National Library of Energy BETA

Sample records for geothermal drill holes

  1. Geothermal reservoir assessment based on slim hole drilling. Volume 1, Analytical Method: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal, resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project -- Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential ''discovery.''

  2. Geothermal reservoir assessment based on slim hole drilling. Volume 2: Application in Hawaii: Final report

    SciTech Connect (OSTI)

    Olson, H.J.

    1993-12-01

    The Hawaii Scientific Observation Hole (SOH) program was planned, funded, and initiated in 1988 by the Hawaii Natural Energy Institute, an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa. Initial funding for the SOH program was $3.25 million supplied by the State of Hawaii to drill six, 4,000 foot scientific observation holes on Maui and the Big Island of Hawaii to confirm and stimulate geothermal resource development in Hawaii. After a lengthy permitting process, three SOHs, totaling 18,890 feet of mostly core drilling were finally drilled along the Kilauea East Rift Zone (KERZ) in the Puna district on the Big Island. The SOH program was highly successful in meeting the highly restrictive permitting conditions imposed on the program, and in developing slim hole drilling techniques, establishing subsurface geological conditions, and initiating an assessment and characterization of the geothermal resources potential of Hawaii - - even though permitting specifically prohibited pumping or flowing the holes to obtain data of subsurface fluid conditions. The first hole, SOH-4, reached a depth of 2,000 meters, recorded a/bottom hole temperature of 306.1 C, and established subsurface thermal continuity along the KERZ between the HGP-A and the True/Mid-Pacific Geothermal Venture wells. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole SOH-1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C, effectively doubled the size of the Hawaii Geothermal Project-Abbott/Puna Geothermal Venture (HGP-A/PGV) proven/probable reservoir, and defined the northern limit of the HGP-A/PGV reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C, and has sufficient indicated permeability to be designated as a potential discovery.

  3. Geothermal Drilling Organization

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

  4. Alpine Geothermal Drilling | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Alpine Geothermal Drilling Name: Alpine Geothermal Drilling Address: PO Box 141 Place: Kittredge, Colorado Zip: 80457 Region: Rockies Area Sector: Geothermal...

  5. Percussive Hammer Enables Geothermal Drilling | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percussive Hammer Enables Geothermal Drilling Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National ...

  6. Core Hole Drilling And Testing At The Lake City, California Geothermal...

    Open Energy Info (EERE)

    And Testing At The Lake City, California Geothermal Field Authors Dick Benoit, Joe Moore, Colin Goranson and David Blackwell Published GRC, 2005 DOI Not Provided Check for DOI...

  7. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  8. Geothermal Energy & Drilling Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy & Drilling Technology - Sandia Energy Energy Search Icon Sandia Home Locations ... Atmospheric Radiation Measurement Climate Reasearch Facility Geomechanics and Drilling ...

  9. Balanced pressure techniques applied to geothermal drilling

    SciTech Connect (OSTI)

    Dareing, D.W.

    1981-08-01

    The objective of the study is to evaluate balanced pressure drilling techniques for use in combating lost circulation in geothermal drilling. Drilling techniques evaluated are: aerated drilling mud, parasite tubing, concentric drill pipe, jet sub, and low density fluids. Based on the present state of the art of balanced pressure drilling techniques, drilling with aerated water has the best overall balance of performance, risk, availability, and cost. Aerated water with a 19:1 free air/water ratio reduce maximum pressure unbalance between wellbore and formation pressures from 1000 psi to 50 psi. This pressure unbalance is within acceptable operating limits; however, air pockets could form and cause pressure surges in the mud system due to high percent of air. Low density fluids used with parasite tubing has the greatest potential for combating lost circulation in geothermal drilling, when performance only is considered. The top portion of the hole would be aerated through the parasite tube at a 10:1 free air/mud ratio and the low density mud could be designed so that its pressure gradient exactly matches the formation pore pressure gradient. The main problem with this system at present is the high cost of ceramic beads needed to produce low density muds.

  10. Temperatures, heat flow, and water chemistry from drill holes...

    Open Energy Info (EERE)

    Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

  11. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect (OSTI)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  12. Geothermal drilling in Cerro Prieto

    SciTech Connect (OSTI)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  13. The IEA's role in advanced geothermal drilling.

    SciTech Connect (OSTI)

    Hoover, Eddie Ross; Jelacic, Allan; Finger, John Travis; Tyner, Craig E.

    2004-06-01

    This paper describes an 'Annex', or task, that is part of the International Energy Agency's Geothermal Implementing Agreement. Annex 7 is aimed at improving the state of the art in geothermal drilling, and has three subtasks: an international database on drilling cost and performance, a 'best practices' drilling handbook, and collaborative testing among participating countries. Drilling is an essential and expensive part of geothermal exploration, production, and maintenance. High temperature, corrosive fluids, and hard, fractured formations increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production and injection well field can account for approximately half the capital cost for a geothermal power project. Geothermal drilling cost reduction can take many forms, e.g., faster drilling rates, increased bit or tool life, less trouble (twist-offs, stuck pipe, etc.), higher per-well production through multilaterals, and others. Annex 7 addresses all aspects of geothermal well construction, including developing a detailed understanding of worldwide geothermal drilling costs, understanding geothermal drilling practices and how they vary across the globe, and development of improved drilling technology. Objectives for Annex 7 include: (1) Quantitatively understand geothermal drilling costs and performance from around the world and identify ways to improve costs, performance, and productivity. (2) Identify and develop new and improved technologies for significantly reducing the cost of geothermal well construction. (3) Inform the international geothermal community about these drilling technologies. (4) Provide a vehicle for international cooperation, collaborative field tests, and data sharing toward the development and demonstration of improved geothermal drilling technology.

  14. European Geothermal Drilling Experience-Problem Areas and Case...

    Office of Scientific and Technical Information (OSTI)

    Drilling Experience-Problem Areas and Case Studies Baron, G.; Ungemach, P. 15 GEOTHERMAL ENERGY; BOREHOLES; DRILLING; EVALUATION; EXPLORATION; GEOTHERMAL RESOURCES; ITALY;...

  15. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of ...

  16. Evaluation of Emerging Technology for Geothermal Drilling and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories Drilling Systems Project ...

  17. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    SciTech Connect (OSTI)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real time

  18. Handbook of Best Practices for Geothermal Drilling Released

    Broader source: Energy.gov [DOE]

    The Handbook of Best Practices for Geothermal Drilling, funded by the U.S. Department of Energy’s Geothermal Technologies Program and prepared by Sandia National Laboratories, focuses on the complex process of drilling a geothermal well.

  19. Handbook of Best Practices for Geothermal Drilling

    Office of Energy Efficiency and Renewable Energy (EERE)

    This handbook focuses on the complex process of drilling a geothermal well, including techniques and hardware that have proven successful for both direct use and electricity generation around the world.

  20. Geochemical Mud Logging of geothermal drilling

    SciTech Connect (OSTI)

    Tonani, F.B.; Guidi, M.; Johnson, S.D.

    1988-01-01

    The experience and results described in the present paper were developed over nearly two decades, with a major R&D project around 1980. The expression Geochemical Mud Logging (GML) has ill defined meaning in the geothermal industry, and ought to be specified. We refer here to GML as featuring mud and formation fluid tracer(s) and temperature as the bare essentials and with specified accuracies. Air and water logging are expected to be less demanding with regard to analysis accuracy, but are not discussed in this report. During application of GML to several drill holes with low formation permeabilities and under conditions of high temperature and high mud weight, GML as specified, revealed unexpected influx of formation brine. Such influx was a recurring feature that has been referenced to individual fractures and reflects both fracture size and permeability. As a consequence, continuous or subcontinuous sampling of mud systems appears more cost effective than trying to keep up with cumulative changes of bulk mud composition; although, the latter approach is more sensitive to extremely low rate, steady, inflow of formation fluid into the mud system. It appears, that based on this influx of formation fluid, permeability can be estimated well before mud losses are detected and/or drill strings are stuck. The main advantages of GML are: (1) the capability to assess formation temperature and permeability in nearly real time, resulting in (a) assessments of undisturbed formation and (b) having data in hand for holes lost during drilling operations and (2) being effective under conditions of very high temperatures where electrical logs are very costly and less reliable. Estimated cost for GML is $1500 per day (1982) based on assessments of R&D operations. However, extrapolating to larger scale services and to different operating conditions is indeed difficult. GML cost is probably the only significant point of controversy with regard to GML being a viable evaluation tool.

  1. The Iea'S Role In Advanced Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    increase the cost of drilling, logging, and completing geothermal wells, compared to oil and gas. Cost reductions are critical because drilling and completing the production...

  2. Physical-Property Measurements on Core Samples from Drill-Holes...

    Open Energy Info (EERE)

    Physical-Property Measurements on Core Samples from Drill-Holes DB-1 and DB-2, Blue Mountain Geothermal Prospect, North-Central Nevada Jump to: navigation, search OpenEI Reference...

  3. Geothermal drilling problems and their impact on cost

    SciTech Connect (OSTI)

    Carson, C.C.

    1982-01-01

    Historical data are presented that demonstrate the significance of unexpected problems. In extreme cases, trouble costs are the largest component of well costs or severe troubles can lead to abandonment of a hole. Drilling experiences from US geothermal areas are used to analyze the frequency and severity of various problems. In addition, average trouble costs are estimated based on this analysis and the relationship between trouble and depth is discussed. The most frequent drilling and completion problem in geothermal wells is lost circulation. This is especially true for resources in underpressured, fractured formations. Serious loss of circulation can occur during drilling - because of this, the producing portions of many wells are drilled with air or aerated drilling fluid and the resulting corrosion/erosion problems are tolerated - but it can also affect the cementing of well casing. Problems in bonding the casing to the formation result from many other causes as well, and are common in geothermal wells. Good bonds are essential because of the possibility of casing collapse due to thermal cycling during the life of the well. Several other problems are identified and their impacts are quantified and discussed.

  4. DOE - NNSA/NFO -- Photo Library Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Hole Drilling NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Photo Library - Big Hole Drilling The need to drill large-diameter holes at the Nevada National ...

  5. Use of Downhole Motors in Geothermal Drilling in the Philippines

    SciTech Connect (OSTI)

    Pyle, D. E.

    1981-01-01

    This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

  6. Deep drilling data Raft River geothermal area, Idaho | Open Energy...

    Open Energy Info (EERE)

    data Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data Raft River geothermal area, Idaho Abstract...

  7. EERE Success Story-Percussive Hammer Enables Geothermal Drilling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Percussive Hammer Enables Geothermal Drilling EERE Success Story-Percussive Hammer Enables Geothermal Drilling May 14, 2015 - 7:00pm Addthis Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia In

  8. Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Flint Geothermal Area (DOE GTP)...

  9. Slim Holes At International Geothermal Area, Japan (Combs, Et...

    Open Energy Info (EERE)

    International Geothermal Area, Japan (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At International Geothermal...

  10. Geothermal Drilling Success at Blue Mountain, Nevada | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Drilling Success at Blue Mountain, Nevada Abstract Exploration in a blind prospect...

  11. Geothermal Drilling of New England | Open Energy Information

    Open Energy Info (EERE)

    of New England Jump to: navigation, search Name: Geothermal Drilling of New England Address: 358 Boylston Street Place: Lowell, Massachusetts Zip: 01852 Region: Greater Boston Area...

  12. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    7 Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code...

  13. Drilling for Geothermal Resources Rules - Idaho | Open Energy...

    Open Energy Info (EERE)

    - Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Drilling for Geothermal Resources Rules - Idaho Published Publisher Not Provided, Date Not...

  14. Safety Measures a hinder for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    2010 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Safety Measures a hinder for Geothermal Drilling Citation Renewable Power...

  15. Annex 7 - The Iea'S Role In Advanced Geothermal Drilling | Open...

    Open Energy Info (EERE)

    Geothermal Drilling Abstract No abstract prepared. Authors John Travis Finger and Eddie Ross Hoover Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for...

  16. Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications

    Broader source: Energy.gov [DOE]

    Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

  17. Recent Developments in Geothermal Drilling Fluids Kelsey, J....

    Office of Scientific and Technical Information (OSTI)

    M. J.; Clements, W. R.; Hilscher, L. W.; Remont, L. J.; Matula, G. W.; Balley, D. N. 01 COAL, LIGNITE, AND PEAT; 15 GEOTHERMAL ENERGY; BENTONITE; BROWN COAL; DRILLING; DRILLING...

  18. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Energy 1 July 1992 USFS BLM GeothermalExploration GeothermalWell Field GeothermalPower Plant Exploration Drilling Exploratory Boreholes Production Wells Thermal Gradient Holes...

  19. GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling Award GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report GRED Drilling Award GRED III Phase II; 2010 Geothermal Technology Program Peer Review ...

  20. DOE and Navy Collaborate on Geothermal Drilling Technology

    Broader source: Energy.gov [DOE]

    The Department of Energy's Sandia National Laboratories has teamed up with U.S. Navy's Geothermal Program Office to revive decades-old polycrystalline diamond compact (PDC) technology. The high performance PDC drill bit is being re-evaluated and improved to reduce the cost of drilling for geothermal energy.

  1. Method and apparatus of assessing down-hole drilling conditions

    DOE Patents [OSTI]

    Hall, David R.; Pixton, David S.; Johnson, Monte L.; Bartholomew, David B.; Fox, Joe

    2007-04-24

    A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

  2. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    2010-01-01

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  3. Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Zemach, Ezra

    Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

  4. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Goff, Et Al., 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al.,...

  5. Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion...

    Open Energy Info (EERE)

    report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River Geothermal Exploratory Hole No. 1 (RRGE-1). Completion report Abstract GEOTHERMAL...

  6. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds & W., 1977)...

  7. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  8. Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details...

  9. Thermal Gradient Holes At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration...

  10. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012)...

  11. Bureau of Land Management - Geothermal Drilling Permit | Open...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Form: Bureau of Land Management - Geothermal Drilling Permit Abstract This page links to the BLM application for...

  12. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  13. A study of geothermal drilling and the production of electricity from geothermal energy

    SciTech Connect (OSTI)

    Pierce, K.G.; Livesay, B.J.

    1994-01-01

    This report gives the results of a study of the production of electricity from geothermal energy with particular emphasis on the drilling of geothermal wells. A brief history of the industry, including the influence of the Public Utilities Regulatory Policies Act, is given. Demand and supply of electricity in the United States are touched briefly. The results of a number of recent analytical studies of the cost of producing electricity are discussed, as are comparisons of recent power purchase agreements in the state of Nevada. Both the costs of producing electricity from geothermal energy and the costs of drilling geothermal wells are analyzed. The major factors resulting in increased cost of geothermal drilling, when compared to oil and gas drilling, are discussed. A summary of a series of interviews with individuals representing many aspects of the production of electricity from geothermal energy is given in the appendices. Finally, the implications of these studies are given, conclusions are presented, and program recommendations are made.

  14. Solicitation - Geothermal Drilling Development and Well Maintenance Projects

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    Energy (DOE)-industry research and development (R and D) organization, sponsors near-term technology development projects for reducing geothermal drilling and well maintenance costs. Sandia National Laboratories (Albuquerque, NM) administers DOE funds for GDO cost-shared projects and provides technical support. The GDO serves a very important function in fostering geothermal development. It encourages commercialization of emerging, cost-reducing drilling technologies, while fostering a spirit of cooperation among various segments of the geothermal industry. For Sandia, the GDO also serves as a means of identifying the geothermal industry's drilling fuel/or well maintenance problems, and provides an important forum for technology transfer. Successfully completed GDO projects include: the development of a high-temperature borehole televiewer, high-temperature rotating head rubbers, a retrievable whipstock, and a high-temperature/high-pressure valve-changing tool. Ongoing GDO projects include technology for stemming lost circulation; foam cement integrity log interpretation, insulated drill pipe, percussive mud hammers for geothermal drilling, a high-temperature/ high-pressure valve changing tool assembly (adding a milling capability), deformed casing remediation, high- temperature steering tools, diagnostic instrumentation for casing in geothermal wells, and elastomeric casing protectors.

  15. Core Holes At Long Valley Caldera Geothermal Area (Benoit, 1984...

    Open Energy Info (EERE)

    Exploration Basis Several core holes were also drilled in the caldera's west moat by Phillips Petroleum Company in 1982, including: PLV-1, drilled to approximately 711 m depth...

  16. IDAPA 37.03.04 Drilling For Geothermal Resources Rules | Open...

    Open Energy Info (EERE)

    Rules for drilling Geothermal Resources released by the State of Idaho Department of Water Resources Geothermal Resource Program in Boise, Idaho. Published NA Year Signed or...

  17. Study of the radon released from open drill holes

    SciTech Connect (OSTI)

    Pacer, J C

    1981-06-01

    The radon emanating from three open drill holes was measured at a site of known uranium mineralization in the Red Desert of south central Wyoming. The radon flux from the soil and drill holes was measured by the accumulator method with activated charcoal cartridges. The surface soil was found to release radon at an average rate of 0.41 atoms/cm/sup 2//sec; the radon emanating from the holes was more variable than that from the soil. The three holes studied released an average of 47 atoms/cm/sup 2//sec of radon. This average is equivalent to the radon released to the atmosphere by 14.5 ft/sup 2/ of soil. The data indicate that the radon emanated from an open drill hole is not as significant as other possible activities at a drill site (i.e. digging a trench or drilling a hole) or from household activities involving the usage of water.

  18. Core Holes At Long Valley Caldera Geothermal Area (Urban, Et...

    Open Energy Info (EERE)

    Technique Core Holes Activity Date 1986 - 1986 Usefulness useful DOE-funding Unknown Exploration Basis After several temperature-gradient holes were drilled in 1982 to the...

  19. Thermal Gradient Holes At North Brawley Geothermal Area (Matlick...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis Thermal gradient wells were drilled for initial exploration and assessment of the North Brawley Geothermal Area. Notes Union Oil Company...

  20. NMAC 19.14.21 Geothermal Power Drilling Permit | Open Energy...

    Open Energy Info (EERE)

    1 Geothermal Power Drilling Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.14.21 Geothermal Power Drilling...

  1. WAC 332-17 Geothermal Drilling Rules and Regulations | Open Energy...

    Open Energy Info (EERE)

    17 Geothermal Drilling Rules and Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: WAC 332-17 Geothermal Drilling...

  2. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    SciTech Connect (OSTI)

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. ); Aycinena, S.; Martinelli, L. ); Castaneda, O.; Revolorio, M.; Roldan, A. . Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  3. Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1981-03-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

  4. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal Geothermal Tara Camacho-Lopez 2016-03-16T19:31:15+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  5. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    SciTech Connect (OSTI)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.; Goff, F.E.; Heiken, G.; Ramos, N.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coring operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.

  6. Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration Basis Cores...

  7. GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report | Department of Energy Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report GRED Drilling Award … GRED III Phase II; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_011_karl.pdf (222.5 KB) More Documents & Publications 2010 Geothermal Technology Program Peer Review Report Well Monitoring Systems for EGS; 2010 Geothermal Technology Program Peer Review Report

  8. Laser Drills Could Relight Geothermal Energy Dreams

    Broader source: Energy.gov [DOE]

    Commercial-grade laser technology is trying to punch holes in hard igneous rocks, a feat that would change the mathematics of low-carbon energy and could significantly decrease well costs by...

  9. Slim Holes At Flint Geothermal Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Flint Geothermal Area (DOE GTP) Exploration...

  10. Hole cleaning imperative in coiled tubing drilling operations

    SciTech Connect (OSTI)

    Rameswar, R.M.; Mudda, K.

    1995-09-01

    Annular flow modeling in coiled tubing applications is essential for optimizing mud rheology and keeping the hole clean. Cuttings transport in coiled tubing drilling must be optimized, particularly the modeling of hole cleaning capabilities. The effects of two different muds in contrasting geometries on hold cleaning efficiency are considered, with the simulation performed using Petrocalc 14. Coiled tubing is widely used to drill new vertical and horizontal wells, and in re-entry operations. Horizontal well problems are subsequently modeled, where annular eccentricities can range anywhere from concentric to highly offset, given the highly buckled or helically deflected states of many drill coils.

  11. A SMALL-ANGLE DRILL-HOLE WHIPSTOCK

    DOE Patents [OSTI]

    Nielsen, D.E.; Olsen, J.L.; Bennett, W.P.

    1963-01-29

    A small angle whipstock is described for accurately correcting or deviating a drill hole by a very small angle. The whipstock is primarily utilized when drilling extremely accurate, line-of-slight test holes as required for diagnostic studies related to underground nuclear test shots. The invention is constructed of a length of cylindrical pipe or casing, with a whipstock seating spike extending from the lower end. A wedge-shaped segment is secured to the outer circumference of the upper end of the cylinder at a position diametrically opposite the circumferential position of the spike. Pin means are provided for affixing the whipstock to a directional drill bit and stem to alloy orienting and setting the whipstock properly in the drill hole. (AEC)

  12. DOE - NNSA/NFO -- News & Views Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Testing Perfected Big-Hole Drilling Technology Photo - Rowan Drilling Company's On July 26, 1957, a safety experiment called "Pascal A" was detonated in an unstemmed hole. Although the test was not spectacular, it does hold the distinction of being the first nuclear test in the world to be detonated underground. From 1957 to 1992, 533 contained tests and nine unstemmed tests were conducted at the Nevada Test Site (NTS). If the depths of all the 36-inch diameter holes

  13. Clay-based geothermal drilling fluids

    SciTech Connect (OSTI)

    Guven, N.; Carney, L.L.; Lee, L.J.; Bernhard, R.P.

    1982-11-01

    The rheological properties of fluids based on fibrous clays such as sepiolite and attapulgite have been systematically examined under conditions similar to those of geothermal wells, i.e. at elevated temperatures and pressures in environments with concentrated brines. Attapulgite- and sepiolite-based fluids have been autoclaved at temperatures in the range from 70 to 800/sup 0/F with the addition of chlorides and hydroxides of Na, K, Ca, and Mg. The rheological properties (apparent and plastic viscosity, fluid loss, gel strength, yield point, and cake thickness) of the autoclaved fluids have been studied and correlated with the chemical and physical changes that occur in the clay minerals during the autoclaving process.

  14. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    consisting of several holes including: The CH8-10 thermal-gradient holes drilled by the U.S. Geological Survey prior to 1978 to relatively shallow depths ranging from about 55 to...

  15. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  16. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  17. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  18. Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California

    SciTech Connect (OSTI)

    Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.

    1987-09-01

    This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

  19. Deep drilling data, Raft River geothermal area, Idaho-Raft River...

    Open Energy Info (EERE)

    data, Raft River geothermal area, Idaho-Raft River geothermal exploration well sidetrack-C Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling...

  20. U.S. Geothermal Drills Prolific Well at Neal Hot Springs | Open...

    Open Energy Info (EERE)

    Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Prolific Well at Neal Hot Springs Abstract NA Author U.S. Geothermal...

  1. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling...

    Open Energy Info (EERE)

    Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Phase 2 Reese River Geothermal...

  2. The snake geothermal drilling project. Innovative approaches to geothermal exploration

    SciTech Connect (OSTI)

    Shervais, John W.; Evans, James P.; Liberty, Lee M.; Schmitt, Douglas R.; Blackwell, David D.

    2014-02-21

    The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution, and new thermal gradient measurements.

  3. Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-11-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  4. Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-05-01

    The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

  5. Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980

    SciTech Connect (OSTI)

    Varnado, S.G.

    1980-07-01

    The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

  6. Geopressured geothermal drilling and completions technology development needs

    SciTech Connect (OSTI)

    Maish, A.B.

    1981-03-01

    Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

  7. Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion...

    Open Energy Info (EERE)

    report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Raft River Geothermal Exploratory Hole No. 2, RRGE-2. Completion report Abstract The Raft...

  8. Core Holes At Kilauea East Rift Geothermal Area (Bargar, Et Al...

    Open Energy Info (EERE)

    Kilauea East Rift Geothermal Area (Bargar, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Kilauea East Rift...

  9. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    successful 2012. December 14, 2012 Laser Drills Could Relight Geothermal Energy Dreams Commercial-grade laser technology is trying to punch holes in hard igneous rocks, a...

  10. Integrated Geoscience Investigation and Geothermal Exploration...

    Open Energy Info (EERE)

    system. The proposed Phase II holes are plannedto be drilled during 2007 in the hope of discovering hotter waters that will allow anexpansion of the geothermal power...

  11. Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974...

    Open Energy Info (EERE)

    Geothermal Test Hole GT-2 Fenton Hill Site, July 1974 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of Geothermal Test Hole GT-2 Fenton Hill...

  12. C.R.S. 37-90.5-106 - Geothermal Drilling Permits | Open Energy...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: C.R.S. 37-90.5-106 - Geothermal Drilling PermitsLegal Abstract Statutory provision governing the...

  13. U.S. Geothermal Starts New Drilling Programs at Neal Hot Springs...

    Open Energy Info (EERE)

    Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Starts New Drilling Programs at Neal Hot Springs Project Abstract NA Author...

  14. U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs...

    Open Energy Info (EERE)

    for Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: U.S. Geothermal Drills Another Prolific Well at Neal Hot Springs Completes Production Wells...

  15. IDWS Form 4003-1, Application for Permit to Drill for Geothermal...

    Open Energy Info (EERE)

    IDWS Form 4003-1, Application for Permit to Drill for Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Permit...

  16. HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources...

    Open Energy Info (EERE)

    HAR 13-183 Rules on Leasing and Drilling of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: HAR 13-183...

  17. Drilling and operating oil, gas, and geothermal wells in an H/sub 2/S environment

    SciTech Connect (OSTI)

    Dosch, M.W.; Hodgson, S.F.

    1981-01-01

    The following subjects are covered: facts about hydrogen sulfides; drilling and operating oil, gas, and geothermal wells; detection devices and protective equipment; hazard levels and safety procedures; first aid; and H/sub 2/S in California oil, gas, and geothermal fields. (MHR)

  18. Small drill-hole, gas mini-permeameter probe

    DOE Patents [OSTI]

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-12-03

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  19. Small drill-hole, gas mini-permeameter probe

    DOE Patents [OSTI]

    Molz, III, Fred J.; Murdoch, Lawrence C.; Dinwiddie, Cynthia L.; Castle, James W.

    2002-01-01

    The distal end of a basic tube element including a stopper device with an expandable plug is positioned in a pre-drilled hole in a rock face. Rotating a force control wheel threaded on the tube element exerts force on a sleeve that in turn causes the plug component of the stopper means to expand and seal the distal end of the tube in the hole. Gas under known pressure is introduced through the tube element. A thin capillary tube positioned in the tube element connects the distal end of the tube element to means to detect and display pressure changes and data that allow the permeability of the rock to be determined.

  20. High Temperature Tools and Sensors, Down-hole Pumps and Drilling

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for High Temperature Tools and Sensors, Down-hole Pumps and Drilling.

  1. Geothermal Energy for New Mexico: Assessment of Potential and Exploratory Drilling

    SciTech Connect (OSTI)

    Mark Person, Lara Owens, James Witcher

    2010-02-17

    This report summarizes the drilling operations and subsequent interpretation of thermal and geochemical data from the New Mexico Tech NMT-2GT (OSE RG- 05276 POD) test well. This slim hole was drilled along an elongate heat-flow anomaly at the base of the Socorro Mountains to better assess the geothermal resource potential (Socorro Peak geothermal system) on the western side of the New Mexico Tech campus in Socorro, New Mexico. The reservoir depth, hydraulic properties, temperature and chemistry were unknown prior to drilling. The purpose of the NMT-2GT (OSE RG-05276 POD) well was to explore the feasibility of providing geothermal fluids for a proposed district space heating system on the New Mexico Tech campus. With DOE cost over runs funds we completed NMT-2GT to a depth of 1102 feet at the Woods Tunnel drill site. Temperatures were nearly constant (41 oC ) between a depth of 400–1102 feet. Above this isothermal zone, a strong temperature gradient was observed (210 oC /km) beneath the water table consistent with vertical convective heat transfer. The existence of a groundwater upflow zone was further supported by measured vertical hydraulic head measurements which varied between about 258 feet at the water table to 155 feet at a depth of 1102 feet yielding a vertical hydraulic a gradient of about 0.1. If the upflow zone is 1 km deep, then a vertical flow rate is about 0.6 m/yr could have produced the observed curvature in the thermal profile. This would suggest that the deep bedrock permeability is about 20 mD. This is much lower than the permeability measured in a specific capacity

  2. Exploratory Boreholes At Blue Mountain Geothermal Area (Parr...

    Open Energy Info (EERE)

    from 3 core and 62 rotary drill holes. This exploration effort found sub-economic gold mineralization, but discovered a previously unknown geothermal resource. References...

  3. User Coupled Confirmation Drilling Program case study: City of Alamosa, Colorado, Alamosa No. 1 geothermal test well

    SciTech Connect (OSTI)

    Zeisloft, J.; Sibbett, B.S.

    1985-08-01

    A 7118 ft (2170 m) deep geothermal test well was drilled on the south edge of the city of Alamosa, Colorado as part of the Department of Energy's User Coupled Confirmation Drilling Program. The project was selected on the bases of a potential direct heat geothermal resource within the Rio Grande rift graben and resource users in Alamosa. The well site was selected on the hypothesis of a buried horst along which deep thermal fluids might be rising. In addition, there were city wells that were anomalous in temperature and the location was convenient to potential application. The Alamosa No. 1 penetrated 2000 ft (610 m) of fine clastic rocks over 4000 ft (1219 m) of volcaniclastic rock resting on precambrian crystalline rock at a depth of 6370 ft (1942 m). Due to poor hole conditions, geophysical logs were not run. The stabilized bottom hole temperature was 223/sup 0/F (106/sup 0/C) with a gradient of 2.6/sup 0/F/100 ft (47/sup 0/C/km). Limited testing indicated a very low production capacity. 16 refs., 6 figs.

  4. Technical and economic evaluation of selected compact drill rigs for drilling 10,000 foot geothermal production wells

    SciTech Connect (OSTI)

    Huttrer, G.W.

    1997-11-01

    This report summarizes the investigation and evaluation of several {open_quotes}compact{close_quotes} drill rigs which could be used for drilling geothermal production wells. Use of these smaller rigs would save money by reducing mobilization costs, fuel consumption, crew sizes, and environmental impact. Advantages and disadvantages of currently-manufactured rigs are identified, and desirable characteristics for the {open_quotes}ideal{close_quotes} compact rig are defined. The report includes a detailed cost estimate of a specific rig, and an evaluation of the cost/benefit ratio of using this rig. Industry contacts for further information are given.

  5. EERE Success Story-Percussive Hammer Enables Geothermal Drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Through funding by the Energy Department, Sandia National Laboratories have refined a useful percussive hammer tool for harsh geothermal applications. Source: Sandia Through ...

  6. Handbook of Best Practices for Geothermal Drilling | Open Energy...

    Open Energy Info (EERE)

    eventually be linked to the Geothermal Implementing Agreement (GIA) web site, with the hope and expectation that it can be continually updated as new methods are demonstrated or...

  7. A History of Geothermal Energy Research and Development in the United States. Drilling 1976-2006

    SciTech Connect (OSTI)

    none,

    2010-09-01

    This report, the second in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in drilling and to make generation of electricity from geothermal resources more cost-competitive.

  8. Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing

    SciTech Connect (OSTI)

    Henkle, William R.; Ronne, Joel

    2008-06-15

    This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

  9. Odessa fabricator builds rig specifically for geothermal drilling

    Office of Energy Efficiency and Renewable Energy (EERE)

    For 35 years, MD Cowan has built drilling rigs, developing a market for its Super Single® rig for use in the nation's oil and gas fields. Now the Odessa-based company is branching out into alternative energy.

  10. Heat Flow From Four New Research Drill Holes In The Western Cascades...

    Open Energy Info (EERE)

    From Four New Research Drill Holes In The Western Cascades, Oregon, Usa Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Heat Flow From Four New...

  11. Results Of An Experimental Drill Hole At The Summit Of Kilauea...

    Open Energy Info (EERE)

    Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results Of An...

  12. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  13. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  14. Selected stratigraphic data for drill holes located in Frenchman Flat, Nevada Test Site. Rev. 1

    SciTech Connect (OSTI)

    Drellack, S.L. Jr.

    1997-02-01

    Stratigraphic data are presented in tabular form for 72 holes drilled in Frenchman Flat, Nevada Test Site, between 1950 and 1993. Three pairs of data presentations are included for each hole: depth to formation tops, formation thicknesses, and formation elevations are presented in both field (English) and metric units. Also included for each hole, where available, are various construction data (hole depth, hole diameter, surface location coordinates) and certain information of hydrogeologic significance (depth to water level, top of zeolitization). The event name is given for holes associated with a particular nuclear test. An extensive set of footnotes is included, which indicates data sources and provides other information. The body of the report describes the stratigraphic setting of Frenchman Flat, gives drill-hole naming conventions and database terminology, and provides other background and reference material.

  15. Google.org-Backed Potter Drilling Blazing Geothermal Trail

    Broader source: Energy.gov [DOE]

    Few start-ups are founded by retirement-aged scientists – and even fewer have Google.org backing. That's the unique position of Potter Drilling, a start-up founded in 2004 by a pioneering now-90-year-old and his son.

  16. Unique aspects of drilling and completing hot-dry-rock geothermal wells

    SciTech Connect (OSTI)

    Carden, R.S.; Nicholson, R.W.; Pettitt, R.A.; Rowley, J.C.

    1983-01-01

    Drilling operations at the Fenton Hill Hot Dry Rock (HDR) Geothermal Test Site have led to numerous developments needed to solve the problems caused by a very harsh downhole environment. A pair of deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures were in excess of 600/sup 0/F (300/sup 0/C). The wells were directionally drilled, inclined at 35/sup 0/, one above the other, in a direction orthogonal to the least principal stress field. The well site is near the flank of a young silicic composite volcano in the Jemez Mountains of northern New Mexico. The completion of this pair of wells is unique in reservoir development. The lower well was planned as a cold water injector which will be cooled by the introduced water from the static geothermal gradient to about 80/sup 0/F (25/sup 0/C). The upper well will be heated during production to over 500/sup 0/F (250/sup 0/C). The well pair is designed to perform as a closed loop heat-extraction system connected by hydraulic fractures with a vertical spacing of 1200 ft between the wells. These conditions strongly constrain the drilling technique, casing design, cement formulation, and cementing operations.

  17. Drilling fluids and lost circulation in hot dry rock geothermal wells at Fenton Hill

    SciTech Connect (OSTI)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.; Baroid, N.L.

    1981-01-01

    Geothermal hot dry rock drilling activities at Fenton Hill in the Jemez Mountains of northern New Mexico encountered problems in designing drilling fluids that will reduce catastrophic lost circulation. Four wells (GT-2, EE-1, EE-2, and EE-3) penetrated 733 m (2405 ft) of Cenozoic and Paleozoic sediments and Precambrian crystalline rock units to +4572 m (+15,000 ft). The Cenozoic rocks consist of volcanics (rhyolite, tuff, and pumice) and volcaniclastic sediments. Paleozoic strata include Permian red beds (Abo Formation) and the Pennsylvanian Madera and Sandia Formations, which consist of massive limestones and shales. Beneath the Sandia Formation are igneous and metamorphic rocks of Precambrian age. The drilling fluid used for the upper sedimentary formations was a polymeric flocculated bentonite drilling fluid. Severe loss of circulation occurred in the cavernous portions of the Sandia limestones. The resultant loss of hydrostatic head caused sloughing of the Abo and of some beds within the Madera Formation. Stuck pipe, repetitive reaming, poor casing cement jobs and costly damage to the intermediate casing resulted. The Precambrian crystalline portion of the EE-2 and EE-3 wells were directionally drilled at a high angle, and drilled with water as the primary circulating fluid. Due to high temperatures (approximately 320/sup 0/C (608/sup 0/F) BHT) and extreme abrasiveness of the deeper part of the Precambrian crystalline rocks, special problems of corrosion inhibition and of torque friction were incurred.

  18. COSO Geothermal Exploratory Hole No. 1, CGEH No. 1. Completion...

    Open Energy Info (EERE)

    Exploration Activities Activities (1) Exploratory Well At Coso Geothermal Area (1977-1978) Areas (1) Coso Geothermal Area Regions (0) Retrieved from "http:en.openei.org...

  19. Geology of the USW SD-7 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-09-01

    The USW SD-7 drill hole is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the Systematic Drilling Program, as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada. The Yucca Mountain site has been proposed as the potential location of a repository for high-level nuclear waste. The SD-7 drill hole is located near the southern end of the potential repository area and immediately to the west of the Main Test Level drift of the Exploratory Studies Facility. The hole is not far from the junction of the Main Test Level drift and the proposed South Ramp decline. Drill hole USW SD-7 is 2675.1 ft (815.3 m) deep, and the core recovered nearly complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. Core was recovered from much of the underlying Calico Hills Formation, and core was virtually continuous in the Prow Pass Tuff and the Bullfrog Tuff. The SD-7 drill hole penetrated the top several tens of feet into the Tram Tuff, which underlies the Prow Pass and Bullfrog Tuffs. These latter three units are all formations of the Crater Flat Group, The drill hole was collared in welded materials assigned to the crystal-poor middle nonlithophysal zone of the Tiva Canyon Tuff; approximately 280 ft (85 m) of this ash-flow sheet was penetrated by the hole. The Yucca Mountain Tuff appears to be missing from the section at the USW SD-7 location, and the Pah Canyon Tuff is only 14.5 ft thick. The Pah Canyon Tuff was not recovered in core because of drilling difficulties, suggesting that the unit is entirely nonwelded. The presence of this unit is inferred through interpretation of down-hole geophysical logs.

  20. Geothermal Discovery Offers Hope for More Potential Across the Country

    Broader source: Energy.gov [DOE]

    In summer 2012, a team of geoscientists from the Utah Geological Survey (UGS) in cooperation with the U.S. Geological Survey (USGS) drilled seven geothermal gradient holes in Utah's Black Rock Desert basin to test a new concept of high temperature geothermal resources in sedimentary basins. Seven drill holes were funded by the U.S. Department of Energy as part of a National Geothermal Data System project, managed by the Arizona Geological Survey.

  1. Geopressured-geothermal well report. Volume I. Drilling and completion

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Gladys McCall site activities are covered through the completion of the test well and salt water disposal well. The test well was drilled to a total depth of 16,510 feet, then plugged back to 15,831 feet. Three 4'' diameter diamond cores were taken for analysis. An existing well on site, the Getty-Butts Gladys McCall No. 1, was reentered and completed to a depth of 3514 feet as a salt water disposal well. The geologic interpretation of the Gladys McCall site indicated target sands for testing at 15,080 feet through 15, 831 feet. Reservoir fluid temperature at this depth is estimated to be approximately 313/sup 0/F and pressure is estimated to be +-12,800 psi. The preliminary reservoir volume estimate is 3.6 billion barrels of brine. The design wells program includes environmental monitoring of the Gladys McCall site by Louisiana State University. Field stations are set up to monitor surface and ground water quality, subsidence, land loss and shoreline erosion, and seismicity. As of December 31, 1981 the study shows no significant impact on the environment by site operations.

  2. Geology of the USW SD-12 drill hole Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Rautman, C.A.; Engstrom, D.A.

    1996-11-01

    Drill hole USW SD-12 is one of several holes drilled under Site Characterization Plan Study 8.3.1.4.3.1, also known as the {open_quotes}Systematic Drilling Program,{close_quotes} as part of the U.S. Department of Energy characterization program at Yucca Mountain, Nevada, which has been proposed as the potential location of a repository for high-level nuclear waste. The SD-12 drill hole is located in the central part of the potential repository area, immediately to the west of the Main Test Level drift of the Exploratory Studies Facility and slightly south of midway between the North Ramp and planned South Ramp declines. Drill hole USW SD-12 is 2166.3 ft (660.26 m) deep, and the core recovered essentially complete sections of ash-flow tuffs belonging to the lower half of the Tiva Canyon Tuff, the Pah Canyon Tuff, and the Topopah Spring Tuff, all of which are part of the Miocene Paintbrush Group. A virtually complete section of the Calico Hills Formation was also recovered, as was core from the entire Prow Pass Tuff formation of the Crater Flat Group.

  3. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi; Pan, Lehua; Dobson, Parick; Mohan, Ram; Shoham, Ovadia; Felber, Betty; Rychel, Dwight

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  4. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    of at least 150C for the inferred geothermal reservoir. References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain,...

  5. INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE

    SciTech Connect (OSTI)

    John V. Fernandez; David S. Pixton

    2005-12-01

    A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

  6. Thermal Gradient Holes At Neal Hot Springs Geothermal Area (U...

    Open Energy Info (EERE)

    small diameter temperature gradient wells have been drilled ranging in depth from 152-607 m. These wells were drilled across the Neal Hot Springs area in order to gather more...

  7. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Basis Report on a phase 2 project for DOE Notes A summary of the geophysical and geotechnical data used to pick drill sites, the actual drilling, and then the results from the...

  8. Operations plan Coso geothermal exploratory hole No. 1 (CGEH...

    Open Energy Info (EERE)

    4,000 feet with an option to drill to a depth of 6,000 feet. The following are covered: management and organizational concept; program elements--description, detailed drilling...

  9. Effects of Process Parameters on Ultrasonic Micro-Hole Drilling in Glass and Ruby

    SciTech Connect (OSTI)

    Schorderet, Alain; Deghilage, Emmanuel; Agbeviade, Kossi

    2011-05-04

    Brittle materials such as ceramics, glasses and oxide single crystals find increasing applications in advanced micro-engineering products. Machining small features in such materials represents a manufacturing challenge. Ultrasonic drilling constitutes a promising technique for realizing simple micro-holes of high diameter-to-depth ratio. The process involves impacting abrasive particles in suspension in a liquid slurry between tool and work piece. Among the process performance criteria, the drilling time (productivity) is one of the most important quantities to evaluate the suitability of the process for industrial applications.This paper summarizes recent results pertaining to the ultrasonic micro-drilling process obtained with a semi-industrial 3-axis machine. The workpiece is vibrated at 40 kHz frequency with an amplitude of several micrometers. A voice-coil actuator and a control loop based on the drilling force impose the tool feed. In addition, the tool is rotated at a prescribed speed to improve the drilling speed as well as the hole geometry. Typically, a WC wire serves as tool to bore 200 {mu}m diameter micro-holes of 300 to 1,000 {mu}m depth in glass and ruby. The abrasive slurry contains B4C particles of 1 {mu}m to 5 {mu}m diameter in various concentrations.This paper discusses, on the basis of the experimental results, the influence of several parameters on the drilling time. First, the results show that the control strategy based on the drilling force allows to reach higher feed rates (avoiding tool breakage). Typically, a 8 um/s feed rate is achieved with glass and 0.9 {mu}m/s with ruby. Tool rotation, even for values as low as 50 rpm, increases productivity and improves holes geometry. Drilling with 1 {mu}m and 5 {mu}m B4C particles yields similar productivity results. Our future research will focus on using the presented results to develop a model that can serve to optimize the process for different applications.

  10. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1981-08-04

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Preferably the spring means itself is a double acting compression spring means wherein the same spring means is compressed whether the joint is extended or contracted. The damper has a like low spring rate over a considerable range of deflection, both upon extension and contraction of the joint, but a gradually then rapidly increased spring rate upon approaching the travel limits in each direction. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The spring rings make only such line contact with one of the telescoping members as is required for guidance therefrom, and no contact with the other member. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. Magnetic and electrical means are provided to check for the presence and condition of the lubricant. To increase load capacity the spring means is made of a number of components acting in parallel.

  11. Drill string splined resilient tubular telescopic joint for balanced load drilling of deep holes

    SciTech Connect (OSTI)

    Garrett, W.R.

    1984-03-06

    A drill string splined resilient tubular telescopic joint for balanced load deep well drilling comprises a double acting damper having a very low spring rate upon both extension and contraction from the zero deflection condition. Stacks of spring rings are employed for the spring means, the rings being either shaped elastomer-metal sandwiches or, preferably, roller Belleville springs. The spline and spring means are disposed in an annular chamber formed by mandrel and barrel members constituting the telescopic joint. The chamber containing the spring means, and also containing the spline means, is filled with lubricant, the chamber being sealed with a pressure seal at its lower end and an inverted floating seal at its upper end. A prototype includes of this a bellows seal instead of the floating seal at the upper end of the tool, and a bellows in the side of the lubricant chamber provides volume compensation. A second lubricant chamber is provided below the pressure seal, the lower end of the second chamber being closed by a bellows seal and a further bellows in the side of the second chamber providing volume compensation. Modifications provide hydraulic jars.

  12. Thermal Gradient Holes At Chena Geothermal Area (Holdmann, Et...

    Open Energy Info (EERE)

    eight wells ranging in depth from 200 to 300 ft. References Gwen Holdmann, Dick Benoit, David Blackwell (2006) Integrated Geoscience Investigation and Geothermal Exploration at...

  13. Thermal Gradient Holes At Lightning Dock Geothermal Area (Cunniff...

    Open Energy Info (EERE)

    Roy A. Cunniff, Roger L. Bowers (2005) Final technical report geothermal resource evaluation and definition (GRED) Program - Phase I, II and III for the Animas Valley, NM...

  14. The electron beam hole drilling of silicon nitride thin films

    SciTech Connect (OSTI)

    Howitt, D. G.; Chen, S. J.; Gierhart, B. C.; Smith, R. L.; Collins, S. D.

    2008-01-15

    The mechanism by which an intense electron beam can produce holes in thin films of silicon nitride has been investigated using a combination of in situ electron energy loss spectrometry and electron microscopy imaging. A brief review of electron beam interactions that lead to material loss in different materials is also presented. The loss of nitrogen and silicon decreases with decreasing beam energy and although still observable at a beam energy of 150 keV ceases completely at 120 keV. The linear behavior of the loss rate coupled with the energy dependency indicates that the process is primarily one of direct displacement, involving the sputtering of atoms from the back surface of the specimen with the rate controlling mechanism being the loss of nitrogen.

  15. Deep Geothermal Drilling Using Millimeter Wave Technology. Final Technical Research Report

    SciTech Connect (OSTI)

    Oglesby, Kenneth; Woskov, Paul; Einstein, Herbert; Livesay, Bill

    2014-12-30

    Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260°C, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be

  16. Thermal Gradient Holes At Lightning Dock Geothermal Area (Arnold...

    Open Energy Info (EERE)

    be drilled by AMEX, but no results were presented in this paper. References Arnold, Anderson, Donaldson, Foster, Gutjahr, Hatton, Hill, Martinez (1978) New Mexico's Energy...

  17. Testing operations plan: Coso Geothermal Exploratory Hole No...

    Open Energy Info (EERE)

    of well drilling activities. Major elements of this plan include setting forth the management and organizational concept to be followed, describing the generalized site...

  18. A Method for Estimating Undiscovered Geothermal Resources in...

    Open Energy Info (EERE)

    areas based on the presence of drill-holes, wells, and depth to the water table. The "density of occurrence" (number of geothermal systems per km2) is calculated, taking into...

  19. Thermal Gradient Holes At Coso Geothermal Area (1976) | Open...

    Open Energy Info (EERE)

    to depths up to 133 m in 22 boreholes with measurements being made at least four times in each borehole. Geothermal gradients ranged from 240Ckm to 450 0Ckm. References...

  20. Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...

    Open Energy Info (EERE)

    Exploration program undertaken during Phase II of the DOE-funded Geothermal Resource Evaluation and Definitions Program Phase I (GRED III Phase II) Notes A deeper well, TG-12,...

  1. Northwest Geothermal Corp. 's (NGC) plan of exploration, Mt. Hood Area, Clackamas County, Oregon

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The Area Geothermal Supervisor (AGS) received a Plan of Operations (POO) from Northwest Geothermal Corporation (NGC) on 2/12/80. In the POO, NGC proposed two operations: testing and abandoning an existing 1219 meter (m) geothermal temperature gradient hole, designated as OMF No. 1, and drilling and testing a new 1524 m geothermal exploratory hole, to be designated as OMF No. 7A. The POO was amended on 5/6/80, to provide for the use of an imp

  2. Core Holes At Long Valley Caldera Geothermal Area (Lachenbruch...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  3. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Regime of Long Valley Caldera. Journal of Geophysical Research. 81(5):763-768. J.L. Smith,R.W. Rex. 1977. Drilling results from eastern Long Valley Caldera. () : American...

  4. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    1 was completed in 2002 and it reached a depth of 672.1 m and a temperature of 144.7C. Deep Blue No. 2, was drilled and completed in 2004. It reached 1128 m depth and a...

  5. Appraisal of coal resources from uranium drill-hole logs, southern San Juan basin, New Mexico

    SciTech Connect (OSTI)

    Feldman, S.C.

    1984-04-01

    Geophysical logs from uranium drill holes in the Grants region are a valuable source of information on coal resources. Coal occurs in the southern San Juan basin of New Mexico in the Upper Cretaceous Gallup Sandstone, Crevasse Canyon Formation, and Menefee Formation. Uranium has been mined from the Upper Jurassic Morrison Formation that underlies the coal-bearing Cretaceous formations and is separated from them by approximately 1000 ft (300 m) of section. Permission was obtained from Santa Fe Mining, Inc., Pathfinder Mines Corp., and Ranchers Exploration and Development Corp. to examine their uranium drill logs for information on coal. Over 1400 logs spudded above the base of the Gallup formation were examined, and depth to coal, coal thickness, and coal stratigraphic horizon were determined for coal beds at least 3 ft (1 m) thick. Coal isopachs have been drawn, and depth from the surface to the first coal have been contoured for the Crevasse Canyon and Menefee Formations. Data from an earlier study, which used geophysical logs from petroleum test borings, has been incorporated. The relationship between the coal resources determined from uranium drill holes and known coal deposits and mines in the southern San Juan basin is discussed.

  6. Archaeological studies at Drill Hole U20az Pahute Mesa, Nye county, Nevada. [Contains bibliography

    SciTech Connect (OSTI)

    Simmons, A.H.; Hemphill, M.L.; Henton, G.H.; Lockett, C.L.; Nials, F.L.; Pippin, L.C.; Walsh, L.

    1991-07-01

    During the summer of 1987, the Quaternary Sciences Center (formerly Social Science Center) of the Desert Research Institute (DRI), University of Nevada System, conducted data recovery investigations at five archaeological sites located near Drill Hole U20az on the Nevada Test Site in southern Nevada. These sites were among 12 recorded earlier during an archaeological survey of the drill hole conducted as part of the environmental compliance activities of the Department of Energy (DOE). The five sites discussed in this report were considered eligible for the National Register of Historic Places and were in danger of being adversely impacted by construction activities or by effects of the proposed underground nuclear test. Avoidance of these sites was not a feasible alternative; thus DRI undertook a data recovery program to mitigate expected adverse impacts. DRI's research plan included controlled surface collections and excavation of the five sites in question, and had the concurrence of the Nevada Division of Historic Preservation and Archaeology and the Advisory Council of Historic Preservation. Of the five sites investigated, the largest and most complex, 26Ny5207, consists of at least three discrete artifact concentrations. Sites 26Ny5211 and 26Ny5215, both yielded considerable assemblages. Site 26Ny5206 is very small and probably is linked to 26Ny5207. Site 26Ny5205 contained a limited artifact assemblage. All of the sites were open-air occurrences, and, with one exception contained no or limited subsurface cultural deposits. Only two radiocarbon dates were obtained, both from 26Ny5207 and both relatively recent. While the investigations reported in the volume mitigate most of the adverse impacts from DOE activities at Drill Hole U20az, significant archaeological sites may still exist in the general vicinity. Should the DOE conduct further activities in the region, additional cultural resource investigations may be required. 132 refs., 71 figs., 44 tabs.

  7. Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

  8. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOE Patents [OSTI]

    Summers, David A.; Barker, Clark R.; Keith, H. Dean

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  9. Core Holes At Valles Caldera - Sulphur Springs Geothermal Area...

    Open Energy Info (EERE)

    Dennis L. Nielson, Pisto Larry, C.W. Criswell, R. Gribble, K. Meeker, J.A. Musgrave, T. Smith, D. Wilson (1989) Scientific Core Hole Valles Caldera No. 2B (VC-2B), New Mexico:...

  10. Drilling Report- First CSDP (Continental Scientific Drilling...

    Open Energy Info (EERE)

    Area (Rowley, Et Al., 1987) Core Holes At Valles Caldera - Redondo Geothermal Area (Goff, Et Al., 1986) Density Log At Valles Caldera - Redondo Geothermal Area (Rowley, Et Al.,...

  11. Geothermal pump down-hole energy regeneration system

    DOE Patents [OSTI]

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  12. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  13. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  14. U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Developmental Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Developmental Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,225 1950's 3,077 3,255 3,520 3,401 3,512 3,699 3,574 3,605 3,631 3,844 1960's 3,889 3,782 4,239 4,143 4,207 4,446 3,900 3,901 4,311 4,437 1970's 4,714 4,633 4,725 4,851 4,599 4,415 4,439 4,662 4,600 4,517 1980's 4,214 4,226 4,184 3,974 4,205 4,306 4,236 4,390 4,704 4,684 1990's 4,755 4,629

  15. U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well)

    Gasoline and Diesel Fuel Update (EIA)

    Exploratory Wells Drilled (Feet per Well) U.S. Average Depth of Dry Holes Exploratory Wells Drilled (Feet per Well) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1940's 3,658 1950's 3,733 4,059 4,334 4,447 4,408 4,498 4,425 4,488 4,449 4,602 1960's 4,575 4,799 4,790 4,933 4,980 5,007 5,117 5,188 5,589 5,739 1970's 5,700 5,796 5,882 5,808 5,649 5,674 5,607 5,605 5,812 5,716 1980's 5,533 5,582 5,367 4,800 5,178 5,317 5,447 5,294 5,748 5,579 1990's 5,685 5,658 5,480

  16. Mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Bish, D.L.; Chipera, S.J.

    1986-09-01

    The mineralogy of drill holes J-13, UE-25A No. 1, and USW G-1 was previously determined using qualitative and semiquantitative techniques, and most of the available data were neither complete nor accurate. New quantitative x-ray diffraction data were obtained for rocks from all three of these drill holes at Yucca Mountain, Nevada. These quantitative analyses employed both external and internal standard x-ray powder diffraction methods and permitted the precise determination of all phases commonly found in the tuffs at Yucca Mountain, including glass and opal-CT. These new data supplant previous analyses and include numerous additional phases. New findings of particular importance include better constraints on the distribution of the more soluble silica polymorphs, cristobalite and opal-CT. Opal-CT was associated solely with clinoptilolite-bearing horizons, and cristobalite disappearance coincided with the appearance of analcime in USW G-1. Unlike previous analyses, we identified significant amounts of smectite in drill hole J-13. We found no evidence to support previous reports of the occurrence of erionite or phillipsite in these drill holes.

  17. Category:Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Drilling Techniques page? For detailed information on Drilling...

  18. Drilling Techniques | Open Energy Information

    Open Energy Info (EERE)

    be made and then locations for further drilling can be narrowed down. Once a confident reservoir model is made Development Drilling methods can be employed. A geothermal well...

  19. A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006

    Broader source: Energy.gov [DOE]

    This report summarizes significant research projects performed by the U.S.Department of Energy (DOE)1 over 30 years to overcome challenges inexploration and to make generation of electricity from geothermal resourcesmore cost-competitive.

  20. Pressure sensor and Telemetry methods for measurement while drilling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure sensor and Telemetry methods for measurement while drilling in geothermal wells Pressure sensor and Telemetry methods for measurement while drilling in geothermal wells ...

  1. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect (OSTI)

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  2. Beowawe geothermal-resource assessment. Final report. Shallow-hole temperature survey geophysics and deep test hole Collins 76-17

    SciTech Connect (OSTI)

    Jones, N.O.

    1983-03-01

    Geothermal resource investigation field efforts in the Beowawe Geysers Area, Eureka County, Nevada are described. The objectives included acquisition of geotechnical data for understanding the nature and extent of the geothermal resource boundaries south of the known resource area. Fourteen shallow (<500 feet) temperature-gradient holes plus geophysics were used to select the site for a deep exploratory well, the Collins 76-17, which was completed to a total depth of 9005 feet. Maximum downhole recorded temperature was 311/sup 0/F, but no flow could be induced.

  3. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  4. NNSA Small Business Week Day 2: United Drilling, Inc. | National...

    National Nuclear Security Administration (NNSA)

    Today's profile highlights United Drilling, Inc., a small minority-owned business based in Roswell, N.M. United Drilling drills oil, gas, water, geothermal, and environmental wells ...

  5. Slim Holes for Small Power Plants

    SciTech Connect (OSTI)

    Finger, John T.

    1999-08-06

    Geothermal research study at Sandia National Laboratories has conducted a program in slimhole drilling research since 1992. Although our original interest focused on slim holes as an exploration method, it has also become apparent that they have substantial potential for driving small-scale, off-grid power plants. This paper summarizes Sandia's slim-hole research program, describes technology used in a ''typical'' slimhole drilling project, presents an evaluation of using slim holes for small power plants, and lists some of the research topics that deserve further investigation.

  6. Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

    2011-12-21

    CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

  7. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project summary: Drilling into large aperture open fractures (LAFs) typically yield production wells with high productivity and low pressure drawdown. Developing geophysical and geologic techniques for identifying and precisely mapping LAFsin 3-D will greatly reduce dry hole risk and the overall number of wells required for reaching a particular geothermal field power capacity.

  8. Geothermal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Marketing Summaries (11) Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial ... Drilling costs amount to over half of the total cost of geothermal energy ...

  9. Fracture-coating minerals in the Topopah Spring Member and upper tuff of Calico Hills from drill hole J-13

    SciTech Connect (OSTI)

    Carlos, B.

    1989-02-01

    Fracture-lining minerals from drill core in the Topopah Spring Member of the Paintbrush Tuff and the tuff of Calico Hills from water well J-13 were studied to identify the differences between these minerals and those seen in drill core USW G-4. In USW G-4 the static water level (SWL) occurs below the tuff of Calico Hills, but in J-13 the water table is fairly high in the Topopah Spring Member. There are some significant differences in fracture minerals between these two holes. In USW G-4 mordenite is a common fracture-lining mineral in the Topopah Spring Member, increasing in abundance with depth. Euhedral heulandite >0.1 mm in length occurs in fractures for about 20 m above the lower vitrophyre. In J-13, where the same stratigraphic intervals are below the water table, mordenite is uncommon and euhedral heulandite is not seen. The most abundant fracture coating in the Topopah Spring Member in J-13 is drusy quartz, which is totally absent in this interval in USW G-4. Though similar in appearance, the coatings in the vitrophyre have different mineralogy in the two holes. In USW G-4 the coatings are extremely fine grained heulandite and smectite. In J-13 the coatings are fine-grained heulandite, chabazite, and alkali feldspar. Chabazite has not been identified from any other hole in the Yucca Mountain area. Fractures in the tuff of Calico Hills have similar coatings in core from both holes. In J-13, as in USW G-4, the tuff matrix of the Topopah Spring Member is welded and devitrified and that of the tuff of Calico Hills is zeolitic. 11 refs., 10 figs., 5 tabs.

  10. Distributed downhole drilling network

    DOE Patents [OSTI]

    Hall, David R.; Hall, Jr., H. Tracy; Fox, Joe; Pixton, David S.

    2006-11-21

    A high-speed downhole network providing real-time data from downhole components of a drilling strings includes a bottom-hole node interfacing to a bottom-hole assembly located proximate the bottom end of a drill string. A top-hole node is connected proximate the top end of the drill string. One or several intermediate nodes are located along the drill string between the bottom-hole node and the top-hole node. The intermediate nodes are configured to receive and transmit data packets transmitted between the bottom-hole node and the top-hole node. A communications link, integrated into the drill string, is used to operably connect the bottom-hole node, the intermediate nodes, and the top-hole node. In selected embodiments, a personal or other computer may be connected to the top-hole node, to analyze data received from the intermediate and bottom-hole nodes.

  11. Directional Drilling Systems | Open Energy Information

    Open Energy Info (EERE)

    Directional Drilling Systems Jump to: navigation, search Geothermal ARRA Funded Projects for Directional Drilling Systems Loading map... "format":"googlemaps3","type":"ROADMAP","t...

  12. Category:Exploration Drilling | Open Energy Information

    Open Energy Info (EERE)

    Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Exploration Drilling page? For detailed information on...

  13. Reverse trade mission on the drilling and completion of geothermal wells

    SciTech Connect (OSTI)

    Not Available

    1989-09-09

    This draft report was prepared as required by Task No. 2 of the US Department of Energy, Grant No. DE-FG07-89ID12850 Reverse Trade Mission to Acquaint International Representatives with US Power Plant and Drilling Technology'' (mission). As described in the grant proposal, this report covers the reactions of attendees toward US technology, its possible use in their countries, and an evaluation of the mission by the staff leaders. Note this is the draft report of one of two missions carried out under the same contract number. Because of the diversity of the mission subjects and the different attendees at each, a separate report for each mission has been prepared. This draft report has been sent to all mission attendees, specific persons in the US Department of Energy and Los Alamos National Lab., the California Energy Commission (CEC), and various other governmental agencies.

  14. Horizontal slim-hole drilling with coiled tubing; An operator's experience

    SciTech Connect (OSTI)

    Ramos, A.B. Jr.; Faahel, R.A.; Chaffin, M.G.; Pulis, K.H. )

    1992-10-01

    What is believed to be the first horizontal well drilled with directionally controlled coiled tubing recently was completed in the Austin Chalk formation. an existing well was sidetracked out of 4 1/2-in. casing with a conventional whipstock. an average build rate of 15[degrees]/100 ft was achieved in the curve, and a 1,458-ft vertical section was drilled with 2-in. coiled tubing, downhole mud motors, wireline steering tools, a mechanical downhole orienting tool, and 3 7/8-in. bits. This paper discusses the orienting and directional tools and techniques developed during this operation. It also describes improvements made for the second well.

  15. Geothermal COMPAX drill bit development. Final technical report, July 1, 1976-September 30, 1982

    SciTech Connect (OSTI)

    Hibbs, L.E. Jr.; Sogoian, G.C.; Flom, D.G.

    1984-04-01

    The objective was to develop and demonstrate the performance of new drill bit designs utilizing sintered polycrystalline diamond compacts for the cutting edges. The scope included instrumented rock cutting experiments under ambient conditions and at elevated temperature and pressure, diamond compact wear and failure mode analysis, rock removal modeling, bit design and fabrication, full-scale laboratory bit testing, field tests, and performance evaluation. A model was developed relating rock cutting forces to independent variables, using a statistical test design and regression analysis. Experiments on six rock types, covering a range of compressive strengths from 8 x 10/sup 3/ psi to 51 x 10/sup 3/ psi, provided a satisfactory test of the model. Results of the single cutter experiments showed that the cutting and thrust (penetration) forces, and the angle of the resultant force, are markedly affected by rake angle, depth of cut, and speed. No unusual force excursions were detected in interrupted cutting. Wear tests on two types of diamond compacts cutting Jack Fork Sandstone yielded wear rates equivalent at high cutting speeds, where thermal effects are probably operative. At speeds below approx. 400 surface feet per minute (sfm), the coarser sintered diamond product was superior. 28 refs., 235 figs., 55 tabs.

  16. NEPA Process for Geothermal Power Plants in the Deschutes National...

    Open Energy Info (EERE)

    Oregon Project Phase GeothermalExploration, GeothermalWell Field, GeothermalPower Plant Techniques Exploration Drilling, Exploratory Boreholes, Production Wells, Thermal...

  17. Preliminary results and status report of the Hawaiian Scientific Observation Hole program

    SciTech Connect (OSTI)

    Olson, Harry J.; Deymonaz, John E.

    1992-01-01

    The Hawaii Natural Energy Institute (HNEI), an institute within the School of Ocean and Earth Science and Technology, at the University of Hawaii at Manoa has drilled three Scientific Observation Holes (SOH) in the Kilauea East Rift Zone to assess the geothermal potential of the Big Island of Hawaii, and to stimulate private development of the resource. The first hole drilled, SOH-4, reached a depth of 2,000 meters and recorded a bottom hole temperature of 306 C. Although evidence of fossil reservoir conditions were encountered, no zones with obvious reservoir potential were found. The second hole, SOH- 1, was drilled to a depth of 1,684 meters, recorded a bottom hole temperature of 206.1 C and effectively defined the northern limit of the Hawaii Geothermal Project-Abbott--Puna Geothermal Venture (HGP-A/PGV) reservoir. The final hole, SOH-2, was drilled to a depth of 2,073 meters, recorded a bottom hole temperature of 350.5 C and has sufficient indicated permeability to be designated as a potential ''discovery''. The SOH program was also highly successful in developing slim hole drilling techniques and establishing subsurface geological conditions.

  18. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  19. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    SciTech Connect (OSTI)

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Åžtefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal

  20. Drilling equipment to shrink

    SciTech Connect (OSTI)

    Silverman, S.

    2000-01-01

    Drilling systems under development will take significant costs out of the well construction process. From small coiled tubing (CT) drilling rigs for North Sea wells to microrigs for exploration wells in ultra-deepwater, development projects under way will radically cut the cost of exploratory holes. The paper describes an inexpensive offshore system, reeled systems drilling vessel, subsea drilling rig, cheap exploration drilling, laser drilling project, and high-pressure water jets.

  1. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    SciTech Connect (OSTI)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.; Schriener, Alex

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive, temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.

  2. Structure in continuously cored, deep drill holes at Yucca Mountain, Nevada, with notes on calcite occurrence; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Carr, W.J.

    1992-12-01

    A study of more than 22,000 feet of core from five deep drill holes at Yucca Mountain, Nevada, provided data on the attitude and vertical distribution of faults and fractures, the sense of fault displacement, and the occurrence of calcite. The study was done mainly to look for evidence of fault flattening at depth, but no consistent downward decrease in dip of faults was found, and no increase in strata rotation was evident with increasing depth. In the two drill holes located near prominent faults that dip toward the holes (USW G-3 and G-2), an apparent increase in the frequency of faults occurs below the tuffs and lavas of Calico Hills. Some of this increase occurs in brittle lavas and flow breccias in the lower part of the volcanic section. In the two holes presumed to be relatively removed from the influence of important faults at depth, the vertical distribution of faults is relatively uniform. Calcite occurs mainly in two general zones, voids in welded portions of the Paintbrush Tuff, and in a deeper zone, mostly below 3,500 feet. Calcite is least abundant in USW G-4, which may reflect the fewer faults and fractures encountered in that drill hole.

  3. The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington

    SciTech Connect (OSTI)

    Korosec, Michael A.

    1983-11-01

    During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

  4. Environmental Assessment: Geothermal Energy Geopressure Subprogram. Gulf Coast Well Drilling and Testing Activity (Frio, Wilcox, and Tuscaloosa Formations, Texas and Louisiana)

    SciTech Connect (OSTI)

    1981-09-01

    The Department of Energy (DOE) has initiated a program to evaluate the feasibility of developing the geothermal-geopressured energy resources of the Louisiana-Texas Gulf Coast. As part of this effort, DOE is contracting for the drilling of design wells to define the nature and extent of the geopressure resource. At each of several sites, one deep well (4000-6400 m) will be drilled and flow tested. One or more shallow wells will also be drilled to dispose of geopressured brines. Each site will require about 2 ha (5 acres) of land. Construction and initial flow testing will take approximately one year. If initial flow testing is successful, a continuous one-year duration flow test will take place at a rate of up to 6400 m{sup 3} (40,000 bbl) per day. Extensive tests will be conducted on the physical and chemical composition of the fluids, on their temperature and flow rate, on fluid disposal techniques, and on the reliability and performance of equipment. Each project will require a maximum of three years to complete drilling, testing, and site restoration.

  5. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  6. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect (OSTI)

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  7. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Åžtefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-03-30

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbialmore » mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (<0.5%) but increased significantly at 65°C (36%). The bacterial diversity was either similar to other microbialites described in literature (the 32°C sample) or displayed a specific combination of phyla and classes (the 49°C and 65°C samples). Bacterial taxa were distributed among 39 phyla, out of which 14 had inferred abundances >1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Lastly, several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along

  8. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (DB2) was drilled and completed in 2004.9 Information from these two wells showed that geothermal energy could be commercially produced at Blue Mountain. Geothermal production...

  9. Hawaii's Geothermal Development

    SciTech Connect (OSTI)

    Uemura, Roy T.

    1980-12-01

    On July 2, 1976, an event took place in the desolate area of Puna, on the island of Hawaii, which showed great promise of reducing Hawaii's dependence on fuel oil. This great event was the flashing of Hawaii's first geothermal well which was named HGP-A. The discovery of geothermal energy was a blessing to Hawaii since the electric utilities are dependent upon fuel oil for its own electric generating units. Over 50% of their revenues pay for imported fuel oil. Last year (1979) about $167.1 million left the state to pay for this precious oil. The HGP-A well was drilled to a depth of 6450 feet and the temperature at the bottom of the hole was measured at 676 F, making it one of the hottest wells in the world.

  10. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  11. Geothermal Exploration of Newberry Volcano, Oregon

    SciTech Connect (OSTI)

    Waibel, Albert F.; Frone, Zachary S.; Blackwell, David D.

    2014-12-01

    Davenport Newberry (Davenport) has completed 8 years of exploration for geothermal energy on Newberry Volcano in central Oregon. Two deep exploration test wells were drilled by Davenport on the west flank of the volcano, one intersected a hydrothermal system; the other intersected isolated fractures with no hydrothermal interconnection. Both holes have bottom-hole temperatures near or above 315°C (600°F). Subsequent to deep test drilling an expanded exploration and evaluation program was initiated. These efforts have included reprocessing existing data, executing multiple geological, geophysical, geochemical programs, deep exploration test well drilling and shallow well drilling. The efforts over the last three years have been made possible through a DOE Innovative Exploration Technology (IET) Grant 109, designed to facilitate innovative geothermal exploration techniques. The combined results of the last 8 years have led to a better understanding of the history and complexity of Newberry Volcano and improved the design and interpretation of geophysical exploration techniques with regard to blind geothermal resources in volcanic terrain.

  12. Temporary Bridging Agents for Use in Drilling and Completions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Temporary Bridging Agents for Use in Drilling and Completions of EGS Temporary Bridging Agents for Use in Drilling and Completions of EGS DOE Geothermal Peer Review 2010 - ...

  13. Technology Development and Field Trials of EGS Drilling Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Development and Field Trials of EGS Drilling Systems David W. Raymond, PI ... Objective - Develop fit-for-purpose EGS drilling solutions for geothermal exploration and ...

  14. Beowawe Geothermal Area evaluation program. Final report

    SciTech Connect (OSTI)

    Iovenitti, J. L

    1981-03-01

    Several exploration programs were conducted at the Beowawe Geothermal Prospect, Lander and Eureka County, Nevada. Part I, consisting of a shallow temperature hole program, a mercury soil sampling survey, and a self-potential survey were conducted in order to select the optimum site for an exploratory well. Part II consisted of drilling a 5927-foot exploratory well, running geophysical logs, conducting a drill stem test (2937-3208 feet), and a short-term (3-day) flow test (1655-2188 feet). All basic data collected is summarized.

  15. Core Holes At Long Valley Caldera Geothermal Area (Chu, Et Al...

    Open Energy Info (EERE)

    H.R. Westrich (1990) The Magma Energy Program John B. Rundle, Charles R. Carrigan, Harry C. Hardee, William C. Luth (1986) Deep Drilling to the Magmatic Environment in Long...

  16. Drilling technology/GDO

    SciTech Connect (OSTI)

    Kelsey, J.R.

    1985-01-01

    The Geothermal Technology Division of the US Department of Energy is sponsoring two programs related to drilling technology. The first is aimed at development of technology that will lead to reduced costs of drilling, completion, and logging of geothermal wells. This program has the official title ''Hard Rock Penetration Mechanics.'' The second program is intended to share with private industry the cost of development of technology that will result in solutions to the near term geothermal well problems. This program is referred to as the ''Geothermal Drilling Organization''. The Hard Rock Penetration Mechanics Program was funded at $2.65M in FY85 and the GDO was funded at $1.0M in FY85. This paper details the past year's activities and accomplishments and projects the plans for FY86 for these two programs.

  17. Hydromechanical drilling device

    DOE Patents [OSTI]

    Summers, David A.

    1978-01-01

    A hydromechanical drilling tool which combines a high pressure water jet drill with a conventional roller cone type of drilling bit. The high pressure jet serves as a tap drill for cutting a relatively small diameter hole in advance of the conventional bit. Auxiliary laterally projecting jets also serve to partially cut rock and to remove debris from in front of the bit teeth thereby reducing significantly the thrust loading for driving the bit.

  18. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, E.L.; Lundin, R.L.

    1988-06-20

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

  19. Ultrasonic drilling apparatus

    DOE Patents [OSTI]

    Duran, Edward L.; Lundin, Ralph L.

    1989-01-01

    Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

  20. Method of deep drilling

    DOE Patents [OSTI]

    Colgate, Stirling A.

    1984-01-01

    Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

  1. Advances In Geothermal Resource Exploration Circa 2007 | Open...

    Open Energy Info (EERE)

    that will indicate the presence of geothermal resources before drilling. Advances in computer technology have propelled geothermal exploration forward, but can only go so far. New...

  2. Property:Geothermal/TargetsMilestones | Open Energy Information

    Open Energy Info (EERE)

    reservoir models and define drilling targets. A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Mine waters will...

  3. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  4. Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Denton, J.M.; Bell, E.J.; Jodry, R.L.

    1980-11-01

    Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

  5. A History or Geothermal Energy Research and Development in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drilling 1976-2006 A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006 This report summarizes significant research projects performed ...

  6. The Latera geothermal system (Italy); Chemical composition of the geothermal fluid and hypotheses on its origin

    SciTech Connect (OSTI)

    Gianelli, G. ); Scandiffio, G. )

    1989-01-01

    The chemistry of the fluid produced in the Latera geothermal field and the petrology of the hydrothermal minerals found in drill cores and cuttings suggest mixing of a hot Na-Cl fluid with fluids circulating in carbonate units. Evidence exists of a deep fluid of a possible magmatic origin. The very high temperature (above 400{sup 0}C) measured in a deep drill hole indicates the presence of a geothermal fluid, decarbonation and dehydration of sedimentary rocks and there may even be at depth a fluid that still has magmatic characteristics. However, this fluid is certainly mixed with Ca-So/sub 4/-HCO/sub 3/ waters coming from the Mesozoic carbonate rocks below the volcanic cover.

  7. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power ...

  8. 1983 temperature gradient and heat flow drilling project for the State of Washington

    SciTech Connect (OSTI)

    Korosec, M.A.

    1983-11-01

    During the Summer of 1983, a three-hole drilling program was carried out to collect temperature gradient and heat flow information near potential geothermal resource target areas. The general locations of the project areas are shown. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens - Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

  9. Geothermal energy abstract sets. Special report No. 14

    SciTech Connect (OSTI)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  10. Geothermal Research Department Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... page 15 Active Vibration Control Drill bits are susceptible to failure under shock & vibration * Dampers installed in down-hole tools can help * Optimal damper for each ...

  11. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...

  12. OM300 Direction Drilling Module

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  13. Technology Development and Field Trials of EGS Drilling Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry. high_bauer_technology_development.pdf (257.73 KB) More Documents & Publications Technology Development and Field Trials of EGS Drilling Systems Evaluation of Emerging Technology for Geothermal Drilling

  14. A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan

    SciTech Connect (OSTI)

    Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

    2002-06-01

    Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

  15. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  16. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  17. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    SciTech Connect (OSTI)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.; Bell, E.J.; Ghusn, G. Jr.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, and temperature gradient drilling.

  18. Pueblo of Jemez Geothermal Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Feasibility Study Presented by Steve Blodgett Director Pueblo of Jemez Department of Resource Protection POJ Geothermal Feasibility Study 2 Background Project funded by DOE under contract DE-FC36-02G012104 Previous studies in 1988, 1990, 1991, 1992 Evaluating geothermal potential of Red Rocks area on northern Jemez Reservation (this study) POJ Geothermal Feasibility Study 3 Study Organization Phase I- Geothermal Reservoirs and Geothermal Drilling at Jemez Pueblo by Jim Witcher,

  19. Geothermal Resource Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Geothermal » Geothermal Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the

  20. Advanced drilling systems study.

    SciTech Connect (OSTI)

    Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis

    1996-05-01

    This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

  1. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  2. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  3. track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review EGS technologies utilize directional drilling and pressurized water to capture energy from resources that were once considered unrecoverable. Collaborative projects in this program seek to improve innovative technologies and speed commercial-scale deployment. The Energy Department pursues research in transformative science and

  4. GeothermEx Inc | Open Energy Information

    Open Energy Info (EERE)

    spectrum of resource-related issues -- from exploration and drilling through analysis, project management, financial modeling and operational support. References "GeothermEx...

  5. New Geothermal Exploration and Management Tools | Department...

    Broader source: Energy.gov (indexed) [DOE]

    The university developed a method to comprehensively target geothermal drilling by combining geophysical data sets to generate more complete images of the subsurface and fluid flow ...

  6. Mineralogic variation in drill holes USW NRG-6, NRG-7/7a, SD-7, SD-9, SD-12, and UZ{number_sign}14: New data from 1996--1997 analyses

    SciTech Connect (OSTI)

    Chipera, S.J.; Vaniman, D.T.; Bish, D.L.; Carey, J.W.

    1997-05-30

    New quantitative X-ray diffraction (QXRD) mineralogic data have been obtained for samples from drill holes NRG-6, NRG-7/7A, SD-7, SD-9, SD- 12, and UZ{number_sign}14. In addition, new QXRD analyses were obtained on samples located in a strategic portion of drill hole USW H-3. These data improve our understanding of the mineral stratigraphy at Yucca Mountain, and they further constrain the 3-D Mineralogic Model of Yucca Mountain. Some of the unexpected findings include the occurrence of the zeolite chabazite in the vitric zone of USW SD-7, broad overlap of vitric and zeolitic horizons (over vertical ranges up to 70 m), and the previously unrecognized importance of the bedded tuft beneath the Calico Hills Formation as a subunit with generally more extensive zeolitization than the Calico Hills Formation in the southern part of the potential repository area. Reassessment of data from drill hole USW H-5 suggests that the zeolitization of this bedded unit occurs in the northwestern part of the repository exploration block as well. Further analyses of the same interval in USW H-3, however, have not permitted the same conclusion to be reached for the southwestern part of the repository block because of the much poorer quality of the cuttings in H-3 compared with those from H-5. X-ray fluorescence (XRF) chemical data for drill holes USW SD-7, 9, and 12 show that the zeolitic horizons provide a >10 million year record of retardation of Sr transport, although the data also show that simplistic models of one-dimensional downward flow in the unsaturated zone (UZ) are inadequate. Complex interstratification of zeolites and glass, with highly variable profiles between drill cores, point to remaining problems in constructing detailed mineral stratigraphies. However, the new data in this report provide important information for constructing bounding models of zeolite stratigraphy for transport calculations.

  7. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  8. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    SciTech Connect (OSTI)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  9. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING (Conference...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY; 58 GEOSCIENCES; 97 MATHEMATICAL METHODS AND COMPUTING; BOREHOLES; CAPITALIZED COST; DRILLING; ...

  10. Property:EnvReviewDrilling | Open Energy Information

    Open Energy Info (EERE)

    undergoing projects in California. California Department of Conservation, Division of Oil, Gas, and Geothermal Resources will be the lead agency for exploration and drilling...

  11. Development of a Hydrothermal Spallation Drilling System for...

    Open Energy Info (EERE)

    System for EGS Project Type Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Project Type Topic 2 Drilling Systems Project...

  12. Recent Drilling Activities At The Earth Power Resources Tuscarora...

    Open Energy Info (EERE)

    Recent Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd...

  13. Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

  14. track 1: systems analysis | geothermal 2015 peer review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy systems analysis | geothermal 2015 peer review track 1: systems analysis | geothermal 2015 peer review At the 2015 Peer Review in May, the Energy Department's Geothermal Technologies Office (GTO) introduced nine Energy Department-funded Systems Analysis projects for review. Research teams pursue and evaluate vital geothermal technical data that can help to locate geothermal reservoirs, target drilling, and tap geothermal systems for energy production. Innovative geothermal tools and

  15. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  16. How a Geothermal Power Plant Works (Simple) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Geothermal Power Plant Works (Simple) How a Geothermal Power Plant Works (Simple) Most power plants-whether fueled by coal, gas, nuclear power, or geothermal energy-have one feature in common: they convert heat to electricity. Heat from the Earth, or geothermal - Geo (Earth) + thermal (heat) - energy is accessed by drilling water or steam wells in a process similar to drilling for oil. Geothermal power plants have much in common with traditional power-generating stations. They use many of the

  17. Workshop on geothermal drilling fluids

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Thirteen papers and abstracts are included. Seven papers were abstracted and six abstracts were listed by title. (MHR)

  18. GEOTHERMAL POWER GENERATION PLANT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GEOTHERMAL POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus. analysis_lund_oit_power_generation.pdf (946.36 KB) More Documents & Publications Klamath and Lake Counties Agricultural Industrial Park Desert Peak EGS Project CanGEA Fifth Annual Geothermal Conference Presentation - Mapping

  19. Coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Newman, K.R.

    1993-12-01

    For several years, CT has been used to drill scale and cement in cased wells. Recently, CT has been used (in place of a rotary drilling rig) to drill vertical and horizontal open holes. At this time, < 30 openhole CT drilling (CTD) jobs have been performed. However, there is a tremendous interest in this technique in the oil industry; many companies are actively involved in developing CTD technology. This paper discusses CTD applications and presents an engineering analysis of CTD. This analysis attempts to define the limits of what can and cannot be done with CTD. These limits are calculated with CT and drilling models used for other applications. The basic limits associated with CTD are weight and size, CT force and life, and hydraulic limits. Each limit is discussed separately. For a specific application, each limit must be considered.

  20. Evaluation of noise associated with geothermal development activities. Draft report, 31 July 1979-30 April 1982

    SciTech Connect (OSTI)

    Long, M.; Stern, R.

    1982-01-01

    This volume contains 93 data sheets for noise associated with geothermal development activities and geothermal well drilling noise levels from the long term noise monitoring program.

  1. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  2. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  3. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  4. Proposed Drill Sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

  5. Senate Energy Committee Passes New Geothermal Legislation

    Broader source: Energy.gov [DOE]

    Senate Energy Committee moved the ball forward for geothermal energy by passing two important geothermal measures, S. 1142 and S. 1149, on December 15. "These two measures will support exploration drilling, expand geothermal research into heating uses, and expedite leasing and development," remarked GEA Executive Director Karl Gawell.

  6. Geothermal progress monitor. Progress report No. 7

    SciTech Connect (OSTI)

    Not Available

    1983-04-01

    A state-by-state review of major geothermal-development activities during 1982 is presented. It also inlcudes a summary of recent drilling and exploration efforts and the results of the 1982 leasing program. Two complementary sections feature an update of geothermal direct-use applications and a site-by-site summary of US geothermal electric-power development.

  7. High Temperature 300°C Directional Drilling System

    SciTech Connect (OSTI)

    Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John

    2015-07-31

    Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°C capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100

  8. Electric motor for laser-mechanical drilling

    DOE Patents [OSTI]

    Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.

    2015-07-07

    A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.

  9. Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well

    SciTech Connect (OSTI)

    Rodgers, R.W.

    1982-06-01

    The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

  10. Image Logs At Coso Geothermal Area (2004) | Open Energy Information

    Open Energy Info (EERE)

    Coso Geothermal Region Notes During the second year of this project, wellbore logs and stress data were acquired in a new production well drilled in the Coso Geothermal Field,...