drilling, Pumpernickel Valley, Nevada

    SciTech Connect (OSTI)

    Fairbank, Brian D.

    2015-03-27

    Nevada Geothermal Power Company (NGP) was awarded DOE Award DE-EE0002834 in January 2010 to conduct sub-soil gas and fluid inclusion studies and slim well drilling at its Black Warrior Project (now known as North Valley) in Washoe and Churchill Counties, Nevada. The project was designed to apply highly detailed, precise, low-cost subsoil and down-hole gas geochemistry methods from the oil and gas industry to identify upflow zone drilling targets in an undeveloped geothermal prospect. NGP ran into multiple institutional barriers with the Black Warrior project relating to property access and extensive cultural survey requirement. NGP requested that the award be transferred to NGP’s Pumpernickel Valley project, due to the timing delay in obtaining permits, along with additional over-budget costs required. Project planning and permit applications were developed for both the original Black Warrior location and at Pumpernickel. This included obtaining proposals from contractors able to conduct required environmental and cultural surveying, designing the two-meter probe survey methodology and locations, and submitting Notices of Intent and liaising with the Bureau of Land Management to have the two-meter probe work approved. The award had an expiry date of April 30, 2013; however, due to the initial project delays at Black Warrior, and the move of the project from Black Warrior to Pumpernickel, NGP requested that the award deadline be extended. DOE was amenable to this, and worked with NGP to extend the deadline. However, following the loss of the Blue Mountain geothermal power plant in Nevada, NGP’s board of directors changed the company’s mandate to one of cash preservation. NGP was unable to move forward with field work on the Pumpernickel property, or any of its other properties, until additional funding was secured. NGP worked to bring in a project partner to form a joint venture on the property, or to buy the property. This was unsuccessful, and NGP notified the DOE on February 13, 2014 that it would not be able to complete the project objectives before the recovery act awards deadline and submitted a mutual termination request to the DOE which was accepted.

  12. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. PDF icon...

  13. RAPID/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Info (EERE)

    Industries, Oregon Division of State Lands Exploration Permit (Pre-drilling): No person shall explore by any means whatever on, in, or under land owned by the State of Oregon...

  14. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  15. Subsurface drill string

    DOE Patents [OSTI]

    Casper, William L. (Rigby, ID); Clark, Don T. (Idaho Falls, ID); Grover, Blair K. (Idaho Falls, ID); Mathewson, Rodney O. (Idaho Falls, ID); Seymour, Craig A. (Idaho Falls, ID)

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  16. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eere.energy.gov Timothy Reinhardt Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy timothy.reinhardt@ee.doe.gov Geothermal Technologies Program 2011 SMU Geothermal Conference Energy Efficiency & Renewable Energy eere.energy.gov * Program's past * Present status of ARRA projects * Program's near future Presentation Outline Energy Efficiency & Renewable Energy eere.energy.gov The Geothermal Technologies Program annual budget peaked

  17. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  18. Drilling Gives Insight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drilling Gives Insight into Groundwater NNSA Commemorates Milestone NNSS continues drilling program to look at possible contamination. Decon-12 helps emergency responders prepare for radiological threat. NNSS marks the 20th anniversary of the end of underground testing See page 8. See page 3. See page 4. NNSS Completes Pollux Experiment in Wrapping Successful Gemini Series The National Nuclear Security Administration (NNSA) announced that Pollux, a subcritical experiment, was successfully

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Exploration Activity...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Exploration Activity...

  1. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Exploration Activity...

  2. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity...

  3. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  4. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002)...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Parker & Icerman, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Parker &...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978)...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  9. Geothermal Literature Review At Coso Geothermal Area (1987) ...

    Open Energy Info (EERE)

    7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1987) Exploration Activity Details...

  10. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  11. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978)...

  12. Property:ExplorationPermitAgency-Drilling | Open Energy Information

    Open Energy Info (EERE)

    21 pages using this property. R RAPIDGeothermalExplorationAlaska + Alaska Division of Oil and Gas + RAPIDGeothermalExplorationCalifornia + California Department of...

  13. Property:ExplorationPermitAgency-PreDrilling | Open Energy Information

    Open Energy Info (EERE)

    + RAPIDGeothermalExplorationHawaii + Hawaii Department of Land and Natural Resources Engineering Division + RAPIDGeothermalExplorationIdaho + Idaho Department of Water...

  14. Renewable Energy Technologies - Geothermal Energy

    Energy Savers [EERE]

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  15. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    SciTech Connect (OSTI)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna; Martino, Louis

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly depending on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.

  16. While drilling system and method

    DOE Patents [OSTI]

    Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward

    2007-02-20

    A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.

  17. Geothermal Technologies Program - Washington

    SciTech Connect (OSTI)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State.

  18. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  19. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  20. Fairbanks Geothermal Energy Project

    Broader source: Energy.gov [DOE]

    Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

  1. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC) a tax-exempt, non-profit, geothermal educational association publishes quarterly as an insert in its GRC Bulletin.

  2. OHm Geothermal | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

  3. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  4. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way....

  5. Geothermal energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal energy Jump to: navigation, search Dictionary.png Geothermal energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other...

  6. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  7. Solar Permitting Law

    Broader source: Energy.gov [DOE]

    This legislation also addressed permitting fees for solar systems.  Counties and cities may not charge permit fees for solar permit applications specifically, but they can charge building permit ...

  8. Evaluation of slurry injection technology for management of drilling wastes.

    SciTech Connect (OSTI)

    Veil, J. A.; Dusseault, M. B.

    2003-02-19

    Each year, thousands of new oil and gas wells are drilled in the United States and around the world. The drilling process generates millions of barrels of drilling waste each year, primarily used drilling fluids (also known as muds) and drill cuttings. The drilling wastes from most onshore U.S. wells are disposed of by removing the liquids from the drilling or reserve pits and then burying the remaining solids in place (called pit burial). This practice has low cost and the approval of most regulatory agencies. However, there are some environmental settings in which pit burial is not allowed, such as areas with high water tables. In the U.S. offshore environment, many water-based and synthetic-based muds and cuttings can be discharged to the ocean if discharge permit requirements are met, but oil-based muds cannot be discharged at all. At some offshore facilities, drilling wastes must be either hauled back to shore for disposal or disposed of onsite through an injection process.

  9. The Latera geothermal system (Italy); Chemical composition of the geothermal fluid and hypotheses on its origin

    SciTech Connect (OSTI)

    Gianelli, G. ); Scandiffio, G. )

    1989-01-01

    The chemistry of the fluid produced in the Latera geothermal field and the petrology of the hydrothermal minerals found in drill cores and cuttings suggest mixing of a hot Na-Cl fluid with fluids circulating in carbonate units. Evidence exists of a deep fluid of a possible magmatic origin. The very high temperature (above 400{sup 0}C) measured in a deep drill hole indicates the presence of a geothermal fluid, decarbonation and dehydration of sedimentary rocks and there may even be at depth a fluid that still has magmatic characteristics. However, this fluid is certainly mixed with Ca-So/sub 4/-HCO/sub 3/ waters coming from the Mesozoic carbonate rocks below the volcanic cover.

  10. Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Tulsa, OK 2,399,999 600,000 2,999,999 Stinger Enhanced Bits for Engineered Geothermal Systems...

  11. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small

  12. Retrospective examination of geothermal environmental assessments

    SciTech Connect (OSTI)

    Webb, J.W.; Eddlemon, G.K.; Reed, A.W.

    1984-03-01

    Since 1976, the Department of Energy (DOE) has supported a variety of programs and projects dealing with the exploration, development, and utilization of geothermal energy. This report presents an overview of the environmental impacts associated with these efforts. Impacts that were predicted in the environmental analyses prepared for the programs and projects are reviewed and summarized, along with measures that were recommended to mitigate these impacts. Also, for those projects that have gone forward, actual impacts and implemented mitigation measures are reported, based on telephone interviews with DOE and project personnel. An accident involving spills of geothermal fluids was the major environmental concern associated with geothermal development. Other important considerations included noise from drilling and production, emissions of H/sub 2/S and cooling tower drift, disposal of solid waste (e.g., from H/sub 2/S control), and the cumulative effects of geothermal development on land use and ecosystems. Mitigation measures were frequently recommended and implemented in conjunction with noise reduction; drift elimination; reduction of fugitive dust, erosion, and sedimentation; blowout prevention; and retention of wastes and spills. Monitoring to resolve uncertainties was often implemented to detect induced seismicity and subsidence, noise, drift deposition, concentrations of air and water pollutants, and effects on groundwater. The document contains an appendix, based on these findings, which outlines major environmental concerns, mitigation measures, and monitoring requirements associated with geothermal energy. Sources of information on various potential impacts are also listed.

  13. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques for identifying and precisely mapping LAFsin 3-D will greatly reduce dry hole risk and the overall number of wells required for reaching a particular geothermal field power capacity.

  14. NREL: Geothermal Technologies - NREL's Geothermal Experts Present at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41st Annual Stanford Geothermal Workshop NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop March 10, 2016 Six members of our geothermal community, accompanied by Bud Johnston, NREL's new geothermal laboratory program manager, attended the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. The Stanford Geothermal Workshop brings together engineers, scientists, and managers involved

  15. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the

    Office of Environmental Management (EM)

    U.S. | Department of Energy Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. PDF icon iceland_geothermal_conf2013_nathwani.pdf More Documents & Publications Geothermal Technologies Program Overview Presentation at

  16. Energy geothermal; San Emidio Geothermal Area; 3D Model geothermal...

    Office of Scientific and Technical Information (OSTI)

    description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining...

  17. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1979

    SciTech Connect (OSTI)

    Cremer, G.M.; Duffield, R.B.; Smith, M.C.; Wilson, M.G.

    1980-08-01

    The Fenton Hill Project is still the principal center for developing methods, equipment, and instrumentation for creating and utilizing HDR geothermal reservoirs. The search for a second site for a similar experimental system in a different geological environment has been intensified, as have the identification and characterization of other HDR areas that may prove suitable for either experimental or commercial development. The Phase I fracture system was enlarged during FY79. Drilling of the injection well of the Phase II system began at Fenton Hill in April 1979. Environmental monitoring of the Fenton Hill area continued through FY79. The environmental studies indicate that the hot dry rock operations have caused no significant environmental impact. Other supporting activities included rock physics, rock mechanics, fracture mapping, and instrumentation development. Two closely related activities - evaluation of the potential HDR energy resource of the US and the selection of a site for development of a second experimental heat-extraction system generally similar to that at Fenton Hill - have resulted in the collection of geology, hydrology, and heat-flow data on some level of field activity in 30 states. The resource-evaluation activity included reconnaissance field studies and a listing and preliminary characterization of US geothermal areas in which HDR energy extraction methods may be applicable. The selection of Site 2 has taken into account such legal, institutional, and economic factors as land ownership and use, proximity to possible users, permitting and licensing requirements and procedures, environmental issues, areal extent of the geothermal area, and visibility to and apparent interest by potential industrial developers.

  18. Temporary Bridging Agents for Use in Drilling and Completions of EGS

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop materials or systems that bridge to seal or divert flow from fractures existing while drilling EGS wells or in injection formation and that eventually decompose thereby leaving the fractures unsealed and undamaged.

  19. Drilling investigations of crustal rifting processes in the Salton Trough, California. Revision 1

    SciTech Connect (OSTI)

    Kasameyer, P.W.; Younker, L.W.; Newmark, R.L.; Duba, A.G.

    1986-01-01

    The results of CSDP activities in the Salton Sea Geothermal Field (SSGF) are briefly described, concentrating on a shallow heat flow survey, but also discussing preliminary results from the Salton Sea Scientific Drilling Program (SSSDP). The hypothesis that localized thermal zones are the source of all the heat in the Salton Trough is examined. (ACR)

  20. Drilling investigations of crustal rifting processes in the Salton Trough, California

    SciTech Connect (OSTI)

    Kasameyer, P.W.; Younker, L.W.; Newmark, R.L.; Duba, A.G.

    1986-01-01

    The paper describes the results of CSDP activities in the Salton Sea Geothermal Field (SSGF), concentrating on a shallow heat-flow survey, but also considering preliminary results from the Salton Sea Scientific Drilling Program (SSSDP). Whether the heat input rate to localized systems is high enough to account for the overall thermal budget of the Salton Trough is examined. (ACR)

  1. Deep Water Drilling to Catalyze the Global Drilling Fluids Market...

    Open Energy Info (EERE)

    Deep Water Drilling to Catalyze the Global Drilling Fluids Market Home > Groups > Renewable Energy RFPs John55364's picture Submitted by John55364(100) Contributor 13 May, 2015 -...

  2. ORS 522.135 Permit Time Limit for Action, Grounds for Issuance...

    Open Energy Info (EERE)

    135 Permit Time Limit for Action, Grounds for Issuance, Conditions, and Fees for Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal...

  3. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  4. Geothermal Energy R&D Program Annual Progress Report for Fiscal Year 1992

    SciTech Connect (OSTI)

    1993-07-01

    Geothermal budget actual amounts are shown for FY 1989 -1992, broken down by about 15 categories. Here, the main Program categories are: Exploration Technology, Drilling Technology, Reservoir Technology, Conversion Technology (power plants and materials), Industry-Coupled Drilling, Drilling Applications, Reservoir Engineering Applications, Direct Heat, Geopressured Wells Operation, and Hot Dry Rock Research. Here the title--Industry-Coupled Drilling--covered case studies of the Coso, CA, and Dixie Valley, NV, fields, and the Long Valley Exploratory Well (which had started as a magma energy exploration project, but reported here as a hydrothermal prospect evaluation well). (DJE 2005)

  5. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  6. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  7. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  8. Rural Cooperative Geothermal Development Electric & Agriculture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rural Cooperative Geothermal Development Electric & Agriculture Rural Cooperative Geothermal Development Electric & Agriculture DOE 2010 Geothermal Program Peer Review; Low ...

  9. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  10. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  11. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  12. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  13. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  14. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  15. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  16. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  17. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  18. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  19. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  20. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  1. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  2. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  3. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  4. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  5. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  6. Combination drilling and skiving tool

    DOE Patents [OSTI]

    Stone, William J. (Kansas City, MO)

    1989-01-01

    A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

  7. Stanford Geothermal Workshop - Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stanford Geothermal Workshop February 11-13, 2013 Doug Hollett, Director Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Desert Peak (Source: Ormat Nevada, Inc) 2 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Program: Key Goals and Objectives Creating Impact Increased Focus * Identify New Geothermal Opportunities * Lowered risk and cost * New prospecting workflow * EGS R&D and Underground Field Observatory * New techniques and technologies *

  8. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Environmental Management (EM)

    & Publications Low TemperatureCoproducedGeopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011...

  9. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  10. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  11. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  12. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  13. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  14. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal...

  15. Blind Geothermal System | Open Energy Information

    Open Energy Info (EERE)

    Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a...

  16. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  17. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  18. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Area Sitka Hot Spring Geothermal Area South Geothermal Area Tolovana Geothermal Area ... further results Energy Generation Facilities within the Alaska...

  19. Italy Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

  20. Hawaii Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Area Mokapu Penninsula Geothermal Area Molokai Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Energy Generation Facilities within the Hawaii Geothermal Region Puna...

  1. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  2. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  3. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  4. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  12. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. San Jacinto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  15. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. North Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  18. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...